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Abstract

Fungi-associated phytoremediation is an environallgniriendly and cost-efficient
approach to removal potential toxic elements (PTEsh contaminated soils. Many
fungal strains have been reported to possess Ridedpition behaviour which
benefits phytoremediation performance. Neverthelesst studies are limited in rich
or defined medium, far away from the real-world recés where nutrients are
deficient. Understanding fungal PTE-biosorptionfpenance and influential factors
in soil environment can expand their applicatioteptial and is urgently needed. This
study applied attenuated total reflection Founansform infrared (ATR-FTIR)
coupled with phenotypic microarrays to study thespectral alterations of a fungal
strain Smplicillium chinense QD10 and explore the mechanisms of Cd and Pb
biosorption. Both Cd and Pb were efficiently adsorbby S. chinense QD10
cultivated with 48 different carbon sources and thmsorption efficiency
achieved >90%. As the first study using spectroscofpols to analyse
PTE-biosorption by fungal cells in a high-throughpuanner, our results indicated
that spectral biomarkers associated with phosghimtsl and proteins (1745 ¢
1456 cmt and 1396 crl) were significantly correlated with Cd biosorption
suggesting the cell wall componentsSfchinense QD10 as the primary interactive
targets. In contrast, there was no any spectraméiker associated with Pb
biosorption. Addtionally, adsorption isotherms erided a Langmuir model for Cd
biosorption but a Freundlich model for Pb biosampti Accordingly, Pb and Cd
biosorption byS chinense QD10 followed discriminating mechanisms, specific
adsorption on cell membrane for Cd and unspecKitaeellular precipitation for Pb.
This work lends new insights into the mechanismsPaiE-biosorptionvia IR

spectrochemical tools, which provide more comprshven clues for biosorption
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behaviour with a nondestructive and high-throughpanner solving the traditional

technical barrier regarding the real-world scerario
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1. Introduction

With the increasing development of many metal-selahdustriese.g., metal mining,
matal surface treating, energy production andlizeti manufacturing, some metals
(mercury, chromium, etc.) or non-metals (arserétersum, etc.) possessing potential
toxicities to human health are named as potentictelements (PTEs) and have
become one of the most critical sources of enviremiiad contamination (Dong et al.,
2010). Industrial residues containing PTEs are inanusly discharged into the
environment, posing vital threats to human life awdsystems (Dong et al., 2010;
Liu et al., 2013). PTE-induced toxicity has beeoognized to last for an extended
time in nature and accumulate in the food chaire ptesence of PTEs even in traces
is harmful to both flora and fauna, cadmium (Cdpasure for instance, which may
cause irreversible tubular damage in kidney (Jagf)3; Leonard et al., 2004).
Numerous PTE-contaminated sites have been idehtdied require remediation

(Huang et al., 2019; Jiang et al., 2019).

To remediate PTE-contaminated soils and reduceedp®sure possibility, several
approaches are developed and applied, includindifscdtion (Tantawy et al., 2012),
elution (Rui et al., 2019), phytoremediation (Jiagtgal., 2018; Jin et al., 2019).
Stabilization aims to adsorb or reduce PTES, teansfy unstable PTEs into stable
phases with less availabilitg,g., hydroxides and minerals (Wang and Vipulanandan,
2001; Yuan et al., 2018). Stabilizers include ratuminerals (Gheju et al., 2016),
modified minerals (Ou et al., 2018; Sha et al.,&03ingh et al., 2017), synthetic
materials (Liu et al., 2014; Sarkar et al., 2050 reductive reagents (Geelhoed et al.,
2003; Patterson et al., 1997). However, the lomgr-tetability of stabilization strategy
remains doubtful. Elution uses solvents to form RTElates and enhance PTE

mobility (Khan et al., 2010), but suffers from theor efficiency in clay-rich soils
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owing to the relatively smaller osmotic coefficiawhich significantly abates PTE
mobility (Bolan et al., 2014; Rui et al., 2019).0Borption which uses biomaterials
(bacteria, fungi, yeasts and plants) is highlightes] an alternative remediation
approach for PTEs (Wang and Chen, 2006). Comparingther approaches,
biosorption is relatively cost-efficient, partictiafor soils with low PTE levels (Yan
and Viraraghavan, 2003) or co-contaminated witlkeotirganic compounds (Deng et
al., 2018b). Phytoremediation is environmentallgrfdly to clean PTE-contaminated
soils and remain soil functions (Wiszniewska et2016). Plants generally handle the
contaminants without damaging soil properties viseaormous ability to uptake and
detoxify PTEs by various mechanisms, such as ugigkeots, translocation to aerial
tissues and PTE- complexion with organic substaridéset al., 2013; Liu et al.,

2019).

