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Abstract

In many cases of serious crime, images of a hand can
be the only evidence available for the forensic identification
of the offender. As well as placing them at the scene, such
images and video evidence offer proof of the offender com-
mitting the crime. The knuckle creases of the human hand
have emerged as an effective biometric trait and been used
to identify the perpetrators of child abuse in forensic inves-
tigations. However, manual utilization of knuckle creases
for identification is highly time consuming and can be sub-
jective, requiring the expertise of experienced forensic an-
thropologists whose availability is very limited. Hence,
there arises a need for an automated approach for local-
ization and comparison of knuckle patterns. In this paper,
we present a fully automatic end-to-end approach which lo-
calizes the minor, major and base knuckles in images of the
hand, and effectively uses them for identification achieving
state-of-the-art results. This work improves on existing ap-
proaches and allows us to strengthen cases further by ob-
jectively combining multiple knuckles and knuckle types to
obtain a holistic matching result for comparing two hands.
This yields a stronger and more robust multi-unit biomet-
ric and facilitates the large-scale examination of the po-
tential of knuckle-based identification. Evaluated on two
large landmark datasets, the proposed framework achieves
equal error rates (EER) of 1.0-1.9%, rank-1 accuracies
of 99.3-100% and decidability indices of 5.04-5.83. We
make the full results available via a novel online GUI to
raise awareness with the general public and forensic inves-
tigators about the identifiability of various knuckle regions.
These strong results demonstrate the value of our holistic
approach to hand identification from knuckle patterns and
their utility in forensic investigations.

1. Introduction
The physiological and behavioral traits of humans can

play a prominent role in identifying them [14]. The pop-
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ular physiological biometric traits are the face, iris, finger-
prints, and palmprints. There are also some emerging bio-
metrics, like finger-veins and finger-knuckles, which have
performed in a considerable way. The strengths of the dif-
ferent traits have been established to varying degrees [13].
In cases of serious crime, such as sexual abuse, video and
photographic evidence is often available, which has the po-
tential to not only place the perpetrator at the scene but
record them committing the crime. More established bio-
metrics cannot be used since the perpetrators mostly hide
their faces to keep themselves anonymous, but their hands
often remain visible [27]. The unique lines, creases and tex-
tures residing in the knuckle region have strong potential to
provide sufficient information to distinguish the individual
[15] to be used for matching evidence images to those from
a suspect [26].

The finger knuckle patterns are formed on the distal in-
terphalangeal, proximal interphalangeal and metacarpopha-
langeal joints of the fingers [15, 19, 22], and referred to
as the major, minor and base knuckles respectively. Initial
attempts at recognizing knuckle patterns were focused on
the major knuckles and based on popular image process-
ing techniques such as Gabor filters [28], Radon transforms
[20, 21], phase-only correlation [29] and log-Gabor filters
[4]. Moreover, existing work has largely focused on the
consideration of major knuckles in the earlier years of estab-
lishing knuckles as a potential biometric. However, recent
work has shown promising results from the minor and base
knuckles as well [17, 19] with some recent work [5, 16] re-
porting good performance using deep features for the prob-
lem of knuckle recognition.

In addition to the above, automatic localization of
knuckle regions from the hand-dorsal images has attracted
much less attention, despite the need of this for real-world
application. There is only a limited work that has re-
ported techniques aimed at automated knuckle localization
[18, 28]. These techniques work with either the images
acquired from dedicated sensors [28] not typically avail-
able in forensic evidence or under controlled poses [18],
which would limit their applicability for more general im-
ages. Moreover, these procedures remain highly sensitive



to accessories (like rings) or to the accuracy of underlying
steps such as edge detection. Being dependent on the fin-
ger valley points (the points at the intersection of fingers),
these procedures [21, 28] become limited by variations in
hand pose, which prohibits general application outside of
controlled experiments. For instance, these procedures of
knuckle localization fail for the hand images with touching
fingers (which happens due to their inability to detect the
valley points between fingers).

