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ABSTRACT

Wildfires produce substantial CO2 emissions in the humid tropics during El Nifio-
mediated extreme droughts, and these emissions are expected to increase in
coming decades. Immediate carbon emissions from uncontrolled wildfires in
human-modified tropical forests can be considerable owing to high necromass fuel
loads. Yet, data on necromass combustion during wildfires are severely lacking.
The present study evaluated necromass carbon stocks before and after the 2015-
2016 El Nifo in Amazonian forests distributed along a gradient of prior human
disturbance. Landsat-derived burn scars were used to extrapolate regional
immediate wildfire CO2 emissions during the 2015-2016 El Nifio. Before the El
Nifio, necromass stocks varied significantly with respect to prior disturbance and
were largest in undisturbed primary forests (30.2 + 2.1 Mg hal, mean * s.e.) and
smallest in secondary forests (15.6 * 3.0 Mg ha'l). However, neither prior
disturbance nor a proxy of fire intensity (median char height) explained necromass
losses due to wildfires. In the 6.5 million hectare (6.5 Mha) study region, almost 1
Mha of primary (disturbed and undisturbed) and 20,000 ha of secondary forest
burned during the 2015-2016 El Nifio. Covering less than 0.2% of Brazilian
Amazonia, these wildfires resulted in expected immediate CO: emissions of
approximately 30 Tg, three to four times greater than comparable estimates from
global fire emissions databases. Uncontrolled understorey wildfires in humid
tropical forests during extreme droughts are a large and poorly quantified source

of CO2 emissions.
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Chapter 1: Introduction

1 INTRODUCTION

1.1 Background

There is widespread consensus among the scientific community that
climate change is already underway and will result in changes to the Earth system
that will pose significant challenges to societies across the globe (Crowley, 2000;
Pachauri et al,, 2014). Contemporary climate change is principally the result of
anthropogenically driven changes in climate forcing agents, with increases in
atmospheric concentrations of greenhouse gases (GHGs), such as carbon-dioxide
(CO2) and methane (CH4) being responsible for the largest increases in positive
forcing (Hansen & Sato, 2001; Pachauri et al,, 2014). Atmospheric concentrations
of COz are currently the highest they have been for over 800,000 years (Liithi et al,,
2008) and the iconic level of 400 ppm of CO2 was first exceeded in May 2013 (Le
Quere et al,, 2016). This is a >40% increase from the 277 ppm estimated for the
start of the industrial era (c. 1750 A.D.) (Joos & Spahni, 2008).

Observed changes in contemporary climate due to increases in GHGs are
expected to continue to impact profoundly natural and human systems (Crowley,
2000; Thornton et al., 2014). For example, the global mean temperature rose by
0.85°C during the period from 1880 to 2012 (Pachauri et al., 2014). Furthermore,
1983-2012 was likely the warmest 30-year period in the northern hemisphere for
at least the last 1,400 years. In addition, the period from 1901 to 2010 saw
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precipitation increase over mid-latitude areas of the northern hemisphere and
global mean sea level rose by 0.19 m (Pachauri et al., 2014). Future climate change
scenarios suggest a further substantial warming of 0.3-0.7°C for the coming
decades (2016-2035) and a warming of 0.3-4.8°C for the end of the 21st century
(2081-2100), relative to the 1986-2005 global mean (Pachauri et al, 2014).
Projections of future precipitation patterns are more heterogenous across the
globe. In general, mid-latitude wet regions will very likely see increases in
precipitation, while decreases are likely in many mid-latitude and subtropical dry
regions (Pachauri et al., 2014). Wet tropical regions will very likely see increases in
the intensity and frequency of extreme precipitation events (i.e. droughts and
floods) (Pachauri et al., 2014). The severity of changes to the Earth’s climate
system will depend to a great extent on the future behaviour of different

components of the Earth system, such as the carbon cycle.

The global carbon cycle has played a fundamental role in ameliorating the
effects of past and current anthropogenic emissions of CO2 (Ciais et al., 2013;
Keenan et al, 2016). Atmospheric concentrations of CO2 are currently growing
more slowly than anthropogenic emissions, due to the compensatory effects from
within the global carbon cycle. There has been a strengthening of the global (land
and ocean) carbon sink over the past five decades and this is estimated to absorb c.
50% of anthropogenic CO2 emissions (Ballantyne et al., 2012; Barlow et al,, 2015).
Nonetheless, the sign and strength of carbon uptake across the globe is poorly
quantified and understood, leading to one of the largest sources of uncertainty in

future climate predictions (Le Quéré et al., 2016).

Tropical forests play a key role in the carbon cycle and have been
considered a net CO2 sink, helping to reduce the atmospheric concentration of CO2
(Houghton, Baccini, & Walker, 2018). The future strength and sign of this critical
component of the carbon cycle is unclear (Mitchard, 2018) and the CO2-
fertilisation effect may be reaching a physiological ceiling in tropical forests due to
contemporary climatic conditions (Brienen et al, 2015; Liu et al., 2017). For
example, droughts in tropical forests—such as those seen during El Nifio-Southern

Oscillation events—have been responsible for turning this important sink into a
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source of CO2 (e.g. Phillips et al. 2009; Lewis et al. 2005; Baccini et al. 2017; Gatti et
al. 2014; Cox et al. 2013; Yang et al. 2018). Furthermore, Brienen et al. (2015) have
reported a long-term decline in the Amazon carbon sink, suggesting we may be
approaching a tipping point (Malhi et al., 2009; Nepstad et al.,, 2008; Nobre &
Borma, 2009).

Correlation between measurements of atmospheric CO2 concentrations
and tropical temperatures suggested that one of the strongest sources of
interannual variability of CO2 is El Niio—Southern Oscillation (ENSO) (Jones et al.,
2001; Wang et al,, 2013), with much of this variability being attributed to tropical
forests (Wang et al. 2013). ENSO is an atmospheric and oceanographic
phenomenon originating in the tropical latitudes of the Pacific Ocean which has
been present in the Earth system for at least the past 130,000 years (Tudhope et
al., 2001) and has been strengthening for at least 200 years (Schongart et al.,
2004), with further increases in its strength predicted (Cai et al, 2014;
Timmermann et al., 1999). El Nino—the positive up cycle of ENSO—sees a pool of
warm surface water migrate east from the western Pacific to the central and
eastern Pacific, which results in the disturbance of the Walker circulation and
global atmospheric circulation, ultimately leading to a warming and increases in
dry season length across much of the humid lowland tropics (Malhi et al., 2018),

including across the Amazon (Marengo & Espinoza, 2016)
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1.2 Study system / focus

The Amazon forest is the world’s largest tropical rainforest, playing a
multifaceted role in the Earth system. It holds 286 Pg C, or c. 40% of the biomass
held in tropical forests globally (Malhi et al., 2006; Saatchi et al., 2011; Saatchi et
al., 2007). Beyond simply storing a vast amount of carbon, Amazonian forests are
the most species-rich ecosystems on the globe (Hoorn et al.,, 2010). The tree flora
alone harbours c. 16,000 species—or 30-50% of all tropical tree species (Slik et al.,
2015). The Amazon is also home to a diversity of human cultures and societies
(Little, 2005; Roosevelt, 2013). The ecosystem services offered by Amazonian
forests—such as water cycling, food production, and the provision of raw
materials—benefit societies, both locally and globally (Boers et al,, 2017; Khanna
et al, 2017; Kunert et al, 2017; Strand et al., 2018). Moreover, the Amazon
currently serves as a carbon sink, helping to remove and store part of the

anthropogenically released CO2 emissions (Pan et al., 2011).

Despite its local, regional, and global importance, the Amazon has faced
numerous threats, which have been on the increase in recent decades (Davidson et
al,, 2012). Deforestation, resulting in the most part from agricultural expansion, is
the most recognisable risk to the Amazon’s biodiversity and ecosystem services
(Ferreira et al., 2012; Spracklen & Garcia-Carreras, 2015). Conversion of forest for
other land-uses is responsible for a myriad of negative impacts on biodiversity,
ecosystem properties, and global climate (Davidson et al., 2012; Spracklen &
Garcia-Carreras, 2015). Deforestation rates declined 76% from 2004 to 2017,
decreasing from nearly 28,000 km?2 y-1 in 2004 to less than 7,000 km? y-1 in 2017,
which is widely thought to be a result of concerted efforts from governmental and

non-governmental agencies (Aragao et al.,, 2018).

While there have been consistent reductions in deforestation/clear-

cutting over the past decade, these have not been sufficient to preserve forest
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quality as more cryptic human-induced disturbances have emerged, such as
selective-logging, hunting, and wildfires, that are often much harder to detect at
larger spatial scales (Peres et al.,, 2006; Barlow et al. 2016) and have significant
ecological impacts while maintaining certain forest attributes (Ghazoul & Chazdon,
2017). These human-modified forests—forests that have been structurally altered
by anthropogenic disturbance, such as selective logging and fires, and those
regenerating following deforestation (commonly called secondary forests)—then
become more susceptible to wildfires in the future and large-scale understorey
wildfires, which were unprecedented in recent millennia (Bush et al, 2007;
Kauffman & Uhl, 1990; Turcq et al, 1998), are being seen with increased
frequencies (Aragao et al., 2018).

Although droughts have been recorded in the Amazon for millennia, fires
are unlikely to have been regular occurrences, with return intervals on the order of
centuries or millennia since the end of the last ice-age (McMichael et al., 2012;
Power et al.,, 2008). Forest fires in humid tropical forest such as the Amazon can
start naturally by means of lightning strikes, but lightning strikes are generally
followed by rainfall; thus such fires would likely have been short-lived and would
have affected only very small areas of the Amazon (Pivello, 2011). Anthropogenic
ignitions are by far the most common proximate cause of forest fires in Amazonia.
During pre-Colombian times, indigenous peoples would carry out prescribed burns
as part of shifting cultivation practices, only after strict planning in accordance

with land-use histories and weather conditions (Pivello, 2011).

Pervasive human modification of tropical forest landscapes, through, for
example, road building, cattle ranching and timber exploitation, combined with
severe drought events and the widespread use of fire as a land management tool,
has fundamentally altered Amazonian fire regimes. Uncontrolled large-scale
wildfires have become increasingly common over recent decades (Jolly et al,
2015) and are witnessed with sub-decadal frequency (Chen et al., 2011). Such
wildfires result in high rates of tree mortality (Barlow and Peres 2004; Brando et
al. 2016), shifts in forest structure (Barlow and Peres 2004; Brando et al. 2016)

and drier microclimatic conditions (Cochrane & Schulze, 1999), ultimately leading
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to increased susceptibility to future wildfires (Alencar et al., 2011; Cochrane et al,,
1999; Cochrane & Schulze, 1999). The CO2 emissions from such wildfires are
expected to grow further (Aragao et al, 2018), as fire-conducive weather
patterns—such as increasing temperatures and more intense droughts—increase

across the humid tropics, particularly in South America (Jolly et al., 2015).