In the soil ecosystem, the major soil biomass armativersity are formed by
microorganisms (Jin et al., 2019). Their presemcéhe rhizosphere plays important
roles in PTE phytoremediation (Jin et al., 2019aKh2005). Cr phytoremediation,
for instance, is only effective for exchangeablewailable Cr in soils (Shaheen et al.,
2019). Most phytoremediation practices use soilrofies or leaching reagents to
enhance PTE removal performance since their aviijais strongly linked with soil
microbial activities (Deng et al., 2018a; Yin et, &015). Fungi, as one critical group
of microorganisms, have been applied as metal esds in phytoremediation in
prior studies (Say et al., 2001). PTE biosorpticapability of Saccharomyces
Cerevisiae ranges from 10 to 300 mg/g dry-cell-weight (DCW) fiead (Pb) and 10 to
100 mg/g DCW for Cd (Wang and Chen, 20@@&nicillium sp. MRF-1 has a strong
Cd biosorption capacity (0.13-9.39 mg/g DCW) (Vetogan et al., 2010) and the

maximum biosorption capacity dExiguobacterium sp. is 15.6 mg/g DCW for Cd
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(Park and Chon, 2016). The mechanisms of fungal BioEorption are complicated
and mainly consist of two key stages: direct adsampon fungal membrane and
penetration through cell wall. The first stage ispassive biosorption process
independant on fungal metabolism, and the key emilial factor is the functional
groups on cell membrane which affect the interastibetween fungal cells and PTE
ions (Leonard et al., 2004). In the second sta@g, iBns penetrate the cell membrane
and enter cellsia active biosorption, and it is dependent on fungatabolism and
related to the transportation and deposition of #TEeonard et al., 2004).
Accordingly, from the eventual allocation of PTEgha cells, biosorption can be
classified as extracellular accumulation or preatmn, cell surface sorption or
precipitation, and intracellular accumulation (Meghnd Beolchini, 1997). However,
most previous studies address fungal PTE biosarptiaich or defined media with
limited carbon sources, not able to represent fhte@notypic features and biosorption
performance in real-world scenarios, where thedsjmson process is influenced by
many environmental variables, such as PTE avaitgbdarbon sources and growth
conditions (Hamdy, 2000; He and Chen, 2014; Wardy@hnen, 2014). It is of great
importance to inspect microbial phenotypic featuaed PTE biosorption capabilities
across a wide range of environmental conditionsesgmting real-world scenarios,

and a reliable and high-throughput analytical meétisaurgently required.

Biospectroscopy as a group of interdisciplinary Ifobas many advantages in
microbiological study owing to their measuremerttilaites with a high-throughput,

nonintrusive and nondestructive manner (Heys eP@ll4; Jin et al., 2020; Jin et al.,
2017a; Li et al., 2017; Martin et al., 2010). Iméd (IR) spectroscopy, for instance,
relies on the principle that the energy from thieaired radiation is absorbed by the

bending, stretching and twisting of bonds (C-H, ON-H, C=0, C-C, etc.) within the
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sample, resulting in characteristic transmittanue r@flectance patterns (Martin et al.,
2010; Naumann et al.,, 2005). Previous spectroscspidies have successfully
detected the presence of fungal cells, charactkriuagal species, and diagnosed
fungi-induced diseases (Gordon et al., 1999; Kaad.e2002; Naumann et al., 2005).
Recently, biospectroscopic approaches are expandeddetermine microbial

interactions with environmental stimuk,g., antibiotic resistance (Jin et al., 2017a;
Jin et al., 2017b), showing great potentials imgitug PTE-biosorption processes and

bringing new insights into the relevant mechanisves,. no such attempt is reported.

The present study applied attenuated total reflectirourier-transform infrared
(ATR-FTIR) spectroscopy coupled with phenotype wécrays to characterize the
biosorption of Cd and Pb by a fungal str&mplicillium chinense QD10 cultivated
with 48 different carbon sources. This is the fgttdy using spectrochemical tool to
analyse fungal PTE-biosorption process and invatgithe impacts of carbon sources
in a high-throughput and nondestructive manner. @sults aimed to provide a
valuable spectroscopic database to look deepethetbiosorption mechanism from a
novel perspective and offer new clues to enhanngifassociated phytoremediation
by altering the metabolic activities and biosorptiperformance of fungal cells in

real-world scenarios.