In addition to the above, there has been no attempt to the
best of our knowledge, which evaluates the performance of
knuckle recognition in a holistic manner (i.e. for all three
knuckle types and all four fingers). Holistic knuckle evalu-
ation has the potential to add high value to the overall hand
recognition problem by making use of information from all
of the knuckles to yield improved recognition accuracy and
lower error rates.

This work presents a comprehensive end-to-end deep
learning framework for robust identification from images of
the dorsal side of the human hand using the knuckle creases
as a biometric trait. The proposed approach processes the
input hand dorsal image to detect the knuckle regions, fol-
lowed by assuring anatomically-correct detection through a
new quality metric. It then extracts the discerning deep fea-
tures, and establishes whether there is a match, exploring
the identifiability of each knuckle. Our contributions are:

1. We propose an end-to-end framework for person
identification based on individual knuckles, allowing
whole dorsal hand images to be considered without
pre-processing. This includes improved localization
that avoids common problems associated with varia-
tions in hand pose, allowing more generalisability. We
extract feature vectors representing the minor, major
and base knuckles and compare these to evaluate the
identifiability of each knuckle on two large landmark
datasets, helping us to understand the potential of each
knuckle and finger.

2. We devise and incorporate an automated quality check
for knuckle localization, which removes unsuitable
knuckles from consideration and allows low quality
images to be reported.

3. We extend this model to a holistic matching approach
for identification of the whole hand using all available
knuckles, resulting in more accurate and robust identi-
fication. We make the full holistic analysis of all 212

knuckle combinations publicly available online (please
refer to Section 3.4 for the link) in formats accessible
to both scientists and the general public.

The rest of the paper is organized as follows: Section
2 presents our automated knuckle localization and end-to-
end framework for biometric identification using multiple
knuckles and knuckle types; Section 3 describes the experi-
mental setup, including the employed databases, and the ex-
perimental results; Section 4 discusses the work presented
and concludes the paper.

2. Proposed Framework
Here, we describe our end-to-end framework for iden-

tification from dorsal hand images using the knuckles, re-
moving the need for human intervention. As demonstrated
in Figure 1, which shows a representative block diagram for
the proposed framework, our approach detects the knuckle
regions, obtains the distinctive features thereof and per-
forms the comparisons for identification. Various blocks of
Fig. 1 are elucidated in the following subsections.

2.1. Knuckle localization

The majority of the knuckle detection work in the liter-
ature is derived from image characteristics and their spe-
cific poses to facilitate the detection of hand key points. In
forensic identification, evidence is not limited by pose and
it is not practical to manually extract each knuckle. Hence,
there is a pressing need for an automated detection algo-
rithm, robust to variations in pose, illumination and skin-
tone. Data-driven approaches have demonstrated strong po-
tential to locate regions a more generalized way. The pro-
posed framework achieves this step through a faster region-
based convolutional neural network (R-CNN) model owing
to its excellent capability to yield accurate bounding boxes
for the target objects in the input image [24]. The Faster
R-CNN is preferred over other variants of R-CNN (baseline
and Fast) due to its observed improved performance for this
task and capability to obviate the computational loads posed

Figure 1. Overall block diagram of the proposed framework (knuckle images are rescaled for better visualization)



by selective searching used in those variants [9, 8, 10]. This
is attributed to the region proposal networks (RPNs) incor-
porated in the Faster R-CNN, which is used for generating
object detection proposals [3]. These RPNs are similar to
fully convolutional networks that can predict region propos-
als with a wide range of scales and aspect ratios, with the
help of anchor boxes as references at multiple scales and as-
pect ratios [24]. We thus incorporate Faster R-CNN into this
framework to detect three classes (major, minor and base
knuckles) and four instances of each class (one for each fin-
ger). The output of this is a collection of bounding boxes
for the knuckles along with detection confidence scores and
knuckle type classifications for each knuckle. Detection
is achieved by selecting bounding boxes after eliminating
overlapping boxes through non-maximal suppression, fa-
voring boxes with higher thresholds. The thresholds for
overlapping ratio and detection scores are chosen to be 0.5.

