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ABSTRACT 
A new class of application that operates independently of 
direct human control is starting to emerge. It is our belief 
that the development of such applications is highlighting the 
shortcomings of current communication architectures and 
middleware infrastructures. In particular, they do not ade-
quately support advanced dynamic interaction models, e.g., 
in the field of autonomous agents, distributed AI, and mo-
bile co-operating entities. As we describe, our work repre-
sents the beginning of an attempt to bridge the gap between 
the requirements being put on system support by these ad-
vances, and the shortcomings of current architectures and 
middleware models. 

Therefore, this paper explores the problem of providing in-
frastructure support for large distributed systems composed 
of mobile autonomous components. It describes a pro-
gramming model supporting these applications based on the 
concept of sentient objects, and a hierarchical distributed 
communication architecture. Because the components may 
be part of the physical environment, issues such as predict-
ability and environment awareness in the interactions be-
tween objects and environment deserve particular attention. 

1 INTRODUCTION 
Human society, at every level, is increasingly dependent on 
information. Information systems such as the World-Wide 
Web are now massively pervasive and critical to the func-
tioning of the global economy. We are now at the point 
where the emergence of a new class of large-scale decen-
tralised and proactive applications, i.e., applications that 
operate independently of direct human control, can be en-
visaged. However, this is also where the demands put on 
system support by state-of-the-art programming models re-
quiring highly dynamic interactions, continuous system evo-
lution and predictable reaction to unanticipated situations, 
e.g., in the field of co-operating autonomous robots, distrib-
uted AI and advanced process control go far beyond the 
abilities of current architectures and middleware models.  
Most of the recent research on support for such applications 
has concentrated on the functional and behavioural charac-
teristics of the participants (objects, agents, etc.), but sur-
prisingly there has not yet been much attention given to the 
non-functional requirements put on the supporting substrate. 
Some characteristics we can anticipate include autonomy, 

large scale, geographical dispersion, mobility and evolu-
tion. We believe that in the near future highly distributed, 
autonomous, mission-critical computer systems will become 
ubiquitous and pervasive.  It is likely that such systems will 
be built using networked components responding autono-
mously to a myriad of inputs, in order to affect and control 
the surrounding environment. This introduces additional 
non-functional characteristics of these applications, thereby 
giving rise to a difficult combination of requirements to be 
addressed: sentience, time and safety/security criticality. 
 CORTEX proposes to devise an architecture and a set of 
paradigms for the construction of applications composed of 
collections of what may be called sentient objects - mobile 
intelligent software components that accept input from a va-
riety of different sensors allowing them to sense the envi-
ronment in which they operate before deciding how to react. 
Furthermore, the latter may organise themselves into 
autonomous, mobile and rapidly composable co-operating 
communities. In the future, we expect that sentient objects 
will be pervasively included in almost every aspect of our 
daily life. They will ubiquitously integrate all kinds of de-
vices and interact seamlessly amongst themselves in ways 
that go far beyond the client/server paradigm supported by 
current state-of-the-art middleware [11,13,21]. Applications 
will form islands of co-operation inside a wider network 
universe composed from different physical networks with 
characteristics ranging from high speed backbones to wire-
less connections and deeply embedded field buses.  
 In the long term, society will substantially rely on this 
technology. To reduce vulnerability and provide a robust 
failure resilient environment, middleware is required that 
understands the metaphors of the high-level models, yet 
keeps the underlying system (still a fragile computer and 
network system) within correct operational envelopes. 
 The remainder of this paper is structured as follows. In 
section 2 we analyse the key characteristics of the advanced 
applications mentioned above and the resulting problems. 
Sections 3, 4 and 5 describe the major layers of the 
CORTEX approach, the programming paradigm, the interac-
tion model and the system architecture respectively, follow-
ing a top-down system view. Section 6 sketches typical 
large-scale proactive applications that will require the ad-
vanced middleware support to be developed in CORTEX. 
Finally, section 7 presents our concluding remarks. 



2 FUNDAMENTAL CHALLENGES IN SUPPORTING 
SENTIENT APPLICATIONS 
Fundamentally, CORTEX is concerned with helping to real-
ise a vision of ubiquitous computing and proactive applica-
tions that are able to operate independently of direct human 
control. The approach of the project is to investigate the de-
velopment of intelligent middleware capable of supporting 
appropriate computational models for this new generation of 
applications. This middleware must enable adaptability to 
new technologies, and provide the hooks for these applica-
tions to enforce non-functional quality attributes like reli-
ability and timeliness. In particular, the middleware is in-
tended to cope with applications that have some or all of the 
following characteristics: 
• Sentience – the ability to perceive the state of the sur-

rounding environment, through the fusion and interpre-
tation of information from possibly diverse sensors; 