2. Materialsand Methods

2.1 Srains and cultivation condition

The fungal strair@mplicillium chinense used in this study was isolated in soils from
Zhalong Wetland (47°32'30"N, 124°37'50"E, Qiqiaty, China) in October 2015. It
was named aS. chinense QD10 and had a satisfactory biosorption perforradioc

Cd and Pb (Jin et al., 2019). This strain was eaiéid in potato dextrose medium
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(200 g of potato, 20 g of glucose and 20 g of agmrdissolved in 1,000 mL of
deionized water and autoclaved) at 28°C for 5 d&hsequently, the cells were
washed and resuspended in deionized water as sthgion for further treatment. Cd
and Pb stock solutions were prepared by dissolRImgNG;), and CdS@in deionized

water, respectively. The final concentration of &l Pb in stock solution was 1.0

o/L.

PM1 plate (BIOLOG, Hayward, CA, USA) was used tamine the carbon metabolic
features ofS. chinense QD10. Fifteen microliters of the cell stock soduti were
resuspended in 135 pL of minimal medium (Zhangl.e2@11) and then added into
each well of a PM1 plate. Each well was then supplged with 1.5 pL of Redox
Dye Mix A (100x, BIOLOG, Hayward, CA, USA) to moaoit fungal growth. The
plate was incubated at 30°C for 5 days, and theucalevelopment was measured
every 4 hours for the absorbance at 590 nm wavtHemgspiratory unit, RU) by a
multimode microplate reader (FLUOstar Omega, BMGteah, UK). To avoid the
influence of Redox Dye on fungal biospectra, anottreatment was prepared
following the same protocol except for the additanRedox Dye Mix A, and used

for biospectral analysis. All the treatments weagied out in triplicates.
2.2 Cd/Pb biosorption treatment and chemical analysis

After 5-day cultivation, each well of PM1 plate wasbjected with 20 uL of Pb or Cd
stock solution and kept shaking for 2 hours (fiRd or Cd concentration of 100
mg/L). Subsequently, the supernatant was colleafied 3,000-rpm centrifugation for
20 min. The cell pellets were further washed withmh deionized water and
centrifuged again (3,000 rpm) for another 20 mihe Bupernatants from two-step

centrifugation were combined, spiked with 2D of internal standards"€Rh, **Sc,
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209Bj), and diluted with deionized water to a finalwme of 50 mL for metal analysis.
Cd and Pb were analyzed by inductively coupledméamass spectrometry (ICP-MS,
X-series 2, Thermo Scientific, USA), and the detectwavelength was 228.8 and
283.3 nm, respectively. The standard calibratidotem contained a mixture of Cd

and Pb in HN@(0.1 M), ranging from O to 100g/L.
2.3 Infrared spectra measurement

Cell pellets after biosorption were further washkecke times with sterile deionized
water to remove the residues of growth media asdsgended in 70% ethanol for
fixation. The washed cell pellets (minimal amoubt L) were applied onto Low-E
slides for interrogation by ATR-FTIR spectroscopj. TENSOR 27 FTIR

spectrometer (Bruker Optics Ltd., UK) equipped wihHelios ATR attachment
(containing a diamond internal IRE; incidence amgfiehe IR beam: 45°) was used
and the instrument parameters were set as 32 scahspatial resolution of 8 ¢

Before the measurement of a new sample, the crysial cleaned with deionized
water, and the background readings were retakentah of 20 spectra were acquired

for each treatment.
2.4 Data analysis

The RU of fungal cells was analysed by MARS sofev@MG Labtech, UK)The
relative RU for fungal growth with each carbon smuwas calculated as the mean of
all RUs measured on day 5. The growth index (Glfumigal cells cultivated with

different carbon source was calculated in Equatign

[Relative RU]y,

Gln o [Relative RU]J 41

~1.0 )

Here, GI,, refers to the Gl innth well. [Relative RU],, and [Relative RU] 4,
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represent the relative RU mth well and well A1 (no carbon source, negativetam))

respectively.

Fungal biomass was obtained by drying the cellepehnd measuring the weight with
the unit of dry cell weight (DCW). The linear regseon between the Gl and biomass
was obtained by serially diluted fungal suspensigth the known Gl and biomass,

following Equation (2).