Carbon emissions from understorey wildfires can be split into committed
and immediate emissions. Committed emissions result from the complex interplay
between delayed tree mortality and decomposition, and are dependent on future
climatic conditions and human influences (Goetz et al., 2015). Recent research has
shown that the long-term storage of carbon in wildfire-affected Amazonian forests
can be compromised for decades: even 31 years after a wildfire event, burned
forests store approximately 25% less carbon than unburned control sites due to
high levels of tree mortality that are not compensated by regrowth (Silva et al,,
2018). Immediate emissions are those that occur during wildfires and, in contrast
to committed emissions, are relatively simple to estimate. Biome- and continent-
wide analyses that rely on satellite observations (known as top-down studies)
suggest that these immediate emissions from tropical forests can be substantial
(Liu et al., 2017; van der Laan-Luijkx et al., 2015), and, for example, can transform
the Amazon basin from a carbon sink to a large carbon source during drought
years (Gatti et al,, 2014).0ne potentially important source of immediate carbon
emissions during wildfires is the dead organic matter found on forest floors. This
necromass, which includes leaf litter and woody debris, is a fundamental
component of forest structure and dynamics and can account for up to 40% of the
carbon stored in humid tropical forests (Chao et al., 2009; Palace et al., 2012; Pan
et al., 2011). During long periods of drought, this large carbon pool can become

highly flammable (Ray, Nepstad, & Moutinho, 2005).
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1.3 Knowledge gaps

Several on-the-ground studies have quantified the necromass stocks
across a relatively wide area of Amazonia. However, these studies have
overwhelmingly focused on undisturbed primary forests (Chao et al, 2009);
studies that estimate necromass in human-modified tropical forests across
Amazonia are rare (c.f. Keller et al. 2004; Palace et al. 2007). This represents a key
knowledge gap limiting our understanding of necromass fuel loads across human-
modified Amazonian forests, which are increasingly common (Keenan et al. 2015)
and are more vulnerable to wildfires (Alencar et al., 2006; Cochrane, 2003; Uhl &
Kauffman, 1990). In addition, relatively fewer local-scale, bottom-up studies have
quantified combustion characteristics in humid tropical forests following fires, and
those which have been carried out have followed fires related to deforestation and
slash-and-burn practices (see van Leeuwen et al. 2014 for a recent review). To
date, no study has quantified fuel combustion characteristics after uncontrolled
wildfires using before and after measurements in Amazonia. These knowledge
gaps and data shortfalls limit our understanding of the immediate carbon
emissions from understorey wildfires. Improving such estimates is essential for
refining Earth Systems models and both national and global estimates of

greenhouse gas emissions.
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1.4 Project aims

The immediate CO2 emissions from wildfires across an almost 1-million-
hectare region of eastern Amazonia (Figure 1) that experienced extreme drought
conditions during the 2015-16 El Nifio (Jiménez-Mufioz et al., 2016) are quantified
using a hybrid bottom-up/top-down approach. Data were combined from a
previously published large-scale field assessment of carbon stocks (Berenguer et
al., 2014) with on-the-ground measurements of woody debris before and after the
2015-2016 El Nifio, proxies of fire intensity and coverage within study plots, and
remotely sensed analyses of fire extent across the region. More specifically, the
following objectives are addressed: (a) quantify carbon stocks vulnerable to
combustion across human-modified tropical forests in central-eastern Amazonia,
(b) use post-burn measurements to investigate the factors influencing the loss of
necromass during wildfires, (c) estimate region-wide immediate carbon emissions
from wildfires, and (d) compare these region-wide emission estimates with those

derived from widely used global fire emissions databases.
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2 METHODS

2.1 Study region

This study focuses on a ~6.5 million ha region of central-eastern Amazonia
close to the convergence of the Tapajos and Amazon rivers in Para state, Brazil
(Figure 4). This region harbours tropical moist broadleaf forest, which is mainly
composed of dense evergreen terra firme vegetation and to a much lesser extent,
deciduous vegetation (Costa et al, 2010). The native undisturbed forest has a
closed canopy with tree heights up to 55 m (Pan, Birdsey, Phillips, & Jackson,
2013). The climate is seasonal with mean annual temperatures of 25°C and a dry
season (August-November) with annual precipitation of 1,920 mm and slightly
higher temperatures than the wet season (December-July) (Costa et al.,, 2010;
INMET, 2018). Average precipitation in the driest months is 100 mm per month,
yet this is rarely below the annual mean evapotranspiration (3.4 mm d-1) (Costa et
al, 2010; INMET 2018). Soils are predominantly nutrient-poor clay-rich oxisols (c.
60% clay) with some sandy utisols (Rice et al., 2004).
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2.2 Estimation of necromass carbon stocks

In 2010, 107 plots (0.25 ha) were established in a human-modified region
of central-eastern Amazonia. Plots were located in the municipalities of Santarém,
Belterra, and Mojui dos Campos in the state of Para, Brazil, and form part of the
Sustainable Amazon Network (RAS—Rede Amazénia Sustentdvel in Portuguese
(Gardner et al., 2013)). Study plots covered a range of prior human impacts and
included undisturbed primary forests (n = 17), primary forests selectively logged
prior to 2010 (n = 26), primary forests burned prior to 2010 (n = 7), primary
forests logged and burned prior to 2010 (n = 24), and secondary forests that have
become established following complete removal of vegetation (n = 33; see Table

1).

Table 1. Forest classifications for pre-El Nifio forest disturbance classes and the
number of plots sampled in 2010, 2014-15 and 2017. The 2015-16 sample

occurred after the extensive wildfires and is a subset of the 2014-15 sample.

Fire

Monitoring of intensity
Necromass
Pre-El Nifio coarse woody and plot
Definition assessment

forest class debris (2014- burned

(2010)
2016) area

(2017)

Primary forest with no

evidence of human
Undisturbed

disturbance, such as fire 17 5 5
primary forest

scars or standing tree

damage

Primary  forest  with
Logged primary

evidence of logging, such 26 5 5
forest

as logging debris

Burned primary Primary  forest  with

forest evidence of recent fire,

10 Kieran Daniel Withey - March 2019



Chapter 2: Methods

such as fire scars

Logged-and- Primary  forest  with
burned primary evidence of both logging 24 4 5
forest and fire

Forest regenerating after
Secondary

complete removal of 33 4 2
forest

native vegetation

Summary carbon estimates for aboveground live biomass, dead wood,
litter, and soil for these 107 plots can be found in Berenguer et al. (2014). Here,
four components of necromass stocks were estimated: standing-dead tree and
palm stems, coarse woody debris (CWD; = 10 cm diameter at one extremity), fine
woody debris (FWD; 2-10 cm diameter at both extremities), and leaf litter
(including twigs < 2 cm diameter at both extremities, leaves, and fruits and seeds).
Once biomass estimates were obtained for each necromass component they were
then standardised to per unit area (hectare), and the carbon content was assumed

to be 50% of biomass dry weight (Eggleston et al., 2006)

2.2.1 Standing-dead stems

To estimate the necromass stocks of standing-dead stems (trees and
palms), first the diameter and height of all large (210cm DBH) dead-standing trees
and palms were measured in each plot (0.25 ha). The diameter and height of all
small (22-10cm DBH) dead-standing trees and palms were estimated in five

subplots of 5 x 20 m in each plot.

Second, the allometric equations of Hughes, Kauffman, and Jaramillo

(1999) were used to estimate biomass (B) of small and large standing-dead tree
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stems. The (B) biomass of large (210 cm DBH) dead standing trees was estimated

using:

(Eq. 1) B=0.421H(D/2)>

where H is tree height in metres a D is DBH in centimetres.

While small standing-dead trees (< 10 cm DBH) were estimated using the

following equation:

(Eqg. 2) B = CF x 10%(exp(4.6014 + 1.1204In(D?)))

where D is DBH in centimetres and CF is a correction factor to reduce the bias
caused by conversion from logarithmic to arithmetic units. The CF value for small

tree stems is 1.14 (see Hughes, Kauffman, and Jaramillo 1999 for further details).

Third, the allometric equations of Cummings et al. (2002) were used to estimate
the biomass (B) of standing-dead palms. Large palm stems (210 cm) were

estimated using the following equation:

(Eq. 3) B=Hnrx107%Sg

where H is palm height in metres, Sg is specific wood gravity (g cm-3), and r is the

stem’s radius.

While small standing-dead palms (<10 cm) were estimated using the following

equation:
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(Eq. 4) B = 1.0931 x 10 %(exp(1.321) x In(D?) + 3.2758)

where D is DBH in cm.

2.2.2 Woody Debris

The five (5 m x 20 m) subplots were also used to estimate the diameters
and lengths of all pieces of fallen CWD (=210 cm). To estimate the biomass of each
piece of CWD, Smalian’s formula (Chao et al., 2009) was first used to estimate its

volume:

n(D1/2)* + n(D2/2)?

(Eq 5) V =Lewd

where Lcwd (m) is the length of the CWD and D;, i € 1,2, is the diameter (m) at either

extremity.

Next, the biomass of each piece of CWD was estimated using its decomposition
class which was estimated in the field using the five-point scale and biomass
density values of Keller et al., (2004). To avoid overestimation, the percentage of
void space in each piece of CWD (i.e. the percentage of the idealised shape that was
missing due to damage/void space from decomposition) was estimated visually in

the field and discounted from each piece.

To assess FWD stocks, five subplots (2 m x 5 m) were established in each of the
107 study plots. All FWD was collected from the subplots and weighed in the field.
A subsample (<1 kg) from each subplot was oven-dried to a constant weight. The
wet-to-dry ratios of the FWD samples were used to estimate the total FWD stocks

per plot.
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2.2.3 Leaf Litter

To estimate the biomass of leaf litter, ten 0.5 m x 0.5 m quadrats were
established in each of the 107 study plots and all leaf litter was removed down to
the soil organic layer. Leaf litter was oven-dried to constant weight to obtain an

estimate of leaf litter stocks.

2.3 Data analysis of field-based estimates

Kruskal-Wallis and Conover-Iman tests with Bonferroni adjustments were
used to investigate the variations in carbon stocks stored in each necromass
component (i.e., dead-standing stems, CWD, FWD, and leaf litter) from the 2010
RAS survey, total and percentage necromass carbon stock losses in the 18 plots
surveyed between 2014 and 2017, and the proportion / area of plots burned
during the 2015-16 El Nifo, across forest classes of prior human disturbance
(Table 1). Linear regression was used to investigate the relationship between:
necromass carbon stocks before and after the 2015-16 El Nifo; fire intensity and

stock losses; and the burned area in each plot and stock losses.

2.4 Quantification of region-wide areal extent of 2015-16
wildfires in central-eastern Amazonia

2.4.1 Overview of approach

A time-series (2010-2016) of Landsat (5, 7, and 8) imagery was classified
using a pixel-by-pixel unsupervised k-means classification approach. Following
visual assessment of the classification and manual correction, the total area of

primary and secondary forest burned during the 2015-16 El Nifio was calculated.

14 Kieran Daniel Withey - March 2019



Chapter 2: Methods

2.4.2 Input data

A time-series (2010-2016) of Landsat 5, 7, and 8 raw imagery and indices
(Appendix 1) was downloaded from the EROS Science Processing Architecture
(ESPA)/U.S. Geological Survey (USGS) website (https://espa.cr.usgs.gov). Spectral
bands including the visible to medium infrared were used in combination with: the
Normalised Difference Vegetation Index (NDVI); Soil adjusted Vegetation Index
(SAVI); Enhanced Vegetation Index (EVI), and Normalised Burn Ratio 2 (NBRZ;
USGS 2016; Table 2). Imagery from Landsat 7 and 8 were used in combination with

the panchromatic band to improve the spatial resolution.