2.2. Quality check

Subsequent to the knuckle localization through the
Faster R-CNN framework, it becomes important to assign
appropriate finger labels to the detected knuckle regions.
Additionally, since this paper targets the holistic evaluation
of knuckle regions for overall hand identification, assign-
ing correct finger labels proves to be of utmost importance
and decisive for the overall accuracy of the system. A novel
quality check is introduced here, which ensures the count
and finger labels of the detected knuckle regions and cor-
rectness of their positions without having the ground truth.
Under this quality metric, a check on the number of detected
regions per knuckle type (major, minor and base) is applied
first. There should be four detections per knuckle type per-
taining to four fingers (index, middle, ring and little). As a
second check, the angular directions between (major, base)
and (minor, base) knuckle pairs are tested for consistency.
In other words, the difference between the angular direc-
tions for these two knuckle pairs should be less than a cer-
tain threshold (determined empirically to be 10◦). Subse-
quently, the dorsal images passing both the aforementioned
quality checks are considered for the ensuing steps. This
quality check prevents the poor quality hand images, such
as those with no visible knuckle creases, from participating
in the subsequent modules of feature extraction and match-
ing. A small portion of the hand images fail to pass this
quality check, some of which are presented in Figure 3 be-
low. Such images are excluded from the evaluation through
the approach proposed here.

2.3. Deep features

Following the quality check, the discerning features of
each knuckle region are extracted and their strengths for
biometric verification and identification are evaluated. For
this purpose, we leverage transfer learning, whereby deep

learning architectures can be trained effectively and the
learnt knowledge can be mapped to a new domain in a fast
and emphatic way [23, 6]. The CNN models trained on
large-scale labelled data, such as ImageNet [7], can prove
efficacious in learning a new task. Training such models
can be much faster than the learning from scratch strategy
(where the parameters of the model are initialized randomly
[25]).

In this paper, transfer learning is achieved by using all
but the fully connected layers of a pretrained DenseNet201
[11]. The last three layers of the model are made to ac-
commodate the number of classes defined for the ImageNet
dataset. These layers are replaced by new fully connected
layers to accommodate the number of classes in the new
task. Multi-class cross-entropy loss [2] is then calculated
as per equation (1) and appropriate class labels are assigned
for the input image.

loss = −
N∑
i=1

K∑
j=1

tij ln yij (1)

where N and K denote the number of samples and classes,
respectively. tij is an indicator that ith sample belong to jth
class and yij represents the value from the softmax func-
tion, which is the probability that the ith input is associated
with jth class. The pretrained model is retrained for a set
of training images from the employed hand databases and
used to extract the features from the test images. These test
features are then compared to yield the biometrics perfor-
mance metrics. A detailed discussion on the retraining of
CNN model is presented in Section 3.3.

2.4. Matching

The matching of test features is accomplished through
Cosine distance, where smaller values indicate more likeli-
hood of a match and vice-versa. This matching results in
genuine and imposter scores. Notably, genuine scores are
the scores obtained after matching samples from the same
person, whereas imposter scores are the ones obtained af-
ter matching samples from different hands. The decision
threshold, which is used to distinguish accepted and re-
jected scores, is then varied to obtain the actual count of
accepted and rejected samples, which in turn leads to calcu-
lation of metrics like false acceptance rate (FAR) and false
rejection rate (FRR). Any match is said to be accepted if its
matching score is below the decision threshold, otherwise
it counts to the rejected matches. The definitions of perfor-
mance metrics are furnished in Section 3.1.

3. Experimental setup and results
The proposed framework is tested on two large-scale

public hand dorsal databases: 11k [1] and PolyU Hand-
Dorsal (HD) [19]. These are the largest publicly available



hand dorsal datasets, in terms of number of images and
number of subjects. These datasets are described below and
the train/validation/test splits are detailed in Section 3.3.

