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The growing interest in location-based services (LBS), due to the demand for its 

application in personal navigation, billing and information enquiries, has expedited the 

research development for indoor positioning techniques.  The widely used global 

positioning system (GPS) is a proven technology for positioning, navigation, but it 

performs poorly indoors.  Hence, researchers seek alternative solutions, including the 

concept of signal of opportunity (SoOP) for indoor positioning.  This research planned 

to use cheap solutions by utilizing available communication system infrastructure 

without the need to deploy new transmitters or beacons for positioning purposes. Wi-Fi 

fingerprinting has been identified for potential indoor positioning due to its availability 

in most buildings. In unplanned building conditions where the available number of APs 

is limited and the locations of APs are predesignated, certain positioning algorithms do 

not perform well consistently.  In addition, there are several other factors that influence 

positioning accuracy, such as different path movements of users and different Wi-Fi 

chipset manufacturers.  To overcome these challenges, many techniques have been 

proposed, such as collaborative positioning techniques, data fusion of radio-based 

positioning and mobile-based positioning that uses sensors to sense the physical 
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movement activity of users.  A few researchers have proposed combining radio-based 

positioning with vision-based positioning while utilizing image sensors.   

This work proposed integrated layers of positioning techniques, which is based 

on enhanced deterministic method; Bayesian estimation and Kalman filter utilising 

dynamic localisation region. Here, accumulated accuracy is proposed with distribution 

of error location by estimation at each test point on path movement.  The error 

distribution and accumulated accuracy have been presented in graphs and tables for 

each result. 

The proposed algorithm has been enhanced by location based calibration with 

additional QR calibration. It allows not only correction of the actual position but the 

control of the errors from being accumulated by utilizing the Bayesian technique and 

dynamic localisation region. The position of calibration point is determined by 

analysing the error distribution region. In the last part, modification on Kalman filter 

step for calibration algorithm did further improve the location error compared to other 

deterministic algorithms with calibration point. The CDF plots have shown all 

developed techniques that provide accuracy improvement for indoor positioning based 

on Wi-Fi fingerprinting and QR calibration. 
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CHAPTER 1: Introduction 

1.1 Location-Based-Services 

 

The increasing commercial interest in location-based services (LBS), especially 

in indoor environments has led to many developments in positioning techniques.  

Limitations of Global Positioning System (GPS), due to signal blocking by buildings, 

has made researchers look for alternative and innovative solutions to support LBS.  LBS 

can be used in a variety of applications, including health services, entertainment, 

security, and pedestrian navigation. 

Various types of communication technologies have been investigated, such as 

Wi-Fi, Bluetooth, radio frequency identification (RFID), FM radio frequency, cellular 

communication including GSM, WiMAX and LTE, and the use of sensors utilising 

magnetic fields.  Among these technologies, the Wi-Fi has caught the attention of 

researcher due to the presence of wireless LAN spread in almost every building.  The 

concern is to find an innovative positioning solution utilising data communication 

technology that is easy to access which in this case is Wi-Fi positioning.  This chapter 

starts with an elaboration of fundamental concepts of location and positioning 

techniques. 

 

1.2 Fundamentals of Location and Positioning Techniques 

 

There are a few different types of measurements used to determine user 

positions, despite the large number of positioning systems.  These measurements are 

output from a measurement layer in hardware sensor devices and can be determined 
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using various parameters, such as received signal strength indicator (RSSI), time of 

arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA) and hybrids 

of these. 

 

1.2.1 Time of Arrival (TOA) 

 

TOA is a time-based method that is widely used in positioning technology.  It is 

based on a trilateration approach [1],  whereby the system measures the one-way signal 

propagation time and uses at least three transmitters to determine a user’s position in a 

coplanar scenario.  Here the assumption made is that the positions of all transmitter 

nodes are known.  For a non-planar case, four transmitter nodes are required.  Based on 

measurement of distance, the user’s position is localised within a sphere of a certain 

radius Ri where Ri is proportional to the 𝜏𝑖 with a receiver at the centre of the sphere.  

The position of the target user can be calculated by either the transmitter node/base 

station or user devices. 

 

 

 

 

 

 

 

 

 

Figure 1.1: User target location using TOA measurements. 
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1.2.2 Time Difference of Arrival (TDOA) 

 

TDOA estimation is a hyperbolic positioning technique that requires the 

measurement of difference in time between signals arriving from two transmitter nodes.  

It is similar to the TOA concept, and assumes that the positions of the transmitter or 

base nodes are known [2].  As illustrated in Figure 1.2, two TDOA measurements are 

required to localise a target node.  The base nodes that first receive a signal from a user 

are considered as the reference base nodes.  All TDOA measurements are made with 

respect to reference base nodes.  A potential target location will be the intersection from 

two hyperbolae formed from TDOA measurements between (1-2) and (1-3), with 

reference to the base station. 

 

 

 

 

 

 

Figure 1.2: Position location using TDOA measurements. 

 

1.2.3 Angle of Arrival (AOA) 

 

AOA is basically estimated through the use of antenna arrays at the base station.  

Each antenna array should be equipped with RF front end components and this makes 

the system more complex, costly and power hungry.  It does similar things to TOA and 

TDOA measurements so that the position of the transmitter node should be known in 
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the first stage.  To determine the AOA, the main lobe of the antenna array is steered in 

the direction of the peak incoming energy of the arriving signal [3]. As shown in Figure 

1.3 the intersection of directional lines of position (LOPs) defines the position of the 

target user. 

 

 

 

 

 

 

 

Figure 1.3: Final target position using AOA measurements. 

 

1.2.4 Signal Strength 

 

Received signal strength indicator (RSSI) is a measure of the magnitude of the 

signal power at the target user’s receiver in transmitter node. The strength of received 

signals indicates the distance travelled by the propagation signal. For many location 

applications, concerns about cost, hardware complexity and feasibility of the system 

make an RSSI-based method an attractive choice for positioning location in wireless 

networks.  RSS values are always available in every wireless system without the need 

for extra hardware or modifications to the current system, making it a popular choice.  

This technique estimates the distance from transmitter to receiver by calculating path 

loss due to propagation. 
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1.2.5 Hybrid Measurement 

 

Each of the positioning measurements mentioned above has their own strengths 

and weaknesses, depending on where they are applied.  To further improve positioning 

accuracy, being dependent on only one type of positioning measurement is not enough.  

Two or more related parameters are needed and these can be employed in order to 

obtain more information about the position target node.  These are called the hybrid 

schemes and include the TOA/AOA [3][4], TOA/RSS [5], TDOA/AOA [6][7], 

TOA/TDOA [8]. 

Besides conventional TOA, TDOA, AOA and RSS parameters, and hybrid 

combinations, there is another scheme for positioning that includes a parameter that 

involves obtaining a multipath power delay profile (PDP) or channel impulse response 

(CIR) related to the received signal [8].  This kind of estimation can provide 

significantly more information, but commonly requires a database consisting of 

previous PDP/CIR estimates.  Hence, the algorithms involved in PDP/CIR estimation 

usually include a training phase, then position estimation can occur. 

 

1.3 Aims of the Research 

 

 The importance of location-based services has caught many researchers’ interest 

in indoor positioning.  The purpose of this research is to utilise an existing 

communication system without spending on extra facilities to provide indoor 

positioning.  Wi-Fi, in particular IEEE 802.11, standards are usually deployed in 

buildings for Internet access.  For this reason, a Wi-Fi signal was chosen as the best 

possible candidate to perform localisation.  The pattern of signal strength level from 



 
6 

 

various access points was studied and utilised to enhance location estimation accuracy.  

However, the current algorithm performance is not sufficient in terms of consistency.  

The scope of the research to improve existing techniques is based on a Wi-Fi fingerprint 

for indoor positioning.  This was achieved by integrating several layers of positioning 

algorithms to get better consistency in positioning accuracy. 

 

1.4 Contributions of the Thesis 

 

There are many techniques or approaches to determine a user’s position, as explained by 

previous researchers [9][10][11]; however the Wi-Fi fingerprint technique has caught 

researcher’s attention as it produces consistent and better accuracy [12][13].  This thesis 

focuses on the determination of a user’s location, based on a Wi-Fi fingerprint 

technique and visual based calibration for indoor positioning.  The design algorithms 

were carefully designed to fit and match the QR calibration to improve the whole 

location accuracy.  The contributions made through this thesis are summarised as 

follows: 

i) Development of several integrated layers of indoor positioning algorithm 

consisting of dynamic deterministic location estimation (Enhanced Weighted K-

NN), Bayesian approach under dynamic localisation region and Kalman filter to 

improve the effect of movement direction and different Wi-Fi chipset for indoor 

localisation. 

ii) Based on the algorithm from Part i), the author proposes enhanced integrated 

indoor positioning algorithm with QR calibration point to reduce accumulated 

error in indoor path movement. 
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iii) Introduction of the accumulated accuracy on error distribution to determine the 

correct placement of QR calibration point for indoor positioning. 

iv) Proposes novel algorithm by combining previous algorithm from Part ii) with 

modification on Kalman Filter to suit QR calibration point to further improve 

accumulated accuracy and CDF for indoor navigation experience. 

 

1.5 Structure of Thesis 

 

 Each of the remaining chapters investigates a different aspect of solving the 

indoor positioning problem, they analyse each technique before drawing a conclusion 

about the effectiveness of various algorithms. 

 Generally, in Chapter 2, an overview of work on localisation and positioning 

that is specific to indoor positioning is given.  The chapter gives an overview of basic 

location and positioning techniques and current solutions to Wi-Fi positioning, 

especially fingerprint techniques.  This section highlights the categorization of general 

classification positioning based on such technologies as radio-based positioning and 

mobile-based positioning, and future trends based on vision-based positioning. 

 Chapter 3 describes the measurement setup and simulation environment.  The 

chapter briefly describes the measurement of Wi-Fi signals, the layout plan and the 

limitations and assumptions made in this research.  The concept of an off-line phase and 

an on-line phase in Wi-Fi fingerprinting is explained in detail.  Furthermore, the terms 

reference point and test point are also elaborated.  Suitable simulation tools for this 

research are discussed in this chapter on algorithm development and testing.  

 Then, Chapter 4 discusses basic Wi-Fi deterministic techniques as the first layer 

of localisation.  Comparisons with a different kind of algorithm and additional 
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improvements to current Wi-Fi deterministic techniques are also presented.  In addition, 

Bayesian estimation is explained in this chapter and the advantages of how 

implementing it in localisation helps with accuracy improvement.  The effect on a 

number of RSSI samples when implementing Bayesian estimation is also discussed.  

Moreover, the effects of movement direction, different Wi-Fi chipsets, and algorithms 

themselves on positioning accuracy are also presented.  Kalman filter was introduced 

into the end layer of localisation.  This helps to reduce the presence of noise and 

instability in RSSI readings from various APs available in the building.  Consequently, 

Kalman filter helped to reduce the differences in positioning estimation from one test 

point to another. 

 With a focus on calibration methods, Chapter 5 presents how current Wi-Fi 

algorithms can be improved via a combination of calibration techniques for dedicated 

path movement.  This chapter starts with a brief introduction on how to generate QR 

code.  The flow process for encoding QR code is briefly explained, and the advantages 

and popularity of using QR code in everyday life are also discussed.  Furthermore, the 

results of utilising QR code as a calibration point for indoor positioning are also 

presented in the chapter.  A modification algorithms to suit implementation of QR code 

in localisation is illustrated in detail as well.  Simulations were conducted to evaluate 

the effectiveness of the algorithms proposed. 

 Finally, Chapter 7 concludes the thesis by summing up contributions of this 

work and proposes some possible future directions in the field of indoor wireless 

positioning. 
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CHAPTER 2: Overview of Positioning Technology 

 

2.1 Wireless Positioning Technology Classification 

 

With the increasing demand for location-based services (LBS), the research field 

of wireless positioning, specifically mobile positioning has become more active over the 

past fifteen years.  This comprises research applications in various fields such as mobile 

positioning, vehicle navigation, emergency search and rescue, and tourist guides.  In 

addition, position information becomes an important part of networking as network 

protocols can utilise this extra information to reduce routing overheads.  Meanwhile, on 

the security side, position information is necessary for encryption and decryption to 

establish a secure channel.  Recent advances in computing technology and sensing have 

inspired a new generation of integrated positioning systems.  For instance, the current 

smartphones are equipped with many wireless modules and sensors, such as Wi-Fi 

module, GPS, gyro meter, image sensor and many other.  Much of this potential can be 

utilised for the purpose of positioning.  The potential for positioning can be classified 

into three areas [14]: traditional wireless positioning system (WPS), mobile positioning 

system, and vision-based positioning. 

 

2.1.1 Wireless Positioning System 

 

In wireless positioning system (WPS), the system involves a direct wireless 

network where the radio signal of a user is measured so that the user’s position can be 

estimated by referring to network stations.  The WPS includes the global navigation 

satellite system (GNSS), the well-known Global Positioning System (GPS), cellular 
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positioning system (CPS) from GSM to LTE network, wireless local area network 

(WLAN) positioning system, and wireless sensor networks (WSN) positioning system.  

Both GPS and CPS are suitable for outdoor, while the WLAN positioning system is 

preferred in indoor environments.  WSN positioning system is typically used in an 

unknown environment where WSN nodes need to deploy before localisation can occur.  

From all these wireless technologies, which operate on their own dedicated frequency 

bands, the performance of WPS is entirely dependent on radio signal propagation 

conditions and environmental conditions.  Non-line-of-sight (NLOS) radio propagation 

is the main cause of large positioning errors in CPS, from metres to hundreds of metres 

[14].  Furthermore, GPS and CPS signals can be blocked in closed environments, such 

as buildings, urban canyons and tunnels, which is a huge challenge in the location and 

positioning field. 

A common infrastructure of WPS consists of a user target and beacons/ base 

stations/ transmitter nodes.  User target and base stations measure radio signals within 

their communication range and the result of measurements are used to determine the 

distance between two transceivers.  One of the early techniques called cell ID [2] is a 

simple position estimation that treats any position within the base station’s 

communication range. 

In WPS, a signal can be measured in term of signal strength, propagation time, 

and arriving angle of a radio signal.  These measurement is needed for advanced 

location estimation techniques such as time of arrival (TOA) [15], time difference of 

arrival (TDOA) [16], received signal strength [17], and angle of arrival (AOA) [18], 

which is more accurate compared to the cell ID. Moreover, hybrid of advanced location 

estimation methods have been proposed, such as the hybrid TOA/TDOA [8] and hybrid 

AOA/TDOA [6][7].  Wireless positioning relies purely on radio signal measurement, 

and the performance of existing WPS depends heavily on signal propagation.  The 
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condition of radio propagation can vary significantly.  Two main factors influence 

positioning accuracy are NLOS propagation [19][20][21] and multipath effect [22].  

Experiments on CPS based code-division multiple access have shown that in an urban 

area, building can cause NLOS and multipath propagation which can result in 

positioning errors as large as 588.971m [23].   In an indoor environment, NLOS 

obstacles comprise walls, doors, furniture and human bodies [9].  In WSN, positioning 

error is 7.0 m when the propagation signal is good but can rise to double positioning 

error in an NLOS condition [24].  However, it is a different case for ultrawideband 

(UWB) where it can work better in an NLOS condition.  UWB is a radio 

communications system with a bandwidth more than 500 MHz.  This high frequency 

can penetrate obstacles such as doors and walls, and this makes it possible to measure 

signals accurately via arriving time (TOA estimation) and arriving angle (AOA 

estimation).  The precision of UWB-based positioning can be within 10 cm but in 

challenging environments, interference and multipath effects can reduce ranging 

precision by 12.6% [25]. In contrast, UWB only can be used for short-range 

communication, such as in indoor and body area networks. 