• Autonomy – components of these applications will be 
capable of acting in a decentralised fashion, based 
solely on the acquisition of information from the envi-
ronment and on their own knowledge; 

• Large scale - typical applications may be composed of 
billions of interacting hardware and software compo-
nents; 

• Time criticality - these applications will typically inter-
act with the physical environment, and will have to 
cope with its pace, regardless of adverse conditions due 
to scale and technology shortcomings; 

• Safety criticality – typical applications will interact with 
human users, whose well-being will frequently rely on 
them;  

• Geographical dispersion - unlike current embedded sys-
tems, typical applications will integrate components 
that are scattered over buildings, cities, countries, and 
continents; 

• Mobility – furthermore, they must possess the ability to 
move between hosts possibly of different networks, 
while remaining in continuous operation 

• Evolution – these applications will have to cope with 
changing conditions during their lifetimes. Not only 
must the applications be designed to evolve, but their 
underlying support must also be adaptable. 
 

Traditional approaches to the design of time and safety criti-
cal distributed applications cannot handle the complexity 
inherent in the scale and geographic dispersion of these new 
applications.  
 However, whereas basic technologies exist that make 
autonomous decentralised systems a possibility, appropriate 
architectures and paradigms for the construction of the rele-
vant applications are required. Consider applications com-
posed of collections of sentient objects: they must be able to 
discover and interact with each other and with the physical 
world in ways that demand predictable and sometimes guar-
anteed quality of service (QoS), encompassing both timeli-
ness and reliability guarantees, thus creating a fundamental 
trade-off between the existence of a dynamic environment 
and the need for predictable operation. To date, no compre-
hensive technology appropriate to the design and implemen-
tation of such applications exists.  
 Sentient objects will exist at very different levels of ab-
straction. At the lowest level, such objects might represent 
simple sensors or actuators capable of generating or con-

suming events. At a slightly higher level of abstraction, a 
tightly-coupled embedded system that integrates many such 
simple objects connected via a field bus might represent a 
single sentient object that is itself capable of generating 
and/or consuming events as a component of a larger system.  
 
2.1 Communication, Co-ordination and Control 
Irrespective of the level of abstraction at which we are 
working, three fundamental problems have to be addressed 
in order to support applications based on sentient objects: 
(1) dissemination of information to create common knowl-
edge, mutual awareness and a basis for local decisions; (2) 
achieving co-ordination amongst peer objects in order to 
carry out actions in a consistent way; (3) acting upon the 
environment, changing its state as a result of proactive or 
reactive decisions.  
 Consider an advanced vehicular telematics scenario in 
which vehicles communicate with one another to provide a 
look-ahead warning service for vehicles coming from be-
hind. If a vehicle detects an obstacle it sends an alert mes-
sage that, in turn, the receiving vehicles can exploit in order 
to set new cruising parameters or brake as appropriate. In 
such a scenario, we face the following problems/challenges: 
• The scope of information dissemination is dynamically 

determined by spatial parameters, i.e. those vehicles di-
rectly affected by the obstacle on the road. 

• Communication is anonymous, hence group membership 
is implicit and reliable assessment of who received the 
message is difficult. 

• The information is only valid in a restricted area.  
• Many vehicles try to send similar messages, but the sys-

tem should prevent the communication medium from 
being overloaded.  

• Vehicles, which receive the message, must decide 
whether it is necessary to continue propagation or to 
stop. 

 
The alert message would raise awareness between vehicles. 
The next step would be to initiate co-operation between the 
vehicles in order to enable vehicles to act in a coordinated 
fashion. While awareness may be realised as a best effort 
facility, co-operation needs a guaranteed quality of service 
between communicating entities. Given the above scenario, 
the underlying communications support must be able to de-
liver a wide range of qualities of service, in terms of both 
data exchange and membership services. State-of-the-art 
group communication protocols or generative anonymous 
communication [3] based on publisher/subscriber models 
definitely do not tackle these problems [20,23,24] and it is 
an open question whether these problems can be solved in 
the basic communication system alone. 
 
2.2 Heterogeneity, Hierarchy and Scope 
Again considering the example application outlined above, a 
hierarchy of communication networks will be present inside 
a vehicle to eventually convert the decision into deceleration 
or warning signals. Thus, the cruising parameters resulting 
from the higher-level co-ordination among vehicles have to 
be set and controlled by networks of intelligent sensors and 
actuators, that we generically call controller area networks 
(CANs). In more general terminology, islands of control 
must co-operate via gateways in a timely and reliable man-
ner, through the global wide area network (WAN). This mo-



tivates a crucial aspect of the CORTEX architecture, what 
we call a WAN-of-CANs structure.  
 The application example also unveils another important 
issue, which is related to the limit the range and control the 
quality of information propagation in the global system. Let 
us assume the notion of a zone. An important issue for co-
operation is to establish what QoS can be sustained by the 
zones in which participants reside. Typically, a single CAN 
represents a zone with a very high level of predictability 
compared to a zone in a wireless network [15,19,25,27,32]. 
In a mobile environment where migration from one zone to 
another zone is likely to happen, it is a great challenge to 
devise communication mechanisms that dynamically adapt 
to these changing QoS attributes while maintaining a certain 
level of guarantee. Paradigms like zoning and topology 
awareness are relevant in our context, since they allow the 
heterogeneity of the underlying support to be accommo-
dated, while not necessarily making it visible to the layers 
above [22,26]. 
 