11k dataset: This dataset consists of 11076 hand im-
ages, both in the palmar and dorsal views, from 190 sub-
jects. The images possess varied hand poses, from far-
opened fingers to semi-closed and closed fingers. All im-
ages in this dataset were captured using a USB document
camera with image resolution of 1600 × 1200 pixels, keep-
ing the hands at approximately the same distance from the
camera. Since this work focuses on knuckle creases, the
2788 left and 2892 right dorsal images are used.

PolyU HD dataset: This dataset consists of 4650 hand
dorsal images from the right hands of 501 subjects in a simi-
lar flat pose with open fingers. The images have a resolution
of 1600 × 1200 pixels, and are captured using indoor and
outdoor illuminations via a hand-held camera.

3.1. Implementation details and performance met-
rics

All experimentation of the proposed framework was car-
ried out using MATLAB R2020b on a Ubuntu 18.04.3 LTS
system with Nvidia GeForce RTX 2080 Ti and Intel(R)
Xeon(R) W-2245 CPU @ 3.90GHz processor. The perfor-
mance is evaluated using the equal error rate (EER), gen-
uine acceptance rate (GAR), false acceptance rate (FAR),
decidability index (DI), and rank-1 accuracy (R1A) [12],
given in equations (2)-(5) below. gen sc and imp sc rep-
resent the genuine and imposter vectors respectively, the
symbols µ, σ and t denote the mean, variance (of the gen-
uine/imposter score vector) and decision threshold respec-
tively, and t1 is the decision threshold when both FAR and
FRR are equal. All the GAR values reported in this paper
are obtained at FAR of 1%. Receiver operating character-
istic (ROC) curves are also employed for presenting visual
performance comparisons in verification and identification

(a)

(c)

(b)

(d)

Figure 2. Sample knuckle localization for (top row) HD dataset,
(bottom row) 11k dataset

modes. Further, we introduced a customized two-fold qual-
ity metric for knuckle localization.

FAR(t) =
length(imp sc < t)

length(imp sc)
(2)

FRR(t) =
length(gen sc > t)

length(gen sc)
(3)

EER =
FAR(t1) + FRR(t1)

2
(4)

DI =
|µgen sc| − |µimp sc|

2
√
σ2
gen sc + σ2

imp sc

(5)

3.2. Knuckle localization

The first part of experiments is focused on automated
localization of knuckle regions, which is achieved through
Faster R-CNN. The knuckle detection rules specified in
Section 2.1 provide a collection of bounding boxes, which
are further filtered to avoid any overlapping patches, by ne-
glecting any overlapping patch with low confidence scores.
The implementation is achieved through deep learning tool-
box of MATLAB, where 100 random images from each
group (left/right) of 11k dataset and 200 random images
from HD dataset are used for training, and rest of the im-
ages of the database are used for testing. For the purpose of
training, the images are manually annotated using ImageLa-
belor app of MATLAB, for twelve knuckle regions: the mi-
nor, major and base knuckles each for each of the 4 fingers.
Faster R-CNN is trained with these manually annotated im-
ages for 10 epochs using stochastic gradient descent with
momentum, with a learning rate of 0.001. Faster R-CNN
is trained with the resnet50 and resnet101 backbone archi-
tectures for 11k and HD databases, respectively, selected
through visual evaluation of the results on 100 testing im-
ages.

Further, the detected knuckle regions are tested for the
proposed quality check. Following the quality check, 88.7%
and 91.5% images for 11k left and right dorsal subsets,

Figure 3. Samples where proposed knuckle localization fails for
(a) HD dataset, (b) 11k dataset. Undetected knuckles are shown in
black-edged boxes.