2.4.3 Classification

Pixel-by-pixel unsupervised k-means classifications (Drake & Hamerly,
2012; MacQueen et al, 1967) of each Landsat image was performed with 10
iterations in ERDAS IMAGE v.16 (Hexagon Geospatial, 2016) to classify primary
forest (undisturbed and disturbed), secondary forest, burned forest (from the
2015-2016 El Nifio-mediated wildfires), deforested areas, water bodies, and other

(e.g. agricultural lands and urban structures).

2.4.4 Correction of classifier errors

The classification produced by the unsupervised k-means algorithm were
then imported and vectorised in ArcGIS v.10.2 (ESRI, 2014). A visual assessment of
the classifier accuracy was carried out and any errors were manually corrected in
ArcGIS v.10.2 (ESRI, 2014). The vectorised classification was manually compared
to each Landsat band and combinations thereof displayed in RGB composites to

identify misclassification. Any misclassifications were then corrected manually.
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2.5 Estimation of region-wide immediate CO emissions

First, the following equation was developed to estimate the loss of carbon

per hectare (NL) from the combustion of necromass:

(Eq. 6) NL = FLewp X (CCewp — Dewp) + FLiprwp X BA

where FLcwp is the per ha fuel load of CWD; CCcwp is the combustion completeness
of CWD; Dcwp is the background decomposition rate measured in unburned control
sites; FLircwp is the fuel load of leaf litter and FWD per ha; and, BA is the proportion
of the plot that burned.

Second, given the current limitations of methods to detect necromass stocks and
their spatial distribution in closed canopy tropical forests and the limited number
of on-the-ground measures of combustion characteristics, four scenarios were
constructed—two for primary forest and two for secondary forests (Table 2).
Primary and secondary forests were treated separately because they had
significantly different fuel loads and combustion characteristics and were able to
be mapped separately. The first primary forest scenario (Prim1) used all data from
all primary classes (disturbed and undisturbed) and is the least conservative in
that it includes the marginally higher fuel loads found in undisturbed primary
forests. This scenario seems the most appropriate at first glance as the wildfires in
this region affected both undisturbed and disturbed areas of forest in this region.
However, there is evidence to suggest that disturbed primary classes are more
vulnerable to combustion (Alencar et al., 2011; Cochrane et al., 1999; Cochrane &
Schulze, 1999). The second primary forest scenario (Prim2) is the more
conservative scenario of the two as it only includes the lower fuel loads found in

the disturbed classes of primary forest. The first secondary forest scenario (Sec1)
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is the least conservative of the two secondary forest scenarios as, in an effort to
increase decomposition rate and burned area sample sizes, data from all primary
forest classes were included. The second secondary forest scenario (Sec2) was
more conservative, including only data from secondary forests on decomposition
rates and burned area. Due to the lack of data on combustion completeness of CWD
(CCcwp) in secondary forests, both secondary forest scenarios (Secl and Sec2) used
CCcwp values from primary forests. Finally, to determine the means and standard
errors of the variables used in Eq. 6 for each scenario described above 1000
bootstrap with replacement simulations were run. The standard error of Eq. 6 was
calculated using the variable standard errors, accounting for error propagation,
and 95% confidence intervals for Eq. 6 were constructed as its mean value + 1.96

times the standard error of the mean.
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Table 2. Forest classes included in each of the four (two for primary forest and
two for secondary forest) land-use scenarios and their associated sample sizes.
FLcwp = Coarse Woody Debris (CWD) Fuel Load; CCcwp = CWD Combustion
Completeness; Dcwp = CWD Decomposition rate; FLiLrwp = Fuel Load of leaf litter
and Fine Woody Debris combined; and BA = Burned Area. Prim1 is the least
conservative primary forest scenario, including data from all primary classes,
including undisturbed primary forest that contained high necromass stocks. Prim2
is more conservative, using only data from the disturbed classes that had lower
necromass stocks. Secl, the least conservative of the two secondary forest
scenarios, using data Dcwp and BA data from primary forests to increase sample
sizes. Sec2 was the most conservative secondary forest scenario using data only
from secondary forest, except for CCcwp data from primary forest which was used
by both secondary forest scenarios (Secl and Sec2) due to a lack of data in

secondary forests.

Scenario FLcwp CCcwp Dcwp FLLLFWD 37,
All primary All primary
All primary All primary All primary
Prim1 classes (n = classes (n = 15)
classes (n=74) classes (n=7) 7 classes (n = 74)
Disturbed Disturbed
Disturbed Disturbed Disturbed
primary primary classes
Prim2 primary classes  primary classes primary classes
classes
only (n=10)
only (n =57) only (n=5) only (n =47)
only (n=4)
Secondary Secondary All classes
All primary All classes
Secl forests only forests only (n=17)
classes (n=7) (n=10)
(n=39) only (n =39)
Secondary Secondary Secondary Secondary
All primary
Sec2 forests only forests only  forests only forests only
classes (n=7)
(n=39) (n=3) (n=39 (n=2)
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2.6 Comparison with GFED4.1s and GFAS 1.1

The region-wide CO2 emission estimates were compared with two fire
emissions databases frequently used in earth systems models and carbon budgets:
the Global Fire Emissions Database (GFED) version 4.1s (van der Werf et al., 2017)
and the Global Fire Assimilation System (GFAS) version 1.1 (Kaiser et al., 2012).
Both datasets, were obtained for the study period (August 2015-July 2016) and
cropped to the approximately 6.5 Mha study region, shown in Figure 1.

The CO2 emissions estimated here were plotted spatially along with those
of GFED and GFAS—at 0.25° and 0.1° respectively—to investigate potential
sources of discrepancy between the estimates. To map the CO:z emissions
estimated in the present study it was assumed that the emissions in each pixel
were proportional to area burn (i.e. assuming the density of carbon and
combustion and decompositions characteristics were spatially invariable).Finally,
because GFED also provides estimates of the area burned at 0.25°, the burned area
map produced for this study was used to estimate burned area at the same

resolution so they could be compared.
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3 RESULTS I: PLOT-LEVEL
ESTIMATES OF FUEL
COMBUSTION AND BURN
PATTERNS

3.1 Necromass stocks across humid tropical forests

Total necromass and its components measured in 2010 during the RAS

survey (Berenguer et al., 2014; Gardner et al., 2013), varied significantly by forest

class (p < 0.05 in all cases; Figure 1). Primary forests contained significantly higher

total necromass than secondary forests (p < 0.01 for all pairwise comparisons),
with the highest total found in undisturbed primary forests (30.2 + 2.1 Mg ha-,
mean * se). In contrast, secondary forests contained only half as much necromass

as undisturbed primary forests (15.6 + 3.0 Mg ha-1). Variation in total necromass

was driven in large part by variation in CWD, which accounted for 61.3 + 2.7% of

the total necromass stocks across forest classes. Leaf litter was the next most

important component of total necromass, with 19.8 + 2.7% residing in this
component. Dead standing stems accounted for 14.4 + 1.8% of total necromass.
Finally, FWD was by far the smallest necromass component, comprising just 4.6 +

0.2% of the total.
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Figure 1. Necromass carbon stocks in leaf litter (a), fine woody debris (FWD; b),
coarse woody debris (CWD; c), dead-standing stems (d), and the total across all
components (e) in human-modified Amazonian forests. Boxes show the
interquartile range and dots show outliers. Letters above the boxplots show the
results from multiple pairwise comparisons of forest class medians. Classes that do

not share a letter have significantly different medians (p < 0.05).

3.2 Impact of El Nifio-mediated wildfires on necromass stocks

On average, 87.1 + 2.7% of the ground area of the fire-affected study plots
burned, and there was no significant difference in the total burned area of fire-
affected plots across forest classes (2 = 2.1; p = 0.56). From the 88 CWD pieces
measured before the fires, 54 completely burned, 32 partially burned, and two
were untouched by fire. CWD carbon stocks losses from combustion varied from

38% to 94% (mean = 65.4%, SE = 7.1%) at the plot-level.
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Necromass carbon stock losses in the seven burned plots were unrelated
to median char height (R? = 0.09; p = 0.51; Figure 2a) and area of plot burned (R? =
0.10; p = 0.49; Figure 2b). Forest class did not predict necromass carbon stock
losses in burned sites when expressed as either percentage (x2 = 2.25; p = 0.32) or
total (% = 1.12; p = 0.57) loss. Similarly, forest class did not predict necromass
losses in unburned sites when expressed as either percentage (y3 = 1.58; p = 0.66)

or total (y3 = 2.18; p = 0.54) loss.
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Figure 2. (a) Necromass carbon stock losses and fire intensity, as measured by

median char height. (b) Necromass carbon stock losses and area of plot burned.

On average, burned sites lost 73.0 + 4.9% of their pre-El Nifio necromass
stocks (Figure 3), compared to a 26.1 + 4.8% reduction in unburned sites (from
decomposition). As expected, pre-El Nifio necromass stocks strongly predicted
post-El Nifio necromass in unburned sites (R? = 0.95; p < 0.001; Figure 3a). This
relationship disappeared in fire-affected plots (R? = 0.08; p = 0.54; Figure 3b),
indicating that combustion completeness was insensitive to initial necromass
stocks. Despite the small sample sizes, visual inspection suggests that these

findings were unaffected by forest class.
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Figure 3. Pre- vs post-El Nifio necromass carbon stocks in unburned sites (a) and
sites burned during 2015-16 (b), and pre-El Nifio necromass carbon stocks vs post-
El Nifio necromass carbon stock losses in unburned sites (c) and sites burned
during 2015-16 (d) in human-modified Amazonian forests. In panel (a) the black
line shows the significant (p < 0.001) relationship between pre- and post-El Nifio
necromass carbon stocks in unburned sites. The equation for this relationship is
shown in the panel. The grey band represents 1 s.e.m. Note that, due to data
limitations, pre- and post-El Nifio necromass totals are based on coarse and fine
woody debris and leaf litter only (i.e. standing-dead stems are not included. These,

however, account for a small (~10-15 %) proportion of necromass stocks (Figure

1)).
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4 RESULTS II: REGION-WIDE
BURNED AREA

During the 2015-16 El Nifio, 982,276 ha (15.2%) of forest in the study
region experienced understorey wildfires, which were spread over two states,
three protected areas, and 14 municipalities. Wildfires were overwhelmingly
concentrated in primary (including disturbed and undisturbed) forests: <2%
occurred in secondary forests, despite these accounting for 9% of the forest cover

in our study region.
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Tapajos
National

Figure 4. (a) Map of the area burned during the 2015-16 fires and the 2017 land-
uses across the ~6.5 million ha study region. (b) The land-use map within the RAS
study area (shown by the white border in (a)). Also shown in this panel are the
locations of the 107 study plots (black circles). The 18 of these that were used for
necromass monitoring are shown as orange circles. The inset shows the Santarém
study region (red circle) within South America, the Brazilian Amazon (green), and

Para (white border).
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5 RESULTS III: REGION-WIDE
CO3 EMISSIONS AND
COMPARISON WITH
GFEDA4.1s AND GFAS

In Scenario a (Figure 5), which considers all primary and secondary
forests (Prim1 + Sec1; Table 2), necromass carbon stock losses amounted to 10.06
Tg (95% confidence interval, 5.85-14.27 Tg). Converting to COz2, this is equivalent
to expected emissions of 33.05 Tg (95% confidence interval, 19.22-46.87 Tg;
Figure 5). Mean CO2 emission estimates were relatively insensitive to the land-use
scenarios (Section 2.5; Table 2; Figure 5). However, the 95% confidence interval
was substantially wider with land-use scenario prim2 (scenarios b & d; Figure 5)
as the sample size of decomposition rates was substantially smaller when
restricted to disturbed primary forest only compared with all primary forests

(prim1)—undisturbed and disturbed—combined.
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Figure 5. Immediate CO2 emissions for wildfires in central-eastern Amazonian
human-modified tropical forests. Points show expected emissions for four land-use
scenarios (see Section 2.5; Table 2): a, Prim1 + Secl; b, Prim2 + Secl; ¢, Prim1 +
Sec2; d, Prim2 + Sec2. Error bars show 95% confidence intervals. Also shown are
cumulative CO2 emissions for our study region and period from the Global Fire
Emissions Database (GFED4.1s; short-dashed line) and the Global Fire Assimilation
System v. 1.1 (GFAS; long-dashed line).

