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Summary. The question of selecting the “best” amongst different choices is a common
problem in statistics. In drug development, our motivating setting, the question becomes,
for example: which treatment gives the best response rate. Motivated by recent devel-
opments in the theory of context-dependent information measures, we propose a flexible
response-adaptive experimental design based on a novel criterion governing arm selec-
tions which can be used in adaptive experiments with simple (e.g. binary) and complex
(e.g. co-primary, ordinal, nested) endpoints. It was found that for specific choices of the
context dependent measure, the criterion leads to a reliable selection of the correct arm
without any parametric or monotonicity assumptions, and provides noticeable gains in set-
tings with costly observations. The asymptotic properties of the design are studied for
different allocation rules, and the small sample size behaviour is evaluated in simulations
in the context of Phase II clinical trials with different endpoints. We compare the proposed
design to currently used alternatives and discuss its practical implementation.

Keywords: Dose Finding; Experimental Design; Information Gain; Multinomial Out-
comes; Response-Adaptive Design, Shannon’s Differential Entropy

1. Introduction

Over the past decades, a variety of different methods for clinical trials aiming to select
the “optimal” arm (e.g. dose, combination of treatments, treatment regimen, etc.) have
been proposed in the literature (see e.g. O’Quigley et al., 2017, for a recent review of
novel methods). Given m arms, the aims of Phase I and Phase II clinical trials are
often to select the target arm (TA), the arm whose toxicity probability is closest to the
maximal accepted target, 0 < γt < 1, or (and) whose efficacy probability is closest to
the target efficacy, 0 < γe ≤ 1, where higher values of γe corresponds to more effective
arms. Despite the similar problem formulation for Phase I (evaluating toxicity) and
Phase II (evaluating efficacy) trials, quite different approaches are generally used.

In Phase I dose-escalation trials, designs assuming a monotonic dose-toxicity rela-
tionship have been shown to have good operating characteristics in the context of single
agent trials (Iasonos et al., 2016; Clertant and O’Quigley, 2017). There is, however,
considerable uncertainty in the toxicity ordering for clinical trials investigating combi-
nations of agents or when considering different treatment schedules (Wages et al., 2011).
Methods based on a monotonicity assumption are of limited use for such trials. To over-
come this issue and to relax the monotonicity assumption, some specialised approaches
have been proposed, see e.g. Riviere et al. (2015) for a review of recent methods for
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combination trials, and Wages et al. (2014); Guo et al. (2016) for approaches to dose-
schedule studies. The majority of novel Phase I methods relaxing the monotonicity
assumption rely either on a complex parametric model or on explicit orders of toxicity.
While such methods allow borrowing information between treatment arms, they might
fail to find the TA in trials with a large number of potential orderings and a limited
sample size. Furthermore, the majority of such designs consider a single binary end-
point only while more complex outcomes are becoming more frequent in dose finding
trials, see Lee et al. (2017) for an example with multiple toxicity grades, and Thall and
Cook (2004) for examples of trials with multinomial outcomes assuming a monotonic
dose-toxicity relationship. Despite this, methods for studies with non-binary outcomes
relaxing monotonicity assumption are sparse to date.

While relaxing the assumption of monotonicity between treatment arms in Phase I
studies is relatively novel, designs that consider arms independently have been pro-
posed for a long time in the Phase II setting (see e.g. Stallard and Todd, 2003; Koenig
et al., 2008; Magirr et al., 2012). Williamson et al. (2016) have recently advocated
designs maximising the expected number of responses in small populations trials. As
a result, adaptive randomisation methods and optimal Multi-Arm Bandit (MAB) ap-
proaches are starting to be considered as appropriate candidates to fulfill this objective.
Although MAB designs outperform other well-established methods in terms of the ex-
pected number of successes, they can suffer low statistical power for testing comparative
hypotheses (Villar et al., 2015a). This problem corresponds to the “exploration vs ex-
ploitation” trade-off (Azriel et al., 2011). Solutions to tackle this balance and to achieve
a high power while still assigning the majority of patients to superior treatments is an
emerting topic in the MAB field. In particular randomised versions of the optimal MAB
designs (Villar et al., 2015b), and approaches fixing the allocation of patients to the con-
trol arm (Villar et al., 2015a,b; Williamson et al., 2016; Villar et al., 2018) were proposed.
These methods have primarily been developed for binary endpoints and selecting the
TA corresponding to the highest response probability, and as a result, cannot be applied
to a problem of selecting arm with the arbitrary target probability, γe, such as studies
looking to select the ED80, the dose giving 80% of the maximum efficacy. At the same
time, MAB approaches for non-binary endpoints, e.g. for multinomial (Glazebrook,
1978), normal (Jones, 1970, 1975), and exponential (Gittins et al., 2011) endpoints have
been known for a long time, but only recently started to be explored in more details for
application in clinical trials (Smith and Villar, 2018; Williamson and Villar, 2019).

While current guidelines generally recommend single endpoints for primary analyses
of confirmatory clinical trials, it is recognized that certain settings require inference
on multiple endpoints for comprehensive conclusions on treatment effects (Ristl et al.,
2018). Consequently, Phase II clinical trials evaluating several endpoints, for example,
toxicity and efficacy endpoints, co-primary efficacy endpoints or nested efficacy end-
points, start to attract attention in the literature (Song, 2015; Zhou et al., 2017). While
formal testing for a difference in treatment responses remains the main focus of designs
proposed for such trials, maximising the number of patients receiving the superior treat-
ment is also of crucial importance – specifically in small population trials. Despite that,
response-adaptive designs for settings with multiple endpoints have not been extensively
studied yet.
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This work is motivated by several Phase I and Phase II clinical trials which could
benefit from an experimental design that does not require a parametric or monotonicity
assumption between arms, and for which the authors contributed as statistical collab-
orators. One of them is the TAILoR (Pushpakom et al., 2019) trial which considered
three active arms and placebo with the primary objective to find whether the response
of at least one active arm is significantly different from the placebo group. The second
objective was to find the optimal arm defined as the arm with the largest difference com-
pared to placebo. The original study employed a two stage design in which half of the
patients were equally randomised to four arms initially before a selection of all promising
arms was undertaken. This design is expected to lead to a reliable answer to the first
question, but will result in a low number of patients on the optimal arm. Therefore,
response-adaptive designs such as MAB are of interest. The MAB approaches, however,
can result in a failure to answer the primary goal of the trial. Therefore, a design able
to balance these objectives is of interest.

The research problem described above can be considered as the general issue of
correct selection of the TA whose response probability is closest to the percentile, 0 <
γ ≤ 1. Importantly, an investigator aims to assign the majority of patients to the TA,
but has limited information about the dependencies between arms.

In this work, we propose a general response-adaptive experimental design for studies
with multinomial outcomes to solve a generic problem of selecting the TA under ethical
constraints (e.g. maximize the number of patients at the superior arm) and when
each observations is costly. Based on the theory of weighted (or, context-dependent)
information measures (Belis and Guiasu, 1968; Kelbert et al., 2016), we propose to use
the information gain (found as a difference of the Shannon differential entropy and the
weighted Shannon differential entropy) as a criterion for the decision-making in clinical
trials. The proposed approach allows incorporation of the context of the outcomes (e.g.
avoid high toxicity or low efficacy) in the information measures themselves. This is
achieved by assigning a greater “weight” to the information obtained about arms with
desirable characteristics. Through specifying an arbitrary parametric weight function,
the proposed approach can be applied to various experiments with (ethical) constraints
tailored for the specific investigator’s needs. In this work, two families of weight functions
with a particular interest in arms whose response probabilities are in the neighbourhood
of γ are considered in more details. We show that, subject to appropriate tuning, the
design employing the derived criteria allocates each patient to the treatment estimated
to be the best while taking into account the uncertainty about the estimates for each
arm and can lead to better operating characteristics than alternative approaches. This
leads to fulfilling of statistical goals of the experiment under the ethical constraints.