respectively, passed the quality checks. 95% of the HD
dataset images passed the quality checks. This indicates that
the identification experiments can be conducted on major
portion of each dataset. Figure 2 illustrates the localization
results for some of the samples from the employed datasets
achieved with the proposed method, demonstrating that the
proposed knuckle localization method is effective for both
the challenging databases. It can be observed from the fig-
ure that the method detects the knuckle regions even in the
presence of rings (Fig. 2(b,d)) and high variations in illumi-
nation (Fig. 2(c)) and skintone (Fig. 2(b)). The figure also
shows that the proposed method works well for different
hand poses (i.e. from pose with touching fingers (Figs. 2(d))
to pose with fingers wide open (Fig. 2(a,c))). These samples
of knuckle localization clearly establishes the potential of
the proposed Faster R-CNN based approach. Nevertheless,
the proposed framework fails to detect the knuckle regions
in small proportion of images, which happens primarily due
to the poor quality of those images. Instances of such im-
ages are illustrated in Fig. 3, where the undetected knuckle
regions are shown in zoomed-in versions. It can be observed
from these zoomed-in versions that the undetected knuckle

regions do not possess comparable features and hence are
unlikely to be identifiable.

3.3. Feature extraction and biometric evaluation

The proposed framework is built upon pretrained
DenseNet201 [11] for extraction of deep knuckle features,
which is chosen empirically after analyzing features from
other CNN models like VGG16, AlexNet, GoogLeNet and
ResNet. The outperforming nature of DenseNet201 can be
attributed to its deeper architecture and dense connections
between the layers. Moreover, the feature reuse capability
of DenseNet cause increased variations in the input of the
subsequent layers, hence leading to attainment of distinctive
features.

Regarding the fine tuning of pretrained DenseNet201,
weights of the initial 10 layers are frozen before training.
The training is carried out with stochastic gradient descent
with momentum optimizer, with samples shuffled at each
epoch, mini batchsize of 10 and trained for 10 epochs. The
feature extraction network is fine tuned with a learning rate
of 3 × 10−4 and learning rate factor of 10 for the weights
and bias of the new fully connected layer. Moreover, the
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Figure 4. Receiver operating characteristics (ROC) curves for (a-d) 11k Left dataset, (e-h) 11k Right dataset, (i-l) HD dataset



weights of new fully connected layer are initialized using a
Glorot initializer (i.e. from a uniform distribution with zero
mean and variance 2/(InputSize + OutputSize). In or-
der to mitigate the problem of smaller training data, several
types of augmentations are applied to the training samples
before the fine-tuning, including randomized reflection in
the x-direction, randomized rotation in angular range of [-
30◦ 30◦], randomized translation in horizontal and vertical
directions in pixel range [-30 30], and randomized scaling
in both directions in scale range [0.9 1.1]. These augmen-
tations enrich the training data with indicative variations,
resulting in improved learning of the model. In addition
to this, the available knuckle data is divided into training,
validation and testing sets in the proportion of 60, 20 and
20 percent of the overall images. As a result, the number
of images per class used for training, validation and testing
are (5,2, 2), respectively for the HD dataset. Whereas, for
the 11k dataset, which has varying number of samples per
class, these numbers are presented as the average number
of images ((9, 3, 3) for 11k Right and (8, 3, 3) for 11k Left
datasets, respectively). Subsequently, deep features are ex-
tracted by employing the outputs of the global average pool-
ing layer, which returns feature vectors of dimension 1 ×
1920. The features from only the test data are employed
for evaluating the performance of the proposed framework
in both the verification and identification modes of biomet-
rics. There are total 464 true and 404986 false pairs for
the HD dataset, 748 true and 119547 false pairs for the
11k Left dataset, and 801 true and 137800 false pairs for
the 11k Right dataset.

