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Abstract—Industry 5.0, emerging as a promising industry
paradigm, unleashes the potential of improving consumer expe-
rience by delivering consumer-centric services, facilitating sub-
stantial growth in consumer electronics. To improve the resilience
of industry 5.0, edge data caching enables sustainable and low-
latency service provision by caching data at edge servers (ESs)
closer to production. However, the limited caching capacity of ESs
presents a formidable challenge to efficient edge data caching.
Moreover, the dynamic of consumer-centric service requests
further complicates the effective implementation of caching
strategies. In response to the above challenges, we propose an
edge data caching scheme, named SPM-ECDP, with consumer-
centric service prediction for Industry 5.0. Initially, a time-series
prediction model is employed to forecast the service demands. To
ensure the confidentiality of data, federated learning is introduced
in the model training phase. Subsequently, reinforcement learning
is adopted to enable ESs to make intelligent decisions on edge
data caching, consequently enhancing caching efficiency. Through
comprehensive simulation experiments, the effectiveness and
superiority of the proposed scheme in increasing caching hit
ratio and reducing data delivery delays are demonstrated. The
experimental results demonstrate that the proposed SPM-ECDP
method has enhanced the hit ratio by 7.05% - 48.5% when
compared to the baseline method.

Index Terms—Consumer-centric, industry 5.0, edge caching,
edge computing, privacy preservation, reinforcement learning

I. INTRODUCTION

ITH the rapid advancement of cutting-edge technolo-
W gies, including edge computing, the Internet of Things
(IoT), and 5G cellular networks, Industry 5.0 has emerged
as the next industrial revolution. Industry 5.0 builds upon the
strengths and capabilities of Industry 4.0 but places paramount
importance on three key aspects: human-centricity, sustainabil-
ity, and resilience [1], [2].

As a novel human-centric industrial paradigm, industry 5.0
presents consumers with a diverse array of customer-centric
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services, including personalized product customization, prod-
uct technology modernization, and product quality enhance-
ment [3]. These services contribute to the standardization of
electronic products, reducing electronic waste and mitigating
the global environmental crisis [4]. Unlike previous industrial
models, Industry 5.0 places significant emphasis on the collab-
oration between humans and machines, enabling automation in
manufacturing processes and empowering workers to concen-
trate on delivering customized services and products [5]. The
collection, transmission, and processing of data are essential to
automated manufacturing to expedite service delivery. To offer
consumers faster and more sustainable services, consideration
must be given to the delay and privacy issues involved in data
transmission and processing [6].

By deploying computing resources closer to the devices,
edge computing effectively reduces data transmission delay
and network bandwidth consumption, leading to improved
service response speed and enhanced data security [7], [8]. In
Industry 5.0, consumer-centric services have gained popularity
due to their ability to provide consumers with high-quality
products and enhance the overall consumption experience.
By harnessing the potential of caching and data processing
at edge nodes, edge caching effectively provides end-users
with reduced latency and more resilient services, significantly
improving their overall service experience [9]. Edge caching
is equally applicable in industrial scenarios, as it introduces
innovative data management practices to industrial processes,
significantly enhancing the flexibility of production processes.
However, the implementation of edge caching in Industry 5.0
still presents several challenges. Firstly, there is a conflict
between the factory’s flexible data requests and the limited
storage capacity of the edge nodes [10]. Additionally, although
artificial intelligence models play a huge role in caching
decisions, factories may choose not to use sensitive data for
training the models, as there is an increasing emphasis on
privacy protection and safeguarding their interests [11], [12].
Thirdly, the time dynamics of factory requests for service
necessitates that edge nodes time-varying adapt their caching
strategies to enhance caching efficiency [13]. Therefore, it is
necessary to incorporate data popularity prediction and enable
intelligent caching decision-making to enhance the efficiency
of edge caching in Industry 5.0 [14].

To address the challenges of applying edge caching in
Industry 5.0, there is an urgent need for model training
methods that can safeguard data privacy. Federated learning,
a distributed training method, play a significant role in the
process of training artificial intelligence models. It ensures
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privacy preservation during training by enabling each training
node to locally train the model on its own data, without the
need for uploading private data [15], [16]. Upon completing
local model training, each training node simply needs to
upload the updated model parameters to the central server to
update the global model, thereby fundamentally eliminating
the risk of privacy disclosure during data upload [17], [18].
Federated learning is widely utilized in edge caching owing to
its privacy-preserving features during training [19], [20]. On
the other hand, to fully utilize the limited caching space of
edge nodes, the ability of reinforcement learning algorithms to
enable agent to make independent decisions plays an important
role intelligent caching decision-making. These algorithms
empower edge nodes to dynamically adjust their caching deci-
sions in response to changes in the cache environment through
continuous interactions. This adaptive approach enables the
edge nodes to make more efficient and effective caching
decisions, optimizing the utilization of available storage space
[21]. By integrating these two methods, dynamic optimization
of the edge caching strategy can be achieved, ensuring the
privacy of training data, and maximizing the caching hit ratio
[22].