The idea of applying information-theoretic concepts, and specifically the Shannon
entropy (Shannon, 1948), to govern treatment selection dates back to the work by Klotz
(1978) who introduced the Maximum Entropy Constrained Balance Randomization de-
sign which seeks to maximize the Shannon entropy subject to the expected imbalance.
This and related ideas of using the Shannon entropy, however, have received little atten-
tion in the literature until very recently when other designs for clinical trials using the
information gain principle have been proposed (see e.g. Barrett, 2016; Kim and Gillen,
2016). These works, however, employ the standard definitions of information measures
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and include the ethical considerations through additional constraints on the derived
information-theoretic criteria. The need for these constraints arises as standard mea-
sures of information do not depend on the value of the outcomes themselves but only the
corresponding probabilities of these outcomes (Kelbert and Mozgunov, 2017). There-
fore, they are called “context-free” (Kelbert et al., 2016). While the context-free nature
gives the notion of information great flexibility which explains its successful application
in various fields, it might be also considered as a drawback in many application areas
such as clinical trials. It was found that the “context” of the experiment can be included
into the information measures directly using a weight function (Belis and Guiasu, 1968;
Kelbert and Mozgunov, 2015) that gives more value to the points of specific interest.
Based on this, a Phase I/II dose-finding clinical trial design with trinary outcomes that
utilizes an information gain criterion has been developed by Mozgunov and Jaki (2019).
Furthermore, similar arguments and weight functions were used to derive a loss function
for Phase I dose-escalation trials with binary responses (Mozgunov and Jaki, 2020).

The current work builds on these recent developments and expands the ideas in the
following ways. Firstly, we consider a generic setting with multinomial outcomes and
study a family of weight functions parametrised by the newly introduced penalisation
parameter κ that generalises the criteria used by Mozgunov and Jaki (2019, 2020) and
extends the potential applications beyond dose-finding clinical trials. Secondly, we pro-
pose an asymptotically unbiased and consistent estimator of the derived criterion and
study the theoretical properties of the design based on this criterion. Finally, we propose
a unified framework for using the weighted information gain to govern the treatment
selection that can be used with an arbitrary parametric weight function specific to the
ethical considerations of a given experiment.

The remainder of the paper is organized as follows: derivations of the criterion and
assignment rules are given in Section 2. The procedure for finding a robust optimal
value of the penalization parameter κ of the proposed design is given in Section 3. The
proposed design is applied to the motivating setting of Phase II in Section 4 and to a
trial with co-primary efficacy endpoints in Section 5, respectively. We conclude with a
discussion in Section 6.

2. Methods

2.1. Selection Criteria
Consider a discrete random variable, corresponding to treatment arm j, taking one of d

values and a corresponding random probability vector Zj =
[
Z

(1)
j , Z

(2)
j , . . . , Z

(d)
j

]
∈ Sd

defined on a unit simplex

Sd = {Zj : Z
(1)
j > 0, Z

(2)
j > 0, . . . , Z

(d)
j > 0;

d∑
i=1

Z
(i)
j = 1}. (1)

Assume that Zj has a prior Dirichlet distribution Dir(vj+J) where vj =
[
v
(1)
j , . . . , v

(d)
j

]T
∈

Rd+,
∑d

i=1 v
(i)
j = β and J is a d-dimensional unit vector. After nj realizations of a dis-

crete random variable in which x
(i)
j outcomes of i are observed, i = 1, . . . , d, the random
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vector Znj has a Dirichlet posterior distribution with density function

fnj (pj |xj) =
1

B(xj + vj + J)

d∏
i=1

(
p
(i)
j

)x(i)j +v
(i)
j

, B(xj+vj+J) =

∏d
i=1 Γ(x

(i)
j + v

(i)
j + 1)

Γ
(∑d

i=1(x
(i)
j + v

(i)
j + 1)

)
(2)

where pj =
[
p
(1)
j , . . . , p

(d)
j

]T
, xj =

[
x
(1)
j , . . . , x

(d)
j

]
,
∑d

i=1 x
(i)
j = n, 0 < p

(i)
j < 1,∑d

i=1 p
(i)
j = 1 and B(xj +vj +J) is the Beta-function and Γ(x) is the Gamma-function.

Let αj =
[
α
(1)
j , . . . , α

(d)
j

]T
∈ Sd be the vector in the neighbourhood of which fnj

concentrates as nj → ∞. For example, in the clinical trials with binary responses
considered in Section 4, the outcomes are response/no response, and α is the probability
of response at a given arm. A classic question of interest in this setting is to estimate
the probability vector, αj . The information required to answer the estimation question
can be measured by the Shannon differential entropy of fnj (Cover and Thomas, 2012)

h(fnj ) = −
∫
Sd
fnj (pj |xj)logfn(pj |xj)dpj (3)

with convention 0 log 0 = 0. The classic formulation of the estimation question, however,
does not take into account the fact that an investigator would like to find the target
arm (TA) having pre-specified characteristics γ =

[
γ(1), . . . , γ(d)

]
∈ Sd. These target

pre-specified characteristics could be, e.g. γ = 1 in a Phase II trial targeting the most
efficient arm, or γ = 0.25 in a Phase I trial targeting the maximum tolerated dose
corresponding to a 25% toxicity risk.

To take the context of the experiment and the nature of the outcomes pj into account,
one can consider an estimation experiment with “sensitive” area (i.e. the neighbourhood
of γ). The information required in such an experiment can be measured by the weighted
Shannon differential entropy (Belis and Guiasu, 1968; Clim, 2008; Kelbert et al., 2016;
Kelbert and Mozgunov, 2017) of fnj with a positive weight function φnj (pj)

hφnj (fnj ) = −
∫
Sd
φnj (pj)fnj (pj |xj)logfnj (pj |xj)dpj . (4)

The crucial difference between the information measures given in Equation (3) and
Equation (4) is the weight function, φnj (pj), which emphasizes the interest in the neigh-

bourhood of γ rather than on the whole Sd. It reflects that the information about the
probability vector which lies in the neighbourhood of γ is more valuable in the ex-
periment. Note that the context-free measure (3) can be interpreted as a weighted
measure (4) with equal weights on every point in Sd.

In actual studies, an investigator is typically interested in answering the question:
Which arm has an associated probability vector closest to γ. For this question, the
information gain from considering the experiment with a sensitive area equals to

∆nj = h(fnj )− h
φnj (fnj ). (5)

Here, ∆nj is the average amount of additional statistical information required when
considering the context-dependent estimation problem instead of the traditional one.
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Following the information gain approach, the first term in the equation above is the
information in a classic experiment using the context-free measure, while the second
term is the information when the context is taken into account.

Our central proposal is to use this measure ∆nj to govern the arm selection in a
sequential experiment. The weight function used to compute the information gain can
be of different forms to reflect the question an investigator is interested in and define
the “value” of the information in different areas of the simplex Sd. The weight function
should, therefore, be set in line with the objectives of the clinical trial. Drawing a
parallel with the MAB approaches, Equation (5) can be also interpreted as defining an
index for allocation of sampling observation to each arm. In this work, we will consider
two families of weight functions that are suitable for two different clinical settings. First,
we focus on a family of weight functions for the sensitive estimation question as above,
and introduce a second family accounting for minimum and (or) maximum thresholds
in Section 2.5.

We begin by considering a family of weight functions in the Dirichlet form

φnj (pj) = C(xj ,γ, nj)
d∏
i=1

(
p
(i)
j

)γ(i)nκj
(6)

parametrised by κ ∈ (0, 1) where C(xj ,γ, nj) is a constant satisfing the normalization
condition

∫
Sd φnj (pj)fnj (pj |xj)dpj = 1. The parameter κ is restricted to the unit inter-

val to ensure asymptotically unbiased estimates ofαj : limnj→∞
∫
Sd pjφnj (pj)fnj (pj)dpj =

αj . A weight function in the form of the probability density function, fnj , allows for an
analytical expression of the information gain, ∆nj , and for tracing the dependence of
the resulting information gain criteria on the weight function explicitly. Theorem 1 pro-
vides an analytical solutions for the asymptotic behaviour of the information gain under
the weight function φnj (pj) and provides insights on the information gain’s relevance to
the formulated problem of the TA selection under ethical constraints.