GFED4.1s and GFAS 1.1 both vastly underestimated expected wildfire CO2
emissions for the study region and period. These databases suggest cumulative
emissions that are 77% and 68%, respectively, lower than the expected value
found with land-use scenario a (Prim1l + Secl; Figure 5). Highlighting the
insensitivity of GFED to understorey wildfires, this database suggested that, 6% of
any given 0.25° cell across our study region, and approximately 90, 000 ha in total,
burned during the 2015-2016 El Nifio (Figure 6e). By contrast, the present study
shows that as much as 74% of a cell (Figure 6f) and almost 1 million ha of forest

was affected by understorey wildfires.
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Figure 6. Comparison with the Global Fire Assimilation System (GFAS) and the
Global Fire Emissions Database (GFED). Landsat-based CO2 emissions for the
region and period of the present study from GFAS (a) and the emissions estimated
here shown at the same scale (0.1 degrees; (b)). CO2 emissions from GFED (c) and
the emissions estimated here shown at the same scale (0.25 degrees; (d)). The
proportion of land burned for the study region and period of the present study
from GFED (e) and the burned area estimated here shown at the same scale (0.25
degrees; (f)). In all panels, the Landsat-derived fire map in the present study is

shown in dark green, deforestation in light grey, and water in blue.
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6 DISCUSSION, GENERAL
CONCLUSIONS, AND
RECOMMENDATIONS

6.1 Interpretation of results

Mean total necromass (standing-dead stems, CWD, FWD, and leaf litter)
carbon stocks in undisturbed forests (30.2 + 2.1 Mg ha-1) found here were broadly
consistent with previous estimates for the eastern Amazon. For example, Keller et
al. (2004) and Palace et al. (2007) found necromass of, respectively, 25.4 and 29.2
Mg ha'l in undisturbed primary forests in the Tapajds region of Para. However, in
primary forests disturbed by reduced-impact logging, these studies found,
respectively, 36.4 and 42.7 Mg ha-1 of necromass carbon, while the estimates found
here for necromass stocks in disturbed primary forests are markedly lower (Figure
1e). This discrepancy is likely a function of time since disturbance, as Keller et al.
(2004) and Palace et al. (2007) assessed necromass carbon stocks soon after
disturbance, when necromass stocks were likely to be higher. In contrast,
disturbance of RAS sites occurred between 1.5 and 25 years before the 2010
surveys. Necromass stocks can be highly dynamic, with residence times for most

coarse woody debris estimated at less than a decade (Palace et al, 2012),
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especially in the case of small diameter and low wood density tree species
(Chambers et al., 2000). Thus, necromass stocks in many of the disturbed primary
forest sites studied here may have had time to decrease to an equilibrium level,
similar to that of undisturbed forests, where input and decomposition are largely

balanced

There were, however, significantly larger necromass stocks in primary
forests compared to secondary forests. This may be explained by a) pre-
abandonment land-uses removing all fallen biomass in intensive clearance or
maintenance fires; b) the smaller necromass input pool in secondary forests due to
lower aboveground live biomass (Berenguer et al.,, 2014); and c) the lower wood
density of stems in secondary forests (Berenguer et al., 2018), resulting in more

rapid coarse woody debris decomposition.

On average, wildfires burned 87.1 * 2.7% of the fire-affected necromass
monitoring plots (Figure 3b). This figure is substantially higher than the 62-75%
burn coverage measured during experimental fires in previously undisturbed
transitional Amazonian forests (Brando et al., 2016). The areal extent of these
wildfires reduced necromass (in CWD, FWD, and leaf litter) carbon stocks by 46.9
* 6.9%, when gross necromass loss (73.0 + 4.9%) was corrected for decomposition

(26.1 + 4.8%).

The areal extent of these wildfires at the plot-level was not explained by
forest disturbance class. This may indicate that the 2015-16 El Nifio, which was
one of strongest on record, with particularly strong drought conditions in eastern
Amazonia (Jiménez-Mufioz et al, 2016), reduced necromass moisture content
across all forest classes to a level which permitted combustions and sustained
wildfires, overriding any pre-existing microclimatic differences that may have
existed due to the initial disturbance. This is further corroborated by the fact that
wildfires did not distinguish between largely undisturbed forests (mostly inside
protected areas) and those that have been modified by humans (mostly outside

protected areas), burning vast areas of both types of forest (Figure 4).
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Interestingly, the areal extent of the wildfires at the plot-level also did not explain
the percentage loss of necromass stocks. Perhaps this was simply due to the small
sample sizes used, or maybe this was a result of sporadic fuel loads (especially

CWD).

The understorey wildfires that affected the burned plots were
relatively low intensity, with maximum median char height of 20.5 cm. Median
char-height, taken as a proxy of fire intensity, at the plot level did not explain
necromass stock losses. Perhaps this was because even the lowest intensity fires
were sufficient to consume a significant proportion of the necromass stocks they
came in to contact with. Whatever the causal factors, these findings demonstrate
that low-intensity wildfires can dramatically diminish necromass stocks in human-

modified tropical forests.

This novel assessment revealed that expected immediate necromass CO2
emissions from these wildfires are around 30 Tg (Figure 5). Putting the magnitude
of this issue into context, the estimated CO2z emissions for the 2015-16 wildfires in
eastern Amazonia, that affected an area of <0.2% of the Brazilian Amazon, were
equivalent to those from fossil fuel combustion and the production of cement in
Denmark, or 6% of such emissions from Brazil, in 2014 (Bank, 2018).
Consequently, wildfire-mediated immediate carbon emissions, which are not
currently considered under national greenhouse gas inventories (Bustamante et
al., 2016), represent a large source of CO2 emissions. Moreover, these immediate
emissions will be greatly exacerbated by further committed emissions resulting
from tree mortality, which can be as high as 50% even from low-intensity
understorey wildfires (Barlow et al. 2003) and may not be balanced by post-fire

regrowth on decadal time scales (Silva et al,, 2018) .

Both GFED and GFAS estimated substantially lower CO2 emissions for
wildfires in this region of the Amazon during the 2015-16 El Nifio. These
databases suggest cumulative emissions that are 77% and 68% lower than the

expected value found with land-use scenario a, respectively (prim1 + secl; Figure
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5). These discrepancies are likely the result of underdetection of understorey
wildfires by both GFED and GFAS algorithms. GFED and GFAS use Moderate
Resolution Imaging Spectroradiometer (MODIS) products that have a spatial
resolution of 500 m to 1 km, while the present study uses Landsat imagery and
derived indices, with a spatial resolution of 15-30 m, which are commonly
considered reference data for validating global products of burned area (Hantson
et al., 2013) and Landsat data were indeed used to validate the MCD64A1 MODIS
data product used by GFED (Giglio et al., 2018). The underdetection of burned area
by GFED and GFAS can be seen across the whole study region but is particularly
evident in areas free from historic deforestation (Figure 6). GFED and GFAS
appeared to be more successful at detecting fires in agricultural areas (Figure 6)—
which have lower fuel loads and were excluded from the present study—perhaps

due to the lower levels of forest cover (Figure 6).

6.2 Wider implications of results

On balance, it is likely that the necromass stock loss and carbon emission
estimates presented here are highly conservative. First, wildfire-induced carbon
changes in the soil organic layer were not measured, yet research from the same
region suggests that wildfires significantly reduce soil carbon pools (Durigan et al.,
2017); nor was combustion of dead-standing stems estimated, which accounted
for ~15% of total necromass (Figure 1). Second, none of the disturbed primary
forest plots in which necromass changes were monitored were recently disturbed
prior to the 2015-16 wildfires, allowing time for decomposition to reduce high
levels of post-disturbance necromass. Had the dataset included recently disturbed
sites, necromass losses would likely have been greater. Third, detection of low
intensity understorey wildfires continues to present a remote sensing challenge.
Although manual correction of our unsupervised land-use classifications revealed
only a small number of misclassifications (commissions), it is quite possible that
some wildfire-affected sites were missed, leading to an underestimation of

regional emissions.
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In addition to showing that wildfire carbon emissions can be substantial,
the present study has also shown that such emissions remain poorly quantified.
GFED and GFAS, CO2 emission databases that are widely used in Earth Systems
models and carbon budgets, returned considerably lower emission estimates for
this study region and period than found here (Figure 5). If this pattern of
underestimation holds true for the rest of the humid tropics, where dense canopies
are present, then global estimates of fire-induced CO2 emissions may be vastly
underestimated. Nevertheless, the scale of the discrepancy between the CO:
emitted during these wildfires and the estimates of GFED and GFAS may well be
underestimated for several reasons. First, this study focused solely on necromass
carbon losses from understory wildfires in extant forests whereas GFED and GFAS
include emissions from all land use classes combined (Kaiser et al., 2012; van der
Werf et al., 2017). Both databases therefore account for grassland and agricultural
fires, which can affect large areas of human-modified tropical landscapes. Second,
GFED includes both committed and immediate COz emissions (van der Werf et al.,
2017). Third, and again with respect to GFED, fuel loads are much high than those
present in the post-disturbance plots studied here, because they are primarily
derived from slash-and-burn and deforestation studies (van der Werf et al., 2017).
Thus, if the degree of underestimation in terms of burned area and CO2 emissions
is similar across the whole Amazon, not only will the CO2 emissions from low-
intensity understorey wildfires be substantially underestimated and the earth
system models which rely on them have biased inputs, but broader ecological and

social issues will also be underestimated.

The present study adds to work on prescribed burns associated with
deforestation (van Leeuwen et al, 2014), contributing important information
about the role of El Nifio-mediated wildfires. The scale of the immediate emissions
we estimated, coupled with future committed emissions, make wildfires
particularly relevant to climate change mitigation programmes such as REDD+
(Aragao and Shimabukuro 2010; Barlow et al. 2012). The results presented here
show that legally protected areas in the Amazon rainforest can be substantially
affected by uncontrolled understorey wildfires during extreme drought conditions.