In some cases, an obstacle can block the entire propagation signal between user 

target and base stations.  This condition can happen to GPS and CPS users inside a 

tunnel or an urban canyon [26][27].  Sometimes GPS and CPS are unable to position a 

mobile user if the user measures the signal from less than four stations [28] (for 3-D 

plane) and less than three in a 2-D plane. This problematic condition is called a system 

outage.  Other factors that can influence the performance of WPS based positioning are 

number of beacons, relative position of the user to beacons, antenna orientation, and 

time synchronisation.  
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2.2 Mobile Positioning System 

 

To overcome the problems in wireless positioning systems (WPS), alternative 

positioning systems have recently been developed.  These positioning systems do not 

depend on the measurement of propagation signals, rather they sense physical activity 

by target users and use physical information for positioning.  To get the position of a 

user, the physical information needed is the user’s movements and the surrounding 

environment.  User movements can be measured with a motion sensor and a direction 

sensor, and this information is then processed through dead reckoning (DR) [29] and 

inertial navigation (IN) [30].  Compared to traditional WPS, the mobile positioning 

system has several advantages, as follows: 

 Reliable – capable of working in any conditions, especially in places with 

limited wireless positioning. 

 Accuracy – ranging from centimetres to a few metres. 

 

The principles of DR and IN are based on extrapolating previous positions and 

displacement, including moving direction and distance.  IN is grouped under DR 

methods that utilise inertial sensors to measure displacement in 3-D and 2-D. In 3-D, it 

is equipped with pitot tubes for space vehicles, while in 2-D it is used by vehicles [31] 

and pedestrians [32].  Lately, there have been improvements in positioning based on DR 

and IN.  For instance, Liu and Lee [33] developed a simplified DR method and 

proposed using pseudobeacons that require distance information without common 

method direction information.  J. Bojja et al. used a dead reckoning technique [34] and 

suggested positioning in 3D space with 3D map matching, where path information from 

a map is useful in positioning. 
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2.2.1 Movement Based Positioning System 

 

In Movement Based Positioning System (MBPS), the measurement of 

displacement is done by two types of sensors: direction sensors and motion sensors.  

Magnetometer is a type of direction sensors that sense the earth’s magnetic field, and 

gyroscopes measure angular frequency, such as magnitude and the speed at which a user 

changes direction.  

A motion sensor includes an odometer, a pedometer and an inertia sensor.  An 

odometer is usually a built-in feature in ground vehicles to measure moving distance.  

Meanwhile for pedestrians, a pedometer is mounted on the body with step length being 

estimated based on previous positions.  Both an odometer on a ground vehicle and a 

pedometer mounted on a body use a dead reckoning technique to determine the 

position. 

Another type of motion sensor is the inertial sensor.  This positioning system is 

based on measuring displacement in 3-D and is usually called an inertial navigation 

system (INS).  At the early stage, inertial sensors were mostly used for positioning in 

advance aviation and military industries [35].  Recent advances in sensors made with 

micro-machined electromechanical systems (MEMS) technology have successful 

miniaturised inertial sensors.  Current inertial sensors are now widely used on vehicles 

and smartphones, offering great potential for LBS.  By utilising the sensors on 

smartphones, extensive research is being done on pedestrian localisation and navigation 

[36],[37],[38],[39].  

There are several advantages of utilising DR and IN with MBPS in positioning. 

MBPS can be used together with the WPS to improve positioning accuracy.  Output 

data from DR and IR systems can reach about 50 to 100 data per second while GPS 

only updates each epoch, which is a second.  For this reason, MBPS is suitable for high-
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speed applications like missiles and space vehicles.  A combination of GPS and MBPS 

usually uses data fusion techniques [40],[41],[42], and this can improve accuracy 

compared to standalone GPS. 

Moreover, MBPS can be used in positioning in standalone mode as a backup to 

the main WPS. In certain scenarios, a user may move into an urban area or tunnel where 

the wireless signal is totally blocked.  In this situation, MBPS will be the main 

positioning system and replace the WPS for a temporary period, until WPS can operate 

again.  The accuracy of MBPS in standalone mode is influenced by three main factors: 

 accuracy of initial position. 

 accuracy of the sensor. 

 design of data fusion algorithm. 

 

Chen et al. [43],[44] demonstrated the integration of GPS/ INS with a Kalman filter a 

and neural network, this can achieve errors of below 1 metre during a 40-second GPS 

outage. 

Besides the great potential of MBPS for positioning systems, it faces numerous 

challenges.  The first difficulty with MBPS is dealing with measurement errors from 

data collected by sensors.  Measurement errors in MBPS come from two sources: first, 

the initial position given by WPS; and second, data collected from the sensors 

themselves.  Sensor measurement errors are temporarily stable and bias is almost 

constant.  These errors can accumulate during an iterative process and become large 

over time.  Machine learning has been used to solve this kind of problem by 

implementing a Kalman filter in a linear condition [45][46].  System model and 

measurement noise statistics are the basis of a Kalman filter, the process being 

calculated iteratively.  For a non-linear system, an extended Kalman filter (EKF) can be 
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implemented [47] and some systems use artificial intelligence (AI) technology, such as 

neural network (NN) or fuzzy logic [48][49][50]. 

 

2.3 Vision-based Positioning 

 

The latest positioning system that has caught researchers’ intention is the vision-

based positioning (VBP).  VBP enhances positioning capability by using a vision/ 

image sensor to capture pictures and compare them with the environment previously 

collected.  In VBP, prior knowledge of the environment is crucial and information can 

be in the form of landmarks, maps and objects that can be used as references in a 

database.  The VBP method captures certain images in a given location and uses image 

features to establish an environment model.  Those image features also contain 

information about sensor movement, which can be used to compare with the database 

based on computer-vision theory.  Generally, the key part of VBP algorithms is linked 

to tracking and features matching.  Using image sensors, it is possible to get a 

continuous image that contains some fixed points referred to as feature points. 

 A Vision Based Positioning System (VBPS) usually consists of an image 

database and a processing unit for feature analysis to estimate the position.  Each 

reference image is indexed to a location position.  When an image from a user is 

received, it is processed by analyzing a query from an image database that has 

references images showing similar features.  Then, it will return the exact position of the 

user.  Basically VBPS can be grouped into two categories.  The first group is called 

independent VBPS and the second group networked VBPS.  The differences between 

independent VBPS and network VBPS are in the database storage.  Independent VBPS 

keeps all reference images in a local image database while network VBPS relies on 
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image databases on Web servers.  The advantage of independent VBPS is that it can 

work in standalone mode without any Internet connection, while the constraints of large 

images databases make them suitable for indoor positioning.  Network VBPS utilises 

the unlimited storage of Web servers.  Harlan et al. [51] have shown that by using a 

smartphone and an independent server, positioning accuracy can achieve up to 5 cm. 

Their study was limited to an indoor hallway without using any optimization algorithm.    

There are several advantages of network VBPS: 

 the hardware cost on the user’s part can be minimised as images are stored on 

Web servers; 

 complex features analysis is run by Web servers instead of using the limited 

capability of user devices; 

 crowdsourcing can be implemented, whereby mobile users can contribute 

images to Web servers. 

 

Compared to MBPS, VBPS is much simpler because it is not required to use extra 

sensors, such as body-mounted sensors.  It just utilises vision or image sensors already 

built into the smartphones of mobile users.  However, the need to develop image 

database as references at first make it one of the drawback of VBPS.  Several challenges 

have been highlighted by Liu et al. [14] as follows: 

 Searching for images can be time-consuming because of the large number of 

images in a database; 

 Another problem with VBPS is the low recognition rate, due to the absence of 

moving objects.  Moving objects that appear in images could be vehicles, 

pedestrians or others.  The absence of moving objects in the background can 
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make two images look different even though the images are actually of the same 

place. 

 Image quality can be a problem because of distortion and blur.  Continuous 

camera movement during localisation is often the main cause of blurry images.  

Matching features in a blurred image can be tough.  For distorted images, feature 

points can be wrongly matched.  Some research has been done to correct blurred 

and distorted images by using heuristic method particle swarm optimization to 

reverse the effect of motion [52].  These techniques require more time for 

processing and will not be suitable for VBPS at times. 
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2.4 QR Code as Potential in Location Based Services 

 

 

The use of Quick Response code or QR code is quite common at the moment [53].  

It was first developed in Japan by Denso-Wave to solve a tracking component issue in 

the automotive industry.  It became popular since it offers fast readability and greater 

storage-capacity modes: numeric, alphanumeric, binary and kanji.  It includes the 

benefits of other barcodes, including the high data capacity of PDF417, the reduced 

space printing of Data Matrix and the high-speed reading of MAXI code [54].  

QR Code covers a wider range of uses, from inventory control systems like stock 

maintenance and incoming raw materials to commercial tracking and ticketing, besides 

extensive use in labelling.  Some become familiarised with it in more innovative ways, 

such as a library with QR code which directs users to download required information, 

placing giant QR code advertisements on top of buildings so that they can be viewed 

through Google Maps.  Researchers from RMIT University and La Trobe University 

have used active RFID assisted by QR Code for sighted and blind pedestrian navigation 

in buildings [55].  RFID tags were placed at entrances, on corners and at selected points 

to help determine a current user’s location.  QR code was placed along with RFID tags 

in entrances and at selected points of interest to help sighted people by giving 

information for navigation purposes. 
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2.4.1 Generating Codes 

 

Nowadays, QR code can be generated through free or paid websites, and via 

applications of different sizes depending on information size.  It seems easy to produce 

label code, but there is quite a complex and complete system involved, before black and 

white square geometry can be used.  There are seven levels of information that need to 

be gone through before it is converted to QR code, as shown in Figure 2.1. 

 

 

Figure 2.1: General process for generating QR code 
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Data Analysis:  

 

The QR code has four modes for encoding the text which are: 

 Numeric mode. 

 Alphanumeric mode. 

 8-bit byte mode. 

 Kanji and kana characters mode. 

As the first step, before starting to encode text, data analysis needs to be performed to 

determine which mode is the most suitable and optimal for text, depending on whether 

it is in numeric, alphanumeric, byte or kanji mode. 

 

Data Encoding: 

At this stage, data encodings aim to create the shortest possible strings of text 

characters.  A few steps need to be taken before this level.  Figure 2.2 shows the data 

encoding process consists of five stages. The first stage is the error correction level.  

There are four levels of error correction, which are L: about 7% recovery, M about 15% 

recovery, Q about 20% recovery and H about 30%.  Error correction is based on Reed-

Solomon error correction [56] which is used for recovering messages whenever parts of 

the QR code is dirty or blocked. The number of text characters will determine the size 

of the QR code, which is called the version.  This version runs from 1 to 40, where each 

version is 4 pixels larger than the previous one.  The smallest version is 21 x 21 pixels 

and the largest 177 x 177 pixels.  After that, a four-bit mode indicates whether it is in 

numeric, alphanumeric, byte or kanji mode and is added to the encoded data.  At the end 

of this stage there is a string of bits that is broken up into 8-bit-long data codewords. 
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Figure 2.2: Data encoding process. 

 

 The next stage is error correction coding.  One of the reasons why QR code is so 

popular is because of it is robustness, and error correction coding plays an important 

role here.  After the text has been converted into a string of data bits, these bits are used 

to generate error correction codewords through a process called Reed-Solomon error 

correction [56]. During the scanning process, all data codewords of text information and 

error correction codewords are read by scanners.  A scanner can determine whether it 

has read the information correctly or not by comparing data codewords and error 

correction codewords.  Errors can be corrected if scanners have not read the data 

correctly, depending on which recovery level was set earlier during QR code encoding.  

This is important for situations when a QR code label is not in good condition, whether 

it is dirty, pale or part of the code is blocked during scanning.  The higher the recovery 

level that is set earlier, the less information can be encoded and the more QR code is 

immune to errors. 
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 For the structure of the final message section, larger data codewords from the 

previous section need to be broken up into smaller blocks, and at the same time each 

block needs to have its own error correction codewords.  Therefore, data block and error 

correction codewords must go through an interleaving process according to the QR code 

specification [57]. 

 After arranging all the data and error correction codewords in the correct 

sequence, all the bits must be placed in a QR code matrix in a specific way. Before bit 

placement can occur, the function pattern needs to be given more priority. The function 

pattern includes: 

 

 A finder pattern which is three blocks in the top right, top left and bottom left 

corners of the QR code; 

 Separate areas of white space alongside the finder pattern; 

 Alignment patterns which are used in version 2 and larger; 

 A dark module which is a single black module placed beside the bottom left 

finder pattern. 

A detailed explanation on how to set up a function pattern can be found in the previous 

works [54],[57]. Figure 2.3 shows QR code with four essential function patterns, as 

explained earlier. 
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Figure 2.3: QR code function pattern. 

 

After the main function pattern has been placed in a QR code matrix, the data bits can 

be placed in the empty space remaining by moving upwards and downwards in the 

columns repeatedly, as depicted in Figure 2.4. 

 

 

Figure 2.4: Placement of data bits [57]. 
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Now, all the four function patterns, data blocks and error codewords have been 

placed into a QR code matrix.  Certain patterns in QR code matrices are quite difficult 

to be read by the scanner.  To overcome this challenge, the next stage is to perform data 

masking according to eight types of mask patterns, depending on which is most suitable. 

This data masking, only of data blocks and error codewords, will change the QR code to 

a particular pattern.  A suitable data masking pattern can be determined by evaluating a 

masked matrix based on penalty rules.  Details on QR code can be referred here [54], 

[57]. 

 

2.5 Indoor Positioning Technique 

 

Recently, indoor location based services (ILBS) has caught the attention of 

many researchers due to its potential social and commercial value in the future. 

However, getting a user’s position in an indoor environment is a huge challenge for 

several reasons.  A building’s complex structure and geometry mean signals are 

transmitted in a non-line-of-sight (NLOS) condition.  In the worst case, it is not possible 

to depend on the main satellite positioning system (GPS) because the GPS signal is 

totally blocked by the building’s structure.  The presence of furniture inside buildings 

can be a further obstacle to signal propagation and this too contributes to the 

degradation of positioning accuracy.  Even changes to the environment inside a building 

can lead to different levels of error location.  Another challenge is fluctuation in the 

signal itself and the presence of noise, which is also a challenge when developing an 

algorithm for indoor positioning.  In spite of the many problems mentioned above, 

indoor positioning needs high accuracy compared to outdoors.  Even location error of 
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just above 5 metres can lead to a different room or space, and this is a challenge to 

algorithm development in this field.  

 GPS signal cannot penetrate well in an indoor field, which means researchers 

look for alternative communication systems.  There are some unique solutions for 

indoor positioning, for example the work which used beacons or an extra transceiver in 

order to get a user’s position [58],[59].  Other systems use body-mounted sensors to 

calculate stride length in order to improve positioning accuracy.  These extra devices are 

not favoured by customers because there is an extra cost to deploy them.  Due to this, 

the penetration of indoor positioning implementation into society is quite slow and none 

of the proven indoor positioning techniques has become a standard.  Researchers in this 

field are looking to solve this problem by developing positioning systems that are 

capable of offering both high indoor positioning accuracy and cheap solutions.  To 

achieve both points mentioned, people look for any possible communication systems 

that are available, and reliable sensors that can be manipulated to achieve indoor 

positioning goals.   

P.D Groves et al. [27], [60], [61] highlight the potential components of a 

multisensory integrated navigation system, as shown in Figure 2.5.  Besides the 

potential of components and sensors that could be used for positioning and navigation, 

they highlighted the context where particular users behave in environments in certain 

ways.  This provides extra information to improve accuracy in positioning and 

navigation.  The third future trend is opportunistic navigation.  This refers to signals of 

opportunity (SoOP) [62], [63] which is a system designed for non-positioning purposes 

that can be exploited for positioning purposes.  These include Wi-Fi signals, broadcast 

TV signals and magnetic anomalies.  Often, SoOP needs a development database to 

work effectively in positioning.  The last point to be highlighted is cooperative 

positioning between systems where data are shared and exchanged among positioning 
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systems to help improve positioning accuracy.  P.D. Groves [60] has shown all the 

potential in detail, of components that can be utilised for positioning and navigation to 

target pedestrian and car navigation. 

