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28 Abstract
29 Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) 

30 were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, 

31 Finland. PAH concentrations decrease with increasing latitude in the order of 

32 Pallas>Zeppelin>Alert. Forest fire was identified as an important contributing source. 

33 Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BaP) 

34 were selected for the assessment of their long-term trends. Significant decline of these 

35 PAHs was not observed contradicting the expected decline due to PAH emission reductions. 

36 A global 3-D transport model was employed to simulate the concentrations of these three 

37 PAHs at the three sites. The model predicted that warming in the Arctic would cause the 

38 air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, 

39 which tends to be particle-bound, is less affected by temperature. The expected decline due 

40 to the reduction of global PAH emissions is offset by the increment of volatilization caused 

41 by warming. This work shows that this phenomenon may affect the environmental 

42 occurrence of other anthropogenic substances, such as, the more volatile flame retardants 

43 and pesticides.

44

45

46
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48
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49 Introduction
50 Polycyclic aromatic hydrocarbons (PAHs) are an important class of organic pollutants 

51 released into the environment primarily through incomplete combustion of fossil fuels and 

52 biomass. They are of great public concern due to their toxicity and potential carcinogenicity. 

53 PAHs can undergo long-range atmospheric transport (LRAT) to remote locations and are 

54 listed for regulation under the United Nations Economic Commission for Europe (UNECE) 

55 Aarhus Protocol on Persistent Organic Pollutants (POPs) in the Convention on Long Range 

56 Transboundary Air Pollution (CLRTAP)1-3. Due to their tendency to travel over long 

57 distances, PAHs are regularly detected in very remote areas, far away from primary sources. 

58 As such, PAHs are ubiquitous in the Arctic environment. Levels of most regulated POPs 

59 are declining over time in the Arctic environment, reflecting the effectiveness of national 

60 and international emission control initiatives such as CLRTAP and the Stockholm 

61 Convention on POPs4,5. However, temporal trends of PAHs measured in various Arctic 

62 media did not show consistent declining trends6-8, despite the estimated reduction in global 

63 PAH emissions from 592,000 to 499,000 tonnes between 1995 and 20089. Studies have 

64 shown that PAHs measured in Arctic marine waters and sediments mainly originate from 

65 natural underwater hydrocarbon seeps10-12, while those measured in air originate from 

66 atmospherically-derived sources, making the air the most suitable medium for PAH 

67 monitoring to verify the outcome of regulations on PAH emissions. In addition, their 

68 occurrence in the Arctic atmosphere is of particular importance because what is detected 

69 is the combined result of LRAT, continuous regional emissions (heating, industrial 

70 activities), and temporary local emissions due to commercial and other activities (maritime 

71 traffic, coal mining etc.). In a warming Arctic, PAH emissions due to increased human 

72 activities within the Arctic may also increase.

73

74 PAHs are characterized as "seasonal contaminants" as space heating is one of the most 

75 important sources, suggesting that their concentrations in winter are much higher than their 

76 respective levels during the warmer months. In addition, some PAHs are subject to 

77 photodegradation. With the extended winter darkness in the Arctic, PAHs can behave 

78 differently in the Arctic atmosphere than regions that experience a regular diurnal cycle of 
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79 daylight13. For some of the above reasons, PAHs have been identified as emerging 

80 contaminants in the Arctic6.

81

82 The Arctic Monitoring and Assessment Programme (AMAP) investigated the occurrence 

83 of POPs in the Arctic atmosphere for three decades4,14. Here, we use long-term 

84 measurement datasets (~20 years) of PAHs in Arctic air collected at three AMAP sites, i.e., 

85 Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland, to assess sources, transport 

86 pathways and cycling of PAHs in Arctic air; and from their temporal trends try to evaluate 

87 the outcome of reduction in PAH global emissions.

88

89 The Arctic is recognized as a key area for studying climate effect on pollutants due to its 

90 sensitivity to climate change. Climate change-driven processes, e.g., temperature, 

91 precipitations, and winds, may affect the LRAT and temporal trends of POPs in the Arctic 

92 atmosphere15,16. One approach to test the relationship between climate change and the 

93 variation of POPs is by comparing modeling results and long-term monitoring data17,18. 

94 These large datasets may help to provide greater insight on the influence of climate change 

95 on temporal trends of PAHs.