In this paper, we propose a novel edge caching scheme,
named SPM-ECDP, to provide secure and high-performance
caching for consumer electronics suppliers. Specifically, ser-
vice demand is predicted to determine the services that will be
requested in the future. To ensure privacy protection during the
training of predictive models, a federated learning framework
is introduced. Additionally, the paper presents an intelligent
caching method, which aims to determine the optimal caching
strategy, leading to significantly improved caching efficiency.
The main contributions of this paper are as follows:

o Design an intelligent edge caching scheme for Industry
5.0, enhancing the elasticity of the production process
while prioritizing privacy preservation for the industrial
Internet.

« Utilize Long Short-Term Memory (LSTM) for predicting
future service demand and integrating federated learning
to preserve privacy during model training, named SPM.

e« A Deep Deterministic Policy Gradient (DDPG)-based
approach is meticulously crafted to enable intelligent
caching decisions, thereby yielding significantly im-
proved caching hit ratios and substantially reduced data
transmission delay, named ECDP.

o Conduct comprehensive experiments to validate the per-
formance of the proposed caching scheme SPM-ECDP
in improving caching hit ratio and reducing data delivery
latency.

The rest of the paper is organized as follows: Section II
describes the related work. In section III, we introduce the
models and define the problem. In section IV, the detailed
description of caching scheme is provided. In Section V,
through simulation experiment, we analyze the effectiveness
of the proposed edge caching scheme. The conclusion of this
research is illustrated in Section VI.

II. RELATED WORK

In this section, detailed introductions are provided for three
aspects of related work. The following is a comprehensive
presentation of these aspects.

A. Federated Learning in Edge Caching

Many articles have researched federated learning in edge
caching. Addressing the challenges posed by the constant
movement of vehicles and the rapid obsolescence of content
on the edge network, Yu et al. [23] introduced a mobile-aware
proactive edge caching scheme based on federated learning.
This innovative approach not only safeguards user privacy but
also enables dynamic content caching in a seamless manner. Li
et al. [24] presented a collaborative edge caching scheme based
on federated deep reinforcement learning, which effectively
achieved dynamic adaptation of edge caching while ensuring
privacy protection. Furthermore, this scheme addressed the
caching challenges associated with high-precision maps for
smart connected cars. To strike a balance between caching
cost and transmission delay, Li et al. [25] introduced an in-
novative edge caching scheme based on community detection
and attention-weighted federated learning. Within this frame-
work, attention-based weighted federated learning is employed
to predict data popularity, consequently achieving the dual
benefits of user privacy protection and enhanced prediction
accuracy.

B. Reinforcement Learning in Edge Caching

With the superiority of reinforcement learning in intelligent
decision-making, many studies have begun to integrate rein-
forcement learning into edge caching. Aiming at the prob-
lems of edge caching device deception and cached content
being attacked, Xu et al. [26] proposed a secure edge cache
solution that encourages edge caching devices to participate
in caching work and uses reinforcement learning methods to
derive the content provider’s optimal payment strategy. Wang
et al. [27] introduced a device-to-device assisted heteroge-
neous collaborative edge caching framework. This innovative
approach addresses the joint optimization problem utilizing a
deep Q-learning network and enhances the training efficiency
of the Q-learning network by incorporating an attention-
weighted federated deep learning model. The experimental
results demonstrate that the proposed framework effectively
reduces the average latency of content access and improves
the caching hit ratio. To minimize content access delay and
traffic costs, Wang et al. [28] devised an intelligent edge
caching framework. This framework incorporates multi-agent-
based reinforcement learning to empower edge nodes with the
capacity to make adaptive decisions and achieve intelligent
collaborative caching among them.

C. Application of Edge computing in Industrial Internet

Edge caching offers data delivery services with reduced
latency for the Industrial Internet, thus prompting numerous
studies to explore its application in the Industrial Internet do-
main. While edge caching offers low-latency data services for
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Fig. 1: Edge data caching for consumer-centric service in industry 5.0

the industrial Internet, conventional edge caching approaches
often overlook the variability of user interests, leading to a
potential decline in user experience quality. To address this
issue, Li et al. [29] proposed a recommendation-assisted edge
caching method aimed at enhancing user experience while
optimizing the caching hit ratio. Li et al. [30] introduced a
proactive caching strategy that considers both location and
movement trajectory, accounting for the spatial mobility of
industrial equipment. The effectiveness of this scheme has
been demonstrated through its notable advantages in terms of
throughput and real-time performance. Xu et al. [31] leveraged
digital twin to construct a virtual world that accurately reflects
the real world, while also implementing effective caching
decisions.