2.3 Predictability and Adaptability 
Underlying all of these considerations is the fundamental 
challenge of coping with the uncertainty of synchrony. In 
principle, this can be achieved by adaptation. However, 
while there is an increasing body of research on QoS 
adaptation [2], most work has focused on protocol or 
application-level heuristics and does not provide any 
guarantees on how well the system adapts. The applications 
we intend to support require predictability about timeliness. 
This means that even if the timeliness of the system is 
degrading, it should do so in a predictable way. In 
consequence, the coverage of timeliness assumptions should 
remain stable throughout the application’s lifetime.  
 More demanding applications will require guarantees 
about timeliness objectives, that is, not only the coverage 
both also the assumed timeliness bounds should hold. Since 
timing faults are difficult to prevent in the kinds of complex 
and large-scale systems that we are considering, this pre-
sents us with a fundamental challenge of avoiding contami-
nation, i.e. incorrect logical behaviour when timing faults do 
occur. This has been shown to be a significant problem even 
in systems where synchrony expectations are minimal. En-
suring timely system operation despite timing faults, on the 
other hand, requires timing fault tolerance mechanisms.  
 These are challenging problems in large-scale systems 
with uncertain synchrony, especially where wireless com-
munication is employed. We intend to use and build on pre-
vious results on partial synchrony systems, such as the timed 
asynchronous and quasi-synchronous models [5, 28]. 
 
2.4 Scalability 
Scalability represents a crucial transparency property con-
cerning the ability to accommodate growth in a large-scale 
distributed system. Thus, connecting more participants to 
the system dynamically, including adding entire additional 
networks, or providing new services, should not be pre-
vented by factors originating in the system design. The no-
tion of anonymous event-based computing is central to ad-
dressing the needs of scalable systems in CORTEX. Never-
theless, supporting non-functional attributes like timeliness 
and reliability guarantees adds new and challenging dimen-
sions to scalability.  
 CORTEX aims at providing appropriate abstractions to 
express awareness about the uncertainty and variations of 

physical message transmission. The recursive WAN-of-CAN 
concept and, on a higher level of abstraction, the notion of 
zones contribute to this goal.  Furthermore, we allow appli-
cations to exploit this information proactively, e.g. by trad-
ing precision against timeliness of information. We address 
this problem in the context of a partial synchrony model, 
providing adaptation whilst ensuring stability of the cover-
age of timeliness assumptions. 
 
2.5 Fault Tolerance and Security 
‘Real’ systems derived from the CORTEX approach will re-
quire measures enhancing their dependability, both from the 
fault tolerance and the security aspects. The convergence of 
ubiquitous wireless and anonymous networking, and of 
powerful embedded computer systems, provides an interest-
ing spectrum of computer devices and information reposito-
ries that poses challenging security and reliability problems. 
 While we give priority to problems concerning co-
ordination, control, predictability, adaptability, and scalabil-
ity, our architectural approach is in line with, and will easily 
accommodate the incorporation of, known and emerging 
paradigms in modular and distributed fault tolerance for 
both large-scale systems and small-scale real-time systems, 
and in cryptographic multiparty communication and proc-
essing.  
 

3 PROGRAMMING PARADIGM 
Mobile sentient objects have autonomous behaviour result-
ing from interactions with the physical environment, i.e. 
driven by sensor inputs, as well as from the internal state of 
the objects. Moreover, they must be able to discover and in-
teract with each other in ways that may lead to unpredictable 
interaction patterns depending, for example, on their geo-
graphical proximity.  
 Fundamentally, the CORTEX programming model de-
scribes the facilities that will be provided to application de-
velopers responsible for the construction of proactive appli-
cations that employ mobile sentient objects. At the heart of 
the CORTEX programming model is an anonymous event-
based communication model, which we discuss later. Using 
a non-blocking event-based model, we are able to achieve 
autonomous sentient behaviour that is independent of the 
problems associated with traditional blocking communica-
tion paradigms (such as RPC [1,10,14,18]). The program-
ming model includes mechanisms for the specification of 
constraints on the propagation and delivery of events, and 
the means to express incremental real-time and reliability 
guarantees, in the form of QoS properties. QoS is taken as a 
metric of predictability in terms of timeliness and reliability.  
 From the programmer’s perspective, the system model is 
therefore composed of the environment and a set of sentient 
objects that interact with it. CORTEX adopts the active envi-
ronment metaphor. In more detail, the environment is part of 
the system, which, whilst being active, is responsible for 
disseminating information about its current state and/or 
events that take place in the actual physical environment to 
objects of the system. In addition, the environment may also 
be acted upon or modified by these same objects. Sentient 
objects are the active, mobile and autonomous entities in the 
system and are capable of taking decisions, and influencing 
both the environment and other objects. The programming 
model supports several different aspects of the behaviour of 
sentient objects including: 