 

 

Figure 2.5: Potential components for positioning. [60] 

 

Among the listed potential positioning technologies highlighted in Figure 2.5, Wi-Fi 

positioning and visual-based positioning is the most interesting, which is more suitable 

for indoor environment and the combination of these two groups still leaves much to 

explore.  Besides Wi-Fi positioning, many other potential indoor positioning 

technologies have been explored, including Bluetooth [64],[65], FM radio positioning 

[66],[63], ultrasound [67], magnetic field [68][69], ultrawideband [70] and RFID 

[71],[72].  Wi-Fi has caught the attention of many researchers and industries [73] , [74] 

for these several factors: 

 Almost each building is deployed with wireless LAN (WLAN) and most 

smartphones nowadays are equipped with a Wi-Fi chipset;  
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 The typical range of a Wi-Fi access point is up to 50 m indoors, unlike other 

technologies like UWB, Bluetooth and RFID, so this is another reason why it is 

most suitable for indoor positioning;   

 The third reason to implement Wi-Fi positioning is that it is very cost-effective. 

There is no additional infrastructure, like beacons or transceiver nodes, that 

needs to be deployed and this makes Wi-Fi positioning the preferred choice. 

 

Conventional techniques for localisation using TOA and DOA are based on 

trilateration and triangulation and require line-of-sight measurement. Although we can 

use this conventional technique in an indoor environment, to solve the NLOS condition 

is complex, with many aspects to consider, such as geometry of the building, materials 

used, location of furniture and items in the building, and location of Wi-Fi access points 

themselves [75][76].  In the NLOS condition, the signal might face various phenomena, 

e.g. reflections, multipath and shadowing.  Wi-Fi fingerprinting has become a popular 

choice where positions are characterised by signal-strength patterns.  One reason is 

because it does not require time or angle measurement, even when the exact location of 

an access point is not known. 

 Conventional Wi-Fi fingerprinting consists of two phases: an offline phase 

(survey) or ‘training phase’ and a second phase called the online phase (query) or 

‘positioning’ phase.  During the offline phase, a site survey is conducted to build a radio 

map of vectors of received signal strength indicators (RSSI) from all access points (AP) 

available at a certain known reference position (RP).  All the RSSI, RP, location and AP 

information is then stored in a database for reference in the online phase.  In the online 

phase, a user in a certain location will query their location by collecting samples of 

RSSI and comparing them with data in the database; then, the closest ‘match’ will 
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return the position of the user.  Figure 2.6 depicts the whole process of Wi-Fi 

fingerprinting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Two phases of fingerprinting: a) off-line phase b) on-line phase. 
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probabilistic technique.  The probabilistic approach consider the location estimation as a 

machine learning problem where the input models are the distributed signal strength in 

geographical area location [77]. However, Li et al. [12] have shown that fingerprint 

deterministic accuracy is quite close to the probabilistic technique with reduced 

complexity.  The principles of Wi-Fi fingerprinting will be elaborated in the next sub-

topics. 

 

2.5.1 Deterministic Techniques 

 

As aforementioned, the first Wi-Fi indoor localisation algorithms are called a 

deterministic technique.  The deterministic algorithm uses a similar metric to 

differentiate between online signals and a radio map in the database. The space distance 

of each RSSI vector in the database is checked and compared to the sample RSSI during 

the online phase and the closest distance in signal space will return the user’s location. 

Euclidean distance is a popular choice [78][79] to determine how far it is between 

RSSIs during localisation and RSSIs on radio map.  

 

2.5.1.1 K-Nearest Neighbours (KNN) 

 

K-nearest neighbours (K-NN) is a deterministic algorithm [80] that returns the nearest 

neighbours (RP location) in term of signal space to the user.  The basic distance space 

can be calculated as follows: 

 

𝐷𝑞 = (∑ |𝑠𝑖 − 𝑆𝑖|
𝑞𝑛

𝑖=1 )
1

𝑞                                              (2.1) 
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where si is the RSSIs from the positioning phase, and Si is the RSSIs from the database.  

The variable q depends on which distance the technique prefers and q=2 is the 

Euclidean distance.  Even though it is less accurate compared to the probabilistic 

algorithm, it is still preferred by many researchers for its low complexity in 

computation.  Li et al. [12] have shown that the positioning accuracy of the 

deterministic algorithms is acceptable and not far from the probabilistic algorithm.  K-

NN depends heavily on the granularity of RP space.  The more RPs there are in the 

coverage area, the more accurate the positioning accuracy.  Nevertheless, this is labour-

intensive during a site survey.  So, there has to be a balance between these two factors.  

Some researches to solve this problem are highlighted in the next sub-chapter.  

Computation of the position of a user depends on average k-selection, as shown below: 

 

�̂� =
1

𝑘
∑ 𝑝𝑖

𝑘
𝑖=1     𝑝𝑖 ∈ 𝐷1:𝑘                                            (2.2) 

 

 

2.5.1.2 Weighted K-Nearest Neighbours (WK-NN) 

 

WK-NN is an improvement over basic K-Nearest Neighbour (K-NN) [1].  The main 

idea of this improvement is to add a weighted sum to the fingerprint location as follows: 

 

�̂� =
1

∑ 𝑤𝑗
𝑘
𝑗=1

∑ 𝑤𝑖𝑝𝑖
𝑘𝑘

𝑖=1 ,   𝑝𝑖
𝑘 ∈ 𝐷𝑘

𝑛                                 (2.3) 

 

where wi is a weighting factor and can be calculated as the reciprocal of the distance 

between RSSI vectors in the online and offline phases. 
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2.5.2 Bayesian Estimation 

 

Bayesian estimation is one of the method that include the prior information of the 

situation and combine it with evidence from information contained in that sample. 

Deterministic methods give reasonable positioning accuracy, as described in the 

previous section.  During the online phase, at each test point location, the Wi-Fi module 

collects RSSI information from the APs.  The more RSSI data collected, the better the 

positioning accuracy.  However fluctuations in RSSI readings translate into fluctuations 

in user position, and even though more data are collected, overall accuracy sometimes 

does not guarantee improvements in positioning accuracy.  One reason is that each 

RSSI measurement is independent from the next measurement in a deterministic 

approach, and some valuable information is not exploited or used to improve 

positioning accuracy. Instead of applying simple average estimation, the Bayesian 

estimation approach considers other information, such as state and observation 

conditions which are useful to enhance positioning accuracy.  The Bayes rule can be 

written as [81]: 

 

𝑝(𝑠|𝑥) =
𝑝(𝑥|𝑠)∙𝑝(𝑠)

𝑝(𝑥)
                                                    (2.4) 

 

where s is state location, x is observation which in this case is RSSI data, 𝑝(𝑠|𝑥) is a 

posterior estimate of state, and 𝑝(𝑥|𝑠) is the likelihood of an observation’s given state 

condition.  The Bayes rule can be translated as the probability of being at location s 

given that observation x data are equal to  the probability of observing x data at location 

state s and being at location state x in the first place, divided by the probability of 

getting observation data x. 



 
32 

 

Hence, the possible state location around the true state has to be determined and 

the state which is the most believable state gives us the true state.  Here, the lookup 

table was checked to determine the possible surrounding state for each state location.  

The geometry of the building, which has various shapes, indicates that the surrounding 

possible state is different in numbers to the other true state location.  The function of a 

normal distribution function is given by: 

 

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒(−(𝑥−𝜇)2/(2𝜎2))

                                         (2.5) 

 

Since the mean of 𝑝(𝑥|𝑠) is s, 𝜇 = 𝑠 can be substituted which suggests that  

 

𝑝(𝑥|𝑠) =
1

𝜎√2𝜋
𝑒(−(𝑥−𝑠)2/(2𝜎2))

                                        (2.6) 

 

where x in this case is the observation or RSSI data and s is the state or location itself.  

For a higher dimensional condition, multivariate Gaussian distribution was used as the 

location in this situation is in two dimensions and consists of planes X and Y.  Then, the 

density function of multivariate Gaussian distribution is given by: 

 

𝑝(𝑥1, … , 𝑥𝑘) =
𝑒

(−
1
2

(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇))

√(2𝜋)𝑘|Σ|
                                 (2.7) 

 

where x is a k-dimensional column vector, ∑ is a covariance matrix, and |Σ| is the 

determinant of the covariance matrix.  The equation can then state x and y locations for 

a two-dimensional position and k will be equal to 2. 
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2.5.3 Kalman Filter 

 

 The Kalman filter has been extensively used in estimating the state condition of a 

process.  It has been widely applied in various fields like navigation, tracking object, 

control systems, robotic motion planning, computer vision and many more. 

 Outdoor positioning such as GPS gives high accuracy as long as a mobile 

terminal’s line of sight is not blocked.  On the other hand, there is no standard or proven 

solution yet for indoor positioning.  Wireless Local Area Network (WLAN) has caught 

many researchers’ attention as it is widely deployed in buildings.  The main purpose of 

this technology is to design for wireless data communication and so it does not include 

anything specific for positioning or navigation.  One of the main challenges when 

dealing with Wi-Fi signals is inaccuracy in measuring signals due to the presence of 

noise in sensors and systems.  After applying a deterministic positioning estimation 

algorithm to Wi-Fi RSSIs signals, the next way to improve positioning accuracy is by 

applying a Kalman filter with certain assumptions being made.  

 Figure 2.7 depicts the general step of Kalman filter algorithm.  It consist of 

several iterative processes including the prediction of state and error covariance, 

measurement updates with computation of Kalman gain and an estimation process, and 

lastly there is computation of error covariance which indicates how accurate estimates 

are. The Kalman filter structure has one measurement input 𝑍𝑘 and one estimation 

output �̂�𝑘. There are four system model A, H, Q, and R. A is the state transition matrix, 

H is the state to measurement matrix, Q is the covariance matrix of transition noise, and 

R is the covariance matrix of measurement noise. In step III, 𝐾𝑘 is the Kalman gain 

which depend on 𝑃𝑘 error covariance. Error covariance indicates the difference between 

Kalman filter estimation and the true value.  
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Figure 2.7: Kalman filter algorithm 

 

 

2.6 Research on Wi-Fi Fingerprint Technique. 

 

Recently, Wi-Fi fingerprint has attracted much attention where it does not 

require line-of-sight (LoS) measurement of APs.  Traditional localisation which is based 

on trilateration and triangulation [16], [18] requires line-of-sight (LoS) measurement but 

it does not work well in buildings. The shadowing and multipath caused by obstacles 

such as wall and room partitions make it less accurate compared to fingerprint technique 

𝑥 ̂𝑘
− = 𝐴�̂�𝑘−1 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 

Predict state and error covariance 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

Compute the Kalman Gain 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘

−) 

Update estimate with 

measurement 

 

Initial values:    �̂�0,  𝑃0 

 𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐻𝑃𝑘

− 

Update error covariance 

Measurement 

𝑍𝑘 
Estimate �̂�𝑘 



 
35 

 

[12], [82]. Ekahau and NavIndoors are among indoor positioning solutions which are 

based on Wi-Fi fingerprint technique. On average, location accuracy of this method can 

achieve up to 1-3m with high WLAN coverage. Different buildings have different 

shapes of geometry and number of access point’s coverage where this can give different 

accuracy. Some researcher achieved from 8m to 10m mean error location [83] on field 

location while others get ~5m [84] mean error with both were based on same algorithm 

as comparison which is Nearest Neighbour method. 

Y.Kim et al. [85] implemented peak-based Wi-Fi fingerprinting (PWF) which 

utilises temporal pattern of signal strength.  Here the Wi-Fi sequence pattern along the 

route is used to determine the user locations.  In PWF, the peak of signal sequence 

shows the location is closer to the Wi-Fi AP. A sequence of RSSIs data need to be 

collected in the first place when user is walking.  Nevertheless, if the user is walking too 

fast the peak may be missed from being scanned by the Wi-Fi network interface 

module.  This technique only works the best in narrow path such as hallway or corridor. 

HALLWAY [86] is one of the techniques based on analysis of spatial patterns of signal 

strength. Spatial pattern relates signals distribution on geographical area rather than 

recorded vector of RSSI.  The patterns include RSSI order, signal landmark and 

coverage. HALLWAY technique identifies the difference of signal strength on each AP 

to classify the rooms.  The RSSI strength order from each AP is noted to reduce the 

effect of signal fluctuation.  This technique is only suitable for finding block region or 

rooms. Another problem with this technique is due to possibility of RSSI order in 

different room giving the same strength order. 

To improve the location accuracy, collaborative localization technique can be 

implemented between Wi-Fi fingerprints with other localization technology. In most of 

the situation, Wi-Fi fingerprint acts as the main localization while the other localization 

technologies support through data fusion method. Personal Area Network (PAN) 
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including Bluetooth, Ultra-Wide Band (UWB) and ZigBee technologies are among 

technologies commonly used in collaborative localisation. These localisation 

technologies are usually used as distance constrain in location estimation.  Bluetooth 

based positioning in the work by N. Patwari [87] have shown implementation for 

museum guidance. Bluetooth devices with different distance coverage were placed at 

specific given location to improve overall location accuracy. Even though this 

collaborative localisation does improve user location by knowing which cell identity 

based positioning, there are still costs for Bluetooth beacon/devices. Another 

collaborative method has been implemented by D. Rodionov [88] where combination of 

Wi-Fi fingerprint and RFID signal strength. The fingerprint technique on both systems 

gives several possible location estimations and error of each estimation is computed. 

Based on error variance on each sensor, data fusion algorithm calculates the user 

location. While these are several examples of collaborative technique with Wi-Fi 

fingerprint localisation, the extra cost to install the beacon or extra devices make it less 

popular choice for indoor positioning. People are still looking for promising indoor 

positioning without needing to spend any extra cost. 

The availability of many sensors on smartphone nowadays makes it a huge 

potential for indoor positioning. To date, various hybrids positioning on different 

sensors and module have been utilised to get better accuracy. However, quite a few 

combine the Wi-Fi fingerprinting technique with vision sensor.  MOVIPS (Mobile 

Visual Indoor Positioning System) in the work by Werner et al. [89] used combination 

of VBPS and WPS in which the Wi-Fi is to speed up the process of searching. Wi-Fi 

positioning will determine the coarse of positioning hence reducing the search for large 

images in database.  Here, the image recognition was applied with distance calculation 

algorithm.  The accuracy achieved was less than a metre; however in worse condition it 

can be unpredictable due to matching features of the images to database. Besides VBPS, 
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there is a research on positioning without need to construct database.  Lee et al. [90] 

demonstrated the use of both front and rear vision sensors from the smartphone to 

determine the position in the hallway. The technique uses the ratio of perspective from 

the images.  The technique can skip the challenge of using the database in VBPS [14], 

but it is less efficient and not effective in large environment. 

One of the issues in Wi-Fi fingerprint technique is the change in the 

environment. The RSSI may vary in time due to this factor and others such as humidity 

changes and crowd of peoples. Recently, crowdsourcing solutions are one of the 

techniques that gain attention in the Wi-Fi fingerprint positioning. The approach is 

utilising the crowd in building or update the radio map through user collaboration. The 

key aspect is attracting volunteers to collect RSSI at certain locations which can 

contribute to the positioning system. The system will update RSSI with the latest data 

from user, hence increasing the location accuracy. Recent evidence shows that a giant 

company has already started the crowdsource project like Google’s Indoor Maps. 

