

A Reflective Middleware Approach to the Provision of Grid Middleware
Geoff Coulson, Gordon Blair, Nikos Parlavantzas, Wai Kit Yeung, Wei Cai

Computing Department, Lancaster University (UK)
[geoff, gordon, parlavan, yeungwk, w.cai]@comp.lancs.ac.uk

1. Introduction

In the past few years significant progress has been
made in the design and implementation of reflective
middleware platforms [Kon,02]—i.e., platforms that,
through reflection [Kiczales,91], can be flexibly
configured, and run-time adapted/ reconfigured,
especially in terms of non-functional properties like
timeliness, resourcing, transactional behaviour, and
security. Recently, we have initiated a project that
investigates applying our previous reflective
middleware work to the demanding and novel—for
reflective middleware—area of Grid middleware
environments. In particular, our focus is on the web-
services-based approach being adopted in the Open
Grid Services Architecture (OGSA) initiative
[OGSA,03]. Within this approach we are focusing on
communications and resource management issues (we
are specifically not focusing, for example, on data-Grid
or semantic-Grid aspects).

The specific aims of our work are as follows:

� To develop a prototype platform based on our
generic middleware technologies, but with OGSA-
related functionality and an OGSA-based API
(which is, however, extensible using reflection).

� To investigate the integration of generic service
offered by non-OGSA environments (e.g. CORBA,
.NET, Java RMI/ EJB), into the OGSA
programming environment in as transparent as
manner as possible.

� To evaluate the prototype platform in the context
of ongoing Grid application development at
Lancaster.

In this position paper we outline salient characteristics
of the Grid middleware environment from our
perspective, and discuss how the reflective middleware
approach offers the potential for more flexible, and
more evolvable Grid infrastructures. The remainder of
the paper is structured as follows. First, §2 briefly
surveys our previous work on reflective middleware,
and §3 surveys OGSA together with the wider field of
middleware research. Next, §4 outlines our approach to
applying reflective middleware technology in Grid

environments. Finally, §5 discusses our results to date
and indicates areas of planned future work.

2. OpenOrb and OpenCOM

Lancaster’s component-based reflective middleware
approach has already been presented in some detail in
the literature (e.g., see [Clarke,01], [Coulson,02]);
here, we provide as brief an overview as is necessary to
make sense of the rest of this paper. Our middleware,
called OpenORB, is actually more of a framework than
an ORB per se. That is, it can be used to define/
configure a range of types of middleware instances
(e.g. a Grid platform, a web-services platform, a
standard CORBA emvironment, real-time CORBA, a
pub-sub middleware platform, etc.). Subsequently,
middleware instances can be reconfigured (e.g.
extended and adapted) at runtime, using reflection. For
example, we can accomplish on-line software updates
in 7x24 systems, or migrate CPU-intensive functions
from a PDA to a dedicated application server as
memory availability and connectivity vary.
Additionally, OpenORB supports media streams as
first-class objects, and, thanks to aggressive application
of recent research results on performance optimisation
in middleware platforms, performs as well or better
than other state of the art commercial or research
ORBs [Coulson,02].

OpenORB’s internal architecture is notable for the
following features:

� A consistent use of component technology
[Szyperski,98] as the basis of configuration and
runtime reconfiguration. Uniquely, we took the
approach of building the core middleware
framework itself in terms of components (using a
home-grown component model called OpenCOM
[Clarke,01]). This approach is a generalisation of
the more conventional practice—adopted, e.g., by
COM+, Sun’s Enterprise JavaBeans, and the
CORBA Component Model—in which component
technology is only exploited for the construction
of applications on top of a standard monolithic
middleware platform. Our OpenCOM component

model is language independent, and efficient
enough to support rather fine-grained
componentisation.

� The use of component frameworks to give
structure to component configurations and help
maintain system integrity in the face of
reconfiguration. Each component framework
provides a ‘life support environment’ for
specialised ‘plug-in’ component types in a
localised domain of middleware functionality (e.g.
security policy, concurrency support, message
demultiplexing strategies, or a pluggable protocol
framework). Furthermore, each component
framework imposes domain-specific constraints on
the use of the standard OpenORB/ OpenCOM
reflective facilities (see below).