96

97 Methods
98 Sampling. The locations of the sampling sites are shown in Figure S1. A super high-

99 volume air sampler (SHV) was employed to collect air samples at the Alert Global 

100 Atmosphere Watch Observatory, Nunavut, Canada (82.50°N, 62.33°W, 200 m a.s.l.) from 

101 1992 to 2015. One 20-cm glass fiber filter (GFF) and two polyurethane foam (PUF) plugs 

102 (20 cm diameter, 4 cm thickness) were used to trap the particle and gas phase compounds 

103 separately in approximately 13,500 m3 of air over a 7-day sampling period. In the 

104 Norwegian-operated Zeppelin Observatory, Ny-Ålesund, Svalbard (78.91° N, 11.88° E, 

105 478 m a.s.l.), a high-volume air sampler (HV) was employed to sample from 1994 to 2015. 

106 Two-day integrated weekly samples with a total sample volume of about 1200 m3 of air 

107 were collected every week with one 11-cm GFF and two PUFs (11 cm in diameter and 5 

108 cm in height). In Pallas, Finland (68.0°N, 24.24°E, 340 m a.s.l.), 7-day integrated (1996-

109 2008) with a volume of ~4000 m3 and 30-day integrated (composite of 4 weekly samples) 
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110 (2009-2015) with a volume of ~16,000 m3 air samples were collected with a HV. One 14-

111 cm GFF and three PUFs (11 cm diameter, 4.5 cm thickness) were used to collect the particle 

112 and gaseous substances. The sampling frequency and extraction strategy may vary in 

113 different years (Table S1), subject to availability of funds. The details about the analytical 

114 procedure and breakthrough can be found in the Supporting Information.

115

116 Data and analysis. PAH concentrations of Alert are entered into the Research Data 

117 Management and Quality Control (RDMQTM) system which is a software system written 

118 in SAS for data management that include an extensive flagging system to highlight 

119 anomalies and to perform data quality checks. Data from all three sites were reported to 

120 the EBAS database (ebas.nilu.no). To ensure data quality, two large-scale inter-laboratory 

121 comparison studies were conducted for the analysis of trace organic chemicals in Arctic air 

122 and an air sample was shared among all participating laboratories 19,20. 

123

124 Positive Matrix Factorization (PMF, version 5.0) model recommended by the USEPA was 

125 used to quantify the contribution of various emission sources to PAHs in the Arctic. For 

126 all PAH congeners, the specificity of unknown sources is excluded, and the congeners with 

127 weak signal to noise ratio and poor linear relationship were removed based on the PMF 

128 guideline21. PMF analysis was repeatedly run 20 times with 2 to 6 factors and then the 

129 results at the lowest Q value were output for analysis. The details about the PMF model 

130 can be found in the Supporting Information.

131

132 Venier et al.22 compared four time series models, a modified Clausius-Clapeyron equation, 

133 a multiple linear regression, digital filtration, and dynamic harmonic regression (DHR). Of 

134 these, the DHR model exhibited best performance in fitting the data in the long-term time 

135 trends. Moreover, DHR can handle extreme values and time series breaks23, e.g., the 

136 concentrations of PAHs in summer are much lower than those in winter. Therefore, DHR 

137 was applied to derive time trends here. A detailed description of the DHR can be found in 

138 the Supporting Information. 

139
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140 Model Description. Canadian Model for Environmental Transport of Organochlorine 

141 Pesticides (CanMETOP) was used to simulate the transport, deposition and degradation of 

142 air pollutants from the surface up to 11 km, which successfully simulated the transport of 

143 PAHs24 and pesticides25,26. The model is driven by assimilated Canadian Meteorological 

144 Centre (CMC) meteorological data, using a time step length of 30 minutes, spatial 

145 resolution of 1° latitude × 1° longitude, and 14 vertical levels to simulate daily mean 

146 concentrations of selected PAHs from 1992 to 2015. Estimated global atmospheric 

147 emissions of PAHs for 2004 were employed for the simulations.27 By using an emission 

148 inventory (from 2004) in the middle of the time period between 1992 and 2015, we can 

149 eliminate the bias which may be introduced by a changing emission which is 

150 unknown/uncertain for individual PAH and allow us to focus on the influence of climate 

151 change. The details about the CanMETOP, including air-surface flux, sensitivity analysis, 

152 can be found in the Supporting Information.