Extensive researches have been conducted on edge caching,
as mentioned above. Some of these studies address privacy
preservation for sensitive data, while others concentrate on
optimizing the utilization of caching storage on ESs. However,
only a limited number of investigations have taken into consid-
eration privacy preservation and intelligent caching decisions
simultaneously. To mitigate the aforementioned issue, this pa-
per proposes a novel method, situated within the context of the
Elastic Industry 5.0, which aims to achieve more efficient edge
caching while upholding robust privacy protection through a
synergistic integration of federated learning and reinforcement
learning.

III. SYSTEM MODEL

There are three parts in this section. Firstly, the introduction
of edge caching framework for resilient industry 5.0. Then, the
caching model and the service popularity model are described.
Finally, the problem involved in edge caching is formulated.
Table I lists the definition of notations.

A. System Framework

From Fig. 1, it is evident that each factory occupies a
specific geographical area as the production site. Within each
factory, there are factory servers (FSs) responsible for receiv-
ing service requests from the equipment and providing the nec-
essary data support to these equipment based on the requests.
These FSs can be represented as F' = {f1, -+, fi," -, [~}
, where f; represents the i;;, FS, and N represents the total
number of FSs. The equipment within the factory is connected
to the FS through wireless links, and these equipment can
be represented as B = {e!,---,e',--- e/}. Where ¢
{elsehsei} denotes the set of equipment connected to
fi,and M; represents the number of equipment connected to f;
. In this paper, FS does not possess storage capabilities and can
only receive and forward service requests. This consideration
is aligned with the efficient practices of modern industry, as
equipping each factory with separate servers containing inde-
pendent computing and storage resources would be wasteful
and counterproductive to the cost optimization in industrial
settings. Therefore, in the remote areas outside the factories,
there are ESs equipped with computing and storage resources.
These ESs are connected to the FSs through wired links. Their
primary function is to receive service requests forwarded by
FS and send data to the relevant FS, thereby providing services
to multiple FS within the same region simultaneously. The set
of service is represented as S = {si,..., Sk, ..., Sk }, Where
k denotes the length of the set S. The execution of services
requires essential data support, and the data required for a
service may involve various types and multiple data items.
For the sake of simplicity, we use dj to represent all the
data required for s, and zj represents the size of the d.
All the service requests received by f; can be represented as
R; ={ri1,..,Tik,...,Ti, i}, where r; ; denotes the number
of requests from factory equipment within the coverage area of
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TABLE I: NOTATIONS DEFINITION

Notation Definition

F Set of factory servers(FSs).

fi The i, factory server € F'
Set of equipment in factories.

e§ The j:n equipment located within the coverage
area of f;.

S Set of services.

Sk The kyj, service € S

dp The data required for service sg.

2k The size of dj.

R; The service requests received by f;.

ik The number of requests for sj, received by f;.

rf’ The service requests received by f; during ¢.

U The set of data cached by ES.

Q The upper limit of ES’s caching capacity.

qk A binary variable used to distinguish the caching
location of d.

tr The time required for the transmission of dp.

T The time required for the all data transmission.
uf’ The caching hit ratio during time period ¢.

“w The caching hit ratio of the entire caching system.
T The loss between rf+1 and rf’+1.

v The MSE loss function.

r The function of model training.

C] The model parameter acquisition function.

0; The parameters of ;.

fi- To distinguish requests from different time periods, it can
be further represented as r; ,, = {ri{k, e 7“?,1@ e rfk}, where
rfjk represents the number of requests for s; received at time
¢. However, due to the relatively limited storage capacity of
the ESs compared to cloud server, caching all the data required
for all services is not feasible. Therefore, ES needs to be
connected to the cloud server to promptly request data from
them when it cannot meet all the data requirements of the
incoming service requests. This ensures the smooth operation
of the factories.