Despite its superiority which solves the labour intensive issue, it raises another new 

challenge such as incorrect data (polluted data), issues in managing the massive 

collecting data, and source from heterogeneous devices. 

 Prior studies have noted that the RSSI measurement from heterogeneous devices 

gives different accuracy of indoor localization. There are two factors that influence the 

RSSI reading, which are different Wi-Fi chipset embedded in devices and the antenna 

gain. Obviously, device used during creating radio map may differ from user devices 

during online phase. Different Wi-Fi chipsets have different levels of sensitivity on 

different Wi-Fi APs [64], [91]. The difference of antenna gain across the user devices 

gives different level of measurement. In addition, the antenna installation on user 

devices play a role on signal strength diversity due to signal received on different 

direction. F. Dong et al. [92], are among the first authors that highlighted about the 
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effect of heterogeneous devices on localisation. They proposed DIFF which utilises 

vector of signal strength difference. However this technique suffers from an increase in 

dimension as number of APs available increases. Another enhancement to the previous 

technique is implementation of signal strength difference (SSD) [64].  This technique 

uses a reference measurement from the AP and other RSSI measurements are deducted 

by the reference measurement. SSD only selects the subset of DIFF therefore it reduces 

computing overhead. However, there are certain drawbacks associated with the use of 

these methods where it suffers from signal noise fluctuation. At specific location, 

measurement of signal strength may return different level dBm reading from different 

Wi-Fi network interface controller (NIC), but at some other time it can return the same 

signal strength level due to heavy fluctuation of signals strength. As a consequence, the 

different levels of signal strength still return inconsistent location accuracy. Other 

author questioned the usefulness of this approach [93]. They proposed others solution 

which is based on homogenous signal strength pattern. In this method, each RSSI 

samples from various APs at RPs’ location was recorded in order map. Index sequence 

order was given to each RSSI based on APs. The order matching during online phase 

acted like a filter which excludes the RPs that were far from the test point location. In 

overall, the signal noise fluctuation may disrupt the APs’ RSSI sequence order on both 

offline and online phase especially measurement on corner space. Again the process 

could lead to localization errors.  

Although some research has been carried out on localisation of heterogeneous 

Wi-Fi network interfaces card devices, no studies have been found focusing on 

mechanism of control or confining the location error itself.  To the best of the 

researcher’s knowledge, previous studies have only focused on signal strength 

difference which has been highlighted before as suffering from signal strength 

fluctuation. The availability of vision sensor is an opportunity to utilise it as calibration 
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with Wi-Fi fingerprinting technique. In the next chapter, how the indoor positioning 

algorithm focuses on confinement of location error and calibration point helps to 

improve overall indoor positioning experience will be highlighted. 

 

2.7 Summary 

 

 This chapter presents an overview of positioning techniques. Limitations of GPS 

in certain critical conditions, specifically in urban environments and inside building 

make most researchers in this field seek for alternative solutions. The most common 

methods and alternative solutions to enhance the location and positioning have been 

highlighted.    There are three main groups in positioning that are wireless positioning 

system, movement based positioning system, and vision based positioning.  The recent 

advances of smartphone make available different types of positioning system by 

utilising available sensors and wireless modules.  Integrations between different types 

of positioning provide room for research of practical solutions that help to enhance the 

positioning accuracy.   
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CHAPTER 3: Setup and Measurement 

 

3.1 Introduction 

 

In the previous chapter, many potential positioning systems that are available 

have been elaborated.  GPS has served well as the main positioning and navigation 

system outdoors.  This is to be expected, as the whole system of GPS has been designed 

by the United States of America with navigation in mind from the beginning.  The same 

applies to other global satellite navigation systems (GNSS), like GLONASS, BeiDou 

and Galileo.  None of the systems mentioned can work flawlessly inside a building.  For 

this reason, an alternative available potential system that is convenient to be 

implemented in a building is highly needed.  The demand from Internet users and the 

spread of the Internet of things (IoT) make Wi-Fi systems always available in offices, 

homes, airports, restaurants, and shopping malls.  This presents a tremendous 

opportunity to utilise them in the field of wireless positioning systems (WPS).  

The importance of the fingerprinting technique has also been discussed in the 

previous chapter.  So, in this chapter, elaboration on how the site survey for the 

collection of RSSIs at a chosen location was conducted will be detailed out.  The factors 

that influence positioning accuracy will also be discussed. 
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3.1.1 Building Layout 

 

The main challenge for a positioning system inside a building is the NLOS 

condition.  As mentioned before, the layout and geometry of a building are factors that 

can put a signal into reflection mode whereby multipath fading could occur and 

decrease positioning accuracy.  Many research techniques on Wi-Fi positioning 

consider a simple layout for a building with many available strategically located access 

points.  In an actual condition, this can be the opposite.  The layout of a building can 

take many shapes, ranging from just a big square open space to many rooms and narrow 

hallways.  The same applies to the number of access points available.  In reality, only 

one access point may cover a certain area and seldom does one find more than four APs 

overlapping with each other in a zone.  In the first place, APs are located for the purpose 

of data communication coverage without thinking about supporting localisation.  

Another challenge in practice is the location to implement a Wi-Fi-based positioning 

system, where it is necessary to work with whatever conditions found without having to 

relocate the current AP’s location. 

Site survey in this work was on the B floor Infolab21, School of Computing and 

Communication, Lancaster University.  Figure 3.1 shows the layout of the building and 

the site, which consists of a big space in the middle surrounded by lecturers’ and 

researchers’ room, and a narrow hallway towards the end of the site.  These two 

different kinds of area zones were purposely selected to study the effectiveness of a 

single algorithm in various building shapes.  Unlike outdoor localisation, 5 m accuracy 

will have a significant impact in indoor localisation as it can direct the user to an 

incorrect path or room.  This is why improving accuracy is a huge challenge for indoor 

localisation.  The red colour on the layout building shows the site survey coverage area.   
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Figure 3.1: Layout of B floor, Infolab21, School of Computing and Communication, 

Lancaster University. 

 

Before building the radio map, current AP locations were identified and the granularity 

of reference points (RPs) and paths during the online phase were determined.  It was 

found that there was only one AP located in the middle of the coverage site, and another 

nearest AP near the coverage area, as shown in Figure 3.2 below.  All APs were located 

inside the ceiling.  
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Figure 3.2: Detailed position of APs (∅i), reference points (RPs/ green dot), and 

direction path movement points (S, R). 

 

To make it easier, the size of the RPs is set to 1.5 metres in length and 1 metre 

wide.  Point ‘S’ and ‘R’ are for the purpose of path movement in the next experiment.  

V access points (APs) located on the area are labelled as phi {∅1, … ∅𝑖, … , ∅𝑉} with W 

RPs and locations as {𝜃1, 𝜃2, … 𝜃𝑤 , … , 𝜃𝑊} in areas ∅𝑖 = [𝑥𝑖
𝐴𝑃, 𝑦𝑖

𝐴𝑃]𝑇 and 𝜃𝑤 =

[𝑥𝑖
𝑅𝑃, 𝑦𝑖

𝑅𝑃]𝑇. During the offline phase, there are N collected fingerprint measurements in 

different directions for all V APs stored in the database for all RP locations.  The 

collected fingerprint signals are 𝑆𝑅𝑃
𝑤 (𝑚) = [𝑆1

𝑤(𝑚), 𝑆2
𝑤(𝑚), … , 𝑆𝑖

𝑤(𝑚), … 𝑆𝑝
𝑤(𝑚)], 

where 𝑆𝑖
𝑤(𝑚) is the mth measurement of RSSI (in dBm) at RPw from APi.  In this case, 

in order to get a stable pattern for RSSI, the mth measurement should be within 1 

minute of observation for each AP.  During the online phase, unknown Test Points' 

(TPs) positions, 𝜃 = [𝑥, 𝑦], will be along the path from route point S to point R.  Here a 

random signal is collected from each AP at TPs 

𝑠(𝑚′) = [𝑠1(𝑚′), 𝑠2(𝑚′), … 𝑠𝑖(𝑚′), … , 𝑠𝑝(𝑚′)], where 𝑠𝑖(𝑚′) is the m’th random RSSI 

measured at TPs from APi. 

 Figure 3.3 depicts the sample of RSSI data from AP available at one of the TP 

locations. From that TP position, five different RSSI data can be sensed which were 

from different APs’ MAC address: A8:9D:21:B2:DC:30, A8:9D:21:CC:55:30, 
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A8:9D:21:B2:DC:31, A8:9D:21:CC:55:31, and A8:9D:21:B2:DC:32. The RSSI 

measurement showed that the signals always fluctuate and have different level of signal 

strength ranging from -50dBm to -70 dBm. The diverse pattern of RSSI value at certain 

location allowed us to utilize it as one of the key factor to determine user location.  

However, the fluctuations of the RSSIs measurement led it to be inconsistent on 

location accuracy. One of the possibilities of RSSI fluctuation is due to the fading effect 

of either fast or slow fading where the signals propagate in different directions caused 

by the building geometry. 

 

Figure 3.3: RSSIs from different MAC address at one of TP location. 
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3.2 Simulation Tools 

3.2.1  Vistumbler 

 

To collect the RSSIs available at each RP, Vistumbler is the preferred software 

as this is open-source and free.  It was developed based on donation [94].   Vistumbler 

is the software used for scanning Wi-Fi access points, which are within range of the Wi-

Fi adapter.  It supports Wi-Fi 802.11a/b/g/n WLAN standards.  After finding a Wi-Fi 

access point, Vistumbler satisfies enough requirements to capture critical data, such as 

network SSID, RSSIs from all APs available at the location, APs’ MAC addresses, the 

encryption being used, network channel, time and much more.  This software has been 

used by other researchers in the field of indoor positioning to gather all necessary data 

[95] and also as war driving software in cyber security [96][97]. Figure 3.4 depicts the 

graphic user interface (GUI) of  Vistumbler software. 

 

 

Figure 3.4: GUI of Vistumbler. 
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For each 𝜃 location, a sequence of S RSSIs fingerprints was collected in each direction 

from each ∅ AP location available.  All recorded data were stored in *.CSV file format 

before being transferred to MATLAB for post-processing.  Detailed information data 

from the *.CSV file that can be extracted in this research are shown in Figure 3.5 below. 

 

SSID,BSSID,MANUFACTURER,SIGNAL,High Signal,RSSI,High 

RSSI,AUTHENTICATION,ENCRYPTION,RADIO TYPE,CHANNEL,BTX,OTX,NETWORK 

TYPE,LABEL,LATITUDE,LONGITUDE,SATELLITES,HDOP,ALTITUDE,HEIGHT OF 

GEOID,SPEED(km/h),SPEED(MPH),TRACK ANGLE,DATE(UTC),TIME(UTC) 

Figure 3.5: Detailed information from the *.CSV file. 

 

Vistumbler supports a GPS adaptor, but in this research it was not used, as the GPS 

receiver is not fully functional for indoor purposes.  Another useful function provided 

by Vistumbler is the level of RSSI from each AP to the laptop, which can be monitored 

continuously.  From there, the first idea of the location that has the best signal strength 

was obtained.  Figure 3.5 depicts the GUI from Vistumbler, where RSSI level can be 

monitored.  The sampling time of RSSIs can be set by the user and each RSSI pattern 

level can be monitored depending on sampling interval, as shown in Figure 3.6.  All 

collected data from Vistumbler then arranged in order to suit the MATLAB. MATLAB 

is used in this research to develop algorithms and analyse the results. 
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Figure 3.6: Monitoring RSSI level from one of AP available. 

 

 

3.3 Wi-Fi Deterministic Algorithm 

 

There are two types of fingerprint algorithms which are based on deterministic 

and probabilistic approaches.  Deterministic is less complex, making it more practical in 

terms of processing efficiency.  On the other hand, a probabilistic approach yields more 

accurate results and processing times.  Some researchers [98][99] have proven that with 

modifications the existing deterministic approach can rival the results of a probabilistic 

technique with less processing time. Therefore, to exploit a fast algorithm it was 

decided to implement a deterministic location-based estimation algorithm technique in 

this work. 

The early part of this research uses deterministic approach based on K-Nearest 

Neighbour (K-NN) algorithm as a comparison for lower complexity [12],[100].  As 
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mentioned in Chapter 2, the conventional deterministic technique consists of two main 

phases, an off-line phase and an on-line phase.  Usually, during the off-line phase, many 

samples of Wi-Fi signal strength RSSIs are collected, for at least a minute, at certain 

dedicated reference points (RPs). These RSSI data are stored in a reference database.  

During the on-line phase, a few samples of RSSI from each access point are collected at 

particular Test Points (TPs) and matched to the database.  The nearest match will return 

the location and position which are recorded early during the off-line phase.  How far 

signal strength match is represented by distance is given as follows: 

 

 𝐷𝑞 = (∑ |𝑠𝑖 − 𝑆𝑖|
𝑞𝑛

𝑖=1 )
1

𝑞                                         (3.1)                                         

 

B. Li et al. [101] stated that the number of q does not necessarily improve the 

positioning accuracy.  However, the simulation results show the opposite, as presented 

in Figure 3.7; Euclidean distance in which q equals to 2 provides better accuracy, hence 

in this work Euclidean distance was used.  The results confirm that at particular and 

specific locations for the number of K, from one to five, q equals to two returns the 

smallest error compared to whenever q is equal to one. 

 

 

Figure 3.7: Comparison of errors for different distances q. 
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As starting point, the K-NN (Nearest Neighbour) was implemented as a pioneer by 

RADAR [80].  The parameter K corresponds to the selected number of smallest 

distances in a matrix generated by equation (3.1).  For example, if the return distance 

matrix from equation (3.1) consisted of 42 points for RPs and only three smallest 

distances were utilized from a set of 42, here the number of K will be equal to 3.  It is 

anticipated that for the selection of K, this should be done as a compromise between 

accuracy and complexity (higher values of K leads to better accuracy but higher 

complexity).  Figure 3.8 shows a block diagram of the K-NN fingerprint W-Fi 

algorithm. 

 

 

 

 

 

Figure 3.8: Phases of Wi-Fi fingerprint deterministic technique: a) off-line phase b) on-

line phase. 

 

3.4 Unplanned Environment and Influence Factors 

 

Many researchers [102], [103],[104] have shown that under ideal conditions 

where there are enough access points (APs), a simple layout of building geometry and 

strategic AP locations, K-NN will return less location error which average could be less 

than 5 metres. For indoor positioning, a location error radius higher than 5 metres will 
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have a significant impact location on other rooms.  This is a huge challenge for indoor 

positioning compared to outdoor positioning. 

The test area was set up on Level B, Infolab21 building at Lancaster University, 

as shown in Figure 3.9.  A detailed elaboration of the experimental set-up has been 

explained previously.   

 

 

Figure 3.9: Direction of movement from point S to point R, and vice versa. 

 

In practical situation, there are certain factors that are beyond control such as: 

 the number of access points (APs) available; 

 the location of access points (APs); 

 variety in the geometry of the layout building. 

 

In many cases, a higher number of access points is available, which is good for 

localization as many signal strength RSSIs can be collected from all APs.  This will 

slightly reduce the number of positioning errors.  Most studies or development using a 

positioning algorithm approach worked under well conditions where the locations of 

APs were in strategic locations.  For example, in a single room, up to four APs can be 

found which helps to differentiate different strength levels of Wi-Fi signals, hence 

S 
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improving localization.  It was found that on Level B, Infolab21, there were only a few 

access points available near the coverage area, so it was a huge challenge to perform 

localization.  At some part of coverage area, RSSI can only be detected from a single 

access point while at certain part it was very hard to differentiate the different level of 

RSSI reading.  These will contribute to huge localisation error.  The test area consists of 

a narrow hallway and an area rectangular in shape. 