Biomass = 0.196 X GI + 0.168 (2)

The initial spectral data generated from ATR-FTIRedroscopy were analyzed
within MATLAB R2011a software (TheMathsWorks, Na&ticMA, USA), coupled

with lrootLab toolbox (http://irootlab.googlecodem) (Trevisan et al., 2013). Unless

otherwise stated, the acquired spectra were tredcab the biochemical-cell
fingerprint region (1800-900 cfh), rubberband baseline corrected and normalized to
Amide | (1650 crit) (Baker et al., 2014; Martin et al., 2010). Secomdler
differentiation baseline correction and vector nalization were also performed as an
alternative mean to process the data. Cross-célmulprincipal component analysis
followed by linear discriminant analysis (PCA-LD®&gs subsequently applied to the
preprocessed data to reduce the number of spemtrEO tuncorrelated principal
components (PCs), which account for >99% of theltetariance; LDA is a
supervised technique coupled with PCA in order taximize inter-class and
minimize intra-class variance (Matrtin et al., 20109 identify the specific IR bands
associated with fungal growth and biosorption éficy of Pb or Cd, cluster vector
approach was conducted and visualized the discaitnigy difference (Butler et al.,
2015; Martin et al., 2010). The relationships be&tweach IR band intensity and Gl,

Pb biosorption efficiency or Cd biosorption efficty across media supplemented



218  with 48 carbon sources were analysed by Pearsoelaton analysis (p<0.05). All
219 the statistical analyses were carried out in GraphfPrism 6 unless specific

220 statement.

221 3. Resaults

222 3.1 S chinense QD10 growth profiles cultivated with 48 carbon sources

223 The growth curves ofS chinense QD10 obtained from the RU measurement
224  illustrated significant differences across medipmemented with 48 carbon sources
225  (Figure 1A). In all treatments, an obvious lag ghiasted for about 8 hours, followed
226 by a dramatical increasing RU for some carbon ssurafter the logarithmic growth
227 phase,S chinense QD10 entered the stationary phase at 72 hoursserl hesults
228 demonstrated th& chinense QD10 could effectively utilize some carbon souraed
229  achieve satisfactory growth for 3 days. Figure 1Bsirated that the four carbon
230 sources possessing significantly higher GI (>1.®rewL-glutamine, Tween 80,
231 glycolic acid and methylpyruvate. Fourteen carbourses moderately supporting the
232 growth ofS chinense QD10 (0.5<GI<1.0) included-hydroxyglutaric acid-g-lactone,
233  o-hydroxybutyric acid, adenosine, Gly-Asp, fumaricida bromosuccinic acid,
234  glyoxylic acid, D-cellobiose, inosine, Gly-Glu, darballylic acid, p-hydroxyphenyl
235 acetic acid, m-hydroxyphenyl acetic acid, and 2ramathanol. Other carbons sources
236  were barely useable & chinense QD10 as the Gl was <0.5. Based on the molecular
237  structure and functional groups, 48 carbon souea® categorized into five groups
238 as nucleic acids, carbohydrates, carboxylic a@dsno acids and others. There was
239  no significant difference in fungal growth betwede five groups of carbon sources

240  (p>0.05).
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3.2 Cd and Pb biosorption by S chinense QD10 cultivated with 48 different

carbon sources

Both Cd and Pb were efficiently adsorbedSghinense QD10 cultivated in minimal
medium with 48 different carbon sources, and tlosdription efficiency achieved >90%
for all treatments (Table S1 in Electronic Suppaytilnformation, ESI). Two
adsorption equilibrium models (Langmuir and Fretetglwere applied to understand
Cd and Pb biosorption mechanisms ®ychinense QD10. The Langmuir isotherm
model represents the monolayer adsorption mechami#im a restriction of no
stacking of adsorbed molecules, as described inatitiqu (3). The Freundlich
isotherm model represents both monolayer and rawéil adsorptions by considering
the heterogeneous surfaces possessing differgutioenergy sites, as described in

Equation (4).

K1Ce
1+ K1,Ce

Qe = Qmax (3)

Qe = KpC" (4)

Here, Q. (mg/g DCW) refers to the total Cd/Pb biosorpti@pacity, andC, (g/L)
represents the equilibrium Cd/Pb concentrationhie liquid phaseQ,,,, (mg/g
DCW) is the maximum Cd/Pb biosorption capacity foonolayer adsorption in
Langmuir isotherm model, an#f; (L/mg) is the Langmuir constant associated with
adsorption energyKr (mg/g DCW) represents Cd/Pb biosorption capagcitypath
monolayer and multilayer mechanism in Freundliaitierm model, and 27 is the
heterogeneous sorption sites. Either Langmuir euRdlich isotherm model can be

expressed in a linear form as shown in Equatioparié (6), respectively.