B. Edge Caching Model

In the proposed framework of this paper, only two devices
are capable of providing data storage since the FS lacks
storage capabilities. These devices are the ES and the cloud
server. Assuming the cloud server possesses wireless storage
resources and can cache all the data, while the capacity of ES
is limited. Therefore, the data cached by ES can be represented
as U = {uy, ..., uq, ..., ur }, where L represents the maximum
number of data items that ES can cache. We distinguish the
location where data is cached using a binary variable . The
value of g, can be determined based on the following equation:

_ 1, dyeU

where dj, € U represents dj, cached by the ES, denoting ¢ =
1; di ¢ U represents dy, that is not cached by ES but exists in
the storage space of the cloud server, indicating g5, = 0. The
upper limit of the caching capacity of the ES is represented

by @ . Consequently, when performing edge caching, ES must
satisfy the following equation:

K
> ax g <Q. )
k=1
This equation represents that the sum of the storage of data
in the ES must not exceed the storage upper limit ) of ES.

C. Data Transfer Model

Service requests originating from the equipment within the
factory are sent to the FS, which, in turn, forwards relevant
data requests to the ES. If ES caches the requested data, it
directly sends the data to FS through a wired link. The reason
for not sending the data directly to the devices is due to the
concern for factory privacy protection. The devices within the
factory are only connected to their own on-site FS. Once FS
receives the data, it transmits the data to the devices via a
wireless link. The bandwidth of the wired link between the
FS and the ES is denoted as w,, and the bandwidth of the
wireless link between FS and the equipment is denoted as wy.
Due to the differences in hardware facilities and transmission
methods, the bandwidth between FS and ES is greater than the
bandwidth between FS and the equipment, e.g., w, > wp. If
the ES does not cache the requested data, it proceeds to request
the data from the cloud server. Once the data is obtained
from cloud server, ES forwards it to the FS. The connection
between ES and the cloud server is established through a wired
link, and its bandwidth is represented as w,.. The relationship
between the three different bandwidths can be expressed as
we > W, > wp. Once the transmission bandwidths between
different devices are obtained , It is easily to determine the
time required for the single transmission of dj as

2k 2k 2k
tsz-‘r*-i-fX(l—qk), 3)
Wy Wq We

St We > we > W 4)

Therefore, the total time taken to transmit all the data over all
time periods can be calculate as

® N K

T:ZZZthrﬁk. (5)

¢=11i=1 k=1

Another major metric for evaluating caching algorithms is the
caching hit ratio, which will have a significant impact on the
effectiveness of the caching system. In the proposed caching
architecture in this paper, not only the types of cached data
are considered but also the frequency of requests for different
data items is taken into account. The caching hit ratio of a
single FS in ¢ time period can be calculated as

K K
[ [
> s X Tik > Tik

6 k=1 _ k=1

== —— xq, ©)
> 7‘?1@ > Tfk
k=1 k=1
where
i€[LN],¢el1,a]. )



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

Therefore, the caching hit ratio of the entire caching system
can be determined as

[
p=>> ul. ®)

i=1 ¢p=1

D. Problem Definition

In order to achieve optimal performance in the edge caching
strategy for resilient industry 5.0 and to promote further
growth in consumer electronics, both the time consumption
and caching hit ratio of the edge caching solution need to
be taken into consideration. Therefore, the problem can be
defined as

max (), min(T), 9)

K
s.t.z 2 X qr < Q.

k=1

(10)

A higher caching hit ratio and lower data transmission time
consumption can efficiently facilitate the delivery of required
data to the equipment within the factory when they request
services. This, in turn, enhances the performance of the edge
caching solution in serving industrial production and improves
the efficiency of the production process in the consumer elec-
tronics industry, ultimately leading to an enhanced consumer
experience.

IV. DESIGN OF SPM-ECDP

In the following parts, detailed information on the various
components of the caching scheme SPM-ECDP is provided.

A. Service Requests Prediction

During a certain time span, the FS receives numerous
diverse service requests. Although FS does not possess the
ability to cache data required by services, it still store
these service requests record in its limited storage space. As
mentioned in Section III, the received service requests are
represented by R; = {ri1,...,Tik,...,Ti,k}, where r; =
{ril’ R rfk, e rfk} denotes the number of service requests
at different time intervals. With the service requests record
for different time intervals, the use of time-series forecasting
models allows for predictions to be made, thereby obtain-
ing the number of service requests expected in future time
intervals. Firstly, the requests are divided based on time
intervals to obtain the training dataset, denoted as RiT =
[Pl ), where P = [ril,...,rfjk,...,rij].
When using LSTM for time-series prediction of request
counts, is used as the input to the model, and the output
represents the predicted results. The choice of LSTM as the
temporal prediction model, as opposed to GRU or RNN,
stems from its capability to effectively mitigate issues such
as gradient explosion and vanishing gradient, while also
demonstrating proficiency in modeling long-term sequences
and capturing temporal characteristics. The prediction process
can be represented using the following equation as