Theorem 1. Let h(fnj ) and hφnj (fnj ) be the standard and weighted differential en-

tropies of (2) with weight function (6) corresponding to arm j. Let limnj→∞
x
(i)
j (nj)

nj
=

α
(i)
j , i = 1, 2, . . . , d and

∑d
i=1 x

(i)
j = nj, then

∆nj = O

(
1

n1−2κj

)
as nj →∞ if κ <

1

2
;

∆nj = −1

2

(
d∑
i=1

(
γ(i)
)2

α
(i)
j

− 1

)
n2κ−1j +ω(αj ,γ, κ, nj)+O

(
1

n
η(1−κ)−κ
j

)
as nj →∞ if κ ≥ 1

2

where

ω(αj ,γ, κ, nj) =

η∑
u=3

(−1)u−1

u
nuκ−u+1
j

 d∑
i=1

(
γ(i)
)u(

α
(i)
j

)u−1 − 1

 and η = b(1− κ)−1c
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All proofs are provided in the Supplementary Materials.
The information gain, ∆nj , tends to 0 for κ < 1/2 which implies that assigning a

value of information with a rate less than 1/2 is insufficient to emphasize the impor-
tance of the context of the study. However, the limit is non-zero for κ ≥ 1/2. Following
the conventional information gain approach, one would like to make a decision that
maximises the statistical information in the experiment. The leading terms of the in-
formation gain ∆nj is always non-positive, and for any fixed n the asymptotics terms

achieve the maximum value 0 at the point α
(i)
j = γ(i), i = 1, . . . , d (all constants are

cancelled out). This reflects the fact that, by adding one more research question into
the information measure through the weight function, the uncertainty in the experiment
(in terms of the differential information measure) is increased. There is no additional
uncertainty when the answer to the both research questions coincide. Therefore, it fol-
lows that collecting more information about the arm which has characteristics αj close
to the target γ (the ethical constraint of the experiment) implies maximisation of the
information gain, ∆nj . Consequently, each patient tends to be assigned to the TA, and
the criterion ∆nj is a patient’s gain criterion (Whitehead and Williamson, 1998). It will
be further demonstrated that, for certain values of the parameter κ, ∆nj also takes into
account the statistical uncertainty of the arm and achieves the goal of the trial under
ethical constraints. Therefore, we propose to use the information gain ∆nj for the arm
selection in a sequential experiment.

To keep the tractable solution which can be easily interpreted in applications and
could be argued to be easier to justify to use, we construct the arm selection crite-
rion under the weight function φnj (·) nearly maximising the information gain using the
leading term of the asymptotic expression for ∆nj derived in Theorem 1:

δ(κ)(αj ,γ) :=
1

2

(
d∑
i=1

(
γ(i)
)2

α
(i)
j

− 1

)
n2κ−1j . (7)

Note that maximising the leading term of the information gain asymptotics is equiv-
alent to minimising δ(κ)(αj ,γ). The criterion (7) possesses some desirable properties:

δ(κ)(·) ≥ 0 and δ(κ)(·) = 0 iff αj = γ for all κ and nj . The boundary values α
(i)
j = 0,

i = 1, . . . , d correspond to infinite values of δ(κ)(αj ,γ) which is advocated by Aitchison
(1992) as one of the important properties for functions defined on a simplex, Sd. Inter-
estingly, as pointed out by one of the referees, the selection criterion (7) is similar to a
testing approach based on a Wald-test but obtained using an independent argument.

While the term in brackets reflects how close the vector of the parameters αj is to the
vector of the target characteristics, γ, the balance in the “exploration vs exploitation”
trade-off is controlled by the term n2κ−1j reflecting the penalty on the number of obser-
vations on the same arm. A larger number of patients on an arm makes it less desirable
to be chosen. Therefore, as the experiment progresses the design requires an increasing
level of confidence that the selected arm is the TA. Increasing values of κ correspond
to a greater penalty of the number of patients allocated to a specific arm and hence is
expected to lead to a more spread allocation. This corresponds to a greater interest in
the statistical power of the experiment. In contrast, κ = 1/2 corresponds to no penalty
and is of particular interest in trials with small sample sizes. We will refer to κ as the
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penalization parameter . The penalization term on the number of observation in a given
arm is of a growing interest in reinforcement learning, where it is considered as a way
to address the exploration-exploitation trade-off similar to the considered problem (see
e.g. an overview of the related literature by Browne et al., 2012).

In the context of studies with binary outcomes considered in the example in Section 4,
the selection criterion takes the form

δ(κ)(αj , γ) :=
2(αj − γ)2

αj(1− αj)
n2κ−1j (8)

where αj is the probability of an event for arm j and γ is the target probability. The
squared distance term ensures that the arm with αj closest to γ is selected. At the
same time, the denominator is the variance of a probability of a binary event and,
therefore, takes into account the uncertainty about the arm. Thus, the first term can be
considered as a normalised distance between the target probability and the probability
corresponding to a particular arm. Mozgunov et al. (2019) have shown that the first term
of the criterion (8) shares the properties of the squared distance between αj , γ ∈ (0, 1)
on the logit-transform scale proposed by Aitchison (1982, 1992) but, additionally, is
convex and resembles a well-known squared distance formula.

2.2. Estimation
While the desirable characteristics of the TA, γ, are known and fixed prior to the trial,
the selection criterion (7) also depends on the true unknown parameters, αj . Below, we
propose an estimator of the selection criterion (7).

Consider a discrete set of m arms, A1, . . . , Am, associated with α1, . . . ,αm and
n1, . . . , nm observations. Arm Aj? is optimal if δ(κ)(αj? ,γ) = infj=1,...,m δ

(κ)(αj ,γ).

To estimate δ(κ)(αj ,γ), consider a random variable δ̃
(κ)
nj ≡ δ(κ)(Znj , γ) with Znj hav-

ing Dirichlet distribution (2). Theorem 2 shows that δ̃
(κ)
nj is asymptotically unbiased,

consistent and asymptotically normal.

Theorem 2. Let Z̄ be a standard Gaussian RV and Z̃nj = Σ−1/2
(
Znj −αj

)
be a

random variable with pdf f̃nj where pdf of Znj is given in (2) with limnj→∞
x
(i)
j (nj)

nj
= α

(i)
j

for i = 1, 2, . . . , d,
∑d

i=1 x
(i)
j = nj and Σj is a d-dimensional square matrix with elements

Σj[uv] =
α
(u)
j (1−α(u)

j )

nj
if u = v and Σj[uv] = −α

(u)
j α

(v)
j

nj
if u 6= v. Let δ̃

(κ)
nj = δ(κ)(Znj ,γ),

∇δ(κ)(z,γ) =
[
∂δ(κ)(z,γ)
∂z(1)

, . . . , ∂δ
(κ)(z,γ)
∂z(d)

]T
, δ̄

(κ)
nj = Σ̄j

−1/2 (
δ(κ)(Znj ,γ)− δ(κ)(αj ,γ)

)
where

Σ̄j = ∇T
αj

Σj∇αj and ∇αj ≡ ∇δ(κ)(z,γ) evaluated at z = αj. Then, limnj→∞ Eδ̃(κ)nj =

δ(κ)(αj ,γ), limnj→∞Vδ̃(κ)nj = 0, and δ̄
(κ)
nj weakly convergences to Z̄.

A single summary statistics for δ(κ)(Znj ,γ) is needed to select the most promising

arm in the sequential experiment. We consider a “plug-in” estimator, δ̂(κ)(p̂nj , γ) ≡ δ̂(κ)nj

with p̂nj = [p̂
(1)
nj , . . . , p̂

(i)
nj , . . . , p̂

(d)
nj ] and p̂

(i)
nj =

x
(i)
j +v

(i)
j

nj+β
(i)
j

, i = 1, . . . , d, the mode of the
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posterior Dirichlet distribution. The estimator for the arm Aj takes the form

δ̂(κ)nj = δ(κ)(p̂nj ,γ) =
1

2

(
d∑
i=1

(
γ(i)
)2

p̂
(i)
nj

− 1

)
n2κ−1j , j = 1, 2, . . . ,m. (9)

The estimator (9) requires prior parameters v1, . . . ,vm to start the experiment.

2.3. Assignment Rules
The estimator (9) is used to govern the selection among arms during the experiment and
summarizes the arm’s characteristics. It can be applied to different types of sequential
experiments. We consider two assignment rules: A deterministic “select the best” rule,
and a randomisation rule that randomizes patients to arms. These rules follow the
setting of the motivating clinical trials. For example, the deterministic rule prioritizes
the exploitation over exploration and can be used in Phase I trials evaluating toxicity
where the randomization to all doses might not ethical (an example is provided in
the Supplementary Materials) or in the Phase II setting if the goal of maximizing the
number of successes is prioritised (considered in Section 4). The randomised rule could
be favoured when an investigator is primarily interested in a high statistical power
(Section 4).

