
Towards Human-Bot Collaborative Software Architecting with ChatGPT

Aakash Ahmad1, Muhammad Waseem2, Peng Liang3, Mahdi Fehmideh4, Mst Shamima Aktar3 and
Tommi Mikkonen2

1School of Computing and Communications, Lancaster University Leipzig, Leipzig, Germany
2Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

3School of Computer Science, Wuhan University, Wuhan, China
4School of Business, University of Southern Queensland, Queensland, Australia

a.ahmad13@lancaster.ac.uk, mwaseem@jyu.fi, liangp@whu.edu.cn, mahdi.fahmideh@usq.edu.au,
shamima@whu.edu.cn, tommi.j.mikkonen@jyu.fi

Abstract—Architecting software-intensive systems can be a
complex process. It deals with the daunting tasks of unifying
stakeholders’ perspectives, designers’ intellect, tool-based au-
tomation, pattern-driven reuse, and so on, to sketch a blueprint
that guides software implementation and evaluation. Despite
its benefits, architecture-centric software engineering (ACSE)
inherits a multitude of challenges. ACSE challenges could stem
from a lack of standardized processes, socio-technical limitations,
and scarcity of human expertise etc. that can impede the
development of existing and emergent classes of software (e.g.,
IoTs, blockchain, quantum systems). Software Development Bots
(DevBots) trained on large language models can help synergise
architects’ knowledge with artificially intelligent decision support
to enable rapid architecting in a human-bot collaborative ACSE.
An emerging solution to enable this collaboration is ChatGPT,
a disruptive technology not primarily introduced for software
engineering, but is capable of articulating and refining architec-
tural artifacts based on natural language processing. We detail a
case study that involves collaboration between a novice software
architect and ChatGPT for architectural analysis, synthesis, and
evaluation of a services-driven software application. Preliminary
results indicate that ChatGPT can mimic an architect’s role
to support and often lead ACSE, however; it requires human
oversight and decision support for collaborative architecting.
Future research focuses on harnessing empirical evidence about
architects’ productivity and exploring socio-technical aspects of
architecting with ChatGPT to tackle emerging and futuristic
challenges of ACSE.

Keywords: Software Architecture, ChatGPT, Large Lan-
guage Models, DevBots

I. INTRODUCTION

Architecture of software-intensive systems enables archi-
tects to specify structural composition, express behavioural
constraints, and rationalise design decisions - hiding im-
plementation complexities with architectural components -
to sketch a blue-print for software implementation [1].
Architecture-centric Software Engineering (ACSE) aims to
exploit architectural knowledge (e.g., tactics and patterns), ar-
chitectural languages, tools, and architects’ decisions (human
intellect) etc. to create a model that drives the implementation,
validation, and maintenance phases of software systems [2].
In recent years, ACSE has been applied to investigate the role
of architecture in engineering complex and emergent classes
of software (blockchains, quantum systems etc.) [3] and it has
been proven as useful to systematise software development in
an industrial context [2]. Despite its potential, ACSE entails
a multitude of challenges including but not limited to map-
ping stakeholders’ perspectives to architectural requirements,

managing architectural drift, erosion, and technical debts, or
lack of automation and architects’ expertise in developing
complex and emergent classes of software [1], [3]. In such
context, software engineers may enter a phase referred to as
the ‘lonesome architect’ who requires non-intrusive support
rooted in processes and tools to address the challenges of
ACSE by reusing knowledge and exploiting decision support
in the process [4].

Context and motivation: The process to architect software
applications and services (a.k.a., ‘architecting process’) unifies
a number of architecting activities that support an incremental,
process-centric, and systematic approach to apply ACSE in
software development endeavours [2], [3]. Empiricism remains
fundamental to deriving and/or utilising architecting processes
that can support activities, such as analysis, synthesis, and
evaluation etc. of software architetures [4]. To enrich the ar-
chitecting process and empower the role of architects, research
and development has focused on incorporating patterns and
styles (knowledge), recommender systems (intelligence), and
distributed architecting (collaboration) in ACSE process. The
role of artificial intelligence (AI) in software engineering (SE)
is an active area of research that aims to synergise solutions of
AI and practices of SE to instill intelligence in the processes
and tools for software development [5], [6]. From an ACSE
perspective, research on AI generally aims to develop decision
support systems or development bots that can assist architects
with recommendations about design decisions, selection of
patterns and styles, or predict points of architectural failure
and degradation [7], [8]. Currently, there is no research that
proposes innovative solutions that can enrich the architecting
process with AI to enable collaborative architecting. Collab-
orative architecting can synergise architects’ knowledge as
human intellect and bot’s capability as an intelligent agent who
can lead the architecting process based on human conversation
and supervision. Such collaboration can allow architects to
delegate their architecting tasks to the bot, supervise the bot
via dialog in natural language(s) to achieve automation, and
relieve architects from undertaking tedious tasks in ACSE.