Thus, for REDD+ to succeed in Amazonia, forests must be protected from wildfires,
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as agricultural fires quickly become uncontrollable and spread to protected areas
which have historically served as carbon stores (Soares-Filho et al., 2010), as
illustrated by the large areas burned in the Tapajos National Forest and the
Tapajos-Arapiuns Extractive Reserve (Figure 4). Thus, undermining the role of and
investments in protected areas for climate change mitigation programmes. Even
the immediate emissions from large-scale wildfires can equal those from whole
countries. Moreover, the committed emissions from such fires are expected to be
many times greater due to delayed tree mortality and arrested regrowth/carbon
sequestration in affected forests (Silva et al,, 2018). Future climate change will
make this only more imperative, with extreme droughts, higher temperatures, and
reduced rainfall all predicted for the Amazon basin in the near future (Dai, 2013;

Spracklen & Garcia-Carreras, 2015).

6.3 Future research

6.3.1 Larger datasets

Although the pre- and post-fire dataset presented here is the first of its
kind, which allows for the quantification of necromass carbon stocks following
uncontrolled understorey wildfires in human-modified Amazonian forests, the
sample sizes were limited, with just 18 necromass monitoring plots, of which
seven burned during the 2015-16 El Nifio. Consequently, these results should be
treated with a degree of caution. In particular, necromass stock losses were not
significantly related to the plot-level estimates of burned area, and fire
susceptibility did not appear to vary across disturbance classes. In both cases, the
lack of significance may reflect the small sample sizes rather than a genuine lack of
relationship. Moreover, due to the small sample sizes used to construct the region-
wide COz2 immediate emissions scenarios, the 95% confidence intervals are wide—
ranging from around 8 Tg to almost 48 Tg (Figure 5). Therefore, to better
constraint these values future research efforts should prioritise necromass

monitoring in larger plots and numbers of sites, across a range of tropical forests
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and land-use scenarios, incorporating sites of different ages/times since

disturbance, canopy thickness, and landscape contexts.

6.3.2 Reduced susceptibility of secondary forests

The present study has shown that secondary forests exhibit a
reduced susceptibility to sustained combustion during wildfires mediated by
severe drought events. This may be due to wildfires spreading less easily through
secondary forest due to lower (see Figure 1) and more sporadic fuel loads. Another
influence may be the lower night-time temperatures experienced in secondary
forests owing to lower density canopies, or complete lack thereof. For example,
day and night-time temperatures can vary substantially, with open areas
experiencing surface soil temperatures as high as 42 °C during the day and as low
as 25 °C during night-time (Bazzaz & Pickett, 1980). Though this disparity
diminishes as canopy cover returns (Bazzaz & Pickett, 1980), as it is commonly
noted that wildfires burn less intensely even in primary forests during night-time
(De Faria et al., 2017), this reduction in night-time temperatures may be sufficient,
along with lower fuel loads, to stifle wildfires in secondary forests. Elucidating
these causal factors will help to improve global fire models and constrain further
emissions estimates by allowing spatial mapping of emissions and combustion

characteristics.

6.3.3 Improved detection and mapping of wildfires

The present study has shown that GFED4.1s and GFAS both significantly
underestimated the impact of the 2015-16 El Nifio-mediated wildfires of the
central-eastern Amazon. GFED4.1s underestimated burned area in the central-
eastern Amazon by a factor of 10 during the wildfires experienced during the
2015-16 El Niflo-mediated drought. GFED uses the Moderate Resolution Imaging
Spectroradiometer (MODIS) product MCD64A1 (collection 5.1), which spatially

maps burned area at a resolution of 500m—much greater than the 30m spatial
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resolution used in the present study. Earlier versions of the algorithm were
criticized for underestimating burned area (van der Werf et al,, 2017). In an effort
to reduce this bias, the algorithms of Randerson et al,, (2012) for detecting small
fires using the MODIS 1-km thermal anomalies (active fires) product MOD14A1
were extended and incorporated into the GFED algorithm (van der Werf et al,,
2017). The incorporation of small fires has significantly boosted the detection of
burned area globally (van der Werf et al., 2017). Yet in the case of humid tropical
forests, which generally have dense closed canopies and experience relatively low-
intensity understorey wildfires, burned area is evidently still substantially
underestimated. GFAS uses empirical relationships between fire radiative power
(FRP), as measured by the MODIS Aqua and Terra satellites, and dry matter
combustion rates and gas species emissions rates without estimating burned area
(Kaiser et al., 2012). This approach is much less demanding computationally and
for this particular study region and period, has been more successful at capturing
the CO2 emissions from the understorey wildfires in central-eastern Amazonia.
However, this approach does not estimate burned area (Kaiser et al., 2012), which
is essential for estimating committed emission and other ecosystem-level impacts
because biomass stocks (Marvin et al., 2014; Saatchi et al, 2007) and other
ecosystem properties (Fyllas et al., 2009; Quesada et al., 2012) vary spatial across
the Amazon. Future research should prioritise the development of burn area
products using higher resolution imagery, or active remote sensing systems such
as synthetic-aperture radar (SAR) (see Lohberger et al.,, 2018 for recent example)
to better quantify the extent and impacts of understorey wildfires in humid

tropical forests.
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{ CONCLUSION

The present study has demonstrated that there was a substantial loss of
necromass following El Nifio-mediated wildfires in the central-eastern Amazon
during 2015-16. These wildfires burned 982,276 ha (15.2% of the study region) of
primary and secondary forest, resulting in expected immediate CO2 emissions of
approximately 30 Tg. A better understanding of this large and poorly quantified
source of atmospheric carbon is crucial for climate change mitigation efforts, and
will only become more imperative as extreme droughts, higher temperatures, and
reduced rainfall create conditions even more conducive to wildfires across the

Amazon basin in the near future.
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Chapter 9: Appendices

APPENDIX 1 TABLE OF INPUT DATA USED TO PRODUCE
LAND-USE AND BURNED AREA MAP

Table 3. Landsat scenes, dates, and products used as input data to the k-mean
unsupervised classification used to classify land-uses between 2010 and 2017 in
central-eastern Amazonia. NDVI = Normalised Difference Vegetation Index; SAVI =
Soil-Adjusted Vegetation Index; EVI = Enhanced Vegetation Index; NBR2 =
Normalised Burn Ratio 2 (USGS, 2016).

Path/Row Sensor/mission Date Products

31/07/2010  Bands 1-7; NDVI; SAVI;

227/062 Landsat 5 TM

EVI; NBR2

16/06/2011  Bands 1-7; NDVI; SAVI;

227/062 Landsat 5 TM

EVI; NBR2
227/062 Landsat 7 ETM+ 28/07/2012 Bands 1-8
227/062 Landsat 7 ETM+ 14/09/2012 Bands 1-8
227/062 Landsat 7 ETM+ 17/11/2012 Bands 1-8

Bands 2-8; NDVI; SAVI;
227/062 Landsat 8 OLI 25/09/2013

EVI; NBR2

Bands 2-8; NDVI; SAVI;
227/062 Landsat 8 OLI 30/08/2014

EVI; NBR2

Bands 2-8; NDVI; SAVI];
227/062 Landsat 8 OLI 30/10/2014

EVI; NBR2

Bands 2-8; NDVI; SAVI;
227/062 Landsat 8 OLI 02/01/2015

EVI; NBR2

Bands 2-8; NDVI; SAVI;
227/062 Landsat 8 OLI 29/07/2015

EVI; NBR2

Bands 2-8; NDVI; SAVI;
227/062 Landsat 8 OLI 29/06/2016

EVI; NBR2
227/062 Landsat 8 OLI 16/08/2016 Bands 2-8; NDVI; SAVI;

Kieran Daniel Withey - March 2019 53



Quantifying the immediate carbon emissions from El Nifio-mediated wildfires in humid tropical forests

EVI; NBR2
Bands 1-7; NDVI; SAVI;
227/063 Landsat 5 TM 31/07/2010
EVI; NBR2
Bands 1-7; NDVI; SAVI;
227/063 Landsat 5 TM 16/06/2011
EVI; NBR2
227/063 Landsat 7 ETM+ 28/07/2012 Bands 1-8
227/063 Landsat 7 ETM+ 14/09/2012 Bands 1-8
227/063 Landsat 7 ETM+ 30/09/2012 Bands 1-8
Landsat 8 OLI 25/09/2013 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 10/07/2014 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 23/03/2015 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 27/06/2015 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 29/07/2015 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 31/07/2016 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 8 OLI 16/08/2016 Bands 2-8; NDVI; SAVI;
227/063
EVI; NBR2
Landsat 5 TM 22/07/2010 Bands 1-7; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 5 TM 07/06/2011 Bands 1-7; NDVI; SAVI;
228/062
EVI; NBR2
228/062 Landsat 7 ETM+ 21/09/2012 Bands 1-8
228/062 Landsat 7 ETM+ 23/10/2012 Bands 1-8
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228/062 Landsat 7 ETM+ 24/11/2012 Bands 1-8
Landsat 8 OLI 16/09/2013 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 15/08/2013 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 15/06/2014 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 17/05/2015 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 02/06/2015 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 18/06/2015 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 07/08/2016 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 8 OLI 24/09/2016 Bands 2-8; NDVI; SAVI;
228/062
EVI; NBR2
Landsat 5 TM 22/07/2010 Bands 1-7; NDVI; SAVI;
228/063
EVI; NBR2
Landsat 5 TM 10/08/2011 Bands 1-7; NDVI; SAVI;
228/063
EVI; NBR2
228/063 Landsat 7 ETM+ 20/08/2012 Bands 1-8
228/063 Landsat 7 ETM+ 23/10/2012 Bands 1-8
228/063 Landsat 7 ETM+ 10/12/2012 Bands 1-8
Landsat 8 OLI 28/06/2013 Bands 2-8; NDVI; SAVI;
228/063
EVI; NBR2
Landsat 8 OLI 15/06/2014 Bands 2-8; NDVI; SAVI;
228/063

EVI; NBR2
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Landsat 8 OLI 17/05/2015 Bands 2-8; NDVI; SAVI;
228/063
EVI; NBR2
Landsat 8 OLI 20/07/2015 Bands 2-8; NDVI; SAVI;
228/063
EVI; NBR2
Landsat 8 OLI 06/07/2016 Bands 2-8; NDVI; SAVI;
228/063
EVI; NBR2
Landsat 8 OLI 07/08/2016 Bands 2-8; NDVI; SAVI;
228/063
EVI; NBR2
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Wildfires produce substantial CO, emissions in the humid tropics during
El Nino-mediated extreme droughts, and these emissions are expected to
increase in coming decades. Immediate carbon emissions from uncontrolled
wildfires in human-modified tropical forests can be considerable owing to
high necromass fuel loads. Yet, data on necromass combustion during wildfires
are severely lacking. Here, we evaluated necromass carbon stocks before
and after the 2015-2016 El Niho in Amazonian forests distributed along a gra-
dient of prior human disturbance. We then used Landsat-derived burn scars
to extrapolate regional immediate wildfire CO, emissions during the 2015—
2016 El Nino. Before the El Nifo, necromass stocks varied significantly
with respect to prior disturbance and were largest in undisturbed primary for-
ests (30.2+2.1Mg ha !, mean +se) and smallest in secondary forests
(15.6 + 3.0 Mg ha '). However, neither prior disturbance nor our proxy of
fire intensity (median char height) explained necromass losses due to wildfires.
In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (dis-
turbed and undisturbed) and 20 000 ha of secondary forest burned during the
2015-2016 El Nino. Covering less than 0.2% of Brazilian Amazonia, these wild-
fires resulted in expected immediate CO, emissions of approximately 30 Tg,
three to four times greater than comparable estimates from global fire emissions
databases. Uncontrolled understorey wildfires in humid tropical forests during
extreme droughts are a large and poorly quantified source of CO, emissions.