Ce _ 1 Ce

(®)

Qe Qmax'KL Qmax
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logQ, = logKr + % % logC, (6)

Figure 2A llustrates that Cd biosorption fits leettwith Langmuir isotherm
(R°=0.7324) than Freundlich isotherm *&®.0653). The maximum Langmuir
biosorption capacity ¢,...) is 1.81 (mg/g DCW) and the Langmuir constant
associated with adsorption enerd§ X is 1.75 L/mg. In contrast, Pb biosorption fits
better with Freundlich isotherm 80.9458) than Langmuir isotherm %®.1121,
Figure 2B). The empirical parameter related to togeneous sorption site (1/n) is

0.84 and the biosorption capacii] is 0.77 (mg/g DCW) in Freundlich isotherm.

3.3 Infrared spectra of S chinense QD10 cultivated with 48 different carbon

sources

In general,S. chinense QD10 shared similar infrared spectra across 48erdifft
carbon sources regarding the cellular structuregu(€ 3A), including lipid (~ 1750
cm?®), Amide | (~ 1650 crl), Amide Il (~ 1550 crit), Amide Ill (~ 1260 cril),
carbohydrate (~ 1155 ¢hh and symmetric phosphate stretching vibrationd @80
cm™). The 1D score plot of PCA-LDA (Figure 3B) indiedtthe variations between
each category of carbon source, and one-way ANG3# toupled with Turkey’s
multiple comparisons demonstrated that the biospentthe five groups of carbon
sources were significantly differentiatep<(.05), except for the variation between

the groups of amino acids and othgrs(.05).

The cluster vector analysis reveals more infornmatiegarding the biomolecular
difference (Figure 4), which includes five primaorgaks derived from original spectra
as relevant biomarkers for each group of carbonrcesu More precisely, the
biomarkers ofS. chinense QD10 cultivated with amino acids are (~1134%nPQy

asymmetric (~ 1265 cih), Amide Il (~ 1185 crit), Amide Il (~ 1517 crit) and C=0
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(~ 1728 cnil). Besides the peak of BGasymmetric (~ 1265 ch), other significant
peaks of carbohydrate-cultivat&dchinense QD10 cells are RNA (~ 1117 ¢ljy CH
in-plane bend (~ 1510 ¢t Amide | (~ 1659 cil) and C=0, lipids (~ 1740 ch). In
nucleic acid group, the characteristic peaks @@O), V(CC) (~ 1018 cnl),
deoxyribose (~ 1188 ¢, (~ 1269 crit), Amide Il (~ 1540 crit) and lipids (~ 1740
cm™). For carboxylic acid group, the characteristiakzeinclude stretching vibrations
of hydrogen-bonding, C-OH groups (~ 1153 9mN-H thymine (~ 1276 cif), C=C,
deformation C-H (~ 1496 ch), Ring base (~ 1555 chy base carbonyl stretching
and ring breathing mode (~ 1620 {nCharacteristic peaks for other carbon sources
include stretching C-O deoxyribose (~ 1056 ynC-O stretching vibration (~ 1150
cm?), PGy asymmetric (~ 1256 ci), ring base (~ 1555 ¢y and lipids (~ 1740

cm™).
3.4 Mechanisms of Cd and Pb biosorption via spectral analysis

As fungal PTE-biosorption consists of two key stage direct adsorption on fungal
membrane and penetration through cell wall, theyhtibe distinguished by
analyzing the functional groups of cellular compuiseor extracellular polymeric
substance (EPS). Although PCA-LDA is applied toeassthe ‘fingerprint region’ to
characterize the relationships between the whabspeictra and fungal growth or
biosorption efficiency, it is very challenging besa the enormous spectral alterations
across 48 different carbon sources (Figure 5A). thiegefore attempted to identify
discriminating alterations by introducing Pearsoorrelations to determine the
relationships between microbial activities (e.gipniass, Pb biosorption, Cd
biosorption) and spectral variations based on etusector analysis. The results
indicated that several discriminating alterationssifively correlated with fungal