This research started with a basic conventional technique, the K-NN (Nearest 

Neighbour) algorithm.  The K-NN algorithm is heavily dependent on the scale 

granularity of Reference Points (RPs), hence a maximum spacing of 1.5m was specified 

for the experiment.  The work began by collecting RSSI readings from available APs’ 

MAC address for the path shown in Figure 3.8, from R to S.  The K-NN algorithm was 

implemented for the whole-path movement.  Figure 3.10 shows the results for errors 

between actual locations and estimations based on the K-NN algorithm and different 

numbers for K from 1 to 5.  The values for K refer to the number of nearest RPs 

considered in the calculation, so increasing this value will yield more accurate results at 

the expense of computational processing.  These errors show a single K-NN algorithm 

struggling to maintain errors at less than 5 metres for the whole path. 
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Figure 3.10: Error distribution for nth TPs location for different numbers of K. 

 

In general, the results show quite similar patterns for all the different values of K 

and based on the graph, it is clearly shown that the same signal strength properties can 

be found up to 30 m from the actual position, as indicated in Figure 3.9.  L. Koski  et al. 

[83] introduced coverage area technique and compared their algorithm with 

conventional Nearest Neighbour method.  Their work on real RSSI data resulted in K-

NN with mean error of 9.9 metres and maximum up to 31.3 metres.  Basically, the early 

result shows the same range of error in location where at certain location it can be up to 

30 metres.  A new parameter called accumulated accuracy of simulation along the 

dedicated path route is introduced.  The accumulated accuracy is given by: 

 

𝐴 = ∫ (𝑓(𝑛) − 𝑓𝑜(𝑛))
𝑛

0
𝑑𝑛                                            (3.2) 

where 𝑓𝑜(𝑛) is the base line of zero error. 
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Based on the graph in Figure 3.9, the accumulated accuracy along the path from S to R 

was calculated with different values of K as shown in Table 3.1. 

 

Table 3.1: Accumulated accuracy for different values of K. 

Value of K Accumulated 

Accuracy 

1 405.5004 

2 386.9982 

3 367.9317 

4 356.8099 

5 362.8102 

 

 

The increments of K from 1 to 5 show some improvement indicating that 

increasing the number calculated of the nearest point will give better accuracy.  After 

looking at value of K, it has been decided that K equals to 3 is enough for this 

algorithm.  As suggested by Binghao Li et al. [12] even though the higher number of K 

gives better accuracy, the accuracy of selected K of bigger than three is not significant 

enough.  Along hallway, RPs are distributed in one row, side by side, which would 

supposedly return the best accuracy for selected K=1.  This shows that different values 

for K in different regions will have a significant impact on accuracy.  A future solution 

for this case is a design dynamic algorithm selection number with K depending on the 

region of the map [78]. As an algorithm comparison in this research, the designed 

algorithm will be compared to several conventional algorithms such as this K-NN with 
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K equals to three. This has been highlighted before that K bigger than three gives 

insignificant huge improvement on accuracy than the number of selection point to 

process. 

G. Lui et al. [91] mentioned several challenges in dealing with different kinds of 

Wi-Fi chipsets in different devices, such as data dropout data “signal strength catching”. 

This study looked into these problems and investigated how far they affect positioning 

accuracy based on the same algorithm.  Figure 3.11 depicts positioning errors for a 

laptop, tablet and mobile phone.  The results indicate that positioning error patterns are 

quite close between a tablet and the mobile phone but more accurate for a laptop.  There 

are several factors that could contribute to these results, such as differences in antenna 

gain and chipsets in each device.  Table 3.2 describes the accumulated accuracy value 

for different devices.  

 

 

Figure 3.11: Error distribution for different devices based on K-NN algorithm (K=3). 
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Table 3.2: Accumulated accuracy for different devices. 

Type of Device 

Accummulated 

Accuracy 

Laptop 362.8102 

Tablet 574.2124 

Mobile Phone 649.2623 

 

 

Subjects’ movement factors were tested in different directions (S to R and R to S).  

In this case, the RPs in the database were matched to the TPs in both directions.  As 

depicted in Figure 3.12, different reference directions gave slight variances in accuracy, 

even in this case, where the database of collected RSSI had already taken into account 

user direction at every particular RP.  This is because different directions have different 

patterns of signals being blocked by the subject along the signal path, which also affects 

the readings for each access point’s RSSI.  Table 3.3 shows the accumulated accuracy 

for different path directions from point S to R, and vice versa.  Even though the errors 

obtained with the K-NN algorithm are slightly different for the two directions, the 

overall accumulated accuracy can have a significant impact on user navigation, 

especially indoors, which demands stricter tolerance for accuracy as compared to 

outdoors. 
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Figure 3.12: Location error estimated for different path directions based on K-NN 

algorithm (K=3). 

 

Table 3.3: Accumulated accuracy for different path directions. 

Path 
Accummulated 

Accuracy 

R to S 367.9317 

S to R 160.6483 

 

 

The combined effects of these three factors, different types of devices, number of 

selection point K and directions of movement, lead to uncertainties in positioning 

accuracy.  To the best of the researcher’s knowledge this challenge has not been 

addressed before as a whole and it is intended to address this in this research.  An 

intuitive solution to this problem will be to incorporate several integrated algorithms 
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with calibration point to minimize the influence factors leading to higher accumulated 

accuracy. 

 

3.5 Summary 

 

 This chapter has described on measurement process, simulation tools used in 

this research, and factors that influence the conventional Wi-Fi fingerprint algorithms.  

The place of site survey has been described and how the survey has been done during 

off-line phase and on-line phase were also explained.  Vistumbler site survey was 

chosen to measure the RSSI from all APs at particular location.  All important data were 

then arranged in order to suit the MATLAB.  MATLAB has been chosen to develop the 

algorithm and analyse the results. Based on the collected data, basic Wi-Fi fingerprint 

algorithms have been developed. Simulation were performed on this conventional 

algorithms with different Wi-Fi chipset/devices, number of point selection in the 

deterministic algorithm, and different path movements. Based on these early results, 

number of point selection equals to three was chosen for deterministic technique (K-NN 

and WKNN). Results from this investigation also show that position accuracy of 

conventional Wi-Fi deterministic fingerprint algorithm may vary depending on different 

devices (Wi-Fi chipset) and directions of path movement. In the next chapter, the newly 

designed algorithm to reduce the uncertainties effect of these factors will be elaborated 

and comparison will be made between new algorithm and conventional Wi-Fi 

fingerprint techniques. 
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CHAPTER 4: Indoor Positioning 

 

4.1 Introduction 

 

 Most of the indoor positioning algorithm has single layer estimation. In this 

chapter, combination of several layer algorithms which is based on deterministic 

technique is proposed. The chapter begins with brief estimation and theory related to 

this integrated algorithm. Simulations were conducted to evaluate its performance by 

comparison to other Wi-Fi location estimation algorithms.   

 

4.2 Bayesian Technique 

 

Deterministic methods give reasonable positioning accuracy, as described in the 

previous section.  During the online phase, at each test point location, the Wi-Fi module 

collects RSSI information from the APs.  The number of RSSI used in data collection 

depends on the Vistumbler setting.  In this case, an assumption was made that up to 60 

samples of RSSI could collected when the scan started.  In the first stage, each RSSI 

reading was applied to the deterministic positioning algorithm to get the location of the 

user.  To begin with, the entire output from the deterministic positioning algorithm was 

just averaged.  Instead of applying simple average estimation, the comparisons are made 

to the Bayesian approach. The Bayesian estimation approach considers other 

information, such as state and observation conditions which are useful to enhance 

positioning accuracy.     

Figure 4.1 shows the static position output of more than 50 samples of RSSI data 

during the on-line phase via the K-NN algorithm where two types of estimation are 
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presented.  The blue horizontal line is the actual location from X and Y meter 

measurements at TP 17 (middle of the space in Figure 3.2).  The black dots are the 

output of every RSSI sample based on average estimation, while the red dots show the 

output from a Bayesian iterative estimation. 

 

 

Figure 4.1: Average estimation (black dotted) vs. Bayesian estimation (red dotted) for 

each RSSI sample at TP 17. 

 

Based on the graph in Figure 4.1, it is clearly shown that average base estimations 

fluctuate along with the number of RSSI samples.  An iterative Bayesian estimation 

gives more stable results after just 10 RSSI samples.  It is clearly shown that a Bayesian 

iterative technique is more immune to RSSI fluctuation, which is clearly the main 

problem with average estimation. 

Figure 4.2 depicts an example of error distribution at selected TP path.  In this 

scenario, 70 RSSI samples were collected for each TP location.  The red dotted line 

shows an average estimation of 70 RSSI samples at TP locations, while the blue dotted 
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line is based on iterative Bayesian estimation.  The average estimation has random 

fluctuation in location error along the selected TP selection, where some are acceptable 

errors of less than 5 metres but some have unacceptable errors of up to 25 metres.  The 

Bayesian estimation with knowledge of the prior state helps to decrease overall location 

error for each TP location to less than 5 metres. 

 

Figure 4.2: Bayesian estimation vs average estimation. 

 

Table 4.1 shows the accumulated accuracy of average estimation and Bayesian 

estimation from K-NN deterministic algorithm. It is clearly show that Bayesian 

estimation give better location accuracy compare to average estimation. 

Table 4.1: Accumulated accuracy of average estimation vs Bayesian estimation. 

Estimation 

Accummulated 

Accuracy 

Average Est 265.3971 

Bayesian Estimation 51.3167 
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Figure 4.3 shows a comparison on processing time of average-based estimation versus 

the Bayesian estimation.  For most of the conditions, Bayesian estimation processing 

times are five times compare to average-based estimation, while at certain positions this 

can rise to up to eight times longer.  In spite of more processing time, Bayesian 

estimation give better accumulated accuracy for whole path movement. 

 

Figure 4.3: Ratio of processing time for average and Bayesian estimation. 
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4.3 Enhanced Weighted K-Nearest Neighbour (EWKNN) 

 

K-NN is based on a fixed number chosen from the nearest distance matrix.  If K is 

set to three, this means that the three best nearest distances in the distance matrix will be 

selected in further calculations.  In some cases, a similar pattern of signal strength 

distribution will appear in other positions which are far from actual positions.  As a 

result, false estimation points will be included in an average calculation to determine a 

positioning point.  This will lead to a decrease in positioning accuracy whereby points 

that should be ignored are included in the K-NN algorithm.  So, the best way to proceed 

is to have a dynamic selection for K whereby neighbours’ position points which are far 

from the actual positions are neglected [105].  

 The geometry of the building plays some role in affecting positioning accuracy.  

In a corridor or hallway, the space is narrow and long.  Usually, RPs are positioned in a 

row and there will definitely be less near neighbour points than in an open space like a 

hallway.  This is the reason why it is necessary to vary the selected number for K-NN 

based on the space type.  The flow chart of dynamic value of K in EWKNN is shown in 

Figure 4.4. 
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Figure 4.4: Flow chart of EWKNN. 

 

A comparison of on-line and off-line RSSIs will produce a set of neighbour distances in 

a matrix and then this is sorted from low to high.  Only distances (𝐷𝑖) lower than a 

threshold value are selected.  G denotes the remaining RPs and 𝑆𝑔 denotes the 

difference between 𝐷1 and 𝐷𝑔 where 𝑔 = 2,3 … . 𝐺.  The average of differences is 

obtained as follows:  
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𝐸(𝑠) =
(𝑆2+𝑆3+⋯+𝑆𝐺)

𝐺−1
                                            (4.1) 

 

RPs that have a larger 𝑆𝑔 than 𝐸(𝑠) were again neglected and the remaining numbers 

for RPs determine the number of K.  To further improve accuracy, each RP’s location 

was weighted according to its 𝐷𝑖 [105].  Figure 4.5 depicts a simulation result 

comparison on deterministic positioning algorithm based on K-NN, WKNN, and 

EWKNN.  The locations of test points are from point S to R with K equals to 3, while it 

is dynamic for EWKNN.  The reason why K equals to 3 was chosen is because 

whenever K is greater than 3, the result does not have significant impact on improving 

the accuracy.  The results show slight improvement for WKNN compared to 

conventional K-NN while EWKNN shows another minor accuracy improvement in 

overall for test points on path movement from point S to point R. 

 

Figure 4.5: KNN (K=3) vs WKNN (K=3) vs EWKNN. 
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4.4 Design the Kalman Filter 

 

 The Kalman filter is a statistical algorithm which can estimate the state of the 

process given noisy data. The flow of Kalman filter iteratively predicts and estimate the 

prediction with input measurement until some criteria is met. For indoor positioning, the 

Kalman filter process consists of vector of moving object X in (x,y) coordinates and 

velocity with the coordinates as the only measurement. The state and measurement 

model are given below: 

 

State model:  𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝑊                                                                                   (4.2) 

Measurement model: 𝑍𝑘 = 𝐻𝑋𝑘 + 𝑉                                                                          (4.3) 

 

Matrix A is the state transition matrix that describes motion of the system which in this 

cases the equation relationship of position and velocity. Matrix H shows relationship 

between state variable and measurement. 

 

�̂�𝑘 = [

𝑥𝑘
𝑦𝑘
𝑣𝑥𝑘

𝑣𝑦𝑘

],  𝐴 = [

1   0   
0 1
0
0

0
0

∆𝑡

 0

0
∆𝑡

 1
 0

0
1

],  𝐻 = [
1 0  
0 1

0 0
 0 0

] 

𝑍𝑘 = [
𝑥𝑘

𝑦𝑘
] 

 

Q and R are the process noise covariance matrix and measurement noise covariance 

matrix, respectively.  These two parameters will affect measurement and prediction of 

the Kalman filter process.  Between these parameters, process noise covariance is hard 

to determine, which is determined by experience or experiment.  J. Yim et al. 

[106],[107] have highlighted based on their experiment the ratio between Q and R that 
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really effects the performance of the Kalman filter. By following the step, it was found 

that Q equals to 0.00001 gives optimum results.  The initial condition as follows was 

setup: 

 

𝑄 = [

0.00001 0 0 0
0 0.00001 0 0
0
0

0
0

0.00001
0

0
0.00001

]  

 

𝑅 = [
1 0
0 1

] 

 

𝑃0 = [

5 0
0 5

0 0
0 0

0 0
0 0

5 0
0 5

] 

�̂�𝑘 = [

32.75
2.75

0
0

] 

 

4.5 Algorithm Description 

 

The main idea of the algorithm is to combine several layers of process before the 

final location can be determined. Figure 4.6 shows the concept of the proposed indoor 

localization algorithm. The widespread of WLAN in the building makes it the favourite 

choice for indoor positioning. The main input parameter will be receiving signal 

strength indicator (RSSI) from Wi-Fi module. Wi-Fi fingerprint involves collection of 

signals to create the radio map. Later the closest pattern match between sample vector 

signal and the radio map will determine the early location of that particular signal. In the 

early location estimation stage, Bayesian estimation was implemented and the accuracy 
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depends on the number of RSSI vector sample. Finally, Kalman filter was implemented 

to improve the location accuracy.  