• acquiring information from the environment and other 
objects (the sentience aspect); 

• reacting to possibly unexpected situations (the auton-
omy aspect); 

• and modifying the state of the environment (the control 
aspect). 

 
Unlike traditional distributed applications, sentient objects 
will often need to send messages to a set of other objects 
whose identities are not known to the sender and which can 
only be determined at the time that the message was actually 
sent. For example, an object may need to send a message to 
all the objects that are nearby at a given time. 
 While the basic concept of an event-based communica-
tion paradigm is simple and indeed hopefully intuitive, there 
are a number of difficult issues that need to be tackled if the 
paradigm is to be employed successfully in large scale pro-
active applications.  
 Filters provide a basic mechanism to allow objects to 
express interest, or lack thereof, in events of a certain type 
or containing certain combinations of parameter values. Es-
sentially an object subscribing interest in events of a particu-
lar type should be able to provide a filter describing which 
occurrences of events of that type it wants to be notified of. 
Filters alone are, however, not sufficient. With filters an ob-
ject may still receive notifications of occurrences of events 
in a part of the system with which it is not currently con-
cerned.   
 Zones introduce a means of scoping or limiting the 
propagation of event notifications in the system.  Objects 
can be organised into zones where a zone can be seen sim-
ply as a collection of objects and event notifications are only 
propagated within the zone of the object raising the event.  
Objects are organised into zones at the discretion of the ap-
plication programmer based on functionality, geographical 
location or physical location on the network.   
 While filters and zones allow an object to specify, at 
some level, which event notifications it is interested in, they 
do not address non-functional requirements related to the 
delivery of such notifications. This will be achieved in the 
CORTEX programming model through the introduction of a 
generic means of expressing QoS properties encompassing 
timeliness and reliability, including consistency and order-
ing of event notifications.  
 
4 INTERACTION MODEL 
Interaction comprises the aspects of communication and co-
ordination. An event-based programming model naturally 
leads to the spontaneous generation of messages rather than 
a request/response style of communication. This fact sug-
gests the use of an anonymous generative communication 
model [3,23,24,7,17], using typed communication channels 
to connect producers and consumers of events according to 
a publisher/subscriber model. Autonomy is supported be-
cause the model does not force an explicit transfer of con-
trol, nor synchronization between producers of events and 
their consumers. Therefore, the interaction model of 
CORTEX is based on such a model reflecting the needs of 
object autonomy, system robustness and evolution. We ex-
tend and modify existing approaches in two major direc-
tions: 
• we consider the fact that sentient objects not only com-

municate via the network but also, indirectly, through 

the environment, when they act on it. Thus the envi-
ronment constitutes an interaction and communication 
channel and is in the control and awareness loop of the 
objects. 

• we address new adaptable ways of guaranteeing tempo-
ral properties of interactions, in the presence of uncer-
tain timeliness of the environment. It is intended to ex-
ploit context awareness of sentient objects to reach this 
goal. 
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Figure 1: Events and object interactions in CORTEX 
 
CORTEX must support several kinds of interactions (see 
Figure 1):  
• Environment-to-object interactions take the form of 

unsolicited dissemination of the state of the former, 
and/or notification about events taking place therein. 
The transformation of events to state within the realm 
of the active environment components is not precluded, 
as a way to preserve the memory of past events. 

• Object-to-object interactions serve two purposes. The 
first is related with complementing the assessment of 
each individual object about the state of the surrounding 
space, which includes environment components and the 
objects "within reach", that is, capable of influencing its 
next decisions. The second is related to collaboration, in 
which the object tries to influence other objects into 
contributing to a common goal, or into reacting to an 
unexpected situation. 

• Object-to-environment interactions comprise the de-
liberate attempt at forcing a change in the state of the 
environment. This may come as a consequence of the 
pursuance of the object's own objectives, or of the reac-
tion to unexpected situations created by the environ-
ment or other objects.  