biomass (Figure 5A), including 1340 énfcollagen,p<0.05), 1136 cr (collagen,
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p<0.05) and 966 cih (C-C DNA, p<0.05). These peaks could be viewed as
biomarkers for fungal growth (Figure 5B-5D). Thegrsficant peaks associated with
Cd biosorption included 1745 ¢h{phospholipidsp<0.05), 1620 cil (nucleic acid,
p<0.05), 1456 ci (lipids and proteinsp<0.05), 1396 cil (proteins,p<0.05) and
1057 cm' (stretching C-O deoxyribosg<0.05), as illustrated in Figure 5E-5I.
However, there was no biomarker correlated withbRisorption, further confirming
the different biosorption mechanisms between CdRimé@s suggested by the results

of biosorption isotherms.
4. Discussion

4.1 Biosorption capability of S chinense QD10 on Cd and Pb

Previous studies investigating microbes as biosusbdave demonstrated strong
capacities of microbial cells to absorb and remBV&s, such as marine algae and
yeasts (Goyal et al., 2003; Ozer and Ozer, 200R:s4y and Holan, 1995; Wang and
Chen, 2006)Ascophyllum andSargassum, which can accumulate PTEs more than 30%
of dry weight biomass (Volesky and Holan, 1998jccharomyces Cerevisiae is a
species belonging to yeast, whose PTE biosorptgalality ranges from 10 to 300
mg/g DCW for Pb and 10 to 100 mg/g DCW for Cd frtma equilibrium biosorption
processes (Wang and Chen, 2006). PTE biosorptionfungi has also been
investigated, such &@enicillium sp. MRF-1 which has a strong biosorption capacity
of Cd (0.13-9.39 mg/g DCW) (Velmurugan et al., 2080d Exiguobacterium sp.
with a maximum biosorption capacity of 15.6 mg/g \WCor Cd in Langmuir
isotherm (Park and Chon, 2016). In the presentystihg biosorption capacity &
chinense QD10 was 0.77 mg/g DCW for Pb and 1.81 mg/g DCWdd, much lower

than a previous report on the same strain in riediom (24.6 mg/g DCW for Cd and
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31.2 mg/g DCW for Pb) (Jin et al., 2019). It migh¢ attributing to the defined
medium used in this study, which is nutrient deintiand cannot support the best
fungal growth. Accordingly, fungal cells might nachieve optimal activities,
resultsing in limited active binding sites on fuhgall membrane and lower Cd/Pb
biosorption capacity b$s. chinense QD10. However, defined medium fits better with
the real scenarios in natural habitats, where rhgscurvive under nutrient depletion
conditions (Jin et al., 2017a; Jin et al., 2018a)r result provides a high-throughput
and more comprehensive database to evaluate theb®$&ption performance &

chinense QD10 regarding phytoremediation practices.
4.2 Biospectral fingerprints of S. chinense QD10

Biospectroscopy has a long history of studyingdgaial cells. IR spectroscopy can
be traced back to 1950s (Jin et al., 2017b) andbeas extensively applied as a
sensitive and rapid screening tool for charactegizmicrobes (Jin et al., 2017b;
Picorel et al., 1991). Over the past 20 years, pecsoscopy is successfully
developed for examining biological molecules atl aal tissue level, including
bacteria, yeast and mammalian cells (Baker et 2014; Martin et al., 2010;
Movasaghi et al., 2008). However, only limited we&rocus on fungi, and there is
lack of well-established database for fungal spédtiomarkers. In the present study,
our results illustrated similar biospectra with el key biomarkers of fungi
comparing to those of bacterial cells based on Igasatures, including lipid (~ 1750
cm™®), Amide | (~ 1650 cr), Amide Il (~ 1550 crit), carbohydrate (~ 1155 ¢thand
symmetric phosphate stretching vibrations (~ 1080%)c (Baker et al., 2014;
Maquelin et al., 2003; Martin et al., 2010). It micghe attributed to the similar cell
wall components, such as lipids, proteins and darth@te, even though fungi are

protected by a true cell wall (§a2001).
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4.3 Jpoectral biomarkers for S chinense QD10 growth across carbon source