2.3.1. Deterministic “Select the Best” rule
Let n be a total sample size and begin with the experiment with the arm that minimizes

δ̂
(κ)
βj

, j = 1, . . . ,m. Given nj observations, xj outcomes for the arm Aj , j = 1, . . . ,m

and using the “plug-in” estimator, an arm Aj? is selected if δ̂
(κ)
nj? = infj=1,...,m δ̂

(κ)
nj . The

method proceeds until the total number of n is attained. The arm Aj? satisfying

δ̂(1/2)nj?
= inf

j=1,...,m
δ̂(1/2)nj . (10)

is adopted for the final recommendation, where
∑

j nj = n. The value κ = 0.5 in (10)
is used as there is no more scope for exploration at the end of the study, and the final
recommendation should be not penalized by the sample size.

2.3.2. Randomised rule
Under this rule, the arm selected in the experiment is randomised with probabilities

w̃j ≡
1/δ̃

(κ)
nj∑m

i=1 1/δ̃
(κ)
ni

, j = 1, . . . ,m. When no observations have yet been collected, the

procedure randomizes according to the criterion based on the prior distribution alone,

δ̂
(κ)
βj

, j = 1, . . . ,m. Then, given nj observations, xj outcomes for arm Aj , j = 1, . . . ,m

and using the “plug-in” estimator (9), arm Aj is selected with probability ŵj = 1 if

δ̂
(κ)
nj = 0 and with probability

ŵj =
1/δ̂

(κ)
nj∑m

i=1 1/δ̂
(κ)
ni

if δ̂(κ)ni > 0, i = 1, . . . ,m. (11)
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The method proceeds until n observations are attained. We adopt Aj? as in Equa-
tion (10) for the final recommendation.

2.4. Design’s Consistency
Although large sample size is never achieved in early phase clinical trials, the consistency
condition of the design ensures that the approach provides a more reliable selection of
the TA as sample size increases. The consistency condition for the proposed design
under two assignment rules under the weight function φn(·) is given in Theorem 3.

Theorem 3. Let us consider the experimental design with a selection criteria based

on δ̃
(κ)
nj , m arms and true probabilities vectors αj, j = 1, . . . ,m. Then, (a) The design

is consistent under the randomised rule for κ ≥ 0.5;(b) the design is consistent under
the deterministic rule for κ > 0.5.

Note that under the deterministic rule, κ = 0.5 leads to a lack of consistency of the
design. The effect on this will be considered in the setting of Phase I clinical trial with
a small sample size (see Supplementary Materials) and in the setting of Phase II clinical
trial with moderate sample sizes.

2.5. An Alternative Weight Function
The weight function, φnj (·), above can be a suitable choice when an investigator is
interested in the TA with particular characteristics. At the same time, alternative
research questions (e.g. composite) can be of interest to an investigator in the trial.
For example, in some clinical trials, lower and/or upper bounds on the characteristics
of interest can be imposed. The proposed information-theoretic approach can also be
applied to such more complex questions. We provide an example below.

Consider a trial in which, one is still interested in the TA as close as possible to γ
but only if these characteristics are “close enough” to the target. For example, in the
setting of a Phase II clinical trial with binary responses (Section 4), the goal can be
formulated as “to select the TA with the highest response probability that is above the
minimum efficacy bound ψ”. One of the possible weight functions reflecting these trial
objectives can be formulated as follows.

As before, let Z be a random probability vector, and denote the vectors of lower

and upper bounds of the probabilities of interest by ψL =
(
ψ
(1)
L , . . . , ψ

(d)
L

)
and ψU =(

ψ
(1)
U , . . . , ψ

(d)
U

)
, ψ

(i)
L , ψ

(i)
U ∈ (0, 1), i = 1, . . . , d, respectively. Further let Sdψ be such

that Sdψ = {Z : Z(1) ∈ (ψ
(1)
L , ψ

(1)
U ), Z(2) ∈ (ψ

(2)
L , ψ

(2)
U ), . . . , Z(d) ∈ (ψ

(d)
L , ψ

(d)
U )}.

Then, extending the weight function φnj (pj), the weight function for the considered
experiment can be written as

φ?nj (pj) = I
(
pj ∈ Sdψ

)
×

d∏
i=1

(
p
(i)
j

)γ(i)nκj
. (12)
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After scaling the weighted differential entropy, the following information gain criterion
can be used to govern the arm selection in the experiment

∆?
nj = h(fnj )−

h
φ?nj (fnj )∫

Sd φ
?
nj (pj)fnj (pj)dpj

. (13)

The proposed information gain does not have an analytical solution. However, both the
probability density function, fnj and the weight function have parametric forms and
hence the criterion can be found using numerical integration. Consequently, instead of
maximising the asymptotic expression of the information gain, one can maximise the
exact information gain. The rest of the procedure stands: each cohort of patients is
assigned to the arm using the obtained values of information gain ∆?

nj , j = 1, . . . ,m
that are updated once the outcomes are observed. Note that, the plug-in estimator in
Equation (9) is not used as the integrals above are functions of the number of responses

x
(i)
j of outcomes i for arm j and the number of observations nj .

To put the weight function with the boundary values into the specific context, we will
consider a Phase II clinical trial with binary responses similar to the example considered
in Section 4. Assume that the goal of the trial is to find the treatment arm with the
highest response probability that is above the minimum efficacy bound ψL = ψ = 0.70.

Then, the weight function takes the form φ?nj (pj) = I (pj > ψ) p
γn2κ−1
j

j (1− pj)(1−γ)n
2κ−1
j .

The inclusion of the boundary value into the weight function for nj = 100, κ = 0.5,
the minimum efficacy value ψ = 0.70, and different number of responses is demonstrated
in Figure 1 with the target efficacy γ = 1.

The information gains for the different weight functions are nearly the same for
the number of outcomes xj ≥ 70 corresponding to an estimated probability of efficacy
of p̂j ≥ 0.70, and both information gains are still maximised for the highest efficacy
probability. However, when the estimated probability falls below the minimum efficacy
threshold, the information gain ∆?

nj decreases noticeably faster than ∆nj . As a result,

∆?
nj allows for a better discrimination between efficacious (pj > ψ) and inefficacious

arms. Importantly, the information gain ∆?
nj can still distinguish treatment arms with

an estimated efficacy probability of less than 0.70 because of the underlying uncertainty.
Note that, although it was found that ∆nj tends to a non-positive value, its exact value
the moderate sample sizes can be above zero as demonstrated in Figure 1. Nevertheless,
a larger value of the criterion still corresponds to a more promising treatment and
therefore can be used to discriminate between arms. We will consider how the weight
function with the boundary values affects the performance of the design in more detail
in Section 4.

3. A robust optimal penalization parameter κ

3.1. Procedure
The penalization parameter, κ controls the exploration-exploitation trade-off. There-
fore, the choice of the optimal value of κ (e.g. in the sense of maximising the expected
number of successes in a trial, ENS) is crucial. As follows from the proof of Theorem 3,
the optimal value depends on the sample size, number of treatment arms and the true
probabilities of the response of all treatment arms.
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Fig. 1. Exact information gains using the weight function φnj (dashed–dotted) and the weight
function φ?nj (dotted) with the minimum efficacy value ψ = 0.7 for different values of the re-
sponses xj = 60, 65, . . . , 100.

As the true probabilities of response are unknown, we propose an approach to finding
the robust optimal value of κ that does not require knowing the true probabilities of
response and leads to near-optimal characteristics in the absence of prior information
on the response probabilities. For a given optimality criterion, the approach builds on
the algorithm by Clertant and O’Quigley (2017) and takes the form:

(a) Define a set of Z scenarios, S1, . . . , SZ , where a scenario is the set of parameters
αj defining the distribution of outcomes for the treatment arm j.

(b) Define the quantity of interest q(κ) and the objective function g(q(κ)).
(c) Obtain q(κ|Sz) for all κ on the prespecified grid and all z = 1, . . . , Z.

(d) Find the optimal value of κopt = arg minκ
1
Z

∑Z
z=1 g(q(κ|Sz)).

Such a procedure results in a robust optimal design with the parameter κopt that
optimizes the objective function g(·). In this work, we will consider two objective func-
tions, g(q(κ)), with quantities of interest q(·) corresponding to different aims in the
exploration-exploitation trade-off.