 
Given the highly interactive nature of the envisaged applica-
tions, and the fact that actions will be dictated to a great ex-
tent by assessment of the state of the environment, CORTEX 
falls under the typical constraints placed on distributed real-
time systems [31,16]. Thus, the communication abstractions 
must support predictable timing behaviour. 
 CORTEX exploits context and environmental aware-
ness, that is, use of internal and external context information 
to facilitate object interaction in changing situations. Ob-
jects, for example whilst moving, may be confronted with 
unpredictable communication needs or unanticipated inter-



action patterns with other objects and with the environment. 
Context awareness in terms of "which network am I in?", 
"how many hops away are my partners", "what delay am I to 
expect for this message", as well as the detection of timing 
failures or the assessment of membership all constitute ex-
amples of context awareness.  
 The main issue introduced by co-operation in the inter-
action model is the predictability of the co-ordination 
mechanisms necessary to carry out joint actions. Since ob-
jects operate in a real world environment, co-ordination has 
to be achieved under temporal constraints. As a minimum, 
this requires timeliness of communication, including those 
primitives achieving consensus, ordering, and so forth.  
 In order to address these issues, CORTEX combines the 
group communication and the anonymous communication 
paradigms in a flexible way, allowing non-functional prop-
erties such as the required degree of synchrony and the reli-
ability of communication to be specified on a per group and 
per event basis.  
 Achieving predictable timing behaviour is a hard task in 
large-scale, heterogeneous systems that cannot be made 
strictly synchronous at reasonable costs in transmission de-
lay and bandwidth. However, despite some of the adverse 
conditions just described, applications have to exhibit a cer-
tain degree of predictability. Approaches to this problem 
under uncertain operating conditions have been addressed in 
the mission-critical systems arena. Systems would normally 
have pre-defined operational envelopes, to which they 
would switch in a best effort to achieve their goal [12,29]. 
In more general terms, this is also the track followed by the 
QoS based adaptive systems. This adaptation is generally 
done in an ad-hoc manner, and may sometimes not bring the 
system to an optimal tuning.  
 In contrast, we address the hard problems in the time 
domain in the light of partial synchrony models, which can 
withstand varying timeliness or synchrony conditions, and 
the occurrence of timing failures. Our approach follows re-
cent work on timing and QoS failure detection oracles [30] 
under partial synchrony models that reason in terms of the 
<assumption,coverage> binomial. This may help provide a 
precise definition of predictability, in terms of an assurance 
to which a probability is attached, and thus provide condi-
tions for objects to make justifiable tradeoffs between main-
taining their original goals with a reduced probability of 
success, or relaxing their goals whilst maintaining the initial 
probability. 
 
5 SYSTEM ARCHITECTURE 
The architecture of CORTEX must recognize two facts: 
much of the real infrastructure may actually be unknown 
prior to system deployment time, thus requiring the capacity 
for discovery of topology, services and so forth. Moreover, 
components are of an extremely heterogeneous nature, both 
in technological and exploitation terms (wired vs. wireless, 
public vs. private). 
 CORTEX features an abstract network architecture that 
reflects the hierarchical structure of large-scale heterogene-
ous networks, while defining the necessary mappings from 
this abstract description to real networks, including sen-
sor/actuator busses and wireless links. In the architecture, 
non-functional properties are translated to QoS require-
ments, specified at the level of the interaction model 
abstractions. We define gateways as crucial architecture 
components, which serve as brokers for both the functional 
and non-functional (e.g. QoS) properties of the subsystems 

non-functional (e.g. QoS) properties of the subsystems they 
hide. 
 The basic infrastructure is composed of a global wide 
area network (WAN) that comprises substructures sub-
sumed by the abstraction of a Controller Area Network 
(CAN). The WAN comprises all that makes the globally 
available, mostly wired, ostensibly public and wide range 
network infrastructure. A CAN represents a confined envi-
ronment in which a certain quality of communication in 
terms of bandwidth, transmission delays, and reliability can 
be enforced. The WAN-of-CAN structure allows a hierar-
chical composition of heterogeneous environments with re-
spect to timeliness: at the lowest level we may find networks 
with highly predictable communication, controlling physical 
devices such as sensors and actuators.  
 This WAN-of-CAN structure is assembled by means of 
gateways. A gateway is a crucial architectural construct that 
provides the propagation of QoS constraints on event flows, 
and on the events proper, while ensuring timeliness con-
finement between parts of the architecture, namely in what 
concerns CAN modules. From an architectural point of 
view, gateways can be seen as artefacts that provide a repre-
sentation of a certain environment to the outside world. 
Therefore, they must provide means to specify how this rep-
resentation will be established and how the events will flow 
from, and to the outside environment.  
 CORTEX, in common with many other complex sys-
tems, offers a set of basic support services through a mid-
dleware layer. Today, the focus of middleware is on inter-
operability by providing functionally compatible interfaces. 
A number of mobile-specific distributed systems services 
have been developed in recent years that aim to operate in 
challenging mobile environments [4,9,8]. However, to date 
such services are not designed to offer sufficient levels of 
dependability or support the highly asynchronous interac-
tion model required by the CORTEX computational para-
digm. In more detail, when targeting mission and safety 
critical applications, e.g. traffic management systems, pre-
dictability under widely varying load and fault conditions 
becomes an additional decisive requirement. It is the con-
flict between technical conditions and the application re-
quirements that makes predictability one of the greatest 
challenges for the middleware of the future. 
 The ability to enforce and check timeliness of actions 
with given coverage assumptions is necessary in order to 
achieve dependable execution in face of uncertain timeli-
ness. This requires the availability of a number of basic ser-
vices, such as timing failure detection and clock synchroni-
zation. Similarly, discovery services are mandatory, not only 
in terms of topology, but also in terms of services offered by 
the infrastructure. Together, these are the distinctive ser-
vices supplied by the CORTEX middleware. 
 