= ([ ], (an

where rf + represents the predicted value of the number of

service requests received in the ¢+ 1 period and ( is the length
of training step. In order to measure the error between the
predicted values and the actual values as the basis for model
training, the following equation is used to calculate the error

T= V() (12)
where V represents the Mean Squared Error (MSE) loss
function and 7 is the error. The model training is performed
using the gradient descent method, continuing until the 7
of converges, with the aim of obtaining a highly accurate
predictive model. The service request prediction is illustrates
in Fig. 2.
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Fig. 2: Consumer-centric service requests prediction

B. Distributed Training with Privacy Preservation

As the ES provides data caching services for multiple FS
within the entire region, and service requests from factories
within the same region exhibit certain similarities, it is not
feasible to rely solely on the model output results from
individual FS for caching decisions. Instead, it is necessary to
consider the characteristics of service requests from the entire
region. Therefore, a collaborative training approach involving
multiple FSs within the same region is needed, allowing all
request records to contribute to the model, thereby training
a model with strong feature inclusiveness and high usability.
As mentioned in the previous part, the time-series forecasting
model on f; using service request records exclusive to f;.
However, these records may involve sensitive information, and
in order to safeguard their own interests, factories may choose
not to upload service request records to a central node for
model training. In order to achieve effective protection of
sensitive data while obtaining a global model, we introduce
federated learning into the model training process. We use s;
to represent the model trained with R! as input, and the 6;
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represents the parameters of »¢;. The process of obtaining ;
and 6; can be represented as

% =T(R]),

13)
(14)

where I' represents the model training function and © repre-
sents the model parameter acquisition function.

After obtaining the parameters of each predictive model,
FSs only need to upload the model parameters to the ES for
the aggregation of the global model s,. This process can be
represented as

15)

where 0 is the parameters of global model »,. Once the 0, is
obtained, it will be sent from the central aggregation node ES
to the training nodes FSs for further training until the global
model s, converges. Subsequently, each FS utilizes 6, to build
model and employs this model for inference, thereby obtaining
the number of service requests for the next time interval. The
model inference process is represented as

rg = 5(00)7

!
r?“ =0 ([T(-I’*C rP-1 rq’D ,

(16)

a7

2 10 v

where = is the model construction function which takes 6 as
input and r;-p *1 s the predicted service requests in ® + 1
period.

The sum of predicted request number for services can be

calculated as N
’ !
Tq>+1 = E T’?Jrl .

i=1

The detailed presentation of the prediction process for service
request number is shown in Algorithm 1.

(18)

C. Intelligent Data Caching Decisions

As an entity responsible for executing data edge caching, the
ES has a limited storage capacity, denoted by (). Therefore, ES
cannot cache all data, and a caching decision scheme needs
to be formulated for edge caching decisions. The objective
of this decision-making process is to leverage the limited
caching space to provide optimal caching. In the proposed
framework in this paper, different services have varying re-
quest frequencies, and thus, data size alone cannot serve as
the sole criterion for caching decisions. This can be illustrated
with the following example.

1) case 1: The number of data requests is 50 and the size

of data is 3MB.

2) case 2: The number of data requests is 30 and the size

of data is 2MB.

3) case 3: The number of data requests is 40 and the size

of data is 2MB.
The storage capacity of the ES is assumed to be 4 MB.
Based on the principle of request frequency priority, the correct
caching decision may seem to be caching case 1. However,

Algorithm 1: Consumer-Centric Service Prediction
with Privacy Preservation

Input: the service request records R! in f; € F

Output: the sum of pr(;dicted request number for
services r®+1

1 Initialize parameters 6,;

2 while the global model s, converged do

3 for f; € F do

4 Constructing s¢; using 0g;
5 for each epoch do
6 Getting prediction result rf + using Eq.
(11);
7 Getting the loss between predicted value
and actual value 7 using Eq. (12);
8 Adjusting model parameters using the
gradient descent method.
9 end
10 Getting model parameters 6;;
11 end

12 The set 6 = (64,---,0;,---
13 Using Eq. 15 to get 6;

14 end

15 for f; € F' do

16 Using Eq. 16 to construct s, based on 6g;
P+1

7 s

,0N) is obtained;

17 Using Eq. 17 to get r
18 end
19 The sum of predicted request number for services is

obtained by Eq. 18.

20 Return r®t1 ;

it would be wiser to cache case 2 and case 3 because this
approach takes both the request frequency and data size into
consideration in the decision-making process. By doing so, it
fully utilizes the limited caching space available.