3.2. Objective Functions
To find the robust optimal design parameter, we use the context with binary responses.
Specifically, we will consider two objectives function: (i) maximising the ENS, and (ii)
achieving the pre-specified level of power under the Least Favourable Configuration
(LFC).
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Table 1. The objective function and corresponding quantities of interest for the maximising
ENS and Achieving the pre-specified level of power criteria.

Approach Quantity of Interest, qi(κ|·) Objective Function, gi(qi)
Maximising

q1 =
∑m

j=1 pj × nj(κ) g1 =
∑Z

z=1

(
q1(κ|Sz)− q1(κ?Sz |Sz)

)2
ENS

Achieving
q2 = P (reject H0|LFC)

g2 = κ×
Power I

(
1
Z

∑Z
z=1 I

(
q2(κ|Sz) ≥ 0.80× qFR

2 (Sz)
)
> ξ
)

Let nj(κ) be the total number of patients assigned to the treatment arm j using the
design with parameter κ, pj is the response probability for arm j, and qFR2 (Sz) be the
power attained using fixed equal randomisation (FR). The objective functions, and the
corresponding quantities of interests, q1, q2 are given in Table 1.

For the ENS criteria, κ?Sz = arg minκ(Q(κ|Sz)) is the scenario-specific optimal κ, and
the objective function g1(·) minimizes the expected losses in the ENS associated with
the use of non scenario-specific optimal parameter. For the power criteria, the objective
function is constructed to guarantee that with a probability of at least ξ, the design
will achieve 80% of the power attained by the FR. Here, the power attained using FR
under scenario Sz, q

FR
2 (Sz), normalises for different scenarios for the fixed sample size.

We apply the procedure in Section 4.2 and evaluate its performance in Section 4.3 and
Section 5.

3.3. Computation of the quantities of interest
For the values of the penalization parameter κ on the grid κ = 0.50, 0.51, . . . , 1, finding
the robust optimal values reduces to computing q(κ) for a given value of κ. Similar
to multi-arm bandit approaches (Villar et al., 2015a), the challenge here is that an
analytical expression for the allocation of patients cannot be found. It can, however, be
computed recursively.

To illustrate this recursive procedure, consider a two-arm trial with binary responses
and sequential enrollment of patients. Let xj and nj be the number of responses and the
number of patients assigned to arm j, respectively, αj be the probability of response,

δ̂(κ)(xj , nj), j = 1, 2 be the estimate of the criterion and Sn = (x1, n1, x2, n2) be the
state of the trial where n1 + n2 = n. Then, the probability of the state

P (Sn (x1, n1, x2, n2)) =

α1 × I
(
δ̂(κ)(x1 − 1, n1 − 1) < δ̂(κ)(x2, n2)

)
× P

(
Sn−1 (x1 − 1, n1 − 1, x2, n2)

)
+

(1− α1)× I
(
δ̂(κ)(x1, n1 − 1) < δ̂(κ)(x2, n2)

)
× P

(
Sn−1 (x1, n1 − 1, x2, n2)

)
+

α2 × I
(
δ̂(κ)(x1, n1) > δ̂(κ)(x2 − 1, n2 − 1)

)
× P

(
Sn−1 (x1, n1, x2 − 1, n2 − 1)

)
+

(1− α2)× I
(
δ̂(κ)(x1, n1) > δ̂(κ)(x2, n2 − 1)

)
× P

(
Sn−1 (x1, n1, x2, n2 − 1)

)
It is, however, known that this recursive procedure gets computationally demanding

or even infeasible as the sample size and (or) number of arms increase. Therefore, fol-
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lowing Villar et al. (2015b), we will use Monte Carlo simulations to approximate this
distribution. It was found that the Monte Carlo simulations provide an accurate ap-
proximation of the distribution of allocations and noticeable gains in the computational
time. A comparison of the exact computations and the Monte Carlo approximation for
various values of n is provided in the Supplementary Materials.

4. Application to a Phase II Clinical Trial

4.1. Setting
Let us consider a Phase II clinical trial whose goals are (i) to find the most effective
treatment and (ii) to treat as many patients as possible on the optimal treatment.
Similar to the motivating trial, we consider m = 4 treatments. We assume that the
primary endpoint is a binary measure of efficacy (e.g. response to treatment). While
there is a number of competing approaches that could be applied in the considered
setting, we limit the comparison to two alternative designs that are known to have good
statistical properties in terms of either the number of treated patients or the statistical
power. Specifically, we compare to the Gittins index (GI) approach (using the discount
factor of 0.99 and non-informative priors, see Gittins and Jones, 1979; Villar et al.,
2015a, for more detail), which is the near optimal design in terms of maximising the
expected number of successes (ENS) and will serve as a benchmark for this characteristic.
Additionally we also compare to fixed and equal randomization (FR) that is known to
lead to high statistical power.

We consider two scenarios investigated by Villar et al. (2015a). Scenario 1 investi-
gates n = 423 and the true efficacy probabilities are (0.3, 0.3, 0.3, 0.5) while Scenario
2 considers n = 80 with true efficacy probabilities (0.3, 0.4, 0.5, 0.6). Following Villar
et al. (2015a), we consider the hypothesis H0 : p0 ≥ pi for i = 1, 2, 3 with the family-
wise error rate calculated at p0 = . . . = p3 = 0.3, where p0 corresponds to the control
treatment efficacy probability. The Dunnett test (Dunnett, 1984) is used for hypothesis
testing in the FR setting. The hypothesis testing for GI and WE design is performed
using an adjusted Fisher’s exact test (Agresti, 1992). The adjustment chooses the cutoff
values to achieve the same type-I error as the FR. The Bonferroni correction is used for
GI and WE designs to correct for multiple testing and the family-wise error rate is set
to be less or equal to 5%. Characteristics of interest are (i) the type-I error rate (α),
(ii) statistical power (1− η), (iii) the expected number of successes (ENS) and (iv) the
average proportion of patients on the optimal treatment (p∗).

The proposed design requires a target value, γ. While in practice the target treatment
effect can vary in different therapeutic areas, we consider the general setting in which
no specific value is specified, and the arm with the highest success probability is of
interest. We, therefore, use the highest possible value of a target probability, γ = 0.999.
Investigating the dependence of the operating characteristics of the design on the target
value γ in more detail, it was found that this choice might lead to a marginal decrease
in the ENS compared to the setting when the true maximum treatment effect is known
while fixing the target probability below the true maximum treatment effect can lead to a
noticeable decrease in it - see the Supplementary Materials. The vector of the prior mode
probabilities p(0) = [0.99, 0.99, 0.99, 0.99]T is chosen to reflect no prior knowledge about
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which arm has the highest success probability and the equipoise principle (Djulbegovic
et al., 2000). We choose β0 = 5 to observations on the control and β1 = β2 = β3 = 2
to reflect no prior knowledge for competing arms. The higher value for β0 compared
to β1, β2, β3 in the prior probabilities are intended to protect (to a certain extent) for
higher number of patients on the control and to achieve a higher power. See Section 6
and the Supplementrary Materials for a more detailed discussion on the influence of
prior assumptions on the operating characteristics. We fix κ = 0.5 for allocation the
randomised rule and denote it by WERan, and search for the optimal robust values of κ
for each sample size under the deterministic “Select-the-Best” rule denoted by WEDet

as given below. The software in the form of R code to reproduce the findings of the
work is available at https://github.com/adaptive-designs/inf-theory.

4.2. Choice of the robust optimal penalization parameter κ
The proposed design requires the specification of the penalization parameter κ. We apply
the procedure in Section 3 for the two objective functions, (i) maximising the ENS, and
(ii) achieving a particular level of statistical power. We will apply the procedure to the
deterministic allocation rule.