groups

Although the Gl ofS. chinense QD10 cultivated with different carbon source greup
showed no significant difference, the cluster veetaalysis raises more biochemical
information by locating the discriminating biomar&ecross carbon source categories.
These biomarkers reveal the metabolic featureS. @hinense QD10 responsive to
carbon sources. Cultivated with carbohydrate, fetance, biospectra & chinense
QD10 have specific biomarkers including P@symmetric (~ 1265 ci), RNA (~
1117 cn), CH in-plane bend (~ 1510 ) Amide | (~ 1659 cri) and C=0, lipids
(~ 1740 cml), indicating the occurrence of complex carbohyaranetabolic
processes during fungal growth (Figure 4). Thesemhbrkers are significantly
different from those linked with bacterial growtkcept for Amide | (~ 1659 cif)
(Jin et al., 2018a; Jin et al., 2018b), suggestiisginct metabolite profiles between
fungal and bacterial growth. Carbohydrates are rtedoto associate with fungal
metabolism, not only providing energy for the sw#is of trehalose, polyols,
glycogen, fatty acids and other cellular componemist also supplying carbon
skeleton for other metabolic processes, such ahabygrowth and amino acid
biosynthesis (Bago et al., 2003; Deveau et al.32&asmussen et al., 2008). As the
fungal metabolisms vary across intra- and inteugsoof different carbon sources
throughout the growth period, there is no cleaatiehship between growth and

carbon source categories.

We further applied Pearson correlation analysisetam cluster vector analysis to
link the spectral variations with fungal biomassl atentify some key biomarkers for
fungal growth. The IR bands significantly corretateith Gl include 1340 cth

(collagen), 1136 cih (collagen) and 966 cm(C-C DNA, Figure 5B-5D), implying
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strong associations of these cellular componentis fungal growth. Among them,
the DNA-spectral biomarker represents DNA replmatihrough cell reproduction
process (Jin et al., 2018a; Jin et al., 2018b). itkaddhlly, the collagen-associated
spectral alterations are very likely linked to foemation of fungal fimbriae, which
consist of collagen and are abundant on extracacklerfaces (Celerin et al., 1996).
Our results suggest that these spectral biomarka@nsbe used as fungal growth

indicators in future studies.

4.4 Derived biospectral biomarkers explaining different mechanisms of Cd and

Pb biosorption

Cultivated with different carbon sources, Cd andoRisorption byS. chinense QD10
followed the Langmuir and Freundlich isotherm, exgjvely. It implied distinct
mechanisms behind Pb and Cd biosorption, consistémtour previous report (Jin et
al., 2019). As the Langmuir isotherm representaitbeolayer adsorption mechanism
and the Freundlich isotherm describes both monolagd multilayer adsorptions by
considering the heterogeneous surfaces possessfatemt sorption energy sites,
spectrochemical analysis might provide deeper Imsigia diagnosing spectral

alterations associated with PTE biosorption pracess

The results of spectral analysis indicate that phoslipids and proteins (1745 ¢in
1456 cnt, 1396 cnit) are strongly correlated with Cd biosorption (FgyBE-5I). It
suggests that the cell wall components ®fchinense QD10 are the primary
interactive targets for Cd biosorption, such asygmtcharides, proteins and lipids
which offer abundant metal-binding functional greup.g., carboxylate hydroxyl,
sulphate, phosphate and amino groups (Veglio aradcBimi, 1997). It is consistent

with the fact that Cd biosorption isotherm folloth® Langmuir isotherm and is more
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likely driven by the cell surface sorption that lb@iroteins and carbohydrate fractions
are involved in the binding of Cd ions (Jin et &Q19). In contrast, no spectral
biomarker is observed to significantly associatéhw?b biosorption. This result is
also evidenced by the Freundlich isotherm of Pbsdmgtion describing both
monolayer and multilayer adsorptions by considetihg heterogeneous surfaces.
Thus, it suggests that extracellular precipitatierplains the majority of Pb
biosorption and EPS possess a substantial quaatitgnion functional groups

adsorbing PB ions (Wang and Chen, 2006).

This discrimination may be derived from the two gsts of PTE biosorption
mechanisms by fungi: direct adsorption on fungaininene and penetration through
cell wall (Leonard et al., 2004). These two stagas occur independently, possibly
resulting in disticnt biosorption behaviour acrdsssorbents (microbial species) or
PTEs. For instance, exopolysaccharides (EPS) repres interesting affinity for Pb,
which is a metabolism-independent process drivemtgyactions between the cations
and negative charges of acidic functional groupg®$ (Pérez et al., 2008). As EPS
are a mixture of biomaterials, such as EPS, glutepr, lipopolysaccharide and
soluble peptide (Jin et al., 2019), it is very ¢fading to distinguish and extract
specfic spectral biomarkers associated with extitdae components responsible for
PTE biosorption. Our results hint that discrimingtipeaks derived from IR spectra
could satisfactorily uncover the behaviour and nraegms of PTE biosorption by
interrogating the distinct functional groups orlakdr components (Martin et al.,