To effectively implement intelligent caching decisions, re-
inforcement learning has been proven to be a viable ap-
proach. However, due to the limited computational resources
in ES, employing complex algorithms like Twin Delayed Deep
Deterministic Policy Gradient (TD3) may partially impact
the efficiency of intelligent caching decisions, mainly due to
TD3’s adoption of a twin critic network. On the other hand,
simpler algorithms like Actor-Critic (AC) may not achieve
optimal decision-making [32]. Additionally, reinforcement
learning algorithms such as Deep Q-Network (DQN) may have
limitations in handling continuous actions [33]. Therefore, for
edge caching decisions, we have opted for an improved version
of AC known as DDPG, which builds upon AC by integrating
deterministic policies and experience replay techniques. This
allows DDPG to strike a balance between avoiding excessive
resource consumption and performing well in handling prob-
lems in continuous action spaces. The agent interacts with
the caching environment to collect experience samples, and
randomly samples experience tuples from experience replay
buffer for model training. Additionally, the updating of target
network parameters is performed using a soft update strategy,
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Fig. 3: Intelligent edge caching decision with DDPG

gradually approaching the current network parameters. The
specific caching decision process is illustrated in the Fig. 3.

Algorithm 2: Intelligent Data Caching Decisions with
DDPG (ECDP)
Input: The predicted number of service requests

[P e 2T ] and the size of
data [z1, -+, 2k, -, 2K]
Output: The caching decision [q1, -+ , gk, "+ , qK]

1 Construct state space S, action space A;

2 Initialize parameters of actor network A and critic
network C: 0,,6.;

3 Initialize parameters of target actor network A" and
critic network C': 6,,,0..;

4 for each episode do

5 for each step do

6 Choose an action a;

7 Compute the reward rd using Eq.16 and a new
state s ;

8 Store {s,a,r, s/} in buffer;

9 Randomly select {s, a,r, s/} from buffer;

10 Compute y using target critic network the

following formula that
y=r-+vy -C (5 7A (5 |9a)|0c);

11 Compute the loss by the following foumula
N
2
that L = & Z:l (y — C(s,al6.))";
12 Update the actor policy using the sampled
policy gradient;
13 Update the parameters of target actor network

by the following formula that

0, T 0o+ (1—7)-0,;

14 Update the parameters of target critic network
by the following formula that

0, 7-0.+(1—7) 0.

15 end

16 end

17 Return the final action @ = [q1,- - ,qk, - , 4K],
where ¢, = 0 indicates that dj, is not cached, and
qr = 1 signifies the opposite.

It can be observed that the construction of the reinforcement
learning environment is based on the predicted values of future
time-period request counts for each service, and the sizes
of the data required by each service serve as the basis for
calculating rewards. The calculation of the reward can be
expressed as

K
rd+ g <t S e x g < Q
=1

K
rd—o, Y 2z X q > Q
k=1

rd = , (19)

where is a constant used to control rd. The reason for doing
this is that the cached data size has exceeded the storage

K

limit of ES when > z; X ¢ < @), and it is necessary to
k=1

avoid such situations as much as possible. At this point, a

penalty is imposed on rd by subtracting A from it, enabling
reinforcement learning to autonomously avoid caching data
that exceeds the limit. The training process is repeated until
rd converges. At this point, the final caching decision is output,
e.g., [q1, " »qk, -+ ,qx] in Fig. 3. g = 0 represents that dj,
is cached by ES, while ¢ = 1 indicates that dj, is not cached
by ES. The detailed presentation of the intelligent caching
decision-making is shown in Algorithm 2.

The discussion above outlines the proposed caching scheme,
which leverages federated learning for privacy preservation
while training predictive models, using reinforcement learning
for intelligent caching decisions.

V. PERFORMANCE RESULTS AND ANALYSIS

In this section, we verify the effectiveness and superiority
of the proposed scheme.

A. Experimental Setup

The hardware environment based on this experiment is as
follows: the CPU is Intel i7-8700, and the GPU is NVIDIA
GeForce GTX 1080. All experiments are performed in Python
3.10 and Pytorch 1.13.0.

The dataset used in this study is a simulated dataset
based on a real dataset which is collected from Nanjing.



JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

The data set contains more than 100 million pieces of in-
formation about the service requirements of vehicle users.
The information was collected from 436 RSUs covering
Nanjing City from September 1, 2014, to September 30,
2014. The format of the raw dataset comprises a quadruple
< 1d, speed, request, region >, where id represents the ve-
hicle’s identifier, speed denotes the vehicle’s velocity, request
signifies the data request initiated by the vehicle, and region
indicates the geographical location of the vehicle. To make the
dataset more suitable for the scenario proposed in this paper,
we have processed it. Specifically, we select five RSUs in the
same region as FSs. Service requests from vehicles within
the coverage of each RSU are treated as service requests from
equipment inside a factory. The processed dataset includes the
following fields which are shown in table II.