Objective of the study: Chat Generative Pre-trained Trans-
former (ChatGPT) has emerged as a disruptive technology,
representing an unprecedented example of a bot, that can
engage with humans in context-preserved conversations to pro-
duce well-articulated responses to complex queries [9], [10].
ChatGPT is not specifically developed to address software en-
gineering challenges, however; it is well capable of generating
versatile textual specifications including architectural require-

1

2

ments, UML scripts, source code libraries, and test cases [11],
[12]. Recently published research has started to explore the
role of ChatGPT in engineering education, software testing,
and source code generation [10], [12]. Considering ACSE that
can benefit from intelligent and automated architecting, driven
by architects’ conversational dialogs and feedback, there is no
research to investigate the role that ChatGPT can play as a
DevBot in architecting process. To this end, our study focused
on a preliminary investigation to understand if ChatGPT can
process an architecture story (scenario(s)) conversed to it by
an architect and undertake architecting activities to analyse,
synthesise, and evaluate software architecture in a human-bot
collaborative architecting.

Contributions: We followed a process-centric approach
[2] and adopted scenario-based method [13] for ChatGPT-
enabled architectural analysis, synthesis, and evaluation of
a microservices-driven software. Preliminary results demon-
strate ChatGPT’s capabilities that include but are not limited
to processing an architecture story (conversed to it by an ar-
chitect) for articulating architectural requirements, specifying
models, recommending and applying architectural tactics and
patterns, and developing scenarios for architecture evaluation.
Primary contributions of this study are to:

• Investigate the potential for human-bot collaborative ar-
chitecting, synergizing ChatGPT’s outputs and architects’
decisions, to automate ACSE with a preliminary case
study.

• Identify the potential and perils of ChatGPT assisted
ACSE to pinpoint issues concerning ethics, governance,
and socio-technical constraints of collaborative architect-
ing.

• Establish foundations for empirically-grounded evidence
about ChatGPT’s capabilities and architects’ productivity
in collaborative architecting (ongoing and future work).

The results of this study can help academic researchers
to formulate new hypotheses about the role of ChatGPT in
ACSE and investigate human-bot collaborative architecting
of emergent and futuristic software. Practitioners can follow
the presented guidelines to experiment with delegating their
tedious tasks of ACSE to ChatGPT.

II. RESEARCH CONTEXT AND METHOD

We next contextualize some core concepts (Section II-A,
Figure 1) and discuss the research method (Section II-B,
Figure 2). Terms and concepts introduced here will be used
throughout the paper.

A. Human-Bot Collaborative Architecting
Software Architecture as described in the ISO/IEC/IEEE

42010:2011 standard, aims to abstract complexities rooted in
source code-based implementations with architectural com-
ponents and connectors that represent a blueprint of soft-
ware applications, services, and systems to be developed
[1]. Architecture-centric approaches have proven to be use-
ful in academic solutions as well as in industrial projects
by lending architectural knowledge, such as patterns, styles,
languages, and frameworks, to design and develop software
effectively and efficiently [4]. To enable software designers
and architects with a systematic and incremental design of
software architectures, there is a need for architecting process
- also referred to as the process for architecting software
[2], [3]. Architecting process can have a number of fine-
grained architecting activities that support a separation of

Software
Requirements

Source
Code

Register User
(functionality)

Secure Registration
(quality)

Aarchitecture
Component

Software
Architecture

Analyse Synthesise Evaluate

Software
Architect

Architecting
Porcess

Large Language Model
(LLM)

Training Data

Dialog Classification Translation Text Generation

... ...

... ...
Cohere LaMDA

ChatGPT

Recommendations Stories

Software Development

Data and Model

Domain of Application for LLM-based Bots

LLM-based Bots

Operationalisation of LLMs

Software architecture = blueprint for software

Mapping requirements (functionality/quality) to
source code (implementations) etc. as
architectural elements (components).

Architecturally Significant Requirements
Functionality, Quality, Constraints, etc.