OpenCOM’s / OpenORB’s reflective facilities are
provided in terms of three orthogonal meta-models as
follows. First, the architecture meta-model supports
architectural/ structural reflection—it allows the
programmer to view the structure of a system/
application as a topological graph of components, and
to alter the structure by manipulating this graph.
Second, the introspection meta-model allows the
programmer to discover, at runtime, the types of
interfaces a component supports and to dynamically
invoke operations on these interfaces (to maintain
language-independence, discovery is in terms of IDL
interfaces). Third, the interception meta-model allows
the programmer to add/remove code that is to be
transparently executed before or after invocations are
made on a particular interface.

3. OGSA and Wider Middleware Research

3.1 The Emergence of OGSA
Following initial offerings such as Globus [Foster,01]
and Legion [Grimshaw,99], the Open Grid Services
Architecture (OGSA) [OGSA,03] is emerging as a
‘second generation’ distributed computing approach to
Grid middleware. OGSA borrows heavily from web-
services standards (especially XML, SOAP, and
WSDL), and promises a more unified and principled
approach to the support of Grid applications. It
augments generic web-services specifications by
defining a specific abstract notion of ‘Grid service’,
and also defines Grid-specific ‘patterns’ such as:
service factories and registries; naming and
referencing conventions for service instances; support
for stateful services; soft-state-based garbage collection
of service instances; event notification from services;
and version management. The international Grid

research community is strongly committed to the
OGSA initiative (see e.g. [Atkinson,02]).

Despite its perceived centrality, OGSA is still the
subject of ongoing development and standardisation,
and is far from having crystallised into its final form.
In terms of implementation, it is still less developed.
Reference implementations are underway (in
particular, Argonne Labs are developing a range of
Java-based implementations; and C/ Unix, and .NET
implementations are planned or underway
[Atkinson,02,]). However, none of these
implementations have yet been convincingly exercised,
optimised or validated in the ‘real-world’.

3.2 Wider Middleware Research
In contrast, the wider field of research in distributed
systems platforms (middleware) has been evolving over
at least 10 years, and has achieved a degree of maturity
in the form of standards like RM-ODP and CORBA,
and in industry-developed platforms like Java RMI,
Enterprise JavaBeans (EJB), DCOM, and the .NET
remoting architecture. It is, however, clear that such
middleware in its present form is not especially well-
suited to the support of Grid applications: it tends to
encourage brittle, tightly-coupled, systems that are
inappropiate in a loosely-federated Grid environment,
and its support for XML-based data structuring is
inferior to that of web-service platforms.

Nevertheless, such middleware has a lot to offer in
terms of principles and experience, e.g. in terms of
generic services (for example, CORBA supports fault
tolerance through replication, persistent state, logging,
load-balancing, and many others), server-side
scalability (for example, EJB and the CORBA
Component Model (CCM) have sophisticated support
for the automated activation/ passivation of services on
demand, and natively support services that span
multiple machines/ networks), and performance
engineering (this has been the subject of intensive
research in the object-based middleware community
over the last 5 years).

Furthermore, cutting-edge research in distributed
systems platforms [Blair,00] is now investigating the
provision of highly configurable (and run-time
reconfigurable) reflective middleware technologies
(our approach in these areas was described in §2). A
prime motivator for this research is to be able to
custom-build middleware platform instances so that
they can be applied in an very wide range of
environments (e.g., from large-scale servers, to real-
time embedded systems, to mobile PDAs), and can
support a range of programming APIs (e.g. CORBA,

or APIs for media-streaming or message-oriented
middleware). The basic philosophy is to support
configurability, extensibility and adaptability as
fundamental system properties. In particular, the
approach enables alternative policies (e.g. security
policies, replication policies, service (de)activation
policies, priority-assigned invocation paths, thread
scheduling) and components (e.g. protocols, buffer
managers, loggers, debuggers, demultiplexers) to be
configured at deploy-time, and reconfigured at run-
time (e.g. on the basis of dynamically evolving
conditions).

4. Applying Middleware Research Results
in OGSA

The implementation approach currently favoured by
OGSA developers is to layer OGSA on top of existing
web-services platforms. A good example of such a
platform is Apache Axis [Axis,02]. This provides a
Java-based environment for web-service deployment
and invocation, and provides sophisticated support for
messaging in terms of SOAP’s extension headers,
intermediaries, and multiple transport capability. Other
examples of web-services platforms are Sun’s ONE
and IBM’s WebSphere. In general, these platforms
provide a useful starting point for OGSA
implementation because they directly support the
central web-services-derived concepts—like SOAP and
WSDL—that underlie OGSA’s computational model.