TABLE II: The description of the field in the Dataset

Fields Description
FSiq Unique identifier for factory server.
FSioe Geographical location of factory server.
SR;q Unique identifier for service request.
SRioc Geographical location of service request originated.
Data;q Unique identifier for data.
Datag;ze Size of the each data.

The experiment in this paper involves two models, namely
the time series prediction model LSTM and the reinforcement
learning algorithm DDPG. The experimental parameter set-
tings for LSTM are as follows that the input size is 100, the
layers number is 10, the hidden size is 32, the output size is
100 and the learning rate is 0.001. The experimental parameter
settings for DDPG are as follows that the max episodes is
1000, memory capacity is 1000, the discount factor is 0.9.

B. Performance Evaluation

In this part, simulation experiments are conducted to demon-
strate the effectiveness of the proposed scheme, and through
comparative experiments, the superiority of the approach pre-
sented in this paper is validated. The multiple caching schemes
compared with the proposed scheme are introduced in turn
below.

o TD3-based caching scheme (TDCS). The caching scheme
proposed in this paper which uses Twin Delayed Deep
Deterministic policy gradient algorithm (TD3) to make
the caching decision [34].

o AC-based caching scheme (ACS). The Actor-Critic (AC)
algorithm consists of two networks, namely the Actor net-
work and the Critic network. This reinforcement learning
algorithm is utilized for making decisions regarding the
content to be cached in this paper [35].

e Random caching scheme (RCS). The edge caching
scheme randomly selects a portion of data from the set
of all data for caching without performing any prediction
work beforehand [36].

¢ Cloud caching scheme (CCS). The cloud caching which
means that there is no data caching in the FS, only the
cloud server performs data caching [37].

The evaluation metrics involved in the experiment are
described as follows:

o Reward: The feedback signals obtained by the agent in
the environment after taking actions are utilized to guide
the agent’s learning on how to select actions in differ-
ent states with the objective of maximizing cumulative
rewards.

Hit Ratio: The ratio of the number of data requests
fulfilled by edge servers to the total number of data
requests.

Time Cost: The total time spent in the system to satisfy
all data requests.

220
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Fig. 4: The performance of prediction models based on feder-
ated learning

Fig. 4 depicts the performance of the SPM proposed in this
paper. We randomly select F'151 and F'3S53, where F151
represents the number of requests for s; on f1, and F'353
represents a similar quantity for s3 on f3. The magnitude of a
time interval on the x-axix is 0.5 hour. The solid and dashed
lines represent the actual values and the predicted values,
respectively. The remarkable consistency between the actual
and predicted values across diverse time periods unequivo-
cally demonstrates the accuracy of the time series predicting
model. Regrettably, there is a degree of deviation between
the predicted and actual values in certain time periods, which
is attributed to the incorporation of the federated learning
framework during the model training process, resulting in a
partial loss of model accuracy.

Fig. 5 shows the performance of ECDP at different learning
rates, in which the lr, is the learning rate of actor network
and the Ir. is the learning rate of critic network. It can be seen
from the figure that when lr,=1e-3, lr.=1e-2, the reward value
rises rapidly, and the highest reward is reached after about 80
rounds. But then decreases to a certain extent, indicating that
the learning rate is too large. Reduce the learning rates to
lro=1e-4, lr.=1e-3, respectively. At this time, we see from
the figure that the reward value also rises rapidly, and it will
reach its peak after about 80 rounds. The difference from the
previous curve is that the blue curve does not cause the reward
value to drop in the subsequent training, which shows that the
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current learning rate is better for network training. To prevent
the reward from increasing too rapidly due to the learning
ratio, we adjust the learning rate to lr,=le-5, Ir.=le-4, and
the reward value changes as shown in the red curve. It can
be seen from the figure that the reward value rises in steps at
the initial stage and reaches the peak after about 400 rounds,
and then only fluctuates in a small range. Compared with the
other two curves, although the red curve takes more time to
reach the peak reward value, the reward value is much higher.
Considering that further reducing the learning rate will lead to
too long learning time, we no longer reduce the learning rate,
but only take the best combination, that is,lr,=1e-5, lr.=1e-4.
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Fig. 5: Rewards under different learning rates
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Fig. 6: Comparison on rewards with TDCS, ACS and ECDP

Fig. 6 presents a comparison of the performance gap be-
tween the three different reinforcement learning algorithms
that are ECDP, ACS, and TDCS. To ensure a fair compar-
ison of the performance of different reinforcement learning
algorithms, both AC and TD3 maintain the same learning
rate as the optimal learning rate of DDPG. Additionally, TD3
maintains consistent learning rates for its two critic networks.
It can be learned that as the numb er of epochs increases, the
rewards obtained by the three algorithms exhibit an upward
trend. However, their rates of improvement vary significantly.