 

 

Figure 4.6: Indoor positioning concept 

 

There are numerous techniques for position estimation based on collected 

observations.  One common method is K-Nearest Neighbour (K-NN). K-NN works by 

comparing observation values during an on-line phase and observation of mean values 

during an off-line phase.  To facilitate simple and fast algorithm calculation, a 

deterministic method was chosen in this work.  However, the instability of RSSIs during 

the on-line phase compared to each mean RSSI’s value in the database will return a 

scatter pattern of estimated positions.  If a simple average of estimated positions is 

taken, the final estimated location will also fluctuate according to the number of RSSI 

samples as shown in Section 4.2.  To overcome this problem, iterative Bayesian 

estimation was implemented in the algorithm.  This technique needs less sampling of 

RSSI numbers and return stable position estimations.  Each new RSSI value in the on-

line phase is compared to the database through the EWK-NN algorithm and an early 

estimated position will be retained.  In this algorithm, 10 RSSIs or more is sufficient to 

get stable results. 
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Unlike in other researches, a dynamic localisation region was implemented in 

this work instead of clustering techniques.  Several clustering techniques that have been 

implemented are affinity clustering techniques [108], mainly to reduce computational 

cost. Clustering techniques are methods for grouping a set of objects with the same 

group characteristics.  In this field, some clustering techniques include signal strength 

distribution and clustering of offline database locations.  This is done to reduce the 

computational cost by reducing RP searching and this helps to increase the accuracy of 

localisation. 

A different technique aside from a clustering algorithm was used.  The technique 

is based on user history profiling, which utilises iterative Bayesian technique.  In the 

implementation of Bayes rules, information about prior position is as important as 

object movement history.  From a prior position, the next possible user location is 

estimated within certain area coverage.  This coverage area comprises several adjacent 

RPs’ locations surrounding the prior location, which might be a possible actual location 

during localisation.  This coverage area is called a localisation region, where the next 

possible actual location will be in this area.  Based on prior location, all adjacent RP 

locations which have been listed in a lookup table can be determined.  Different prior 

locations will give different lists and total numbers of adjacent RP locations due to the 

different geometries of buildings.  Figure 4.7 depicts the localisation region where a 

localisation process will determine an estimated location in this region.  This figure  

shows a user walking from left to right in sight of the building through a hallway and an 

open square space.  The localisation region is dynamic in shape based on prior location 

and building geometry.  Also, the localisation region will be updated in each cycle of 

the localisation process. 
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Figure 4.7: Dynamic shape changes in the localisation region depending on prior 

location. 

 

As elaborated in Section 4.2, the likelihood function needs to be calculated for 

each earlier position from EWK-NN to give each possible RP location in the 

localisation region.  The return value of the likelihood function is retained and used in 

the next iterative cycle process until there are enough RSSI values for each location.  

After completing the iterative process, the position is estimated from the highest return 

probability value based on possible RP location points.  After the new position has been 

estimated, this will become the new prior position for the next iterative process and the 

lookup table for RPs adjacent to the current position will be updated.  This cycle will be 

repeated in the next localisation process.  Figure 4.8 shows the flowchart of the 

proposed algorithm. 
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Figure 4.8: Flow chart of the proposed algorithm. 
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The pseudo code of the algorithm can be summarised as below. 

 

Algorithm 1 

1. Get previous location 

2. Update prior state location and assign localisation region. 

3. Update table of possible location based on localisation region. 

4. Assign uniform probability on each possible location in localisation region. 

5. For each RSSI>10 

 Estimate location based on EWK-NN 

End 

Return early location 

6. Calculate likelihood of possible state location 

For each location based on EWK-NN location  

 For each entry of location in prior table 

  Combine likelihood and prior 

 End 

 Get posterior location 

End 

Return location of highest probability from posterior location. 

7. Previous location from 1 will be the initial location value. 

8. Define noise covariance R as diagonal matrix with values: 

𝑅 = [
1 0
0 1

] 

 

9. Define process noise covariance Q with values: 
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𝑄 = [

0.00001 0 0 0
0 0.00001 0 0
0
0

0
0

0.00001
0

0
0.00001

] 

10. Initialize matrix A: 

𝐴 = [

1   0   
0 1
0
0

0
0

∆𝑡

 0

0
∆𝑡

 1
 0

0
1

] 

11. Initialize matrix H: 

𝐻 = [
1 0  
0 1

0 0
 0 0

] 

12. Initialize the position X=(x,y)
T
 

13. Initial the error covariance. 

14. Compute the Kalman gain  

15. Correct the position estimate with input measurement from 5. 

Update error covariance. 

16. Repeat again step 1 for next localisation process. 

 

4.6 Direction Movement and Number of Samples 

 

Based on Section 3.3, the hypotheses can be analysed based on several factors that 

influence positioning accuracy.  These factors are: 

 Movement direction: The direction of path movement chosen is from point S to 

point R and vice versa.  Previous results show different path movements give 

different shapes of error distribution along the path, even at the same TP 

locations. 

 Number of RSSIs samples before estimation: In Section 4.2 it has been stated 

that the estimation level has a significant impact on improvements in accuracy.  
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In this work, different numbers of RSSI samples were included in this newly 

designed algorithm.  First there were 50 RSSI samples from available APs and 

then this was reduced by half to 25 RSSI samples. 

 Different Wi-Fi chipset: Two different devices were used during the online 

phase.  The first mobile device uses a Qualcomm Atheros chipset which is the 

same Wi-Fi chipset used during the site survey, while the second device used is 

a Broadcom Wi-Fi chipset.  The results from the two different chipsets used 

were then compared. 

 Mixture of different levels in the positioning stage: In the early stage, basic 

deterministic algorithms were implemented, from basic K-NN to WKNN and 

EWKNN.  There are two types of estimation, the first is just average based 

while in the second iterative Bayesian estimation is applied.  In the last layer, 

improvements were made by implementing a Kalman filter with certain 

assumptions made as mentioned in Section 4.4. 

 

4.6.1 Movement Direction from Point R to Point S 

 

 In this scenario, the performance of several algorithms on different movement 

directions, with different number of RSSI samples included in the algorithm calculation, 

and different Wi-Fi chipsets were investigated.  The layout site was B floor, Infolab21, 

School of Computing and Communication, as shown in Chapter 3.  Based on the layout, 

there are two ways with different directions.  In the first condition, the user moves from 

point R to point S, and in the second condition the user moves from point S to point R.  

The numbers of RSSIs from APs chosen in this scenario were 25 and 50 samples.  Both 

sample numbers were chosen based on previous simulation presented in Section 4.2, 
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where the number of samples must be greater than 10.  The last factor mentioned is 

different Wi-Fi chipsets.  In this scenario, two types of well-known chipsets were used, 

i.e. the Quantum Atheros and Broadcom chipsets. 

The simulation started with movement direction from point R to point S.  During 

the on-line phase, RSSIs were sampled at each dedicated TP location for each direction.  

The error distribution for each TP location is presented with different types of 

algorithms included in the proposed algorithm.  Figure 4.9 below shows the distribution 

of errors for the proposed algorithm (EWKNN+Bayes+Kalman filter) compared to 

other positioning algorithms for movement direction R to point S, for a Qualcom 

Atheros Wi-Fi chipset with 25 sample RSSIs.  Based on the graph, it is clear that only 

two algorithms give constant error distribution of below 5 metres, which are KNN with 

Bayesian estimation and EWKNN with Bayesian estimation and a Kalman filter. With 

the deterministic algorithm K-NN and WKNN, location error rises suddenly at more 

than 20 metres from TP points 6 to 10.  It is clear that a combination of uncertain RSSI 

values from APs causes the location error distribution to fluctuate.  The newly designed 

algorithm, which works based on a localisation region, performed well to contain errors 

in this kind of situation but with a short period of huge localisation errors from point 6 

to point 10.   
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Figure 4 9: Error distribution for a Qualcomm Atheros Wi-Fi chipset with 25 RSSI 

samples. 

 

Figure 4.10 depicts the distribution of errors from an algorithm comparison as shown in 

Figure 4.9 but with doubled number of RSSIs, up to 50 samples.  Based on both graphs 

in Figures 4.9 and 4.10, it can be seen that they are almost identical.  The errors in 

positioning reach above 5 metres at the same TP point locations, which are from point 6 

to point 10 for a normal deterministic algorithm, even though RSSI samples are doubled 

what they were before.  
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Figure 4.10: Error distribution for a Qualcomm Atheros Wi-Fi chipset with 50 RSSI 

samples. 

 

Figure 4.11 depicts the distribution of average RSSI measurements from four 

different MAC address available on RPs location during offline phase (blue colour) and 

online phase (red colour). The vertical red dotted line show the RP location that return 

highest location error on deterministic algorithms. The average RSSI from available 

APs on online phase is approximately -74dBm and -62dBm, while the average RSSI 

during site survey is -68dBm and -58dBm (highlighted in blue region). The horizontal 

red dotted line show that the RSSI measurement of -74dBm and -62dBm in term of 

distance is closer to other RSSI measurement at RP number 44, 45 and 46. As a result, 

single layer positioning algorithm like conventional deterministic methods return higher 

location error up to 24m caused by selection of wrong RPs location. In contrast, the 

proposed algorithm with dynamic localisation region implementation only selects the 
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adjacent RPs’ location from the update lookup table during localisation.  The highest 

return probability in this dynamic localisation region will determine the approximate 

user location.  This will keep the margin of error in control for each localisation process. 

 

 

Figure 4.11: Average RSSI distribution during offline phase and online phase. 

 

Based on distribution of location errors of conventional deterministic algorithms in 

Figure 4.9 and Figure 4.10, the areas that contribute to higher error in location 

estimation were traced on the layout.  Figure 4.12 below shows the layout area where 

the online phase has been conducted. The green boxes show the area location of TPs 

with return of location estimation below 5 metres, while the red boxes show the area 

with conventional deterministic algorithm estimates of more than 5 metres of error. One 

of the reason that the areas were returning high error due to the fact that the signal from 

the APs to that particular region was not in line-of-sight (LOS). The geometry of the 

building in these cases in which the wall blocks the signal propagation at multiple times 

degraded the signal strength of the RSSI. The destructive and constructive due to 
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multipath fading also contributes to the fluctuation of the signals strength reading in 

RSSI from the APs. 

 

 

Figure 4.12: Accuracy map on layout building for Qualcomm Atheros chipset. 

 

Next, error distribution using the same algorithm based on 25 RSSI samples was plotted 

using a Broadcom Wi-Fi chipset.  The results in Figure 4.13 show different error 

distribution patterns compared to Figure 4.9 which is based on a Qualcomm Atheros 

chipset.  Based on the graph, a conventional K-NN and WKNN algorithm shows that 

positioning errors start to hit 5 metres from TP points 21 to 29.  In this scenario, 

gradually increasing errors are the main reason that both K-NN with Bayesian 

estimation and EWKNN+Bayes+Kalman filter algorithms follow the same pattern.  

This is because in a conventional deterministic algorithm, there is increasing location 

error from TP point 21 onwards, where the localisation region calculated keeps the 

process in the wrong region.  Therefore, with the proposed algorithm 

(EWKNN+Bayes+Kalman Filter), positioning error also increases gradually like the 

conventional deterministic algorithm. 
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Figure 4.13: Error distribution for a Broadcom Wi-Fi chipset with 25 RSSI samples. 

 

Figure 4.14 depicts a graph of error distribution for various positioning algorithms using 

the same Broadcom Wi-Fi chipset, but with doubled number of RSSI samples. Roughly, 

the graph patterns are very similar to the graph in Figure 4.13.   
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Figure 4.14: Error distribution for a Broadcom Wi-Fi chipset with 50 RSSI samples. 

 

Based on error distribution in Figure 4.13, the different distribution of RSSI 

between offline phase and online phase was looked into details. Figure 4.15 depicts the 

distribution of average RSSI measurement from four different MAC address available 

on RPs location during offline phase (blue colour) on Qualcomm chipset and online 

phase (green colour) on Broadcom Wi-Fi chipset. The vertical red dotted line show the 

RP location that return highest location error on deterministic algorithms. Based on 

RSSI distribution at all RPs location, it can be seen that there are obviously different 

RSSI measurements using Qualcomm Wi-Fi chipset during offline phase and 

measurement on Broadcom chipset during online phase. This shows that different Wi-Fi 

chipset manufacturers have different sensitivity levels. The different patterns are hard to 

judge as some locations give almost similar reading while some places give a difference 

of up to ~20dBm. The horizontal red dotted line show that the RSSI measurement of -

55dBm, -55dBm, -66dBm and -68dBm in term of distance is closer to other offline 
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RSSI measurement.  Due to this factor, whenever the deterministic algorithm is applied, 

it tends to pick up the nearest distance RSSI measurement at the other RPs location 

which leads to error in location of up to 30 metres as shown in Figure 4.13 and Figure 

4.14. 

 

Figure 4.15: Average RSSI distribution during offline phase and online phase. 

 

Based on the results in Figure 4.13 and Figure 4.14, the conventional deterministic 

algorithm that contributes to higher error in location estimation was traced on the layout 

area. Figure 4.16 below shows the layout area where the online phase has been 

conducted. The green boxes show the area location of TPs that give return of location 

estimation below 5 metres, while the red boxes show the area with conventional 

deterministic algorithm estimates of more than 5 metres location error. As explained on 

RSSI distribution in the previous graph, the different sensitivity levels of both 

Qualcomm and Broadcom Wi-Fi chipset leads to different area of position during the 

location estimation process.  
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Figure 4.16: Accuracy map on layout building for Broadcom chipset. 

 

4.6.2 Movement Direction from Point S to Point R 

 

The error distribution patterns at the same TP locations were then compared to 

the previous results in Section 4.6.1, but with movement in the opposite direction.  

From Figure 4.17 below, it can be seen that the patterns of error distribution are a little 

bit different, even when using the same Wi-Fi chipset and number of RSSI samples.  

This is because when movement direction is in the opposite direction, the blockage and 

reflected signals do not follow the same path as before.  The user’s body and antenna 

radiation pattern could give readings of signal strength at different levels, thus giving 

different positioning accuracy, even at the same location.  In this scenario, the proposed 

algorithm performs well below 5 metres, until it reaches TP point 18.  However, from 

this point onwards, the overall distribution is still slightly better than with basic 

deterministic techniques. 
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Figure 4.17: Error distribution for Qualcomm Atheros Wi-Fi chipset with 25 RSSI 

samples. 

 

 

The number of RSSI samples processed was then doubled to 50 samples at each 

location and the error distribution for each algorithm is as depicted in Figure 4.18. The 

error distributions for each algorithm, in Figures 4.16 and 4.17, show very similar 

patterns. 
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Figure 4.18: Error distribution for Qualcomm Atheros Wi-Fi chipset with 50 RSSI 

samples. 

 

The scenario of how the location error is high after TP 17 was analysed in term 

of RSSI distribution. Figure 4.19 depicts the distribution of average RSSI measurement 

from four different MAC addresses available on RPs location during offline phase (blue 

colour) and online phase (red colour). Both measurement phases are based on the same 

Wi-Fi chipset which is Qualcomm Atheros. Based on Figure 4.17, it was found that the 

highest location error on TP 17 is related to RP number 27 (vertical red dotted line) on 

Figure 4.19. This is because the closest distance of RSSI at RP location 27 to RSSI 

referring to offline phase (blue colour) are at RP location number 42, 44 and 45. As a 

result, the location estimation of K-NN and WKNN algorithms selected this 3 RPs point 

as the nearest distance and returned high error compared to the actual user position. 

 

 

 

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

nth Test Points (TPs)

e
rr

o
r 

(m
)

 

 

KNN

KNN+Kalman

WKNN

WKNN+Kalman

KNN+Bayes

EWKNN+Bayes+Kalman



 
85 

 

 

Figure 4.19: Average RSSI distribution during offline phase and online phase. 

 

Based on the error distribution in Figure 4.17, the deterministic algorithm that 

contributes to higher error in location estimation was traced on the layout area. Figure 

4.20 below shows the layout area where the online phase has been conducted. The green 

boxes show the area location of TPs that return the location estimation below 5 metres, 

while the red boxes show the area where conventional deterministic algorithm estimates 

more than 5 metres location error. The locations that contribute to higher error in 

location are almost in the same region as shown in Figure 4.16 but with slightly broader 

region. This shows that the opposite movement direction have a slight difference in 

error location area.  
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Figure 4.20: Accuracy map on layout building for Qualcomm Atheros chipset 

 

The proposed algorithm performs very well along the path from point S to point R, as 

depicted in Figure 4.21.  The location error is always below 5 metres for all TP 

locations.  From TP point 3 to point 13, it can be seen that the output results from the 

KNN+Bayes algorithm suddenly rise from almost zero positioning error to 5 metres of 

errors. However, the output from EWKNN+Bayes+Kalman filter gradually increases 

for error location. This is the effect of the design Kalman filter which balances the 

output between prediction and measurement values. 