The receiver operating characteristic (ROC) curves cor-
responding to different knuckles of the two employed
databases are depicted in Fig. 4. The values of performance
metrics are also presented within these curves. Figs. 4(a,e,i)
show the ROC curves for base knuckles of Left, Right dor-
sal subsets of 11k and for the HD dataset, respectively. It
could be observed from these figures that the identifiability
of base knuckles is relatively poor with high values of EER
and low values of GAR. However, it is worth noting that
GAR of base knuckles from the middle finger is improved
over the other fingers. Notably, the GAR of base knuckles
from middle finger is 69.62%, 75.57% and 79.19% for the
11k Left Dorsal, 11k Right Dorsal and HD datasets, respec-
tively. The higher values for HD dataset can be attributed
to strong creases present in the base knuckle region and the
underlying acquisition setup. The ROC curves for minor
knuckles are presented in Figs. 4(b,f,j), where it can be un-
doubtedly argued that minor knuckles are more identifiable
as compared against the base knuckles. Additionally, minor
knuckle from middle finger is more discerning when com-
pared with that of other fingers. Though, it performs com-
parable to the index and ring fingers for 11k Right Dorsal
and HD dataset, respectively, owing to possession of similar

level of features.
Figures 4(c,g,k) constitute the ROC curves from major

knuckles of different fingers from the 11k Left, 11k Right
Dorsal and HD datasets, respectively. The EER values for
major knuckles could be observed to fall as low as 3.74%
for ring finger of 11k Left, 3.85% for 11k Right and 4.10%
for HD dataset, proving the high identification potential of
major knuckles. Furthermore, the major knuckle of little
fingers from 11k dataset are the worst among all fingers.
This can be justified with their least distinguishing capabil-
ity as well as with their blurred acquisition in a high number
of images of the dataset. However, the major knuckles from
other three fingers have shown sufficient identifiability from
both the multi-ethnic databases.

3.4. Holistic evaluation

An important study performed here concerns the indi-
vidual identifiability of each finger in a holistic approach,
which incorporates the combination of the performances
of all three knuckles pertaining to a specific finger. This
holistic calculation is achieved through score-level fusion
via averaging. As a result, it can be observed from ROC
curves of Figs. 4(d,h,l) that holistic performance of every
finger from both the databases outperform the individual
knuckle’s performance comprehensively. This outperform-

Table 1. Rank-1 identification accuracy (%)

Finger Knuckle 11k Left 11k Right HD

Index

Base 78.82 84.82 62.38

Major 93.28 93.93 91.23

Minor 86.35 89.56 74.81

Holistic 98.37 98.29 95.56

Middle

Base 84.32 85.96 61.49

Major 94.70 95.26 88.90

Minor 93.69 93.17 84.57

Holistic 98.98 98.67 95.12

Ring

Base 76.99 73.62 57.16

Major 94.30 92.03 90.34

Minor 91.45 89.56 80.80

Holistic 97.76 98.10 95.23

Little

Base 83.71 81.78 59.16

Major 88.59 86.34 88.57

Minor 83.91 80.83 73.25

Holistic 97.15 96.58 92.79

Hand All 100 99.62 99.33



ing nature can be observed in all the listed performance met-
rics. Hence, it can be deduced that having the localization
of all three knuckles from a particular finger with reason-
able confidence, could lead to higher distinguishing capa-
bility of that finger as a whole. This idea could prove deci-
sive in real-life perpetrator identification cases. In addition,
Figs. 4(d,h,l) present the ROC curves for the entire hand i.e.
combining the scores from holistic performances of all four
fingers. These ROC curves corresponding to whole hands
illustrate excellent identifiability with EER as low as around
1% given good localization of the twelve knuckle regions
which validates the premise of the proposed approach.

The rank-1 identification accuracy for different knuck-
les and fingers are reported in Table 1. These results prove
the efficacy of the proposed framework in the identification
mode of biometrics. In compliance with the verification ex-
periments described above, the identification experiments
also validate the fact that the major knuckle of all fingers
are the most distinguishing knuckles, yielding rank-1 accu-
racies of the order of 93-95% for all fingers, except the little
finger. In addition, the rank-1 identification accuracy for the
holistic experiments exhibit encouraging results, with val-
ues as high as 97%. These high values prove that despite the
contactless acquisition of dorsal views of hands in both the
databases, identification can be performed with high accu-
racy if all three knuckles of any finger can be made available
for the purpose. Whereas, the last row of Table 1 sets forth
the rank-1 identification accuracy for the full-hands, which
are achieved by combining the matching scores from holis-
tic finger performances. These high values of the order of
99-100% demonstrate the promising nature of the proposed
framework for both the employed databases.