Firstly, Z = 5000 random scenarios with m = 4 treatment arms are generated. For
the ENS criterion, we assume an uniform distribution on the probability of responses
at each treatment arm, pj ∼ U(0, 1), j = 1, 2, 3, 4. Note that, if there is some prior
information on the plausible values of pj it could be employed at this stage. For the power
criterion, we power the trial under the LFC and generate the response probabilities as
p1 = p2 = p3 ∼ U(0, 1), and p4 = U(p1, 1). We specify the values of κ on the grid
κ = 0.50, 0.51, . . . , 1, and conduct the procedure for sample sizes considered in the
examples (n = 80 and n = 423) as well as an intermediate value n = 165 (used in
the example in Section 5). We use 5000 Monte Carlo simulations to approximate the
distribution of patients for each κ under each scenario. For the power objective function,
we require that 80% of the power of the FR is achieved with probability at least 90%,
ξ = 0.90. Note that this requirement is imposed to be satisfied with high probability over
the 5000 random scenarios. This means that in any given scenario the achieved power
can be both above and below the 80% of the power achieved by the FR design. Note also
that the procedure can be computationally expensive. For n = 423, for example, the full
calibration procedure took around 70 hours (Intel Core i7-8650U CPU @ 1.90GHz × 8)
after being parallelized between 5 cores. Note that one can reduce this time by reducing
number of Monte Carlo simulations and/or scenarios at the cost of lower precision in
the optimal value of κ. The objective function g1(·) and the quantity of interest q2 for
various values of κ are given in Figure 2.

For the maximum ENS criterion, the optimal values of κ increase as the sample size
increases. As expected, when optimising the number of patients on the superior arms,
a low value of the penalization parameter should be used if the sample size is small
as more spread allocation will result in a decreased ENS. At the same time, for larger
sample sizes, a low value of κ can result in allocating many patients to suboptimal arms,
and the consequences of this get more severe as the sample size increases. Therefore,
the value of κ = 0.51 and κ = 0.56 will be used for sample sizes n = 80 and n = 423,
respectively to achieve the near-maximum ENS.

https://github.com/adaptive-designs/inf-theory
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Fig. 2. The values of the objective function g1 divided by the sample size (Left Panel), and
the expected values of q2 (Right Panel) for various values of the penalization parameter κ, and
for various sample sizes n = 80 (solid line, circle), n = 165 (dashed line, triangle) and n = 423
(dotted line, square). Blacked filled shapes correspond to the robust optimal values of κ.

Regarding the power criterion greater values of κ correspond to greater power and,
as a result, to a greater probability that the desirable power will be achieved. For
various sample sizes, the optimal values are found to be in the interval (0.65,0.73). The
minimum values of κ for which the probability to attain the target power is 90% are
the robust optimal values and are used in the examples below when balancing the ENS
and the statistical power.

4.3. Results
The trade-off between the expected number of successes (ENS) and the statistical power
for different values of the penalty parameter κ under the deterministic rule in both
scenarios is illustrated in Figure 3.

In both scenarios, greater values of κ correspond to greater power and lower ENS as
the increase in penalty tends to more diverse allocations. The exception is κ ∈ (0.5, 0.55)
in Scenario 1 where the inconsistency for κ = 0.5 leads to locking-in on the suboptimal
treatment. Subsequently, we use the robust optimal κ found above for the ENS (dashed
line) and power (dotted line) criteria.

The operating characteristics of the considered designs in Scenario 1 are given in
Table 2. Under the null hypothesis, the performance of all methods is similar and the
type-I error is controlled. Under the alternative hypothesis, the WEDet design with
calibrated optimal κ = 0.56 performs comparably to the GI in terms of the ENS with
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Fig. 3. ENS and power (fixed cutoff value) for the WE design under the deterministic rule for
different κ. Dashed and dotted lines correspond to the values of the penalisation parameter κ
chosen using the ENS and power criteria.

the GI design resulting in around 2 more respones on average, but increases power by
nearly 18% points due greater number of patients on the control achieved through the
penalisation of the number of observations at each arm using κ and the chosen prior
β0. Nevertheless, the statistical power is relatively low and can be increased by using
higher values of the penalty parameter (κ = 0.65). It leads to an increase in the power
from 0.61 to 0.85 at the cost of the slight (≈ 4%) decrease in the ENS. In fact, WEDet

then has comparable power to the FR, while treating almost 40 more patients on the
superior treatment. Another way to increase the statistical power is to use WERan for
which both the associated power and the ENS is higher than for the FR.

The operating characteristics of the designs in Scenario 2 with fewer patients and
different probabilities of response under the alternative is given in Table 3. Under the
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Table 2. Operating characteristics of the WE design under the randomised rule (WERan),
under the deterministic rule (WEDet) for different κ (in brackets), GI design and FR in Sce-
nario 1 with n = 423 under the null and alternative hypothesises. Results are based on 104

replicated trials.

Method
H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = p1 = p2 = 0.3, p3 = 0.5
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

GI 0.05 0.25 (0.18) 126.68 (9.4) 0.43 0.83 (0.10) 198.25 (13.7)
FR 0.05 0.25 (0.02) 126.91 (9.4) 0.82 0.25 (0.02) 147.91 (9.6)

WERan(0.50) 0.05 0.24 (0.05) 127.02 (9.5) 0.89 0.39 (0.06) 160.02 (11.1)
WEDet(0.56) 0.05 0.21 (0.19) 126.89 (9.5) 0.61 0.82 (0.16) 196.63 (17.4)
WEDet(0.65) 0.05 0.23 (0.13) 126.89 (9.5) 0.85 0.74 (0.11) 189.20 (13.9)

Table 3. Operating characteristics of the WE design under the randomised rule
(WERan), under the under deterministic rule (WEDet) for different κ (in brackets), GI
design and FR in Scenario 2 with n = 80 under the null and alternative hypothesises.
Results are based on 104 replicated trials.

Method
H0 : p0 = p1 = p2 = p3 = 0.3 H1 : pi = 0.3 + 0.1i, i = 0, 1, 2, 3
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

GI 0.00 0.25 (0.13) 23.97 (4.1) 0.01 0.49 (0.21) 41.60 (5.4)
FR 0.05 0.25 (0.04) 24.02 (4.1) 0.50 0.25 (0.04) 35.98 (4.3)

WERan(0.50) 0.05 0.23 (0.07) 24.01 (4.1) 0.59 0.33 (0.10) 37.55 (4.8)
WEDet(0.51) 0.05 0.19 (0.16) 23.99 (4.1) 0.36 0.50 (0.28) 41.03 (6.1)
WEDet(0.73) 0.05 0.22 (0.11) 23.99 (4.1) 0.58 0.44 (0.18) 39.82 (5.2)

null hypothesis, all designs perform similarly in terms ENS and all control the type-
I error at the 5% level. Under the alternative hypothesis, the GI and WEDet with
κ = 0.51, again, yield the highest (and similar) ENS among all alternatives, but also
low statistical power. Note that, for the difference of 35% in power for both approaches,
the GI design corresponds to the highly conservative type I error, nearly 0%, against 5%
for WEDet(0.51). The WERan or increased κ for WEDet result in a considerable power
increase. Both designs have a greater (or similar) power and result in more ENS than
the FR.

Overall, the WE designs for the robust optimal values of κ perform comparably or
with minor differences to the optimal GI design in terms of ENS, but with greater
statistical power for both large and small sample sizes. Importantly, the proposed WE
design uses an optimal robust value that was previous extensively calibrated and was
found to yield beneficial operating characteristics subject to tuning of the penalisation
parameter. The ENS and power trade-off can be tuned via the built-in parameter κ.
Specifically, for greater values of κ of the randomised rule, the WDE designs can result
in similar statistical power to the FR, but with the considerably greater ENS.

4.4. Application of the minimum efficacy bound weight function
The information-theoretic design studied above targets the most effective arm. This
design does, however, not take into account that the response probabilities can be to
low to be useful. Consequently, the selection of arms should be severely penalised if
the response rate is below a minimum clinically interesting value ψ. To account for
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Table 4. Operating characteristics of the WE design using the exact information gain under
the randomised rule (WERan), under the deterministic rule (WEDet) for κ = 0.50 in Scenario 1
with n = 423 under the null and alternative hypothesises. Results are based on 2500 replicated
trials.