0.6
T RCS = TDCS
05 @ ACS 2 ECDP
04
.2
4(—3’ ] | p— ] _—
& 0.3
&=
0.2
0.1
0
1 2 3 4 5
# of FSs

Fig. 7: Hit ratio under RCS, ACS, TDCS and ECDP

The ACS shows the most rapid increase in rewards, reaching
a stable state after approximately 200 epochs. Similarly, the
reward of TDCS follows a comparable trajectory, with its
rewards stabilizing around 300 epochs. It is important to note
that while TDCS final stable reward is slightly lower than
that of ACS, it still demonstrates commendable performance.
On the other hand, the ECDP experiences a slower growth
in rewards but manages to achieve the highest stable reward
among the three schemes. Through rigorous mathematical
computations, it can be deduced that the final stable reward
achieved by ECDP surpasses that attainable by ACS by
an improvement of 19.7% and exceeds that achievable by
TDCS by an improvement of 22.9%. The reason behind this
situation lies in the dual advantages of DDPG, namely its
effectiveness in handling continuous actions and its relatively
simple structure. This outcome highlights the unique strengths
and trade-offs of ECDP in the context of the learning task.
The information from Fig. 7 reveals distinct caching hit
ratio for each FS under different caching schemes. Notably,
the caching scheme RCS attains the lowest caching hit ratio,
with the caching scheme TDCS following closely behind.
Through computation, it is observed that the caching hit ratio
achieved by the proposed scheme ECDP averages 7.05%
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Fig. 8: Time cost under CCS, RCS, ACS, TDCS and ECDP
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Fig. 9: Time cost of caching scheme in different time periods

higher than ACS, 10.75% higher than TDCS, and 48.05%
higher than RCS across five FSs. Conversely, the proposed
caching scheme ECDP achieves the highest caching hit ratio.
Furthermore, it is important to mention that the caching hit
ratio achieved by ECDP consistently remain close across
different FSs. This consistent performance underscores the
stability and robustness of the proposed caching scheme.

From Fig. 7, it is evident that the ECDP caching scheme
achieves the highest edge caching hit ratio, which theoretically
implies that it should have the shortest transmission time. This
inference is confirmed by Fig. 8. The time consumption of data
transmission based on the other two reinforcement learning
algorithm scheme, ACS and TDCS, is similar. However, due
to its random caching data selection, the RCS requires more
time than the reinforcement learning-based caching schemes.
The CCS incurs the most significant time cost because it
does not involve edge caching; therefore, all the data needs
to be transmitted from the cloud server to the terminal device.
Through computational analysis, it is determined that the time
required for data transmission under the ECDP scheme is
reduced by 5.6%, 5.7%, 37.4%, and 42.4% compared to the
time spent under the TDCS, ACS, RCS, and CCS schemes,
respectively. The fundamental reason behind this situation is
that the caching hit ratio achieved by ECDP is higher than that
attained by several other benchmark schemes. Consequently,
the time required for content transmission is reduced.

To further assess the robustness of ECDP, experiments are
conducted on multiple FSs during different time intervals, as
depicted in Fig. 9. The time intervals between the periods were
set at 30 minutes. The results show that across various time
intervals, the ECDP consistently incurre the least amount of
time for multiple FSs, while the CCS resulted in the most sig-
nificant time cost. This finding aligns with the characteristics
observed in Fig 8.

VI. CONCLUSION

In this paper, we present a novel edge caching scheme
with consumer-centric service prediction in resilient industry
5.0, leveraging federated learning and reinforcement learn-
ing. Specifically, the prediction model is used to predict the
possible number of requests for each service in the future
period while federated learning is used for privacy protection.
Based on the prediction results, intelligent caching decisions
are made to pursue higher caching rewards, replacing complex
manual decisions, making our method more in line with the
flexibility that Industry 5.0 focuses on. Experimental results
demonstrate that the proposed scheme outperforms other com-
parison schemes. In this study, the consideration was given to
the privacy concerns associated with model training, while the
security of the edge data storage was inadvertently overlooked.
In future research endeavors, we intend to further investigate
the efficient implementation of data security in intelligent edge
caching systems.
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