
Solving the Distributed Two Machine Flow-shop
Scheduling Problem using Differential Evolution

John H. Drake1, Paul Dempster2, and Penghao Li2

1 The OR Group, Queen Mary University of London,
Mile End Road, London, E1 4NS, UK

j.drake@qmul.ac.uk
2 School of Computer Science, University of Nottingham Ningbo,

Ningbo, 315100, China
Paul.Dempster, zy10611@nottingham.edu.cn

Abstract. Flow-shop scheduling covers a class of widely studied opti-
misation problem which focus on optimally sequencing a set of jobs to
be processed on a set of machines according to a given set of constraints.
Recently, greater research attention has been given to distributed vari-
ants of this problem. Here we concentrate on the distributed two machine
flow-shop scheduling problem (DTMFSP), a special case of the classic
two machine flow-shop scheduling problem, with the overall goal of min-
imising makespan. We apply Differential Evolution to solve this problem,
presenting new best-known results for some benchmark instances from
the literature. A comparison to previous approaches from the literature
based on the Harmony Search algorithm is also given.

1 Introduction

Flow-shop scheduling is a classic optimisation problem with an extensive lit-
erature dedicated to studying a number of different variants. At its core, the
problem is to generate a schedule of jobs to be completed on a set of machines,
where each job has a given processing time on each machine, optimising for a
particular objective. Although some variants of the problem can be solved easily,
minor extensions to the problem can lead to a great increase in computational
complexity. When the processing times for each job are fixed, although the two-
machine case is solvable by a polynomial time algorithm [4], it becomes NP-hard
when a third machine [3] or operation [5] is added.

Differential Evolution (DE) [9] is a popular population-based metaheuris-
tic which has been particularly successful at solving continuous optimisation
problems [1]. Despite the fact that DE is chiefly designed to tackle continuous
optimisation problems, it has frequently been adapted to solve combinatorial op-
timisation problems and in particular, flow-shop scheduling problems. Onwubolu
and Davendra [6] defined methods to transform solutions between real-valued
vector and integer permutation representations, searching in continuous space
whilst evaluating solution quality in discrete space. Qian et al. [8] combined
differential evolution operating in continuous space with local search in discrete



2

space to solve a multi-objective variant of the flow-shop scheduling problem with
buffers in-between machines. Other work by Pan et al. [7] and Wang et al. [11]
defined specific operators in discrete space to perform direct search on flow-shop
problems using DE.

Here we focus on the distributed two machine flow-shop scheduling problem
(DTMFSP). This variant of flow-shop scheduling considers a distributed set of
locations containing two machines, with a set of jobs of varying lengths which
must be processed on both machines at a single location. Previous work by Deng
et al. [2] compared three variants of the Harmony Search algorithm over a set
of benchmarks to this problem. In this paper we apply DE to the benchmark
instances for the DTMFSP and compare to the previously presented Harmony
Search based approaches.

2 The Distributed Two Machine Flow-shop Scheduling
Problem (DTMFSP)

The well-known two machine flow-shop scheduling problem [4] is defined as fol-
lows. Given a set of n jobs J ∈ {J1, ..., Jn}, to be processed on two machines
M1 and M2. Each job Ji ∈ J consists of two sequential operations Oi,M1

and
Oi,M2

with associated processing time pi,M1
and pi,M2

respectively. A schedule
is a permutation π = (π(1), ..., π(n)) of jobs representing the order in which the
jobs are processed on the two machines. Under the constraints that each machine
can only process one job at a time and jobs must be processed sequentially on
the two machines, using makespan as the performance criteria, the goal is to
minimise the overall time taken to complete all of the jobs. This problem can be
solved to optimality in polynomial-time using Johnson’s rule [4].

The distributed two machine flow-shop scheduling problem (DTMFSP) is an
extended version of this problem [2]. The difference between the two is that jobs
in the DTMFSP can be processed in any of f identical factories, each containing
a machineMf,1 and a machineMf,2, whereas the classical problem considers only
a single factory. Additionally, jobs cannot be transferred to another factory, i.e.
once a job has been processed on machine Mf,1 at a given factory, it is not
possible to then process the second operation of the job on a machine in another
factory Mg,2 where g 6= f . Rather than searching directly on the space of possible
job permutations, when solving the DTMDSP search takes place over a vector of
integers representing the allocated factory of each job. For each set of schedules,
the overall makespan can be calculated as the longest completion time of a single
factory after applying Johnson’s rule to each factory.