6 APPLICATION SCENARIOS 
In this section, we illustrate with a few scenarios the rele-
vance of the CORTEX architecture. 
 
6.1 Supporting field workers in the electricity industry 
Field workers in the electricity supply industry work in a 
highly distributed safety critical and real-time environment. 
Current best working practice is based on a centralised co-
ordination body (the control centre). However, such cen-
tralisation inevitably proves to be a bottleneck and potential 
point of failure during periods of high activity, such as dur-



ing lightning storms. Furthermore, the highly mobile field 
engineers are often unable to establish contact with the con-
trol centre in a timely fashion, although they may well be 
able to establish ad-hoc dialogues with neighbouring col-
leagues. By enhancing collaboration between colleagues and 
replicating the view of the current network state to all field 
engineers, there is the potential to distribute operational con-
trol and co-ordination [6].  
 One potential application of CORTEX involves placing 
intelligence and monitoring capabilities into the power dis-
tribution network infrastructure itself (e.g. at substation 
switches). This would allow predictable action by providing 
different levels of dependability in isolated parts of the net-
work. A switch might, for example, take autonomous action 
to ensure fail-safe behaviour under certain conditions. Al-
ternatively, these ‘sentient switches’ may take a proactive 
role in collaborating with field engineers directly. Such col-
laboration will, we believe, facilitate the establishment of 
pockets or zones of co-ordination, enabling useful work to 
be performed, despite the inability to achieve direct com-
munication with a centralised control centre. 
 
6.2 Mountain rescue 
Mountain rescue workers are constantly faced with search 
and rescue operations in which they are called upon to lo-
cate stranded, and possibly injured, people in extremely hos-
tile conditions. Such environments also place stringent con-
straints on mobile computational devices, such as weight, 
battery life and communications availability. To affect a 
successful search of a mountain-side requires a co-ordinated 
effort by a team of rescuers who are themselves vulnerable 
to hostile weather conditions, can become separated and 
even injured. In such scenarios, tracking the location of 
search team members is required in order to provide both 
the control centre and rescuers with an awareness of the lo-
cation of those team members involved in the rescue. Shar-
ing of location information poses a technical challenge; the 
availability of the communications infrastructure and parti-
tioning of the search team is greatly affected by the topol-
ogy of the mountain terrain and unpredictability of the pre-
vailing weather conditions.  
 Ad-hoc networking can enable collaborations between 
neighbouring team members and promote the sharing of in-
formation, such as location and medical telemetry, to en-
hance the effectiveness of a typical search and rescue opera-
tion. Moreover, information gathered in the field can be re-
layed back to remote experts at the base or local accident 
and emergency departments.  
 The dynamic nature of such collaborations is poorly 
supported by existing distributed systems given the general 
bias towards a reliable and fixed communications infrastruc-
ture. The CORTEX paradigm fits well to this application 
domain by supporting the notion of zones that, in this sce-
nario, could represent zones of network availability. 
 
6.3 Next generation cars 
As a more futuristic example, consider the reaction of a 
queue of cars to an accident on a typically busy motorway 
carriageway. A driver in the queue will be forced to brake 
suddenly, but when the next driver reacts, she will brake 
hard enough to stop her car within the remaining braking 
distance. Each car in the queue reacts similarly. The usual 
outcome of this behaviour is that a number of drivers will 

not have sufficient braking distance left and a multiple car 
collision will occur.  
 Using the CORTEX paradigm, a more co-ordinated ap-
proach could be achieved in which vehicles publish events 
(such as the fact that they are performing an emergency 
brake or that the car will be stationary in a number of milli-
seconds) to other interested parties (e.g., cars following 
within a certain distance). Sentient objects (located within 
other cars in the queue) can ask to receive the braking event, 
and when notified can take appropriate braking action (pub-
lishing their own braking events). In this way, the entire 
queue of vehicles can be brought to a halt in a progressive 
and controlled manner. 
 