This article is part of a discussion meeting issue “The impact of the 2015/
2016 El Nifo on the terrestrial tropical carbon cycle: patterns, mechanisms
and implications’.

1. Introduction

Increased concentrations of atmospheric CO, during El Nino Southern Oscillation
events [1,2] have largely been attributed to emissions from the tropics [3,4], with
wildfires playing an important role [4,5]. In recent decades, despite a global

© 2018 The Author(s) Published by the Royal Society. Al rights reserved.
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Table 1. Forest dassifications for pre-El Nifio forest disturbance classes and the plot samples in 2010, 2014-2015 and 2017. The 2015-2016 sample occurred

after extensive wildfires and is a subset of the 20142015 sample.

necromass
assessment

pre-El Nifio forest

dass definition (2010)

undisturbed primary primary forest with no evidence of 17
forest human disturbance, such as fire

scars or logging stumps

logged primary forest primary forest with evidence of 26
logging, such as logging stumps

burned primary forest primary forest with evidence of 7

recent fire, such as fire scars

logged-and-burned primary forest with evidence of both 24
primary forest logging and fire
secondary forest forest regenerating after complete 3

removal of native vegetation

reduction in burned vegetation area [6,7], relatively low-inten-
sity understorey wildfires that spread from agricultural lands
have increased in the fire-sensitive Amazon rainforest [§—11].
CO, emissions from such wildfires are expected to grow
further [10] as fire-conducive weather patterns increase across
the humid tropics, particularly in South America [12].

Large-scale understorey wildfires in Amazonia are un-
precedented in recent millennia. During pre-Columbian
times, fires were limited to those occurring naturally from
lightning strikes and prescribed burns by indigenous peoples
[13]. These fires were localized and prescribed burns were
planned in accordance with environmental and ecological
conditions [13]. However, pervasive human modification of
tropical forest landscapes, through, for example, road building,
cattle ranching and timber exploitation, combined with severe
drought events and the widespread use of fire as a land
management tool, has fundamentally altered Amazonian fire
regimes. Today, uncontrolled large-scale understorey wildfires
are being witnessed in the Amazon with sub-decadal fre-
quency [14]. Such wildfires result in high rates of tree
mortality [15,16], shifts in forest structure [17,18] and drier
microclimatic conditions [19], ultimately leading to increased
susceptibility to future wildfires [19-21].

Carbon emissions from understorey wildfires can be
split into committed and immediate emissions. Committed
emissions result from the complex interplay between
delayed tree mortality and decomposition, and are depen-
dent on future climatic conditions and human influences.
Research indicates that long-term storage of carbon in wild-
fire-affected Amazonian forests can be compromised for
decades: even 31 years after a fire event, burned forests
store approximately 25% less carbon than unburned control
sites owing to high levels of tree mortality that are not
compensated by regrowth [22]. Immediate understorey
emissions are those that occur during wildfires and, in
contrast to committed emissions, are relatively simple to
estimate. Biome- and continent-wide analyses that rely on
satellite observations (known as top-down studies) suggest
that these immediate emissions from tropical forests can
be substantial [23,24] and, for example, can transform the

burned in 2015~
2016 and
sampled in 2017

monitoring
of CWD

additionally
burned area

(2014-2015) sampling (2017)

5 2 3
5 4 1
0 0 0
4 1 4
4 0 1

Amazon basin from a carbon sink to a large carbon source
during drought years [25].

One potentially important source of immediate carbon
emissions during wildfires is dead organic matter found on
forest floors. This necromass, which includes leaf litter and
woody debris, is a fundamental component of forest structure
and dynamics and can account for up to 40% of the carbon
stored in humid tropical forests [26—28]. During long periods
of drought, this large carbon pool can become highly flam-
mable [29]. However, studies quantifying necromass stocks
have overwhelmingly focused on undisturbed primary
forests [27]; studies that estimate necromass in human-
modified tropical forests—forests that have been structurally
altered by anthropogenic disturbance, such as selective logging
and fires, and those regenerating following deforestation (com-
monly called secondary forests; table 1)—are rare (cf. [30,31]).
This represents a key gap in our understanding because
human-modified tropical forests are increasingly prevalent
[32] and increasingly vulnerable to wildfires [33-35]. While
many local-scale, bottom-up studies have quantified combus-
tion characteristics and carbon emissions following fires
related to deforestation and slash-and-burn practices (see Van
Leeuwen et al. [36] for a recent review), we know of no study
that quantifies necromass before and after uncontrolled under-
storey wildfires in human-modified Amazonian forests. These
knowledge gaps and data shortfalls limit our understanding of
immediate carbon emissions from understorey wildfires.
Improving such estimates is essential for refining Earth Sys-
tems models and both national and global estimates of
greenhouse gas emissions.

Here, we address these knowledge gaps using a hybrid
bottom-up/top-down approach to study a human-modified
region of central-eastern Amazonia that experienced almost
1 million hectares (1 Mha) of understorey wildfires during
the 2015-2016 El Nifo (figure 1). We combine data from a pre-
viously published large-scale field assessment of carbon stocks
[37] with on-the-ground measures of woody debris before and
after the 2015-2016 El Nino, proxies of fire intensity and cover-
age within study plots, and remotely sensed analyses of fire
extent across the region. Specifically, we (a) quantify carbon
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primary forest secondary forest

Tapajos
National

burned 2015-2016

Figure 1. (a) The 2017 land-use map across the approximately 6.5 Mha study region. (b) The land-use map within the RAS study area (shown by the white border
in (a)). Also shown in this panel are the locations of the 107 study plots (black circles). The 18 of these that were used for necromass monitoring are shown as
orange circles. The inset shows the Santarém study region (red circle) within South America, the Brazilian Amazon (green) and Para (white border).

stocks vulnerable to combustion across human-modified tropi-
cal forests in central-eastern Amazonia, (b) use post-burn
measures to investigate the factors influencing the loss of necro-
mass during wildfires, (c) estimate region-wide immediate
carbon emissions from wildfires and (d) compare these
region-wide emission estimates with those derived from
widely used global fire emissions databases.

2. Methods

(a) Quantifying necromass stocks in human-modified

Amazonian forests
We established 107 plots (0.25 ha) in human-modified forests in
central-eastern Amazonia in 2010 (figure 1). Plots were located
in the municipalities of Santarém, Belterra and Mojui dos
Campos in the state of Pard, Brazil, and form part of the Sustain-
able Amazon Network (Rede Amazonia Sustentdvel (RAS) in
Portuguese [38]). Study plots covered a range of prior human
impacts (table 1) and included undisturbed primary forests
(n=17), primary forests selectively logged prior to 2010 (n =
26), primary forests burned prior to 2010 (1 = 7), primary forests
logged and burned prior to 2010 (1 = 24) and secondary forests
recovering after complete removal of vegetation (1 = 33; table 1).

Summary carbon estimates for these 107 plots can be found in
Berenguer ef al. [37]. Here, we focused on carbon stored in their
necromass pools. We estimated necromass stocks in dead-stand-
ing tree and palm stems, coarse woody debris (CWD; >10 cm
diameter at one extremity), fine woody debris (FWD; >2
and <10 cm diameter at both extremities) and leaf litter (includ-
ing twigs <2 cm diameter at both extremities, leaves, and fruits
and seeds). Full carbon estimation methods can be found in
Berenguer et al. [37]. In brief, in each plot, we measured the diam-
eter and height of all large (greater than or equal to 10 cm
diameter at breast height (DBH)) dead tree and palm stems.
We measured the diameter and height of all small dead tree
and palm stems (>2 and <10 DBH) in five subplots (5 x 20 m)
in each plot. We used the allometric equations of Hughes et al.
[39] and Cummings et al. [40] to estimate, respectively, carbon
stocks for dead-standing trees and palms. Subplots were also

used to estimate the diameters and lengths of all pieces of fallen
CWD. We estimated the volume of each piece of CWD using
Smalian’s formula [27] after accounting for the extent of damage
(i.e. void space). We multiplied the volume of each CWD piece
by its decomposition class to calculate CWD mass [30]. In all
study plots, we established five smaller subplots (2 x 5m) to
assess FWD. This was sampled and weighed in the field. A sub-
sample (< 1kg) was collected in each subplot and oven-dried to
a constant weight. The wet-to-dry ratios of the FWD samples
were used to estimate the total FWD stocks per plot. To estimate
the biomass of leaf litter, ten 0.5 x 0.5 m quadrats were estab-
lished in each plot. We oven-dried leaf litter samples to a
constant weight to get an estimate of the leaf litter stocks in
each plot. Biomass estimates for each necromass component
were then standardized to per hectare values, and the carbon con-
tent was assumed to be 50% of biomass dry weight [41]. See
electronic supplementary materials (§1) for all equations we
used to estimate necromass biomass.

(b) Longitudinal monitoring of coarse woody debris
To estimate necromass change through time, we continued to moni-
tor 18 of the 107 RAS plots (figure 1). These 18 plots were chosen
because they are spatially distributed across the region and we
were able to secure long-term authorization to monitor them.
They included undisturbed primary forests (1 = 5), primary forests
logged prior to 2010 (n = 5), primary forest logged and burned prior
t0 2010 (1 = 4), and secondary forests (11 = 4; table 1). We conducted
surveys of the 18 plots between November 2014 and September
2015, using a slightly altered sampling design to align with the
Global Ecosystem Monitoring protocol (see [42] for details). We
established five 1 x 20 m subplots in each of the 18 plots, measured
all pieces of CWD, and estimated their biomass and carbon content
following the methods outlined above (see Methods (a)).

(c) Impacts of El Nifo-mediated wildfires on necromass

stocks
Extensive understorey wildfires burned seven of our 18 study
plots during the 2015-2016 El Nino, including two previously
undisturbed primary forests, four primary forests logged prior to
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2010, and one primary forest that was logged and burned prior to
2010. To investigate necromass carbon stock losses due to these
wildfires, we resurveyed all 18 plots in June 2017. We re-measured
each individual piece of CWD and estimated biomass using the
methods described above (Methods (a)). By comparing CWD
stocks before and after the El Nifo in the 11 plots that did not
experience wildfires, we were able to estimate CWD background
decomposition rates. By comparing CWD stocks before and after
the El Nifo in the seven plots that burned, we were able to measure
CWD combustion completeness.

We used values from the 2010 surveys to provide estimates
of the pre-El Nifio carbon stocks in leaf litter and FWD. Based
on visual inspection of the sites (electronic supplementary
material, figure 51), we assumed 100% combustion completeness
of these necromass components in the fire-affected proportion of
burned plots. Recognizing that this is a strong assumption, we
consider the validity of it in our Discussion. We did not consider
wildfire-mediated changes in necromass carbon stocks in dead-
standing trees and palms, owing to a lack of data on combustion
completeness.