Nevertheless, current web-service platforms have
significant limitations as an OGSA hosting
environment. First, they are extremely limited, in
comparison to object-based middleware platforms, in
terms of the above-mentioned aspects of generic
service provision, server-side scalability, and
performance engineering. In terms of performance, for
example, their application focus has traditionally been
on e-Commerce where dependability and security are
far more important than performance (indeed, an
asynchronous SMTP-based transport is often all that is
required). Therefore web-service platform developers
have not focused on performance optimisation to
anything like the extent of, say, CORBA-platform
developers.

Second, these platforms have little or no support for
QoS specification and realisation. We believe that
such facilities will be increasingly demanded as
sophisticated e-Science applications start to exploit the
potential of OGSA’s service-based architecture. A
closely related limitation is the over-reliance by web-
services platforms on SOAP as a communications
protocol. Although very flexible and general, SOAP

shows its limitations when relied on exclusively as a
communications protocol:

� It is inappropriate for Grid applications involving
large-volume scientific datasets
[Govindaraju,00]—mainly due to its use of XML
as an on-the-wire data representation. This is
highly demanding in terms of bandwidth, memory
and processing cycles (especially compared to
earlier standards like ASN.1 and CORBA’s CDR).

� It is not as transparent from the perspective of the
application programmer as other application-level
protocols—programmers often have to explicitly
build and extract SOAP envelopes and message
bodies and perform manual marshaling and
unmarshaling.

� Although it offers flexibility in terms of support
for various interaction patterns (e.g., choice of
request-reply or one-way messages), underlying
transport support (HTTP, SMTP, HTTP/S, etc.),
and extension header management, SOAP does
not support a comprehensive and/ or extensible
range of interaction patterns (e.g. RPC,
asynchronous RPC, (un)reliable messaging,
publish-subscribe, blackboard systems, media-
streaming, reliable/ unreliable group interaction,
workflow interaction, distributed voting or auction
protocols, and various transactional styles).

OGSA somewhat recognises the limitations of
exclusive reliance on SOAP, and (theoretically, at
least) leaves room for non-SOAP bindings (e.g. using
CORBA IIOP). However, OGSA does not currently
specify any particular framework whereby such
bindings can be properly integrated into an OGSA-
based distributed programming environment, and it
similarly does not provide any framework for generic
QoS specification/ enforcement.

The starting point of our research is a generalisation of
the above observations: neither OGSA nor web-service
platforms support a general extensibility framework
for binding-types. Furthermore, they have no
framework to specify and enforce QoS requirements
apart from the relatively crude expedient of layering
SOAP over alternative transport protocols.

In conclusion, our position is that OGSA
implementation can and should leverage the results of
the wider middleware research discussed above. In
doing so, OGSA can retain its key characteristics
(loose coupling, XML-based data structuring, reliance
on Internet standards) while additionally folding in
some of the key benefits of wider middleware research

(in particular, the availability of generic services,
server-side scalability, and performance engineering
know-how offered by ‘standard’ middleware; and the
increased flexibility and configurability—e.g. in terms
of a framework for extensible binding-types—made
possible by the newer reflective middleware
approaches).

5. Our Current Research

5.1 Overall Goal
Overall, our goal is to design and develop a
backwardly OGSA-compatible Grid services platform
using our OpenCOM/ OpenORB technology as a
hosting environment. The platform will incorporate
key results and techniques from the last several years
of research in object-based middleware. It will also
feature an programming model that integrates OGSA
with the facilities and services found in non-OGSA
middleware environments so that application
developers can leverage these from OGSA without
having to learn multiple APIs. Furthermore, we will
exploit the inherent extensibility of the OpenCOM-
based hosting environment to yield an OGSA platform
that can naturally evolve to incorporate new binding-
types and exploit useful generic services that are
available in a number of specific environments (web-
services, CORBA services, Jini services, etc.). We will
also exploit the reconfigurability/ adaptability of the
hosting environment to support predictable resourcing
of bindings to enable e-Science applications to be able
to specify QoS levels and have such specifications
meaningfully supported.