2010).
5. Concluson and remarks

Fungi-assisted phytoremediation is an environmBbnsalfe approach to remove PTEs
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from contaminated soils, and PTE biosorption bygfums a critical step in
phytoremediation. This study introduced ATR-FTIResposcopy coupled with
Biolog PM plate as a non-destructive and high-tghput approach to investigate the
performance and mechanisms of Cd and Pb biosorptianfungal strair®. chinense
QD10 cultivated with difference carbon sources. fhar first time, we found several
spectral biomarkers associated with the growth @184*, 1136 cnit, 966 cm') and
Cd biosorption (1745 cih 1620 cnit, 1456 cnt, 1396 cnt, 1057 cnt) of S
chinense QD10. Cd biosorption primarily followed the mongds Langmuir isotherm
and was mainly driven by the cell surface sorptianravelled by the spectral
alterations affiliated with proteins and carbohydsa(1745 crid, 1456 crmi, 1396
cm™). For Pb biosorption, EPS possibely possessecbstantial quantity of anion
functional groups adsorbing Pbions as extracellular precipitation, thus follogin
multilayer Freundlich isotherm and representingsignificant spectral biomarkers.
Our results suggested biospectroscopy as a powéshll in investigating the
interactions between fungal cells and PTEs, disistung both functional groups and
mechanisms associated with PTE biosorption procEss. study lends new sights
into fungal PTE biosorption and offers databasdheir behaviour across various
carbon sources, revealing the tip of the icebeganding the interactions between
microbes and PTEs in real-world scenario from spscbpic perspective, which

implies great potential for enhancing phytoremednat
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9. Figure Captions

Figure 1. Growth profiles ofS. chinense QD10 with 48 different carbon sources. (A)
Growth curves during a 144-hour cultivation perig) Growth indices (Gl) ofS

chinense QD10 in comparison with the negative control (A&,carbon source).

Figure 2. Cd and Pb adsorption isotherms &ychinense QD10 cultivated with 48
different carbon sources. (A) Langmuir isotherm elogkpresenting the monolayer
adsorption mechanism. (B) Freundlich isotherm madptesenting both monolayer
and multilayer adsorptions by considering the lmgfeneous surfaces possessing
different sorption energy sites. Initial concentatof Cd and Pb was 100 mg/L and

the adsorption time was 2 hours.

Figure 3. (A) Mean spectra of all pre-processed dat&. ahinense QD10 cultivated
with 48 different carbon sources based on rubbetibaseline correction and Amide |
(1650 cm') normalization. (B) PCA-LDA categorizations & chinense QD10
cultivated with five groups of carbon sources, unithg nucleic acid, carbohydrate,
carboxylic acid, amino acid and others. Twenty arédd spectra were randomly
obtained per treatment. Different small letters igate significant difference

(Duncan's tesp<0.05) among treatments.

Figure 4. Cluster vector analysis & chinense QD10 cultivated with five groups of
carbon sources. The unique spectral biomarkersedoch carbon source group are

labelled. Twenty infrared spectra were randomlyaoted per treatment.

Figure 5. (A) Cluster vector ofs. chinense QD10 cultivated with 48 different carbon
sources. Colour bars illustrate IR bands possessgmficant correlations (p<0.05)
with growth index (GlI, green), Pb biosorption afficcy (blue) and Cd biosorption

efficiency (red). IR bands significantly correlatdth Gl include: (B) 1340 ci
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(collagen), (C) 1136 cth (collagen) and (D) 966 cMm (C-C DNA). IR bands
significantly correlate with Cd biosorption efficiey include: (E) 1745 cih
(phospholipids), (F) 1620 cm(nucleic acid), (G) 1456 ci(lipids and proteins), (H)

1396 cnt (proteins) and (I) 1057 ci(stretching C-O deoxyribose).
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Highlights

1) Cd/Pb biosorption performance by S. chinense QD10 across 48 carbon sources
2) Langmuir model for Cd biosorption and Freundlich model for Pb biosorption
3) First ATR-FTIR spectroscopic study on metal biosorption mechanisms

4) Nove spectral biomarkersfor fungal growth and Cd biosorption
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