Method
H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = p1 = p2 = 0.3, p3 = 0.5
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

WEDet(ψ = 0.0) 0.05 0.22 (0.17) 127.0 (9.6) 0.68 0.78 (0.12) 193.26 (14.7)
WEDet(ψ = 0.3) 0.05 0.21 (0.20) 127.0 (9.6) 0.70 0.78 (0.15) 193.17 (16.1)
WEDet(ψ = 0.4) 0.05 0.24 (0.13) 126.8 (9.6) 0.70 0.83 (0.12) 196.84 (13.7)
WEDet(ψ = 0.5) 0.05 0.24(0.09) 126.9 (9.6) 0.69 0.83 (0.11) 197.25 (15.6)
WEDet(ψ = 0.6) 0.05 0.24 (0.06) 127.0 (9.6) 0.86 0.67 (0.11) 183.81 (17.0)
WERan(ψ = 0.0) 0.05 0.24 (0.06) 126.6 (9.8) 0.90 0.40 (0.06) 160.76 (10.6)
WERan(ψ = 0.3) 0.05 0.24 (0.10) 126.6 (9.8) 0.91 0.44 (0.07) 163.52 (10.0)
WERan(ψ = 0.4) 0.05 0.23 (0.12) 126.6 (9.8) 0.93 0.60 (0.11) 177.28 (10.9)
WERan(ψ = 0.5) 0.05 0.24 (0.08) 126.6 (9.8) 0.92 0.74 (0.09) 189.07 (12.9)
WERan(ψ = 0.6) 0.05 0.25 (0.06) 126.6 (9.8) 0.89 0.66 (0.10) 182.40 (16.4)

this minimum efficacy value ψ, the weight function φ?n and the exact information gain
criterion given in Equation (13) can be used. In Table 4, we apply this information gain
criterion under Scenario 1 with sample size n = 423.

While in an actual clinical trial, the minimum efficacy bound, ψ, will be determined
by expert’s knowledge, we consider different bounds ψ = 0.0, 0.3, 0.4, 0.5, 0.6 to investi-
gate how its value affects the operating characteristics. To track the influence of ψ, we
study the designs using a fixed value of κ = 0.50.

For both WERan and WEDet, the minimum efficacy bounds ψ ≤ 0.30 results in similar
operating characteristics as the information gain with the weight function φn without
a minimum efficacy value as all treatment arms have greater efficacy probabilities com-
pared to the bound. For ψ = 0.4 and ψ = 0.5, the first three arms are considered as
inefficacious. Comparing to ψ = 0.30, the design results in a slightly higher power and
in 5% more patients allocated to the superior arm. As ψ increases above the response
probability of the superior arm, all treatment arms are considered as inefficacious re-
sulting in more spread allocations (as the information gain is inflated for all arms) and
lower ENS.

Overall, the design using the minimum efficacy bound weight function allows to
improve both power and ENS if the threshold is correctly specified. It can, however,
also lead to a decrease in the ENS if all of the arms are considered as inefficious.

5. Application to a Phase II Clinical Trial with Co-Primary Efficacy Endpoints

5.1. Setting
In the previous example, a single binary endpoint was used. However, trials with co-
primary efficacy endpoints are of growing interest in medical research (Zhou et al., 2017).
As the proposed criterion can be applied to a trial with an arbitrary number of discrete
outcomes, we investigate the performance of the novel response adaptive design in a
setting of a Phase II trial in metastatic breast cancer considered by Song (2015) in this
section.
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In this Phase II trial, the two key efficacy variables of interest were (i) the tumour
objective response rate (ORR) and (ii) the absence of the deterioration in Global Health
Status of European Organisation for the Research and Treatment of Cancer Quality of
Life Questionnaire Core 30 (GHS) in the first two cycles of treatment. As outlined
by Song (2015) both endpoints are “relatively rapidly observable” which makes the ap-
plication of an response-adaptive design suitable. Given two co-primary binary efficacy
endpoints, the response observed in each patient has four categories: (a) ORR and GHS,
(b) ORR and no GHS, (c) no ORR and GHS, (d) no ORR and no GHS. Then, denoting

the probabilities of these events for arm i by α
(1)
j , α

(2)
j , α

(3)
j , 1 − α(1)

j − α
(2)
j − α

(3)
j and

the probabilities of the target treatment effect by γ(1), γ(2), γ(3), 1 − γ(1) − γ(2) − γ(3)

respectively, the proposed criterion takes the form

δ(κ)(αj ,γ) :=
1

2

((
γ(1)
)2

α
(1)
j

+

(
γ(2)
)2

α
(2)
j

+

(
γ(3)
)2

α
(3)
j

+

(
1− γ(1) − γ(2) − γ(3)

)2
1− α(1)

j − α
(2)
j − α

(3)
j

− 1

)
n2κ−1j .

Extending the setting considered by Song (2015), who considered a single-arm trial,
we investigate the behaviour of designs in a more general framework with two treatment
arms (indexed by 1 and 2) and a control arm (a standard of care, indexed by 0). Follow-
ing the sample size considered in the single-arm trial, 55 patients, the sample size in the
three-arms trial is fixed to be n = 55×3 = 165. Although four outcomes can be observed
in the trial, Phase II trials are conventionally formulated in terms of the marginal prob-
abilities of each binary event rather than in terms of the probabilities of joint events.
Let porr,j be the probability of ORR and pghs,j be the probability of GHS corresponding
to the treatment arm j. Motivated by the trial investigated by Song (2015), we consider
the following hypothesis: H0 : pk,0 = pk,j for j = 1, 2 and k = {orr, ghs}. As in the sin-
gle endpoint example, the hypothesis testing is performed using Fishers adjusted exact
test, where the adjustment chooses the cutoff value to achieve a 5% type-I error (Villar
et al., 2015a). Again, the Bonferroni correction is used to ensure that the family wise
error rate is less or equal than 5%. Characteristics of interest are (i) the type-I error rate
(α), (ii) statistical power (1− η), (iii) the average proportion of patients on the optimal
treatment (p∗) and (iv) the expected number of ORR (ENS) (the expected number of
GHS is suppressed for the sake of space).

5.2. Design Specification and Comparators
To adapt the novel criterion to the formulated context, we employ a re-parametrisation
of the probabilities of joint events under the assumption of independence. Then, the
target of the trial can be defined in terms of the target probability of ORR, γorr, and
the target probability of GHS, γghs. We define the probabilities of events for arm j

as α
(1)
j = porr,jpghs,j , α

(2)
j = porr,j (1− pghs,j), α(3)

j = (1− porr,j) pghs,j , and the corre-

sponding targets as γ(1) = γorrγghs, γ
(2) = γorr (1− γghs), γ(3) = (1− γorr) γghs.

Following the single agent example, we specify the parameters for the proposed
response-adaptive design as follows. As the upper bound for the ORR and GHS is
not defined, the target values γorr = γghs = 1 are taken to ensure that the arm cor-
responding to the highest probability is chosen. Given the re-parametrisation, both
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probabilities are considered as Beta random variables. The vectors of the prior mode

probabilities p
(0)
orr = [0.99, 0.99, 0.99]T and p

(0)
ghs = [0.99, 0.99, 0.99]T are chosen to reflect

equipoise. Again, we choose the following parameters of the Beta distribution for both
probabilities: β0 = 5 to ensure enough observations on the control and β1 = β2 = 2 to
reflect no prior knowledge for competing arms. As before, we fix κ = 0.5 for the deter-
ministic allocation rule and use the robust optimal values of κ for n = 165 obtained in
Section 4.

We compare the performance to two alternative approaches: the first is a MAB
approach that prioritises the exploitation objective and, therefore, is expected to re-
sult in high ENS; and the second one that is known to result in high power. The
MAB approach seeking to obtain high ENS described below is referred to as “Max
Prob”. As for the proposed information-theoretic approach, under the independence
assumption, we consider each efficacy endpoints as Beta random variables and as-
sign each subsequent patient to the arm that corresponds to the maximum proba-
bility of having the highest porr and the highest pghs together (Wathen and Thall,
2017). Formally, the next patient is allocated to the treatment arm j? such that
j? = arg maxj [P (porr,j = maxi(porr,i))× P (pghs,j = maxi(pghs,i))]. The R-package
bandit is used to compute these probabilities (Lotze and Loecher, 2014). The design
uses the same prior distribution as the proposed design. Fixed and equal randomisation
(FR) is use as comparator expected to achieve high power.

Although, the designs’ constructions employ the assumption of independence between
efficacy endpoints, it is unlikely to be true in an actual trial. Therefore, we generate
correlated efficacy endpoints in the simulation study using the approach by Tate (1955).
We generate a bivariate standard Normal vector (xorr, xghs) with mean µ = (0, 0) and
covariance matrix

Σ =

[
1 ρ
ρ 1

]
(14)

where ρ is the correlation coefficient. By applying the CDF of the standard Normal ran-
dom variable marginally (uorr, ughs) = (Φ(xorr,Φ(xghs)), one can obtain two correlated
random variables having Uniform distributions that subsequently can then be trans-
formed to binary ones. As a strong correlation is anticipated between the co-primary
efficacy endpoints, the correlation coefficient of ρ = 0.75 is chosen. The results for
other values of the correlation, ρ (including the case of no correlation) are given in
Supplementary Materials.