7 CONCLUSIONS 
In this paper, we have explored the issues that arise in sup-
porting an emerging class of applications that operate inde-
pendently of direct human control. We have presented the 
necessary support mechanisms in terms of system architec-
ture and middleware models. Furthermore, we have derived 
a set of key characteristics for such a model, including sen-
tience, autonomy, large scale, geographical dispersion, mo-
bility and evolution. 
 The paper introduces a programming model that pro-
vides the necessary means for application developers to 
construct proactive applications that employ mobile sentient 
objects. We described the fundamental aspects of the 
CORTEX programming model, proposing anonymous 
event-based communication and the possibility of specifying 
constraints and guarantees in the form of QoS properties. 
We also introduced a number of important concepts for the 
programming model, e.g. filters and zones. 
 The interaction among the objects in the system, which 
comprise the aspects of communication and co-ordination, 
are dealt with in the proposed interaction model. We also 
propose the fundamentals of a system architecture, which 
defines the mechanisms that are necessary to implement the 
communication abstractions identified in the interaction 
model. A key aspect of this architecture is that it must be 
capable of handling the extremely heterogeneous nature of 
possible components. 
 The CORTEX project has already taken the first steps 
towards defining the fundamental paradigms and solutions 
needed to address this class of sentient and proactive appli-
cations. However, as we continue to revise our model, we 
are constructing several proof-of-concept prototypes to 
illustrate the feasibility of our ideas. We have been using 
several application scenarios to drive our work, of which the 
ones presented in this paper are just an illustrative subset. 
We expect to publish further results of our ongoing work in 
a near future. 
 
REFERENCES 
[1] Bakre, A. and Badrinath, B.R., M-RPC: A Remote Pro-

cedure Call Service for Mobile Clients. Technical Re-
port WINLAB TR-98, Department of Computer Sci-
ence, Rutgers University, USA, June 1995. 

[2] Campbell, A. and Coulson, G., A QoS adaptive transport 
system: Design, implementation and experience. In Pro-
ceedings of the Fourth ACM Multimedia Conference, 
pages117-128, New York, NY, USA, Nov 1996.  

[3] Carriero, N. and Gelernter, D., Linda in Context. Com-
munications of the ACM, 32(4):444-458, Apr. 1989. 



[4] Cheverst, K., Development of a Group Service to Sup-
port Collaborative Mobile Groupware. Ph.D. Thesis, 
Computing Department, Lancaster University, Bailrigg, 
Lancaster, LA1 4YR, U.K., Apr. 1999. 

[5] Cristian, F. and Fetzer, C., The Timed Asynchronous 
System Model. In Proceedings of the 28th Annual Inter-
national Symposium on Fault-Tolerant Computing, 
pages 140-149, Munich, Germany, June 1998. 

[6] Davies, N. and Friday, A. and Blair, G.S. and Cheverst, 
K., Distributed Systems Support for Adaptive Mobile 
Applications. In ACM Mobile Networks and Applica-
tions, special issue Mobile Computing – System Ser-
vices, 4(5), 1996. 

[7] Estrin, D. and Govindan, R. and Heidemann, J., Scalable 
coordination in sensor networks. In Proc. of the 5th 
ACM/IEEE International Conference on Mobile Com-
puting and Networking, Seattle, WA, USA, 1999. 

[8] Franz, W. and Hartenstein, H. and Bochow, B., Internet 
on the Road via Inter-Vehicle Communications. In Proc. 
GI/OCG Annual Conference: Workshop on Mobile 
Communications over Wireless LAN: Research and Ap-
plications, Vienna, Sept. 2001. 

[9] Friday, A., Infrastructure Support for Adaptive Mobile 
Applications. Ph.D. Thesis, Computing Department, 
Lancaster University, Bailrigg, Lancaster, LA1 4YR, 
U.K., Sept. 1996.  

[10] Haahr, M. and Cunningham, R. and Cahill. V., Sup-
porting CORBA Applications in a Mobile Environment. 
In Proc. of the 5th ACM/IEEE International Conference 
on Mobile Computing and Seattle, WA, USA, 1999. 

[11] Horstmann, M. and Kirtland, M., DCOM Architecture. 
http://www.microsoft.com/jini/specs/. 

[12] Jensen, E. and Northcutt, J., Alpha: A non-proprietary 
os for large, complex, distributed real-time. In Procs. of 
the IEEE Workshop on Experimental Distributed Sys-
tems, pages 35-41, Alabama, USA, 1990. 

[13] JINI Technology 1.1. Specification, Sun Microsys-
tems, http://www.sun.com/jini/specs/. 