In our current research we are focusing specifically i)
on the provision of a framework for extensible binding-
types as appropriate for Grid computing (as discussed
above), ii) on reflective resource management that
underpins binding-types with predictable QoS, and iii)
on performance optimisation. These areas are
discussed in more detail below.

5.2 The Extensible Binding-Type Framework
The goals of our extensible binding-type framework
are as follows:

� To explicitly support the specification,
documentation, development and integration of
new binding-types.

� To support the composition of existing binding-
types into new ‘composite’ types (e.g. a media-
stream binding with encapsulated RPC bindings
for control).

� To offer a generically extensible API for the use of
bindings in applications.

Furthermore, to support QoS-aware e-Science
applications the framework should include means for
the specification of QoS, and support for the (adaptive)
allocation of resources to bindings so that they can
meet their given QoS specifications (see §4.3 below).
Note that binding-types in our conception can be
arbitrarily distributed entities; for example, one can
imagine a media-streaming binding-type that wraps a
compression service that resides on a different node to
either the producer of consumer of the media-stream,
and is transparent to both. This implies that the
binding-type framework must support the notion of
per-node remotely-accessible factories to enable the
instantiation of such bindings.

In our framework, binding-types are represented as
first-class components, and the framework is based on
a small set of generic concepts. These are essentially
roles (e.g. binder, referencer, resolver, controller, user)
that comprise a generic ‘meta-pattern’ for the
development of binding-types. We specify binding-
types in terms of these roles using UML collaborations,
and are currently investigating the use of automated
code generation techniques (along the lines of the
OMG’s Model Driven Architecture [OMG,01]) to map
from UML specifications to implementations. As well
as being useful for the development of binding-types
such as those mentioned above, the binding framework
also enables us to ‘wrap’ non-web-service-derived
binding mechanisms like CORBA IIOP or Java RMI so
that these can be transparently exploited by application
developers working in the OGSA environment.
Furthermore, the framework’s generically extensible
API enables application programmers to transparently
interact with generic services (e.g. fault tolerance,
transactions, etc.) defined in these non-web-service-
based environments.

5.3 Reflective Resource Management
To support the binding-type framework, we are
developing a reflective resource meta-model that
underpins the binding-type framework by allowing
low-level system resources to be flexibly associated
with individual bindings. This will build on initial
research at Lancaster [Duran-Limon,00] on the notion
of tasks—these are scoped execution paths that
logically carry out a single ‘job’ but may arbitrarily
span component boundaries. The proposed approach is
to use reflective interfaces to associate resources (and
resource factories) with tasks, and to be able to
reassign these associations as conditions (e.g. specific
resource availability, general system loading, or user-
defined priorities) change. For example, if the server
side of a SOAP binding were designated as a task, it
might be given a thread, a socket, and a DOM parser

factory. We plan to integrate this fine-grained resource
management model with the coarser-grained,
distributed, resource management services that are
already in use in the Grid environment (e.g. GRAM,
Condor-G [GRAM,02]). We also plan to integrate it
with the work in our NETKIT project [NETKIT,02] on
programmable networking to enable us to support
QoS-aware binding-types supported by resource
allocation in the network as well as merely in the end-
system. This is likely to be of increasing importance to
highly distributed and data-intensive e-Science
applications.

5.4 Performance Optimisation
Finally, we are paying close attention to the
optimisation of performance in our Grid platform. This
again is building on our previous experience in
developing middleware platforms. For example, we are
applying and developing techniques such as optimised
request demultiplexing (at both the service and
operation levels), tailoring threading strategies to
current request patterns, marshaling/ unmarshaling
with minimal/ zero copying, efficient buffer
management, intelligent connection management, and
exploitation of protocol optimisation techniques like
ALF/ ILP and header caching/ reuse, etc [Coulson,01].
In addition, for very heavily used services, the use of
OpenCOM as a hosting environment allows us to layer
platform instances directly on hardware without an
intervening OS—we are already exploring this in the
NETKIT project in the context of programmable
routers. We are also exploring the notion of just-in-
time activation of service instances to aid in scalability.

6. Current status and Future Work

Although we are at a relatively early stage in our
research. we are making rapid progress due to the fact
that we are building on an established software base.
At the moment, we have implemented a variety of
protocols to help populate the binding-type framework;
these include SOAP, OMG IIOP, a home grown
media-streaming protocol, uPnP, and SLP, all wrapped
as OpenCOM components. We have also implemented
a range of binding-types including standard remote
method invocation, publish-subscribe, reliable group
interaction, group streaming, and an auction protocol.
We have found that the binding-type framework does
indeed speed up the implementation of binding-types
and also makes them easy to use thanks to a consistent
use of common API concepts.