5.3. Results
The operating characteristics for two possible cases (based on the original study) are
given in Table 5. The results show that the performance of the novel response-adaptive
design are qualitatively similar to the previous example. Under the null hypothesis
(Scenario 1), the performance of all methods is similar and the type-I error is controlled.
Under the alternative hypotheses (Scenario 2), the WEDet design with the calibrated
value of κ = 0.54 results in a similar proportion of patients assigned to the superior
arm as the Max Prob (0.70 against 0.71) and nearly the same average number of ORR
observed in the trial. However, as in the previous example, the WEDet design results in
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Table 5. Operating characteristics of the WE design under the randomised rule
(WERan), under the deterministic rule (WEDet) for different κ (in brackets), Max Prob
design and FR in the trial with two co-primary efficacy endpoints and n = 165 under the
null and alternative hypothesises. Results are based on 104 replicated trials.

Scenario 1 Scenario 2

Method
porr,1 = porr,2 = porr,3 = 0.10 porr,1 = porr,2 = 0.10, porr,3 = 0.25
pghs,1 = pghs,2 = pghs,3 = 0.45 pghs,1 = pghs,2 = 0.45, pghs,3 = 0.60
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

Max Prob 0.05 0.25 (0.16) 16.45 (3.9) 0.33 0.71 (0.18) 33.95 (7.2)
FR 0.05 0.33 (0.04) 16.50 (3.8) 0.62 0.33 (0.04) 24.78 (4.5)

WERan(0.50) 0.05 0.29 (0.07) 16.50 (3.8) 0.67 0.46 (0.08) 27.87 (5.4)
WEDet(0.54) 0.05 0.24 (0.16) 16.45 (3.9) 0.49 0.70 (0.17) 33.92 (7.2)
WEDet(0.69) 0.05 0.27 (0.12) 16.45 (3.9) 0.63 0.64 (0.12) 32.35 (6.5)

higher statistical power (0.49 against 0.33). To increase power (at the cost of lower ORR
rate) a higher value of κ can be used or randomisation between arms can be employed.
The value κ = 0.69 using WEDet leads to an increase in power to 0.63 for the cost of a
slight decrease in the ENS by approximately 1 treated patients. Moreover, WEDet(0.69)
implies nearly the same power as FR but results in nearly 8 more patients treated on
the better treatment on average. Alternatively, using the randomised assignment rule,
the proposed design results in even higher statistical power (0.67) but in 5 fewer ENS
compared to WEDet(0.69) which is still higher than for FR.

Overall, the example with co-primary efficacy endpoints supports the previously
found results. For the tuned robust optimal values of the penalisation parameter, the
proposed design can perform comparably in terms of ENS to the MAB design that
prioritises exploitation but can outperform it in terms of the power. Moreover, the WE
design can result in similar power as the FR but noticeably greater ENS.

6. Discussion

In this work, we proposed a general criterion for the selection of arms in experiments
with multinomial outcomes that is based on the weighted information measure and is of
particular use in the setting with ethical and strict sample size constraints. We consid-
ered two families of weight functions and demonstrated how the proposed criterion can
be used for an arbitrary weight function reflecting various objectives of experiments that
are of interested to investigators. For the considered weight functions, the information
gain criteria preserve the flexibility and allow to tailor the design parameters in light of
the exploration-exploitation trade-off. The design parameters should be carefully tuned
prior to the design application to ensure desirable statistical properties of the design
with high probability and competitive advantages over the design considered in this
work. Such a tuning procedure to find the optimal robust design for a generic objective
function is proposed.

The prior distribution used in the illustrative examples was chosen to protect allo-
cation of patients to control in a non-ruled based manner – by design itself. However,
alternative specifications of prior distribution can be considered. In general, a prior
distribution that does not secure more patients on the control (either through β0 or
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p(0)) will require higher values of the penalisation parameter κ to reach the same level of
power compared to the prior ensuring more patients on the control. In fact, the design
under each of these prior would require the search of the robust optimal penalisation
parameter κ as described in Section 3. We refer the reader to Supplementrary Materials
for an evaluation of different prior distributions on the properties of the design for vari-
ous values of κ. It was found that given the investigator’s preferences in the power-ENS
balance, other prior distributions can provide gains similar to the ones found for the
considered prior assumptions.

Throughout the paper, we have intensionally focused on two competing methods only
under each example to provide a benchmark for comparison and to focus on the proposed
method. In the provided examples above, it was found when compared to some MAB
approaches that favour exploitation, the proposed design for the found robust optimal
values of κ and considered prior distribution can yield better power while resulting only
in minor reduction in ENS. At the same time, there are other modified MAB approaches
that were proposed in the literature that could be applied to the considered problems and
can result in a better power-ENS balance than original counterparts. Specifically, Villar
et al. (2015b) proposed a randomised version of the GI design to tackle the exploitation-
exloration trade-off. Furthermore, Villar et al. (2015a) proposed the GI modification
that imposes a rule-based mechanism on controlling number of patients on the control
treatment and found that it leads to a noticeable improvement in power while only minor
losses in the ENS. A similar controlling procedure could be imposed on the proposed
design. Similarly, there is a GI index defined for multinomial outcomes (Glazebrook,
1978) that could be an alterantive approach for the problem with co-primary outcome
studied in Section 5. A comprehensive comparison of these procedured in a large number
of potential simulation scenarios is of interest and is subject of future research.

Throughout the work, the examples concerned Phase II clinical trials evaluating ef-
ficacy. However, the design was also found to provide benefits in the setting of Phase I
clinical trials seeking to select the MTD (i.e. the target probability γ is the toxicity
probability at the MTD), particularly when the assumption of monotonicity is ques-
tionable. We refer the reader to the Supplementary Materials for the corresponding
results. Therefore, while Phase I and Phase II trials state two different questions, the
general formulation of the proposed design (to target the TA with specific characteris-
tics) enable its application in both setting and in a wide range of trials.

In the presented evaluations a fixed target value of γ = 0.999 was considered. At
the same time, there are many clinical settings in which the maximum clinically feasible
efficacy probability can be specified prior to the trial. We study the effect of the target
value in many different scenarios in the Supplementary Materials. Setting the target
below the true response probability results in targeting an inferior arm and worsen the
performance both in terms of ENS and statistical power. Therefore, it is preferred to
be more conservative and ensure that the target probability is high enough. Studying
various target values, we found that, under the “Select-the-Best” allocation rule, the
influence of the target value on the operating characteristics is small. Under the “Ran-
domization” allocation rule, however, specification of the target value close to the true
maximum value yields noticeably more patients on the superior arm.

An important assumption employed by the proposed response-adaptive information-
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theoretic design (as well as for the majority of alternative response-adaptive procedures
Villar et al., 2015a) is that the patients’ responses are observed shortly after the treat-
ment, or at least before a next patient is to be enrolled in the study. This, however, might
not hold in many clinical trials. Consequently, the question of the delayed responses
incorporation is of great practical interest.

In this work, multinomial outcomes were considered only. Generalising the proposed
approach to experiments with continuous outcomes is subject of future research together
with its non-parametric extension.

While clinical trials have been the main motivation for this work, the design can be
applied to a wide range of problems of similar nature. For example, applications where
the MAB approach has found the applications: online advertising, portfolio design,
queuing and communication networks, etc. (see Gittins et al., 2011, and references there
in). In these settings, however, the sample size is not one of the main constraints in
constrast to the clinical trial setting considered in this work. Nevertheless, the general
principles proposed can be applied in these problems and their merits in the setting
with easy-to-collect observation is to be studied. On top of that, the proposed design
can be used in more general problems of selecting an arm corresponding to target value
γ rather than the selection of the highest success probability only. It is important to
emphasize that the derived selection criterion can be also applied in conjunction with
parametric models which also expands its possible applications. In fact, the parameters
can be estimated by any desirable method and then ‘plugged-in‘ in the criterion which
preserves its properties.
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