A separate tabular representation of performance metrics
for combination of individual knuckle types (base, major
and minor) is given in Table 2. The table re-establishes the
fact that major knuckles are the most identifiable knuckle
type, through the consistent low values of EER for both the
employed datasets (1.73% and 0.97% for 11k left and right,
and 1.13% for HD database, respectively). Concurrently,
better values of other metrics, like DI, GAR and R1A, sup-
port this inference. The second best identifiability is ex-
hibited by the minor knuckles for 11k dataset with respec-

tive EERs of 2.80%, 2.86% and by base knuckles for HD
dataset with EER of 2.16%. Hence, Tables 1 and 2 pro-
vide strong testimony in vindication of the proposed holis-
tic evaluation. Additionally, we also bring the full holistic
analysis in the public domain through the following link:
https://h-unique.lancaster.ac.uk/performance/

The cross-domain experiments are also conducted to
evaluate images from the 11k Right subset (as HD dataset
consists of images from the right hand only) on the mod-
els trained with images from the HD dataset and vice-versa.
The obtained EERs for the holistic matching case in both
the cross-domain evaluation scenarios (HD vs. 11k Right
and 11k Right vs. HD) are 5.35% and 8.78%, respectively.
These good EER values indicate that the proposed approach
is well generalizable.

3.5. Comparison

The proposed approach is the first attempt to evaluate
the knuckle recognition for 11k. For HD, results of the
proposed approach are compared against those of Kumar
and Xu [19]. In their paper, the EERs for base knuckles
were provided as 20.87%, 18.47%, 23.17% and 22.84%
for the index, middle, ring and little fingers, respectively.
These values are clearly inferior as compared to the EERs
achieved with the proposed approach, which are 6.67%,
6.72%, 6.47% and 6.46% for the respective fingers. Ad-
ditionally, the work in [19] presented ROC curves for indi-
vidual knuckle types and their combinations pertaining to
each finger. The best GAR values (estimated visually from
the ROC curves) of their work are found to fall in the range
of 75-80%, 78-83%, 77-82% and 73-78% for the index,
middle, ring and little fingers, respectively. Whereas, the
best GARs for the proposed approach are 94.83%, 95.04%,
95.69% and 93.94% for the respective fingers (see Fig.
2(l)). Hence, the proposed approach outperforms state-of-
the-art knuckle recognition.

4. Conclusion
This paper proposes an end-to-end deep learning frame-

work for hand identification using all of the knuckles. The
proposed method initiates with knuckle localization of the
input hand image, followed by the quality check. This pro-

Table 2. Performance metrics for individual knuckle types combined over the fingers

Knuckle

Dataset 11k-Left 11k-Right HD

EER(%) DI GAR(%) R1A(%) EER(%) DI GAR(%) R1A(%) EER(%) DI GAR(%) R1A(%)

Base 5.87 3.74 86.36 96.95 4.07 4.06 89.26 95.64 2.16 4.83 94.83 89.12

Major 1.73 5.04 96.78 99.80 0.97 5.67 99.13 99.43 1.13 5.68 98.26 98.34

Minor 2.80 4.38 93.43 99.19 2.86 4.68 95.26 98.29 3.08 4.85 94.18 96.34

Hand 1.86 5.04 96.26 100 1.00 5.56 99.00 99.62 1.08 5.83 98.58 99.33



cedure is the first of its kind for knuckle localization and the
inclusion of a two-fold quality metric, allowing the model
to largely consider hand images with appropriate localiza-
tion and refer images that are not likely to be identifiable.
Thereafter, the proposed framework extracts the discerning
features of various knuckles through retraining of pretrained
CNN model. These extracted features are then employed
to establish the identifiability of all knuckles, fingers and
hand as a whole. To the best of authors’ knowledge, this
is the first approach for person identification using knuckle
creases holistically which actually allows for whole-hand
identification robustly with impressive results.
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