Given a processing sequence πk at a particular factory k, with a total of nk
jobs at each factory, the makespan of a set of schedules CMAX can be calculated



3

as:

Cπk(1),M1
= pπk(1),M1

, k = 1, 2, ..., f (1)

Cπk(i),M1
= Cπk(i−1),M1

+ pπk(i),M1
, k = 1, 2, ..., f ; i = 2, 3, ..., nk (2)

Cπk(1),M2
= Cπk(1),M1

+ pπk(1),M2
, k = 1, 2, ..., f ; (3)

Cπk(i),M2
= max{Cπk(i),M1

, Cπk(i−1),M2
}+ pπk(i),M2

, k = 1, 2, ..., f ; i = 2, 3, ..., nk
(4)

CMAX = max{Cπk(nk),M2
}, k = 1, 2, ..., f ; (5)

3 Proposed Differential Evolution-based Approach

Differential Evolution (DE) [9] is a relatively simple evolutionary algorithm,
primarily used to solve continuous optimisation problems. Through the nature-
inspired concepts of selection, mutation and crossover, DE iteratively attempts to
improve a set of candidate solutions to a particular problem, where a solution is
represented by a vector of real values, by updating the population when better
solutions are found until some termination criteria is met. DE has previously
been used to solve a variety of optimisation problems, with a wide range of DE
variants existing in the literature [1].

The general DE framework used in this paper is as follows. The first step is
to initialise N solutions x1...xN , where N is the population size, with random
values in each dimension. The algorithm then repeats the following steps until
some termination criterion is met. At generation G, for each individual xi,G in
the population, depending on the mutation strategy used, up to five solutions
are chosen at random to use for mutation. The random solutions are used to
calculate difference vectors to diversify the solution. A new mutant vector vi,G is
generated using the given mutation strategy. In general a DE mutation strategy is
referred to in the format: mutation strategy/number of difference vectors. Given
xbest as the best solution found so far, randomly selected solutions xr1 to xr5 and
F ∈ [0, 2] as a weighting (the differential weight) used to control the influence of
different vectors within the mutation, the five mutation strategies used in this
paper are as follows:

rand/1 vi,G = xr1,G + F · (xr2,G − xr3,G) (6)

rand/2 vi,G = xr1,G + F · (xr2,G − xr3,G)

+ F · (xr4,G − xr5,G)
(7)

best/1 vi,G = xbest,G + F · (xr1,G − xr2,G) (8)

best/2 vi,G = xbest,G + F · (xr2,G − xr3,G)

+ F · (xr4,G − xr5,G)
(9)



4

current− to− best/1 vi,G = xi,G + F · (xbest,G − xi,G)

+ F · (xr1,G − xr2,G)
(10)

After a mutant vector vi,G has been obtained, crossover is performed between
the original target vector xi,G and the mutant vector vi,G. In each case we use
binomial crossover to generate a trial vector ui,G, with the value assigned to
each dimension j of the trial vector as follows:

uj,i,G =

{
vj,i,G if rand[0,1) ≤ CR or j = jrand

xj,i,G otherwise
(11)

Here CR ∈ [0, 1] is the crossover probability, controlling which of the two
parents, either the target vector or the mutant vector, has the greatest influence
on the trial vector generated. jrand is the value of a random dimension to ensure
that at least one dimension is taken from each of the parent solutions. Finally
the target vector and the trial vector are compared using a fitness function g,
with the best of the two kept in the population for the following generation:

xi,G+1 =

{
ui,G if g(ui,G) < g(xi,G)

xi,G otherwise
(12)

3.1 Encoding and Decoding Solutions to the DTMFSP

As mentioned above, given n jobs, the search process when solving the DTMFSP
is over a vector of integers S = s1, ..., sn, with each s ∈ S able to take a value
between 1 and f corresponding to the factory that job is allocated to. As DE
operates over a space of real values, a method to map a DE vector to a DTMFSP
solution in discrete space is needed. Assuming that there are n jobs and f fac-
tories in the DTMFSP problem, each vector x has n dimensions with values in
the range [0, 1]. To interpret a vector as a solution to the DTMFSP problem,
the range [0,1] is partitioned into n equal parts, that is [0, 1/f), [1/f, 2/f), ...,
[(n-1)/f, n). For example with 4 factories and 5 jobs the vector [0.21, 0.85, 0.42,
0.63, 0.31] indicates that the 1st job is assigned to 1st factory (as it is in the
interval [0, 0.25)), the 2nd job is assigned to 4th factory (it is within the interval
[0.75, 1)), with the remaining jobs assigned to factory 2, factory 3, and factory
2 respectively. After determining which jobs are assigned to which factory based
on the DE vector, we can then determine the job sequence of each factory. For
each factory, finding the minimum makespan is the classical two machine flow-
shop scheduling problem, so we can use Johnson‘s rule to compute the optimal
job sequence. The maximum makespan of this schedule can then be computed.