 

 

R to S
R

123

4
9

14
19

24

5
10

15
20

25

6
11

16
21

26

7
12

17
22

27

8
13

18
23

28

2930313233343536373839404142434445

S
49

48
47

46

distance 1-

2:1.5m

location error <5m 

location error >5m 



 
87 

 

 

Figure 4.21: Error distribution for Broadcom Wi-Fi chipset with 25 RSSI samples. 

 

 

Figure 4.22 shows the results for positioning error from 50 RSSI samples using 

measurements from a Broadcom chipset. Mostly, the error distribution shows similar 

patterns as in Figure 4.21.  
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Figure 4.22: Error distribution for Broadcom Wi-Fi chipset with 50 RSSI samples. 

 

Figure 4.23 depicts the average RSSI distribution during offline phase and 

online phase on different Wi-Fi chipset for direction movement from S to R point.  The 

vertical red dotted line show the RP location that return highest location error on 

deterministic algorithms. Based on Figure 4.21, the largest location error is on TP 

number 5 which corresponds to RP number 44. It can be seen clearly that at the same 

RP location, both Wi-Fi chipset give different level of signal strength. As a result, the 

difference between offline and online measurement is almost 15dBm at the same 

location and from the same AP. This larger difference leads the K-NN algorithm to 

choose the closest distance of RSSI on different RP at number 18, 23, 30 and 31 which 

is far from the actual location. Consequently, the wrongly chosen RP location leads to 

estimation of the wrong location. 
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Figure 4.23: Average RSSI distribution during offline phase and online phase. 

 

Figure 4.24 shows the areas that contribute to high estimation error based on Wi-Fi 

deterministic algorithm. The red boxes show the points that have error in estimated 

location higher than 5 metres. As explained before on RSSI distribution on previous 

graph, the different sensitivity level of both Qualcomm and Broadcom Wi-Fi chipset 

leads to different area of position during location estimation process.  

 

 

Figure 4.24: Accuracy map on building layout for Broadcom chipset. 
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4.7 Overall Results 

 

The accumulated accuracy of eight combinations with different kinds of 

parameters, such as the number of RSSI samples, Wi-Fi chipsets and movement 

direction are presented in Table 4.2.  Eight different scenarios give different patterns of 

error distribution, as shown in Sections 4.6.1 and 4.6.2.  As can be seen, the effects of 

double the number of RSSI samples for all the scenarios are almost insignificant.  

Figures 4.16 to 4.22 show that the patterns of error distribution are very similar.  The 

accumulated accuracy in Table 4.2 shows that across all algorithms for both 25 and 50 

RSSI samples, the numbers are very close.  This shows that even increasing the number 

of RSSI samples does not significantly improve positioning accuracy.  And in some 

cases, positioning accuracy results are better with fewer RSSI samples.  In four out of 

eight scenarios, the accumulated accuracy shows that other algorithms are better than 

the proposed algorithm.  However, in total, the proposed algorithm gives better overall 

positioning accuracy. 
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Table 4.2: Accumulated accuracy of different algorithms. 
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Based on all the simulation results in Table 4.2, the CDFs of positioning error for the 

various algorithms were generated as illustrated in Figure 4.25. It can be observed that 

the proposed algorithm which is combination of EWKKN, Bayesian estimation and 

Kalman filter with dynamic localisation region performed the best with location error of 

less than 5m for 65% of the time, whereas conventional deterministic (K_NN and 

WKNN) with Kalman filter gave 48%. The basic K-NN and WKNN gave location error 

of less than 5m for 45% of the time. This shows that implementation of Kalman filter 

gave improvement to the deterministic technique with 3%, while the proposed 

algorithm did improve the CDF by 20% more. 

 

Figure 4.25: Performance positioning error comparison between proposed algorithm 

and several location estimation algorithms. 
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4.8 Summary 

 

In this chapter, an integrated location-estimation algorithm simulated with real 

RSSIs measured at each TP location has been elaborated.  As mentioned in Chapter 3, 

the site survey was of a real situation where the number of APs was limited and there 

was uncertain coverage, the positions of APs have been determined earlier and with 

various shapes of building geometry.  Several simulation Wi-Fi deterministic fingerprint 

techniques (with k=3) have been compared with the proposed algorithm.  A few factors 

have been investigated, such as the number of RSSI samples included in the simulation, 

different Wi-Fi chipsets and different path routes.  The output results of the proposed 

algorithm were compared against conventional approaches: K-NN, WKNN, K-NN + 

Kalman filter, WKNN + Kalman filter.  The results of the entire algorithm have been 

analysed based on location error distribution pattern graphs and accumulated accuracy.  

Based on all the various scenarios, it was found that the proposed algorithm worked the 

best in terms of average positioning error. Increasing the number of RSSI samples did 

not significantly improve the location accuracy. The early hypothesis is proved where 

movement direction and heterogeneous Wi-Fi devices have influence on location 

accuracy. Furthermore, the distribution location error on certain area for deterministic 

method have been analysed in term of RSSI distribution for both offline and online 

phase. It can be seen that at some point, the distance selection from deterministic 

algorithm picked up wrong location. Here, the proposed algorithm which is an 

integrated EWKNN, Bayesian estimation and Kalman filter together with 

implementation of dynamic localisation region did improve the CDF of location error 

by 20% of the time for error of less than 5m. At this stage, the use of dynamic 

coefficient as possible correction on location error is not used in this research which is 
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out of scope. A few ideas to utilise the statistical information from RSSI distribution 

will be discussed in section 6.2. 
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CHAPTER 5: Enhanced Indoor Positioning Utilising QR 

Calibration 

 

5.1 Introduction 

 

In the previous chapter, a new integrated Wi-Fi indoor positioning based on 

fingerprint have been proposed. Unlike other forms of single layer Wi-Fi positioning, 

the combination of these three techniques gives an overall performance that is more 

immune to fluctuation in RSSI which causes errors to increase along with path 

movement. This algorithm has been designed to match with calibration point to prevent 

error from being accumulated. QR code calibration will be introduced in this chapter, 

and the area of QR code location will be identified to get effective indoor positioning. 

 

5.2 Location Based Calibration (LBC) 

 

The proposed Wi-Fi fingerprint algorithms in the previous chapter not only take 

into account how to minimise the effect of error fluctuation, it is also designed to suit 

the purpose of calibration.  As mentioned before, the use of QR code in Wi-Fi 

positioning has been proposed by other researchers [109][55].  However, the functions 

of a location estimation algorithm and calibration are quite separated from the 

beginning.  A calibration point only tells the system the correct or actual position of a 

user at a particular calibration position; after that, the positioning algorithm starts to 

resume the function of Wi-Fi fingerprint positioning without remembering the last 

calibration point. 
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To enhance the accuracy of the Wi-Fi fingerprint algorithm along with path 

movement, the proposed algorithm combines the two most influential groups in 

positioning, which are signal-based positioning and vision-based positioning [14]. Most 

of the current devices integrate various kinds of sensors [60], therefore utilising these 

sensors might improve location accuracy. The main types of positioning are signal-

based positioning, Wi-Fi fingerprint positioning as explained in Chapter 4, and vision-

based positioning which utilises a vision sensor.  In this work, a calibration point 

utilising QR code is proposed.  Figure 5.1 depicts a block diagram showing integration 

between signal-based positioning and vision-based positioning. 

 

 

 

 

 

 

 

 

Figure 5.1: Block diagram of a combination of W-Fi fingerprint technique and QR 

vision-sensor-based calibration. 

 

In addition, our previous developed algorithm was designed to suit the purpose of 
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points available and try to find the closest match with RSSI distribution stored earlier in 

user devices.  The closest match will return the position of particular RSSI from a 

previous offline phase.  Then, this estimation position will be kept in memory and later 

used in the next time cycle.  Before the next position is calculated, based on iterative 

Bayesian estimation, all adjacent reference points’ positions near the current positions 

which are stored in memory will be evaluated for the highest probability point.  These 

adjacent reference points’ positions are called the confinement area, where it is believed 

that the user may still be in.  The maximum probability at a particular point in the 

localisation region will return the estimated user location.  The process will be repeated 

in the next cycle to determine the user’s position.  After several localisation processes, 

location errors estimated from the beginning can accumulate, as the exact user location 

is not known.  Figure 5.2 depicts an example of a building layout with a user walking to 

the right through reference points assigned during the off-line phase. 

 

 

 

Figure 5.2: Building layout and localisation region with QR calibration. 
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5.2.1 Algorithm Description 

 

Let say the user is at point A as depicted in Figure 5.2, estimated by the previous 

algorithm as mentioned in Chapter 4.  At this estimated location, the position could be 

the exact location or perhaps contains some error.  If there is a mistake in location 

estimation before, that means the area of confinement is not exactly as accurate as 

desired.  

When the user moves to the next position, say B position, there is a QR 

calibration point.  The user then scans the QR code and information about the exact 

current location can be retrieved.  This valuable information will be used by the 

algorithm to update the exact current location and set a new localisation region by 

referring to an adjacent reference points table.  This current area of localisation is seen 

to be highly accurate, which consists of several reference points.  

Next, the user will move to another nearest reference point which is still in the 

right localisation region.  Enhanced weighted-KNN (EWKNN) is then executed to 

estimate the intial user location.  Then, iterative Bayesian estimation will “compare” the 

initial position estimated by EWKNN with every single reference point in the 

localisation region.  The output will be a probability value for each reference point’s 

location in this area.  The highest probability point may be the nearest location of the 

user’s position.  If there is an error in position estimation, it is still very low as the initial 

calculation of points is only in the right confinement area.  This is how the algorithm 

works seamlessly with QR code for calibration.  

As the user scans the QR code, location error is reset to zero.  Now the exact 

location is known, and a new localisation region of adjacent reference points can be 

referred in the lookup table.  When the user moves to other nearest reference points, the 

estimation of user location will be calculated, and the localisation region of reference 
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points will be updated.  The possibility of position error based on the estimation of new 

locations will be reduced at this time, because the exact location before is already 

known, thus the exact user location should be in the region of the confinement area.  

Furthermore, the error location is definitely about the size of the localisation region.  If 

the estimated position appears to be the exactly the true location, this means in the next 

localisation there could be a high possibility of low location error because the right 

localisation region is still in place.  

The process will be repeated in the next cycle and will as a whole improve 

accumulated accuracy for indoor positioning.  Therefore, several integrated layers of a 

positioning algorithm consist of deterministic EWKNN for initial positioning 

calculation, finding the best match between online RSSI values and offline RSSIs, and 

iterative Bayesian estimation to further improve position estimation with an updated 

localisation region, which works well with QR calibration code.  Figure 5.3 depicts an 

algorithm flowchart for enhancing a Wi-Fi fingerprint with QR calibration. 
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Figure 5.3: Flowchart of algorithm to enhance Wi-Fi fingerprint with QR calibration. 
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Algorithm 

1. Get previous location 

2. Sample RSSI 

3. For each RSSI>10 

 Estimate location based on EWK-NN 

End 

Return early location 

4. Update prior state location and assign localisation region. 

5. Update table of possible location based on localisation region. 

6. Assign uniform probability on each possible location in localisation region. 

7. Calculate likelihood of possible state location. 

For each location based on EWK-NN  

 For each entry of location in prior table 

  Combine likelihood and prior 

 End 

 Get posterior location 

End 

Return location of highest probability from posterior location 

8. If there is input from QR code, decode the QR code information 

 Get the position of QR code location 

 Update the location region from QR information 

 Update the table of possible location based on QR information 

Else 

Return position from iterative Bayesian estimation 

9. Repeat step 1 on next cycle 
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10. End 

 

5.2.2 Results of Location Based Calibration (LBC) 

 

This section presents the results achieved in the simulation.  The simulation was 

conducted in the Infolab21 building, and the layout details can be seen in Chapter 3.  

The RSSIs were collected at TP locations on Level B, Infolab21, and a few scenarios 

have been created to evaluate the performance of the proposed algorithm.  

As shown in Chapter 4, applying iterative Bayesian estimation needs a sample of 

at least 10 RSSIs in order to get consistent and accurate results.  Therefore, at each TP 

point, we sampled up to 25 RSSI values before estimating the user’s position.  On top of 

that, RSSIs measurements were taken in different movement directions as it is known 

that this will give different error distributions and so this is good to test the algorithm.  

Here, the user moved in a certain direction, from point R to S, and back again.  And 

again, a different type of Wi-Fi chipset was used in each direction to evaluate the 

algorithm’s performance.  This is because different Wi-Fi chipsets have different 

sensitivities and reactions to RSSIs readings and thus will give different patterns of 

accuracy. 

The results showing the error distribution along the path movement for the 

algorithm are described in section 5.2.1.  A comparison has been made with a 

deterministic K-NN algorithm as this is basic and popularly used in Wi-Fi 

fingerprinting [80], [12], [110].  Another comparison was made with K-NN 

implemented with a Kalman filter, as explained in Chapter 4. 
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5.2.2.1 Point R to Point S – Qualcomm Atheros 

 

In this section, part of the simulation results for the same algorithms are presented 

in two different graphs.  The first graph is an algorithm comparison without any 

calibration point, while the second graph is an algorithm comparison with QR 

calibration.  Figure 5.4 depicts a comparison of algorithms between K-NN, K-NN with 

a Kalman filter and EWKNN with Bayesian estimation without any calibration point.  

As discussed in Chapter 4, the deterministic technique which was used, EWKNN, is 

integrated with iterative Bayesian estimation and is more reliable than the other two 

algorithms.  It gives fewer error spikes and keeps the error distribution below 5 metres. 

 

 

Figure 5.4: Comparison of EWKNN with Bayesian estimation, basic K-NN and K-NN 

with Kalman Filter, without QR calibration. 
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with a QR calibration point.  Positioning information on QR code immediately reduces 

the errors to zero and improves the accuracy from point 5 to point 8.  Compared to a 

conventional K-NN algorithm, QR calibration only improves the point where the QR 

code is located, while at other TPs it only gives the same results. 

 

 

Figure 5.5: The effect of QR calibration (at point 5) on three different algorithms. 
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is beyond 5 metres.  To prevent errors rising steeply, it was decided to do QR 

calibration in the region with high possible errors, as shown in Figure 5.7.  

 

Figure 5.6: Comparison of EWKNN with Bayesian estimation, basic K-NN and K-NN 

with a Kalman filter, without QR calibration. 
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Figure 5.7: The effect of QR calibration (at point 25) on three different algorithms. 
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5.2.2.3 Point S to point R – Qualcomm Atheros 

 

Figures 5.8 and 5.9 show the same trend in error distribution.  The errors rise 

significantly from point 18 to point 25 and then plummet noticeably towards the last 

TPs. QR calibration at point 25 gives better results for EWKNN with Bayesian 

estimation compared to the other two algorithms.   

 

Figure 5.8: Comparison of EWKNN with Bayesian estimation, basic K-NN and K-NN 

with Kalman Filter, without QR calibration. 
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Figure 5.9: The effects of QR calibration (point 25) on three different algorithms. 
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localisation, this gives high accuracy for user’s position.  The results show zero errors 

from TP 5 to TP 16, as shown in Figure 5.10. 