In the seven plots that burned, we calculated average char
height for each stem, defined as the sum of the maximum and
minimum char heights divided by two. We then used these aver-
age stem char heights to calculate the plot-level median char
height, which we used as our proxy for fire intensity. In addition,
we used the proportion of sampled stems with burn scars as an
estimate of the area of each plot that burned (electronic sup-
plementary materials). To increase our sample of fire-affected
plots (to 16), we also measured the area burned in an additional
nine of the original RAS plots that were sampled during the 2010
censuses and burned during 2015-2016 (table 1). Prior to the
wildfires, these additional plots included undisturbed primary
forests (1 = 3), primary forests logged prior to 2010 (7 = 1), pri-
mary forests logged and burned prior to 2010 (n=4), and
secondary forests (n = 1).

We used these data to estimate the per hectare necromass loss
(NL) attributable to wildfires using the following equation:

NL = FLewp % (CCewp — Dewn) + FLuuswn x BA, (2.1)

where FLoywp is the per hectare fuel load of CWD estimated from
the 107 RAS plots surveyed in 2010, CCcwp is the combustion
completeness of CWD estimated from seven of the 18 CWD
monitoring plots that burned during the 2015-2016 El Nino,
Dcwp is the background CWD decomposition rate estimated
from the 11 CWD monitoring plots that did not burn during
the 2015-2016 El Niho, FLypwp is the per hectare fuel load of
leaf litter and FWD estimated from the 107 plots surveyed in
2010, and BA is the proportion of the plot that burned estimated
from the 16 RAS plots that burned (seven necromass monitoring
sites and nine additional sites in which burned area was
estimated) during the 2015-2016 El Nifo (table 1).

(d) Data analysis

We used the Kruskal-Wallis test to investigate variation
across forest classes of prior human disturbance (table 1) and
used the Conover-Iman test with Bonferroni adjustments
to perform multiple pairwise comparisons of forest class
medians, We assessed differences across forest classes in:
carbon stocks stored in each necromass component (i.e. dead-
standing stems, CWD, FWD and leaf litter) from the 2010
survey; total and percentage necromass carbon stock losses in
the 18 plots surveyed between 2014 and 2017; and the pro-
portion/area of plots burned during the 2015-2016 El Nifo.
We used linear regression to investigate the relationship between:
necromass carbon stocks before and after the 2015-2016 El Nifo;
fire intensity and stock losses; and the burned area in each plot
and stock losses.

Quantifying the immediate carbon emissions from El Nifio-mediated wildfires in humid tropical forests

(e) Estimating burned area and region-wide emissions [N

from forest fires

To estimate wildfire-mediated carbon emissions from necromass
across our study region, we first calculated the cumulative area
of primary and secondary forest that experienced understorey
wildfires during 2015-2016 in the central-eastern region of the
Amazon, an area of approximately 6.5 Mha (figure 1). We built a
time-series of Landsat (5, 7 and 8) imagery from 2010 to 2017 for
the RAS study region and the surrounding area from the EROS
Science Processing Architecture (ESPA)/U.S. Geological Survey
(USGS) website (https://espa.cr.usgs.gov). We performed an
unsupervised classification of raw imagery, followed by manual
correction of classification errors, to identify several land-uses
throughout the time-series (see electronic supplementary material,
table S2 for all land-use classes and §2 for a detailed description of
burned area detection). We then used the burned area of primary
and secondary forests and estimates of per hectare necromass stock
losses from wildfires (equation (2.1)) to determine region-wide
necromass carbon emissions, using a conversion factor of
3.286 kg of CO, per kg of C [43]. This conversion factor does not
include other forms of emitted C (such as CO), in keeping with
global fire emissions databases.

We took two approaches to account for uncertainty in expected
regional necromass emissions. First, we considered four land-use
scenarios using two sets of primary and secondary forests (elec-
tronic supplementary material, table S1). To account for potential
variation in fire susceptibility across primary forest disturbance
classes, we estimated the five variables in equation (2.1) using all
undisturbed and disturbed primary forest classes (priml) and
then only disturbed primary forests (prim2). For secondary forests,
we used CCoywp and FLi; pwp from all secondary forests, used
Dewp and BA from all forest classes combined, and used
CCewp from all primary forest classes because none of the second-
ary forest plots we were monitoring for changes in CWD burned
during 2015-2016 (secl). Our other scenario for secondary forests
(sec2) was more restrictive: we used the fuel load (FLown,
FLyrpwn), decomposition (Dewp), and BA values from secondary
forests only and combined these with all CCcwp values we had
from disturbed and undisturbed primary forests.

Second, to account for uncertainty in the distribution of the
variables in equation (2.1), we ran 1000 bootstrap with replace-
ment simulations to determine each variable’s mean value and
standard error. We calculated the standard error of equation (2.1)
using the variable standard errors, accounting for error propa-
gation, and we constructed 95% confidence intervals for equation
(2.1) as its mean value + 1.96 times the standard error of the mean.

(f) Emissions and burned area comparisons with global
databases

We compared our region-wide CO, emission estimates with two
fire emissions databases frequently used in Earth Systems models
and carbon budgets: the Global Fire Emissions Database (GFED)
version 4.1s [44] and the Global Fire Assimilation System (GFAS)
version 1.1 [45]. For both datasets, we obtained data for our
study period (August 2015-]July 2016) and cropped them to our
approximately 6.5 Mha study region, shown in figure 1.

We first calculated cumulative emissions from GFED and GFAS
(electronic supplementary material) and compared these with our
emissions estimates. Second, to investigate potential sources of dis-
crepancy between estimates, we spatially mapped GFED, GFAS
and our CO, emissions estimates. At both GFED and GFAS resol-
utions (0.25° and 0.1°, respectively), we mapped our mean (across
land-use scenarios; electronic supplementary material, table S1)
expected emissions assuming that emissions were constant in a
burned area (i.e. if a cell contained x% of the burned area, we
assumed itaccounted for x% of the total emissions). Finally, because

Kieran Daniel Withey - March 2019

7LE0L 107 “ELE § 05 Y “supi] iy BioBuiysygndianosiedorqiss



Chapter 9: Appendices

Downloaded from http://rstb.royalsocietypublishing.org/ on October 8, 2018

(a) leaf litter (b) FWD (c) CWD
104 A AB AB B AB 84 A AB AB AB B 1004 A A AB A B
8 4 6 4 i 75 4 .
[ ]
. .
. i .
6{ * 44 50 T
L]
=~ 2 4 Q g ! 25 1 .
L4 :e:,
= —
o N é = o =
] (d)  dead-standing stems (e) total necromass u L B LB S
Z3{ A A A A B |I00{ A A A A B
£ 4 .
o
S 75 1
20 A . .
L]
. 50 1
. - . forest class
10 4 . E U = undisturbed
25 L = logged prior to 2010
ﬁ 1 B = burned prior to 2010
:b $ LB = logged and burned prior to 2010
01 T T T T . 0 : r ! ! S = secondary
u L B LB S

u L

B LB S

Figure 2. Necromass carbon stocks in leaf litter (a), FWD (b), CWD (c) and dead standing stems (d), and the total across all components (e) in human-modified
Amazonian forests, Boxplots show the interquartile range. Letters above the boxplots show the results from multiple pairwise comparisons of forest class medians.
Classes that do not share a letter have significantly different medians (p << 0.05).

GFED also provides estimates of the area burned at 0.25”, we used
our land-use map to estimate burned area at that resolution.

3. Results

(a) Necromass carbon stocks across human-modified
Amazonian forests

Total necromass and its components varied significantly with
respect to forest class (p < 0.05 in all cases; figure 2). Primary
forests contained significantly higher total necromass than sec-
ondary forests (p < 0.01 for all pairwise comparisons), with the
highest total found in undisturbed primary forests (30.2 +
2.1 Mgha™', mean + s.e.). By contrast, secondary forests con-
tained only half as much necromass as undisturbed primary
forests (15.6 + 3.0 Mg ha 1. Variation in total necromass was
driven in large part by variation in CWD, which accounted
for 61.3 + 2.7% of the total necromass stocks across forest
classes. Leaf litter was the next most important component of
total necromass, with 19.8 + 2.7% residing in this component.
Dead-standing stems accounted for 14.4 + 1.8% of total necro-
mass. Finally, FWD was by far the smallest necromass
component, harbouring just 4.6 + 0.2% of the total.

(b) Impacts of EI Nifo-mediated wildfires on necromass

stocks

On average, we estimate that 87.1 + 2.7% of the ground area
of our fire-affected study plots burned, and there was no sig-
nificant difference in the total burned area of fire-affected
plots across forest classes (3 =2.1; p = 0.56). From the 88
CWD pieces measured before the fires, 54 completely
burned, 32 had partial combustion, and two were untouched
by fire. CWD carbon stock losses from combustion varied
from 38 to 94% (mean 65.4%, s.e. 7.1%) at the plot-level.

Necromass carbon stock losses in the seven burned plots
were unrelated to median char height (R*=0.09; p=051;
figure 3q) and area of plot burned (R*=10.10; p=049;
figure 3b). Forest class did not predict necromass carbon stock
losses in burned sites when expressed as either percentage
(3 =225 p=032) or total (y3 = 1.12; p= 0.57) loss. Simi-
larly, forest class did not predict necromass losses in
unburned sites when expressed as either percentage
(3 =158 p=10.66) ortotal (3 = 2.18; p = 0.54) loss.

On average, burned sites lost 73.0 + 4.9% of their pre-El
Nino necromass stocks (figure 4), compared with a 26.1 +
4.8% reduction in unburned sites (from decomposition). As
expected, pre-El Niho necromass stocks strongly predicted
post-El Nifio necromass in our unburned sites (R*=095;
p < 0.001; figure 4a). This relationship disappeared in fire-
affected plots (R* = 0.08; p = 0.54; figure 4b), indicating that
combustion completeness was insensitive to initial necromass
stocks. Despite our small sample size, visual inspection
suggests that these findings were unaffected by forest class.