4 Experimental Framework and Parameter Tuning

In our experiments we use the DTMFSP benchmark instances based on a real-
world scenario introduced by Deng et al. [2]. This set consists of 100 instances



5

with 5 instances for each f ∈ {2, 3, 4, 5, 6} and n ∈ {20, 50, 100, 200}. Here we
will focus on the largest of these instances where f = 3, 4 and 5. As Deng
et al. [2] used 0.1*n seconds CPU time as a termination criterion on different
hardware, only an indirect comparison can be made to their results. For the
benefit of future work in this area, we use the number of fitness evaluations as
a termination criterion, allowing each run to evaluate 500,000 individuals. All
experiments were performed on an Intel Core i7 CPU @ 2.40GHz with 16GB
RAM.

The set of possible parameter settings for each DE component are given in
Table 1. In order to test all of these parameter settings, we would have to test
625 (54) combinations. However, using an orthogonal array we are able to reduce
this to 25 combinations, and use the results of these 25 experiments to derive
the best set of parameters to use on the full benchmark set. Consistent with
the parameter tuning performed by Deng et al. [2], we use the 11th 4-factory
instance (F4 11), which has n= 100 jobs to schedule for parameter tuning.

Table 1. Set of possible settings for each DE parameter

Parameter Possible Values

F {0.25, 0.50, 0.75, 1.00, 1.25}
CR {0.02, 0.04, 0.06, 0.08, 0.10}
N {10, 25, 50, 100, 200}

Mutation strategy {rand/1, rand/2, best/1, best/2,
current-to-best/1}

After applying each of the 25 parameter combinations to F4 11, we are able
to define the best set of parameters as DEBest. It was found that the parameter
set where F = 0.50, CR = 0.02, N = 25 and mutation strategy = rand/2
performed best, and will be referred to as DEBest herein.

5 Results

Deng et al. [2] presented three Harmony Search variants applied to the DTMFSP:
classic Harmony Search (HS), ‘improved’ Harmony Search (IHS) and Global-best
Harmony Search (GHS). Tables 2-4 show the results of the best value obtained
from 10 runs of DEBest compared to the results of IHS, HS and GHS obtained
by Deng et al. [2] for instances with 4, 5 and 6 factories respectively. Although
only an indirect comparison can be made due to the differing termination cri-
teria used, DEBest does not run for a significantly different amount of time to
the methods of Deng et al. [2], even when differences in hardware are taken
into consideration. The best results obtained for each instance are highlighted
bold, with new best results also highlighted with an asterisk(*). Due to space
limitations, in the case of 4 factories in Tabale 2, we have only included those
instances for which new best results are obtained. For the remaining instances
of this type, DEBest and IHS [2] obtain identical results.



6

Table 2. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 4 factories

Instance DEBest IHS HS GHS

F4 4 312* 313 313 313
F4 11 1199* 1200 1201 1200

Average (F4 1 - F4 20) 1171.0 1171.1 1173.1 1173.0

For the instances with f = 4 factories Table 2, DEBest and IHS clearly out-
perform HS and GHS, with DEBest obtaining new best solutions for instances
F4 4 and F4 11. DEBest also outperforms IHS on average in these instances.
GHS performs particularly badly on these instances, only obtaining the same
best result as the other 3 methods in 1 of the 20 instances, with HS only per-
forming marginally better. As noted by Deng et al. [2], as the number of factories
increases, the task of assigning jobs to factories assignment becomes more com-
plex, making it more difficult to find the best combination of jobs for a particular
factory. As we see in Table 3 where f = 5, HS and GHS are no longer able to
find same best result as DEBest for any of these instances. DEBest is the best
performing method on 17 of these 20 instances and overall on average, finding
new best solutions for 5 instances. Table 4 presents the results when the num-
ber of factories f = 6. In this set of large instances the performance of DEBest
drops off somewhat, although it is able to find new best results for 5 of the 20
instances and obtains the best solution of all methods for 10 of the 20 instances.
It is notable here that IHS is the best performing method when the instances
get bigger, particularly for instances F6 11-F6 20 where the number of jobs is
100 and 200. One possible reason that DEBest is being outperformed on these
larger instances is the nature of the parameter tuning experiments performed.
As the parameter tuning was done on slightly smaller instances, where f = 4, it
could be the case that the parameters of DEBest are overfitted to instances of
this size and are not scaling well to the largest instances in the benchmark set.
Despite this, DEBest outperforms the three Harmony Search variants presented
by Deng et al. [2] on average for instances with f = 4 and 5, providing new
best-known results for 12 of the 60 benchmark instances tested.