153

154 Results and Discussion
155 Air concentrations of PAHs. Details and data availability of PAHs at each site are 

156 provided in Table S2. The concentration ranges and detection frequencies of PAHs at the 

157 three Arctic sites are summarized in Table S3. In general, concentrations of most PAHs 

158 decreased from the most southerly site of Pallas to the most northerly site of Alert in the 

159 order of Pallas > Zeppelin > Alert, especially for lighter PAHs, e.g., phenanthrene (PHE), 

160 anthracene (ANT), fluoranthene (FLA) and pyrene (PYR). The concentrations of eight of 

161 the targeted PAHs which were analyzed at all three sites during the sampling periods, i.e., 

162 PHE, ANT, FLA, PYR, benzo(a)anthracene (BaA), benzo(a)pyrene (BaP), indeno(1,2,3-

163 c,d)pyrene (IcdP), and benzo(g,h,i)perylene (BghiP), are shown in Figure 1. The median 

164 concentrations of Σ8PAHs for Alert, Zeppelin and Pallas were 47.8, 76.0 and 404 pg/m3, 

165 respectively. PHE, FLA, and PYR were the most abundant PAHs at all sites, accounting 

166 for > 85% of Σ8PAHs at Zeppelin and > 91% of Σ8PAHs at the other two sites. The annual 

167 mean concentrations of Σ8PAHs ranged from 49.0 to 363, 91.7 to 523, and 346 to 817 

168 pg/m3 for Alert, Zeppelin, and Pallas, respectively. Higher concentrations of PAHs at 

169 Pallas compared to those at Alert and Zeppelin are likely due to Pallas being closer to 

170 human settlements than the other two sites.
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171
172 Figure 1. Box-and-whisker plots of 8 PAHs at the three sites during the sampling periods. The 
173 boxes represent the 25th and 75th percentiles of the data. The lines in the boxes and square symbols 
174 represent the median and the mean, respectively. All the outliers beyond the whiskers are shown 
175 individually. Non-detects are not reported in this figure.
176

177 By separating the sampling periods into two parts, i.e. warm seasons (from May to October) 

178 and cold seasons (November to April), the seasonality of PAHs was assessed. As shown in 

179 Tables S4-S6 and Figure S2, the concentrations and detection frequencies of PAHs in cold, 

180 dark seasons are much higher than those in warm, sunny seasons. Specifically, high 

181 concentrations of PAHs were always measured in winter months, especially from 

182 December to February (Figure S3), which is consistent with previous studies23,28,29. 

183 According to the back trajectory analysis, the air arriving at Alert in these three months 

184 includes more air masses originating from Russia than other months (Figure S4). The other 

185 two sites are more impacted by air masses coming from Northern Europe and Northwest 

186 Russia during December to February compared with the other nine months. 

187

188 Temporal Trends. Two representative PAHs, namely PHE and PYR, were chosen for 

189 temporal trend assessment due to their high concentrations and detection frequencies 
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190 compared with the other PAHs. BaP was also selected for trend assessment due to its 

191 toxicological importance and significantly different physical-chemical properties from 

192 PHE and PYR (Table S2) which would render differences in their atmospheric transport 

193 pathways. Data of BaP was sufficient only at Pallas for this assessment. Temporal trends 

194 of PAHs were assessed with the Dynamic Harmonic Regression (DHR) model using full 

195 datasets collected at the three sites, i.e. from 1992 to 2015 for Alert, from 1994 to 2015 for 

196 Zeppelin, and 1996 to 2015 for Pallas (Figure 2 and Figure S5). Since PAHs are "seasonal 

197 contaminants", the Seasonal Kendall test was performed for the statistical significance of 

198 the trends (ZSK) of selected PAHs. Negative ZSK values mean a decline and positive ZSK 

199 values mean an increase, and p-values are used to confirm if the trends were statistically 

200 significant. Becker et al.23 previously investigated the occurrence and trends of PAHs in 

201 the Canadian Arctic atmosphere from 1992 to 2000, and revealed a significant decrease of 

202 PAHs throughout the 1990s, e.g., the ZSK for PHE and PYR were -3.39 and -2.97 (p<0.01), 

203 respectively. In this study, with 15 more years of data, the temporal trends at Alert showed 

204 great variability since 2001. For PHE and PYR, the concentrations at Alert were found to 

205 increase significantly between 2001 and 2005 to levels similar to those observed in the 