We have also used the reflective resources framework
to provide a level of QoS for certain binding-types,
especially the group streaming binding-type. This is so

far limited in scope in that it addresses only end-
system resource management (primarily control over
thread priorities), but we expect to incorporate network
level support (from our NETKIT project) in the near
future.

Finally, in terms of applications, we plan to investigate
a range of Grid-oriented scenarios in cooperation with
various science departments at Lancaster University.
For example, we have plans to develop, with our
Applied Statistics Dept., a set of distributed services for
the processing of statistical functions on population
data. This will feature a binding-type that abstract over
the fact that multiple servers may process the
population data in parallel.

REFERENCES

[Atkinson,02] Atkinson, M. et al., “UK Role in Open
Grid Services Architecture”, UK e-Science Architecture
Task Force document,
http://esc.dl.ac.uk/WebServices/UK_Ro
admap.pdf.

[Axis,02] Apache Axis Project,
http://xml.apache.org/axis/index.html.

[Blair,00] RM 2000, Workshop on Reflective
Middleware at IFIP/ACM Middleware 2000, New
York; see
http://www.comp.lancs.ac.uk/computing/RM2000/.

[Clarke,01] Clark, M., Blair, G.S., Coulson, G.,
Parlavantzas, N., “An Efficient Component Model for
the Construction of Adaptive Middleware”, Proc. IFIP
Middleware 2001, Heidelberg, Germany, November
2001.

[Coulson,01] Coulson G., Baichoo, S., “Implementing
the CORBA GIOP in a High-Performance Object
Request Broker Environment”, ACM Distributed
Computing Journal, Vol. 14, No. 2, pp 113-126,
Springer Verlag Press, April 2001.

[Coulson,02] Coulson, G., Blair, G.S., Clark, M.,
Parlavantzas, N., “The Design of a Highly Configurable
and Reconfigurable Middleware Platform”, ACM
Distributed Computing Journal, Vol 15, No 2, pp 109-
126, April 2002.

[Duran-Limon,00] Duran-Limon, H., Blair, G.S., “The
Importance of Resource Management in Engineering
Distributed Objects”, Proc. 2nd International Workshop
on Engineering Distributed Objects (EDO’2000),
California, USA, Nov. 2000.

[Foster,01] Foster, I., Kesselman, C., Tuecke, S., “The
Anatomy of the Grid: Enabling Virtual Organizations,
International Journal of Supercomputer Applications,
Vol 15, No 3, 2001.

[Govindaraju,00] Govindaraju, M., Slominski, A.,
Chopella, V., Bramley, R., Gannon, D., “Requirements
for and evaluation of RMI protocols for Scientific
Computing”, Proc. Supercomputing (SC ’00), Dallas,
Texas, Nov 2000.

[GRAM,02] Globus Resource Allocation Manager,
www.globus.org, 2002.

[Grimshaw,99] Grimshaw, A., Ferrari, A., Knabe, F.,
Humphrey, M., “Legion: An Operating System for
Wide-Area Computing”, IEEE Computer, Vol 32, No
5, pp 29-37, May 1999.

[Kiczales,91] Kiczales, G., J. des Rivières, D.G.
Bobrow, “The Art of the Metaobject Protocol”, MIT
Press, 1991.

[Kon,02] Kon, F., Costa, F., Blair, G.S., Campbell, R.,
“The Case for Reflective Middleware: Building

middleware that is flexible, reconfigurable, and yet
simple to use”, CACM, Vol 45, No 6, 2002.

[NETKIT,02] The NETKIT Project: A Reflective
Component-Based Infrastructure for Programmable
Networks, UK EPSRC Grant GR/S01818/01.

[OGSA,03] Tuecke, S. et al., Grid Service
Specification, draft 3,
http://www.gridforum.org/ogsi-
wg/drafts/GS_Spec_draft.pdf.

[OMG,01] “Model-Driven Architecture”, OMG
ormsc/2001-07-01, July 09, 2001.

[Szyperski,98] Szyperski, C., “Component Software:
Beyond Object -Oriented Programming”, Addison-
Wesley, 1998.