6 Conclusions and Future Work

In this paper we have presented experiments applying Differential Evolution
(DE) to the distributed two machine flow-shop scheduling problem (DTMFSP).
Although the search space of the problem is discrete, a mapping is defined from
continuous to discrete space in order to apply DE to the problem indirectly.
An initial set of parameter tuning experiments were performed to decide the
parameters for DE before the best combination was applied to a set of benchmark
instances and compared to 3 existing methods based on the Harmony Search
algorithm. DE was able to outperform the Harmony Search methods in 2 of 3



7

Table 3. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 5 factories

Instance DEBest IHS HS GHS

F5 1 227 227 229 231
F5 2 234 234 236 235
F5 3 243* 244 244 244
F5 4 272 272 275 275
F5 5 234 234 236 238
F5 6 543* 545 547 546
F5 7 537 537 547 544
F5 8 518* 519 525 522
F5 9 534 534 542 542
F5 10 466 465 473 469
F5 11 1008 1007 1024 1029
F5 12 1044 1044 1057 1060
F5 13 982 982 988 985
F5 14 986* 988 1004 1005
F5 15 1090* 1092 1096 1097
F5 16 2079 2079 2086 2089
F5 17 2131 2131 2140 2143
F5 18 2087 2087 2094 2095
F5 19 2050 2050 2073 2069
F5 20 2018 2017 2029 2029

Average 964.2 964.4 972.3 972.4

sets of instances when clustered by number of factories and provide new best-
known results for 12 instances of the 60 tested.

All of the DE methods tested use fixed parameters throughout a run, with
the same set of parameters used across all instances of the benchmark set. It is
possible that good parameter settings are dependent on the particular instance
under consideration, or even the current state of the search. The literature con-
tains existing variations of DE such as SHADE [10] and JADE [12], which control
parameters including crossover probability and differential rate adaptively. Fu-
ture work will apply methods such as these to the DTMFSP to see if any gain
can be made by controlling parameters in a dynamic manner.

References

1. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

2. Deng, J., Wang, L., Shen, J., Zheng, X.: An improved harmony search algorithm
for the distributed two machine flow-shop scheduling problem. In: Harmony Search
Algorithm, pp. 97–108. Springer (2016)

3. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of operations research 1(2), 117–129 (1976)

4. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times
included. Naval research logistics quarterly 1(1), 61–68 (1954)



8

Table 4. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 6 factories

Instance DEBest IHS HS GHS

F6 1 173 173 173 174
F6 2 235 235 235 235
F6 3 192* 194 194 194
F6 4 217* 218 219 219
F6 5 233 232 234 236
F6 6 434* 438 449 443
F6 7 423* 426 433 428
F6 8 393 391 406 405
F6 9 445 442 462 459
F6 10 460 459 474 465
F6 11 907 904 925 926
F6 12 787 787 798 796
F6 13 867 867 880 882
F6 14 877 874 901 900
F6 15 883 878 915 904
F6 16 1782* 1786 1801 1799
F6 17 1725 1724 1740 1739
F6 18 1664 1662 1698 1689
F6 19 1707 1707 1724 1731
F6 20 1680 1677 1728 1715

Average 804.2 803.7 819.5 817.0

5. Lin, B.M., Hwang, F., Gupta, J.N.: Two-machine flowshop scheduling with three-
operation jobs subject to a fixed job sequence. Journal of Scheduling To appear,
1–10 (2017)

6. Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution
algorithm. European Journal of Operational Research 171(2), 674–692 (2006)

7. Pan, Q.K., Wang, L., Gao, L., Li, W.: An effective hybrid discrete differential evolu-
tion algorithm for the flow shop scheduling with intermediate buffers. Information
Sciences 181(3), 668–685 (2011)

8. Qian, B., Wang, L., Huang, D.x., Wang, W.l., Wang, X.: An effective hybrid de-
based algorithm for multi-objective flow shop scheduling with limited buffers. Com-
puters & Operations Research 36(1), 209–233 (2009)

9. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11(4), 341–359
(1997)

10. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differen-
tial evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2013). pp. 71–78. IEEE (2013)

11. Wang, L., Pan, Q.K., Suganthan, P.N., Wang, W.H., Wang, Y.M.: A novel hybrid
discrete differential evolution algorithm for blocking flow shop scheduling problems.
Computers & Operations Research 37(3), 509–520 (2010)

12. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958
(2009)