206 early 1990s with ZSK of 2.82 (p<0.01) and 2.57 (p=0.01), respectively. From 2006 to 2015, 

207 they increase and decline again to a lesser extent but generally have no significant trend 

208 (ZSK=-0.94, p>0.05; ZSK=-1.57, p>0.05). The complex trends since 2001 at Alert are 

209 mainly due to the much higher concentrations in summers during 2003 to 2005, which 

210 could be associated with the relatively more frequent active forest fire events in Canada, 

211 Alaska and Greenland during these years (Figure S6). Similarly, higher PAH 

212 concentrations were observed in the summer of 2015 (Figure 2 and Figure S5) which 

213 coincide with more frequent forest fires during that year in the same regions (Figure S6). 

214 Retene (RET) is an ideal tracer of forest fire activity, high levels of RET were found during 

215 2003 to 2005 and 2015 (Figure S5), which confirm the contribution of forest fire events. 

216 At Zeppelin, significant declining trends were found for PHE and PYR between 1994 and 

217 2001 (ZSK=-2.11, p<0.05; ZSK=-3.11, p<0.01), which is similar to Alert. Between 2002 and 

218 2015, PHE and PYR seem to have reached a steady-state at Zeppelin (ZSK=-1.79, p>0.05; 

219 ZSK=1.61, p>0.05). At Pallas, PHE and BaP were relatively stable over the two decades 

220 (ZSK=-1.72, p>0.05; ZSK=-1.38, p>0.05). Significant decline was found for PYR (ZSK=-
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221 2.37, p<0.05) which is mainly due to high concentrations in the first year of sampling; there 

222 is no significant trend for 1997 to 2015 (ZSK=-1.58, p>0.05). According to an estimation, 

223 the global emission of PAHs declined significantly from 1992 to 2015, especially in 

224 developed countries9. However, PAHs found in air at Arctic sites did not seem to reflect 

225 this reduction in PAH emissions. In the last decade, human activities in the Arctic, for 

226 example resource exploration, research, tourism, fisheries and maritime traffic, have 

227 increased substantially due to warming and the corresponding reduction of sea ice, opening 

228 up new shipping routes30. Such activities are potential new local sources of PAHs in the 

229 Arctic.

230
231 Figure 2. Long-term trends of (a, b, c) PHE and (d, e, f) PYR at three sites and (g) BaP at Pallas.
232

233 To better assess this, here we examine whether the sources of PAHs changed during these 

234 years using a combination of PAH molecular diagnostic ratios and positive matrix 

235 factorization (PMF). Both techniques have been used widely over the years, and even 

236 though their limitations are known, when used in combination, it is possible to reduce their 
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237 inherent weaknesses and strengthen the conclusions on potential sources and trends3,13,31,32. 

238 The PAH ratios, e.g., PHE to the sum of PHE and ANT [PHE/(PHE+ANT)] and FLA to 

239 the sum of FLA and PYR [FLA/(FLA+PYR)], are widely used for source identification 

240 and, in particular, in order to understand if PAHs are mainly emitted from petroleum 

241 sources, or from combustion processes33,34. Figure S7 shows the variations of the 

242 PHE/(PHE+ANT) and FLA/(FLA+PYR) ratios over the sampling periods for the three 

243 sites. The calculated ratios at Pallas and Zeppelin were relatively constant, suggesting the 

244 sources of PAHs might not have changed significantly. Variations of PAH ratios were 

245 observed at Alert. The ratios of PHE/(PHE+ANT) were increasing and ratios of 

246 FLA/(FLA+PYR) were decreasing (especially after 2005), indicating that the sources shift 

247 from combustion of coal and wood to petroleum slowly, e.g., vehicle emissions. The ratios 

248 of FLA/(FLA+PYR) at Zeppelin and Pallas are significantly higher than those at Alert 

249 (t<0.01), which may be reflective of the continued use of coal-fired power plants in Europe. 

250 This may also explain the non-declining/slow declining trends for PHE and PYR at these 

251 two sites after the early 2000s. 

252

253 Figure 3 shows the factor fingerprint obtained from PMF for the three sites. Detailed 

254 explanations for the factor source attribution are given in the Supporting Information. PMF 

255 was applied to the Alert dataset separately for two time periods; four factors were identified 

256 for 1992-2003 but only two factors were found for 2004-2015 confirming a source shift at 

257 this site. After 2004, biomass burning, with high loads of 5-6 ring PAHs including IcdP 

258 and BghiP35, become Factor 1 [representing 64.3% of the sum of the measured PAHs 

259 (PAHs)] which coincides with the increase in active forest fire events in 2003 to 2005. 