 

Figure 5.10: Comparison of EWKNN with Bayesian estimation, basic K-NN and K-NN 

with Kalman filter, without QR calibration. 
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The results on previous graphs show that the location of QR calibration point is 

suggested to be in the region of the high location error. Based on TPs location, the point 

was traced on the layout map as show in Figure 5.12. By implementing this algorithm 

that was designed with calibration point, the calibration area has been identified instead 

of putting the QR code everywhere. 

 

 

Figure 5.12: Area location of QR code calibration 

 

 

 

 

 

 

 

 

 

 

 

R to S
R

123

4
9

14
19

24

5
10

15
20

25

6
11

16
21

26

7
12

17
22

27

8
13

18
23

28

2930313233343536373839404142434445

S
49

48
47

46

 
 



 
111 

 

5.3 Kalman Filter Modification on QR Calibration  

 

The results for the previous algorithm in Section 5.2 do not take into account the 

presence of noise.  As explained in the previous section, even though the new algorithm 

shows resistance to positioning uncertainty, location estimation could still change 

significantly between TPs due to RSSI uncertainty.  To smooth out the results, a 

Kalman filter was applied to the previous algorithm.  

 

5.3.1 Algorithm Description 

 

The Kalman filter algorithm has been explained in detail in Section 2.5.  It 

consists of several steps including a prediction layer, an adaptive Kalman gain 

calculation and lastly an estimation layer.  Figure 5.12 shows the process of 

implementing Kalman filter with QR calibration.  In state k, the output from EWKNN 

and Bayesian estimation goes through the process of standard Kalman filter.  At the 

beginning in state k, the early results are treated through the prediction layer, estimation 

layer, and Kalman gain between the layers is computed.  The outputs of the estimation 

state and error covariance are passed to the next cycle state, which is k+1.  Then, the 

standard process of using Kalman filter continues.  

When a user scans QR code at a dedicated calibration point, information about 

that particular position is known.  In this scenario, the results of 𝑥𝑘 and 𝑃𝑘 are not 

passed to the next cycle, k+2 state.  Here, measurement in this state which is the 

position information from QR calibration will be an estimation state and used in the 

next cycle state.  So, the layer process of prediction, Kalman gain calculation and 
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estimation can be skipped.  To make it simple, the error covariance value at this state is 

reset to the initial value just like the first state calculation of the Kalman filter.  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

Figure 5.13: Kalman filter process with QR calibration. 
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Figure 5.14: Flowchart for algorithm enhancement with QR calibration and Kalman 

filter. 
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Algorithm 

1. Get previous location 

2. Sample RSSI 

3. For each RSSI>10 

 Estimate location based on EWK-NN 

End 

Return early location 

4. Update prior state location and assign localisation region. 

5. Update table of possible location based on localisation region. 

6. Assign uniform probability on each possible location in localisation region. 

7. Calculate likelihood of possible state location. 

For each location based on EWK-NN  

 For each entry of location in prior table 

  Combine likelihood and prior 

 End 

 Get posterior location 

End 

Return location of highest probability from posterior location 

8. If there is input from QR code, decode the QR code information 

 Get the position of QR code location 

 Skip prediction state 

 Skip Kalman gain 

 Set error covariance matrix to initial condition Po 

 Update the location from QR information 

 Update the table of possible location based on QR information 
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Else 

Return position from normal stage of Kalman filter output 

9. Repeat step 1 on next cycle 

10. End 

 

5.3.2 Results of Location Based Calibration (LBC) with Kalman Filter 

 

This section discusses the simulation results from integrating EWKNN with 

iterative Bayesian estimation and combined with Kalman filter utilising QR calibration 

algorithm.  Simulation was done based on the previous algorithm with 25 RSSI samples 

for each TP.  The results for this algorithm with a Kalman filter was compared to other 

algorithms such as basic K-NN or K-NN with a Kalman filter, and the 

EWKNN+Bayesian estimation algorithm itself.  The results presented here are for two 

different directions, point S to point R and vice versa, and different Wi-Fi chipsets to 

evaluate the algorithm in various conditions. 

 

5.3.2.1 Point R to point S – Qualcomm Atheros 

 

 Figure 5.14 depicts the simulation results for four different type of algorithms, 

which are KNN, K-NN with Kalman filter implementation, EWKNN+Bayesian 

estimation, EWKNN+Bayesian estimation with Kalman filter algorithm 

implementation.  All these results assume that calibration was done at TP 5.  Both 

EWKNN + Bayesian estimation and EWKNN+Bayesian with Kalman filter show 

consistent errors of below 5 metres for all TPs when compared to K-NN and K-NN with 

a Kalman filter.  From the graphs, the effect of the Kalman filter is to smoothen out 
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uncertainty in the results of location error.  Most of the time, EWKNN+Bayesian with 

Kalman algorithm produced only slightly fewer errors compared to EWKNN + 

Bayesian estimation with QR calibration, except from point 14 to point 23.  Between 

these points, the output of EWKNN + Bayesian estimation with QR calibration shows 

constant errors at 3 metres, so the Kalman filter process tried to slowly reach that point 

and make it a little bit above 3 meters in location error. 

 

Figure 5.15: The effects of QR calibration (at point 5) on four different algorithms. 

 

5.3.2.2 Point R to point S – Broadcom 
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calibration point TP 25, the output of EWKNN+Bayesian estimation with a Kalman 

filter is almost the same for location errors as the EWKNN+Bayesian estimation 

algorithm until point 29.  This is because the effect of error covariance was reset to the 

initial value and so new Kalman gain just needed to be calculated again.  The 

incremental errors form a constant rising gradient, the output of a Kalman filter, and the 

results are almost the same until a change in gradient at point 30, where the output of 

the EWKNN+Bayesian estimation algorithm shows a sharp drop.  The Kalman filter 

tried to compensate for this drastic change and this makes the output remain slightly 

higher for error distribution after point 30. 

 

 

Figure 5.16: The effects of QR calibration (at point 25) on four different algorithms. 
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5.3.2.3 Point S to point R – Qualcomm Atheros 

 

Figure 5.17 shows the results for a different type of algorithm on the Qualcomm 

chipset but with various directions.  The errors start to exceed 5 metres from point 18 to 

point 29, which is basically the same location region as the results in Figure 5.16.  The 

calibration point was at TP 25, and both EWKNN+Bayesian estimation and 

EWKNN+Bayesian estimation with Kalman filter implementation show better location 

accuracy compared to K-NN and K-NN with Kalman filter improvement.  After the 

calibration point, the proposed algorithm shows gradual increment in location error due 

to the fact that the region is still high in location error where the basic K-NN error 

reaches above 20 metres.  When the error of K-NN shows a decrement in location error, 

the result of the proposed algorithm shows some increment in positioning accuracy. 

 

 

Figure 5.17: The effect of QR calibration (at point 25) on four different algorithms. 
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5.3.2.4 Point S to point R – Broadcom 

 

Figure 5.18 shows a comparison of four different kinds of algorithms with the 

QR calibration point at TP 5.  As discussed in Section 5.2.2.3, the output of EWKNN 

with Bayesian estimation utilising QR calibration gives accurate results after calibration 

point, up to twelve points ahead.  The output of the algorithm with a Kalman filter is 

almost the same.  However, at TP point 5 and from point 17 to point 20 the output 

through a Kalman filter shows slightly better accuracy. This is because the Kalman filter 

process tried to smooth up the output of the EWKNN+Bayesian estimation algorithm 

that has suddenly increased significantly. 

 

 

Figure 5.18: The effect of QR calibration (at point 5) on four different algorithms. 
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5.3.3 Overall Results 

 

All results presented above for different directions of path movement and 

different Wi-Fi chipsets have been analysed.  Comparisons have been made among the 

four different kinds of algorithms.  The accumulated accuracy of all results presented in 

Chapter 4 has been calculated and is shown in Table 5.1 below. 

 

Table 5.1: Accumulated accuracy comparison of algorithms with QR calibration. 
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From this table, it can be seen that accumulated accuracy has been calculated for 

four different kinds of scenarios and four different types of algorithms after using 

calibration points.  As observed, K-NN utilising QR calibration gives the worst results 

of all algorithms while K-NN+Kalman filter utilising QR calibration shows some 

improvement in overall accumulated accuracy.  Two out of four scenarios give the best 

accumulated accuracy with the third algorithm, which is EWKNN+Bayesian estimation 

utilising QR calibration.  The last algorithm, which is EWKNN+Bayesian estimation + 

a Kalman filter utilising QR calibration, has better accuracy in the second and last 

scenario with the  direction from point S to point R on both Wi-Fi chipsets.  The 

difference between the third and fourth algorithms in R to S direction is not much.  As 

explained in previous results, the last algorithm did sometimes improve overall 

accuracy, but sometimes not.  It has some advantages even though it does not give a 

significant improvement in accuracy.  The implementation of a Kalman filter did work 

to prevent errors from soaring sharply.  This could avoid the position of a user from 

being estimated not in one room but in another four or five rooms away at the end of the 

pathway.  If the pattern of location error shows some gradual decrease, the fourth 

algorithm shows slight changes in the error gradient. 

Figure 5.19 shows the CDFs performance comparison of location estimation 

errors for various algorithms based on all scenarios in Table 5.16. The K-NN combined 

with QR calibration gives location error of less than 5m for just 48% of the time.  When 

K-NN plus Kalman filter includes the QR calibration point, this algorithms gives 

location error of less than 5m for 51% of the time. This shows that when QR calibration 

is implemented along the path with deterministic basic algorithm, the improvement is 

3% when compared to the results in Figure 4.25. Implementation of integrated 

EWKNN, Bayesian estimation with localisation region, combined with QR calibration 

point along the path movement shows drastic improvement with location error of less 
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than 5m for 70% of the time. The same algorithm when combined with some 

modification of Kalman filter process during calibration, the implementation of QR 

calibration point along the path movement shows some promising improvement by 

another 8%. The result shows the best achievement with location error of less than 5m 

for 78% of the time. 

 

 

Figure 5.19: Performance positioning error comparison between the proposed algorithm 

and several location estimation algorithms with QR calibration. 
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5.4 Summary 

 

 The chapter discusses on the implementation of integrated positioning algorithm 

that was designed to suit the calibration point technique. The Wi-Fi fingerprinting 

algorithm was chosen as positioning method which is an integration of EWKNN and 

Bayesian estimation. This location based calibration algorithm that works on dynamic 

localisation region and QR calibration has shown significant improvement to the overall 

accumulated accuracy. The error distribution and accumulated accuracy help to identify 

which area should consider locating the QR calibration point instead of putting it 

everywhere. In the last part, it has been shown that modification on Kalman filter during 

calibration point helps to improve and smooth up the user location. The result of CDF 

improvement was up to 30% for location error of less than 5m compared to KNN with 

QR calibration. The used of QR code as dynamic coefficient to correct the user location 

is not considered here because out of scope. It is discussed in Future work section. 
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CHAPTER 6: Conclusion 

6.1 Summary 

 

The problem of GPS signals not effectively reaching all parts of a building has 

prompted interest in developing alternative solutions for Indoor Location Based 

services.  In this thesis, the integrated indoor positioning algorithm utilising QR 

calibration has been tested and investigated. A Wi-Fi fingerprinting technique was 

chosen as the main focus due to its availability and accuracy in various building 

geometries. 

To test and evaluate the performance of the proposed algorithms, simulation tools 

are needed; Vistumbler and Matlab were chosen for this task.  The measurement vectors 

of real RSSIs were sampled with Vistumbler before all data were transferred into 

Matlab to test the algorithms.  Several scenarios were taken into account when 

collecting RSSI vectors and in algorithm development.  These include the path direction 

of the user, the number of sampled RSSI vectors, and the Wi-Fi chipset manufacturer.  

The effects of each parameter were investigated and an algorithm which can cope to 

these factors was developed. 

A deterministic technique was chosen in this research to get the right balance 

between accuracy and complexity. The integration of several layers of location 

estimation algorithm has been proposed. New algorithm has been developed with 

interconnection between EWKNN and iterative Bayesian estimation, and the location is 

smoothened with Kalman filter.  The technique utilizes dynamic localisation region 

which selects the adjacent RP location before the algorithm estimates the user location. 
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This technique controls the location error from rising dramatically due to several factors 

like different Wi-Fi chipsets and movement directions.  

To further improve the accumulated accuracy, QR calibration point has been 

introduced. The positioning error distribution and accumulated accuracy help to identify 

the critical area or zone to place the QR code instead of placing it everywhere. The 

earlier designed algorithms that can suit the QR calibration help to reduce and control 

location error. Comparisons have been made to other deterministic algorithms by 

analysing the accumulated accuracy and CDF graphs. 

The performance of previously designed algorithm with QR calibration is 

enhanced with Kalman filter. Modification on Kalman filter at calibration point helps to 

improve the accumulated accuracy hence increasing the percentage of location error 

below 5m. This combined package of new algorithm did improve the CDF of location 

error of less than 5m with 30% compare to conventional deterministic technique with 

calibration point. 

 

6.2 Future Work 

 

There is still plenty of room for research that can be done by extending the 

findings of this thesis.  Research into indoor location-based services has caught the 

interest of many researchers and academicians recently.  The following section outlines 

suggestions for future research work in this area. 
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6.2.1 Applying Other Distance Calculation with Statistical information 

 

In this thesis, Euclidean distance is used to find the nearest match between vectors 

in the on-line and off-line phases.  Euclidean distance is based on an average vector 

data.  To get more accurate results in distance calculations, it is suggested to analyse the 

statistical information of RSSI vectors.  Here, several other distance calculations which 

utilise statistical information, such as Mahalanobis distance, Bhattacharya distance, and 

Spearman distance can be considered [99]. This extra information can be used as a 

dynamic coefficient on QR code to correct the user location in the case of inter-devices 

calibration. 

 

6.2.2 Integration between Localisation Region and Clustering Techniques 

 

In our algorithm, the localisation region has been applied in implementing the 

Bayesian estimation to prevent error estimation from rising sharply.  With certain 

building geometries, there is the possibility that errors become too large due to similar 

pattern combinations of RSSI readings in another place.  To address this problem, 

another layer of clustering techniques can be added.  Clustering can analyse and group 

similar patterns of RSSIs in the off-line phase.  When RSSI vectors are measured in the 

on-line phase, the algorithms try their best to match to the data in the off-line phase.  If 

the current location is known, it is possible to prevent a return distance match from 

jumping to another group of clusters.  This will avoid errors from rising drastically 

between TPs.  Several examples of clustering is affinity propagation clustering, 

hierarchical clustering, and evolving clustering [108], [111]. Combination with 

clustering techniques helps improve processing time in searching for adjacent RPs. 
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6.2.3 Integrated Fingerprint with Triangulation Technique Utilising QR 

Calibration 

 

In this research, the work started with a deterministic K-NN algorithm to estimate 

user location.  This was done by calculating the “distance” between vector samples in 

the on-line phase and a database during the off-line phase.  The vector of the nearest 

distance is kept in the matrix for further calculations to determine user position.  The 

granularity of the fingerprint technique is still the main influence in position estimation.  

The small scale of RPs will give more accurate results, but labour cost will be the 

biggest problem. 

To reduce the effect of RPs’ granularity, it is suggested to add another layer-

positioning algorithm by utilising distance previously calculated.  If we know the 

coordinates of APs and the distances from APs to user, based on the deterministic 

matching algorithm used in this thesis, a trilateration method to estimate user position 

can be applied.  By applying MMSE (minimum mean square error), the user position in 

three dimensions (3D) can be resolved.  In a trilateration method, there must be at least 

three base stations, so the equation will be non-linear.  Therefore, the algorithm with a 

non-linear Kalman filter can be integrated, which is called an Extended Kalman filter 

[112].  By utilising QR calibration points and information about different Wi-Fi 

chipsets, the output of the trilateration can be compared to the actual position and the 

parameter values can be adjusted to correct user position. 
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