(c) Region-wide burned area and estimates of carbon

stock losses
During the 2015-2016 El Nifo, 15.2% of our study region
and 982276 ha of forest experienced understorey wildfires.
These wildfires were overwhelmingly concentrated in pri-
mary forests: less than 2% of the burned area was in
secondary forests, despite these accounting for 9% of the
forest cover in our study region. When considering all
primary and secondary forest plots (prim1 + secl), resultant
necromass carbon stock losses amounted to 10.06 Tg (95%
confidence interval, 5.85-14.27 Tg). Converting to CO,, this
is equivalent to expected emissions of 33.05Tg (95%
confidence interval, 19.22-46.87 Tg; figure 5). Our mean
CO, emission estimates were relatively insensitive to the
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Figure 3. (a) Necromass carbon stock losses and fire intensity, as measured by median char height. (b) Necromass carbon stock losses and area of plot burned.
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Figure 4. Pre- versus post-El Nifio necromass carbon stocks in unbumed control sites (¢) and sites burned in 2015-2016 (b), and pre-El Nino necromass carbon
stocks versus post-El Nifio necromass losses in unburned control sites (c) and sites burned in 2015—2016 (¢) in human-modified Amazonian forests. In panel (a) the
black line shows the significant (p << 0.001) relationship between pre- and post-El Nifio necromass carbon stocks in unburned sites. The equation for this relation-
ship is shown in the panel. The grey band represents 1 s.e.m. Note that, owing to data limitations, pre- and post-El Nifio necromass totals are based on CWD, FWD
and leaf litter only (i.e. dead-standing stems are not induded).
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Figure 5. Immediate (0, emissions for wildfires in central-eastern Amazo-
nian human-modified tropical forests. Points show expected emissions for
four land-use scenarios (see §2e and electronic supplementary material,
table S1): (a) prim1 + secl; (b) prim2 + secl; (<) prim1 + sec2; (d)
prim2 + sec2. Error bars show 95% confidence intervals. Also shown are
cumulative €O, emissions for our study region and period from GFED 4.1s
(short-dashed line) and GFAS version 1.1 (long-dashed line).

land-use scenarios (figure 5). However, the 95% confidence
interval was substantially wider with land-use scenario
prim2 (scenarios b and d; figure 5) owing to greater uncer-
tainty in decomposition rates when restricted to disturbed
primary forest only compared with all primary forests—
undisturbed and disturbed—combined.

(d) Comparing our results with global fire emission

databases

Both GFED and GFAS vastly underestimated expected wildfire
CO; emissions for our study region and period. Respectively,
these databases suggest cumulative emissions that are 77%
and 68% lower than the expected value we found with land-
use scenario a (priml + secl; figure 5). These discrepancies
can be explained by the underdetection of understorey wild-
fires by both GFED and GFAS algorithms. This can be seen
across our whole study region but is particularly evident in
areas free from historic deforestation (figure 6). GFED and
GFAS appeared to be more successful at detecting fires in agri-
cultural areas with lower levels of forest cover (figure 6).
Highlighting the insensitivity of GFED to understory wildfires,
this database suggests that, at most, 6% of any given 0.25° cell
across our study region, and approximately 90 000 ha in total,
burned during the 2015-2016 El Nifo (figure 6¢). By contrast,
we show that as much as 74% of a cell (figure 6f) and almost
1 Mha of forest was affected by understory wildfires.

4. Discussion

(a) Region-wide carbon emissions from El Nifio-

mediated wildfires
We investigated necromass carbon stocks in human-modified
forests before and after large-scale understorey wildfires in cen-
tral-eastern Amazonia that occurred during the 2015-2016 El
Nino. Our novel assessment revealed that expected immediate

necromass CO; emissions from these wildfires are around
30 Tg (figure 5). This is equivalent to total CO, emissions
from fossil fuel combustion and the production of cement in
Denmark, or 6% of such emissions from Brazil, in 2014 [46].
Consequently, wildfire-mediated immediate carbon emissions,
which are not currently considered under national greenhouse
gas inventories [47], represent a large source of CO, emissions.
Moreover, these immediate emissions will be greatly exacer-
bated by further committed emissions resulting from tree
mortality, which can be as high as 50% [16] and may not be
balanced by post-fire regrowth on decadal time scales [22].
Our results add to work on prescribed burns associated
with deforestation [36], contributing important information
about the role of El Nifio-mediated wildfires. The scale of the
immediate emissions we estimated, coupled with future com-
mitted emissions, make wildfires particularly relevant to
climate change mitigation programmes such as REDD+
[9,48]. For REDD+ to succeed in Amazonia, we demonstrate
that forests must be protected from wildfires, as even the
immediate emissions from large-scale wildfires can equal
those from whole countries. Future climate change will make
this only more imperative, with extreme droughts, higher
temperatures, and reduced rainfall all predicted for the
Amazon basin in the near future [49-51]. Wildfires may
also undermine the important role that protected areas have
historically served as carbon stores [52], as illustrated by the
large areas burned in the Tapajos National Forest and the
Tapajos-Arapiuns Extractive Reserve (figure 1).

(b) Fuel loads in humid tropical forests

Total necromass carbon stocks in the 107 RAS plots surveyed
in 2010 did not vary significantly between disturbed and
undisturbed primary forests (figure 2¢). The mean value
we found for total necromass carbon stocks in undistur-
bed forests was 30.2 + 2.1 Mg ha~'. This value is broadly
consistent with previous estimates for the eastern Amazon.
For example, Keller et al. [30] and Palace et al. [31] found
necromass carbon stocks of, respectively, 254 and
292Mgha ' in undisturbed primary forests in the Tapajos
region of Pard. In primary forests disturbed by reduced-
impact logging, these studies found, respectively, 36.4 and
4275 Mg ha ' of necromass carbon. However, our estimates
for necromass stocks in disturbed primary forests are mark-
edly lower (figure 2¢). This discrepancy is likely a function
of time since disturbance, Keller et al. [30] and Palace et al.
[31] assessed necromass carbon stocks soon after disturbance,
when necromass stocks are likely to be higher. By contrast,
disturbance of RAS sites occurred between 1.5 and 25 years
before the 2010 surveys. Necromass stocks can be highly
dynamic, with residence times for most CWD estimated at
less than a decade [28], especially in the case of small diam-
eter and low wood density tree species [53]. Thus, necromass
stocks in many of our disturbed primary forest sites may have
had time to decrease to an equilibrium level, similar to that of
undisturbed forests, where input and decomposition are
largely balanced.

We did, however, find significantly larger necromass stocks
in primary forests compared with secondary forests. This may
be explained by (a) pre-abandonment secondary forest land-
uses removing all fallen biomass with machinery or intensive
fires; (b) the smaller necromass input pool in secondary forests
owing to lower levels of aboveground live biomass [37]; and
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Figure 6. Comparing our findings with those from GFAS and GFED. O, emissions for our study region and period from GFAS (a) and our emissions shown at the
same scale (0.1°; (b)). €0, emissions from GFED (c) and our emissions shown at the same scale (0.25°; (d)). The proportion of land burned for our study region and
period from GFED (e) and our estimate of burned area shown at the same scale (0.25°; (f)). In all panels, our Landsat-derived fire map is shown in dark green,

deforestation in light grey and water in blue.

(c) the lower wood density of stems in secondary forests [54],
resulting in more rapid CWD decomposition.

(c) Impacts of EI Nifio-mediated wildfires on

necromass stocks
On average, we estimate that wildfires burned 87.1 + 2.7% of
our fire-affected necromass monitoring plots (figure 3b). This
figure is substantially higher than the 62-75% burn coverage
measured during experimental fires in previously undisturbed
transitional Amazonian forests [18]. The areal extent of these

wildfires reduced necromass (in CWD, FWD and leaf litter)
carbon stocks by 469 + 6.9%, when gross necromass loss
(73.0 + 4.9%) was corrected for decomposition (26.1 + 4.8%).
The understorey wildfires that affected our burned plots
were relatively low intensity, with maximum median char
height of 20.5cm. Nonetheless, our findings demonstrate
that these low-intensity wildfires can dramatically diminish
necromass stocks in human-modified tropical forests.
Further, both area of plot burned and necromass carbon
stock losses showed little variation across disturbance classes.
This may indicate that the 2015-2016 El Nifo, which was
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one of the strongest in recorded history, produced drought
conditions so severe that necromass moisture content was
reduced across all forest classes to a level that permitted com-
bustion and sustained fires, overriding any pre-existing
microclimatic differences that may have existed owing to
the initial disturbance. This is further corroborated by the
fact that wildfires did not distinguish between largely undis-
turbed forests (mostly inside protected areas) and those that
have been modified by humans (mostly outside protected
areas), burning vast areas of both types of forest (figure 1).

(d) Caveats

Though our dataset is the first to our knowledge that allows
for quantification of necromass carbon stocks pre- and
post-uncontrolled understorey wildfires in human-modified
Amazonian forests, our sample size was limited, with just 18
necromass monitoring plots, of which seven bumed during
the 2015-2016 El Nino. Consequently, results that follow
from these samples should be treated with a degree of caution.
In particular, we found that necromass stock losses were not
significantly related to our plot-level estimate of burned area
and that fire susceptibility did not appear to vary across dis-
turbance classes. In both cases, the lack of significance may
reflect the small sample sizes rather than a genuine lack of
relationship.

Moreover, owing to the limitations of our data, we assumed
100% combustion of leaf litter and FWD in the fraction of plots
that burned when calculating necromass carbon losses
(equation (2.1)). In a recent review, Van Leeuwen ¢t al. [36]
found that mean combustion completeness of leaves, litter
and smaller classes of woody debris was 73-94%. However,
as they acknowledge, combustion completeness can be signifi-
cantly higher during El Nino years. Thus, given the strength of
the 2015-2016 El Nino, and our personal observations (elec-
tronic supplementary material, figure S1), our combustion
completeness assumption is likely to be reasonable.

Because of our small sample size, the 95% confidence inter-
vals for our region-wide CO, immediate emissions were wide,
ranging from around 8 Tg to almost 48 Tg. Future research
efforts should prioritize necromass monitoring in a larger
number of sites, across a range of tropical forests, to better con-
strain these values; as we show, such emissions have the
potential to significantly exacerbate global climate change.

Despite the above limitations, there are reasons to suspect
that our necromass stock loss and carbon emission estimates
are highly conservative. First, we did not measure wildfire-
induced carbon changes in the soil organic layer, yet research
from the same region suggests that wildfires significantly
reduce soil carbon pools [55]; nor could we estimate combustion
of dead-standing stems, which accounted for approximately
15% of total necromass ( figure 2). Second, none of the disturbed
primary forest plots in which we monitored necromass changes
was recently disturbed prior to the 2015-2016 wildfires,
allowing time for decomposition to reduce high levels of post-
disturbance necromass. Had our sample included recently
disturbed sites, necromass losses would have been greater.
Third, detection of low-intensity understorey wildfires con-
tinues to present a remote sensing challenge. Although
manual correction of our unsupervised land-use classifications
revealed only a small number of misclassifications, it is possible

that some wildfire-affected sites were missed, leading to an n

underestimation of regional emissions.

In addition to showing that wildfire carbon emissions can
be substantial, we also showed that such emissions remain
poorly quantified. GFED and GFAS, CO; emission databases
that are widely used in Earth Systems models and carbon bud-
gets, returned considerably lower emission estimates for our
study region and period than our expected values (figure 5).
Nevertheless, the scale of this discrepancy is underestimated
for several reasons. First, we focused solely on necromass
carbon losses from understory wildfires, whereas GFED and
GFAS include emissions from all land-use classes combined.
Both databases therefore account for grassland and agricultural
fires, which can affect large areas of human-modified tropical
landscapes. Second, GFED includes both committed and
immediate CO, emissions. Third, and again with respect to
GFED, fuel loads are much high than those present in our
post-disturbance plots, because they are primarily derived
from slash-and-burn and deforestation studies.

(e) Conclusion

We demonstrate that there was a substantial loss of necromass
following El Niho-mediated wildfires in the central-eastern
Amazon. We conservatively estimate that wildfires in this
region burned 982276 ha (15.2% of our study region) of pri-
mary and secondary forest, resulting in expected immediate
CQO, emissions of approximately 30 Tg. Better understanding
this large and poorly quantified source of atmospheric
carbon is crucial for climate change mitigation efforts.
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