260 Factor 2 (35.7% of PAHs) is dominated by more volatile 3-4 ring PAHs with very slight 

261 contributions from heavier 5-6 ring PAHs which seems to reflect air-surface exchange. 

262 Factor 3 for Zeppelin (10.3% of PAHs) can also be attributed as air-surface exchange. 

263 Volatilization of PAHs from surfaces, such as ocean, snow, ice, permafrost and soil, may 

264 have become more important in recent years due to retreating sea ice and general warming 

265 in the arctic region. Coal combustion was no longer identified as a factor after 2004 at 

266 Alert. Coal combustion, which is usually identified by high loadings of PHE, ANT, FLU, 

267 FLA36 and moderate loadings of 5-6 ring PAHs BbF, BkF, BaP, BghiP and IcdP35 was 
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268 identified as Factor 1 for both Pallas and Zeppelin, and Factor 3 for Alert before 2004, 

269 which accounted for 65.9%, 68.2% and 34.7% of PAHs, respectively. This observation 

270 reaffirmed that coal-fire power plants were still major sources of PAHs for the two 

271 European sites. Sofowote et al. identified petroleum/petrogenic emissions as a major source 

272 of PAHs at a sub-Arctic site, attributed to local oil/gas exploration and LRAT37. Alert is 

273 located at the highest latitude among the three sites and receives air mass more evenly from 

274 North America and Eurasia (Figure S4), and therefore may provide a more general 

275 reflection of changes in energy usage pattern.

276

277

278
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279

280

281 Figure 3. Factor Fingerprints for (a) Alert (1992-2003), (b) Alert (2004-2015), (c) Pallas (1996-
282 2015), and (d) Zeppelin (1994-2015).
283

284 Model Simulation. The changing energy usage pattern is not able to interpret atmospheric 

285 trends of PAHs in the Arctic completely. We used a global numerical model, the 

286 CanMETOP to simulate the transport and occurrences of the three selected PAHs, i.e. PHE, 

287 PYR, and BaP. Figure 4 shows the trends of the monthly mean concentrations of the 

288 measured and modelled PAHs derived by DHR at the three Arctic sites during their 

289 sampling times. As shown in Figure 4, it underestimates the concentrations of PHE and 

290 PYR in the1990s by less than one order of magnitude for Alert and Zeppelin, but by 13-17 

291 times for Pallas. A modelling sensitivity analysis (Table S7) indicates that the uncertainty 

292 in emission inventory affects modelling results at the Pallas site slightly more than the other 

293 two sites. The great discrepancy between the modelled and measured PAHs at Pallas could 

294 be associated with the actual emissions in these years being higher than the emissions of 

295 200427 which we employed as input for the model. The simulated concentrations of PHE 
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296 increased significantly over the ~20 years at the three sites, whereas simulated PYR 

297 exhibited different trends; increasing concentrations only became apparent since 2008. 

298 This difference is probably due to the higher volatility of PHE (Henry’s Law constant (H) 

299 = 4.78 Pa·m3·mol-1 at 25 C) compared to PYR (H = 2.13 Pa·m3·mol-1 at 25 C) (Table 

300 S2). Warming within and around the Arctic region would enhance volatilization from 

301 surfaces and render higher simulated concentrations of PHE and PYR in the Arctic 

302 atmosphere. Figure S8 shows the annual mean of modeled net air-surface flux. The air-

303 surface exchange switched from net deposition to net volatilization around 2005 and the 

304 net air-surface flux increased rapidly since then, which accounted for the increment of the 

305 simulated concentrations. This observation also corresponds well with the PMF result 

306 which identified air-surface exchange as Factor 2 after 2004 at Alert and Factor 3 for 

307 Zeppelin. Meanwhile, it explains that the measured concentrations of PHE and PYR did 

308 not decrease substantially even though the global emissions declined significantly during 

309 the last two decades9. The expected decline is offset by the increment caused by greater 

310 volatilization due to warming, especially in recent years. Casal et al. measured PAH air-

311 surface exchange from 2013 to 2014 at a coastal Arctic site (Tromso, 69° N) and they found 