[14] Joseph, A. and deLespinasse, A. and Tauber, J. and 
Gifford, D. and Kaashoek, M.F., Rover: A Toolkit for 
Mobile Information Access. In Proc. 15th ACM Symp. 
on Operating System Principles, Vol.29, pp.156-171, 
Copper Mountain Resort, Colorado, USA, Dec 1995. 

[15] Kopetz, H. and Grünsteidl, G., TTP - A Time-
Triggered Protocol for Fault-Tolerant Real-Time Sys-
tems.Research Report 12/92, Institut für Technische In-
formatik, Technische Universität Wien, 1992. 

[16] Kopetz, H., Real-Time Systems, Design Principles for 
Distributed Embedded Applications. Kluwer Academic 
Publishers, 1997. 

[17] Kulik, J. and Rabiner, W. and Balakrishnan, H., Adap-
tive protocols for information dissemination in wireless 
sensor networks. In Proc. of the 5th ACM/IEEE Interna-
tional Conference on Mobile Computing and Seattle, 
WA, USA, 1999.  

[18] Kümmel, S. and Schill, A. and Volkmann, G., RPC 
over Advanced Network Technologies: Evaluation and 
Experiences. In Proceedings of the 3rd International 
Workshop on Services in Distributed Networked Envi-
ronments, Macau, China, June 1996. 

[19] Livani, M.A. and Kaiser, J. and Jia, W.J., Scheduling 
Hard and Soft Real-Time Communication in the Con-
troller Area Network (CAN). In 23rd IFAC/IFIP Work-
shop on Real Time Programming, Shantou, China, June 
1998. 

[20] Maffeis, S., iBus - The Java Intranet Software Bus. Ol-
sen&Associates, www.olsen.ch, 1997. 

[21] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification. OMG 
Document 96-03-04, July 1995. 

[22] O'Connell, K. and Dinneen, T. and Collins, S. and 
Tangney, B. and Harris, N. and Cahill, V., Techniques 
for Handling Scale and Distribution in Virtual Worlds. 
In Proceedings of the 7th ACM SIGOPS European 
Workshop, pp.17-24, Connemara, Ireland, Sept. 1996. 

[23] Oki, B. and Pfluegl, M. and Seigel, A. and Skeen, D., 
The information Bus®- An Architecture for Extensible 
Distributed Systems. 14th ACM Symp. on Operating 
System Principles, pp.58-68, Asheville, NC, Dec. 1993. 

[24] Rajkumar, R. and Gagliardi, M. and Sha, L., The Real-
Time Publisher/Subscribe Inter-Process Communication 
Model for Distributed Real-Time Systems: Design and 
Implementation. In IEEE Real-time Technology and Ap-
plications Symposium, June 1995. 

[25] Rufino, J. and Veríssimo, P. and Almeida, C. and Rod-
rigues, L., Fault-Tolerant Broadcasts in CAN. In Digest 
of Papers, The 28th International Symposium on Fault-
Tolerant Computing Systems, Munich, Germany, June 
1998. 

[26] Starovic, G. and Cahill, V. and Tangney, B., An Event 
Based Object Model for Distributed Programming. In 
OOIS (Object-Oriented Information Systems) '95, pages 
72-86, Dec. 1995. 

[27] Tindell, K. and Burns, A., Guaranteed Message laten-
cies for Distributed Safety-Critical Hard Real Time Con-
trol Networks. Technical Report YCS229, Dept. of 
Comp. Science, University of York, May 1994. 

[28] Veríssimo, P. and Almeida, C., Quasi-synchronism: a 
step away from the traditional fault-tolerant real-time 
system models, Bulletin of the Technical Committee on 
Operating Systems and Application Environments 
(TCOS), 7(4):35-39, Winter 1995. 

[29] Veríssimo, P. and Barrett, P. and Bond, P. and Hil-
borne, A. and Rodrigues L. and Seaton, D., The Extra 
Performance Architecture (XPA). In Delta-4 - A Ge-
neric Architecture for Dependable Distributed Comput-
ing, D. Powell ed., pages 211-266, Springer Verlag, 
ESPRIT Research Reports Series, 1991. 

[30] Veríssimo, P. and Casimiro, A. and Fetzer, C., The 
Timely Computing Base: Timely actions in the presence 
of uncertain timeliness. In Proceedings of the Interna-
tional Conference on Dependable Systems and Net-
works, pages 533-542, New York, USA, June 2000. 

[31] Veríssimo, P. and Rodrigues, L., Distributed Systems 
for System Architects, Kluwer Academic Publishers, 
2001. 

[32] Zuberi, K.M. and Shin, K.G., Non-Preemptive Sched-
uling of messages on Controller Area Network for Real-
Time Control Applications. Technical Report, Univer-
sity of Michigan, 1995. 