312 that PAHs were in volatilization zone in warm seasons and in equilibrium zone in cold 

313 seasons38. The overall simulated concentrations of BaP match the observations well and 

314 showed a decreasing trend (Figure 4). Heavier PAHs like BaP are less influenced by 

315 temperature due to their relatively low volatility (H=0.20 Pa·m3·mol-1 at 25 C), but these 

316 particle-bound chemicals are subject to LRAT as they can be protected by organic coatings 

317 on aerosols39, and thus the simulation of BaP is more accurate than PHE and PYR. Our 

318 conclusions are consistent with Friedman et al.15 where they evaluated the influence of 

319 2000-2050 climate and emission changes on three atmospheric PAHs transport to the 

320 Arctic.
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321

322
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323

324 Figure 4. Trends of monthly mean concentrations of three PAHs (measured and simulated) at three 
325 sites. The shade represents the standard deviations of the trends.
326

327 Simulated concentrations of PHE at two high-latitude sites, Alert and Zeppelin, increased 

328 from 1998 to 2000, likely due to the warming phase during those years and the modelling 

329 sensitivity to temperature (Figure S9, Table S7), whereas a slight increase was found at 

330 Pallas (Table S8), which is consistent with the conclusion by Ding et al.40 that the most 

331 prominent warming in the Arctic occurred in northeastern Canada and Greenland. This 

332 observation shows that Arctic sites are useful in investigating the influence of climate 

333 change on the occurrence of PAHs and other contaminants. The highest annual mean 

334 temperatures over the ~20 years at Alert were observed in 1998 and 2001 (Figure S9), 

335 when the model predicted a period of rising concentrations of PHE in air at Alert. Moreover, 

336 simulated concentrations of PYR slightly increased but no such increase was found for BaP 

337 (Table S8) due to its lower H (Table S2) resulting in a lower tendency to volatilize from 

338 oceans and ice-covered surfaces. The second rising period, for both PHE and PYR, were 

339 found after 2008. The Arctic sea ice was drastically reduced in this century, specifically, it 

340 reached a minimum record in 2007 and 201241-43. The more volatile PAHs, PHE and PYR, 

341 can be released from the melting Arctic ice and the recently opened ocean (Table S7). 

342 Simulated concentration ranges of PHE and PYR are smaller than that observed at Alert 

343 and Zeppelin, indicating that there might be some local sources, such as military base at 

344 Alert, science stations at Ny-Ålesund and shipping emissions.
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345

346 In summary, two decades of measurements of PAHs in air at Arctic sites did not show a 

347 significant decreasing trend that one would have expected to occur relating to a global 

348 reduction of PAH emissions. Model simulation indicates that climate change may enhance 

349 the volatilization of lighter PAHs and thus alter the expected decline. In view of increasing 

350 PAH emissions due to human activities in the North as a result of warming, e.g. increased 

351 shipping, tourism, and resource development activities, both direct and indirect climate 

352 change impacts of contaminant cycling in the Arctic environment must be considered in 

353 assessing environmental and health risks. While efforts should continue to reduce PAH 

354 emissions, monitoring of PAHs and other chemicals of emerging arctic concern is essential 

355 to better understand climate change influence on the occurrence and transport of these 

356 contaminants to and within the Arctic. To simulate the concentrations of PAHs more 

357 accurately, scientists should continue to update the emission inventory bearing in mind the 

358 effect of climate change, in particular, with forest fire as an increasingly important source. 

359
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Figure 1. Box-and-whisker plots of 8 PAHs at the three sites during the sampling periods. The boxes represent the 25th and 75th percentiles of the data. The lines in 
the boxes and square symbols represent the median and the mean, respectively. All the outliers beyond the whiskers are shown individually. Non-detects are not 
reported in this figure. 
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Figure 2. Long-term trends of (a, b, c) PHE and (d, e, f) PYR at three sites and (g) BaP at Pallas. 

 

Page 22 of 24

ACS Paragon Plus Environment

Environmental Science & Technology



 
 

 

 
 

Figure 3. Factor Fingerprints for (a) Alert (1992‐2003), (b) Alert (2004‐2015), (c) Pallas (1996‐2015), and (d) Zeppelin (1994‐2015).
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Figure 4. Trends of monthly mean concentrations of three PAHs (measured and simulated) at three sites. The 
shade represents the standard deviations of the trends. 
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