Software Architecting Process = enabling
designers and developers to follow a structured
and systematic approach via a number of
architcting activities to enable ACSE.

- Analysis (reqirements, constraints, etc.),
- Synthesis (modeling, specification etc.),
- Evaluation (validation, testing, etc.)

Large Language Models (LLMs)
= deep learning methods and algorithms
to recognise, summarise, and generate
content based on knowledge gained
from massive datasets

Use cases of LLMs = Human-Bot
dialog, content classification,
translation, text generation with big
data analytics and processing. etc.

Bots built on LLMs = agents that can
interact with humans to provide
intelligence and decision support to
human users.

Domain of application = scenarios
such as recommender systems, story-
telling, and automating and enabling
software development.

LLM-based
Bots in ACSE

Process for
Architecture

Fig. 1. Context: LLMs, DevBots, Process, and Architecture

architectural concerns in ACSE. For example, the architect-
ing process reported in [2] and illustrated in Figure 1 is
derived from five industrial projects and incorporates three
architecting activities namely architectural analysis, archi-
tectural synthesis, and architectural evaluation. For instance,
the architectural evaluation activity in the process focuses on
scenarios to evaluate the designed architecture [13]. In the
architecting process, an architect can extract and document
the requirements that express the required functionality and
desired quality of the software, referred to as Architecturally
Significant Requirements (ASRs). ASRs need to be mapped
to source code implementations via an architectural model
that can be visualized or textually specified using architectural
languages, such as the Unified Modeling Language (UML) or
Architectural Description Languages (ADLs) [14]. Architec-
ture models that reflect the ASRs need to be evaluated using an
architecture evaluation method, such as Software Architecture
Analysis Method (SAAM) or Architecture Tradeoff Analysis
Method (ATAM) [13].

Software Development Bots (DevBots) represent conversa-
tional agents or recommender systems, driven by AI, to assist
software engineers by offering certain degree of automation
and/or inducing intelligence in software engineering process
[7]. From the software architecting perspective, the role of AI
in general and DevBots to be specific is limited to bots an-
swering questions or providing recommendations about archi-

3

tectural erosion and maintenance [8]. There is no research that
investigates or any solution that demonstrates an architecting
process by incorporating DevBots to enable human-bot collab-
orative architecting of software systems. Such a collaboration
can enrich the architecting process that goes beyond questions
& answers and recommendations, and synergizes architects’
intellect (human rationale) and bot’s intelligence (automated
architecting process) in ACSE. Collaborative architecting can
empower novice designers or architects, who lack experience
or professional expertise to specify their requirements in
natural language and DevBots can translate them into ASRs,
architectural models, and evaluation scenarios. As illustrated
in Figure 1, the emergence of ChatGPT as a conversational
bot, based on large language models (LLM), can dialog with
the architect to lead the creation of architectural artifacts with
human supervision.

B. Research Method
We now present the overall methodology for the research,

comprising of three main phases, as illustrated in Figure 2.

analyse

Developing
Architecture Story

Collaborative Architecting
Process

Empirical
Validations

Existing Scope Future Work

Architect Story

Domain

represent

writes
Analysis Synthesis Evaluation

Architect

ChatGPT automate

supervise SE teams

Scenarios

feedback

Survey

Ethics
Governance

Productivity

...

Fig. 2. Overview of the Research Method

Phase 1 - Developing the Architecture Story: Software
architecture story refers to a textual narration of the envis-
aged solution, i.e., software to be developed by expressing
the core functionality, desired quality (i.e., ASRs) and any
constraints in a natural language. The story is developed based
on analyzing software domain that represents an operational
context of the system or collection of scenarios operationalised
via a software solution. The architect can analyze the domain
and identify scenarios to write an architecture story that acts
as a foundation for the architecting process. The architecture
story is fed to ChatGPT via a prompt as a pre-process to
collaborative architecting.

Phase 2 - Enabling Collaborative Architecting is based
on three activities adopted from [2], detailed below.

• Architectural analysis is driven by architecture story fed
to ChatGPT for articulating the ASRs via (i) automati-
cally generated and recommended requirements (by Chat-
GPT), or (ii) manual specification of the requirements
(by the architect), or (iii) a continuous dialog between
ChatGPT and the architect to refine (add/remove/update)
the requirements.

• Architectural synthesis consolidates the ASRs to create
an architecture model or representation that can act
as a point of reference, visualizing the structural (de-
)composition and runtime scenarios for the software.
We preferred UML for architectural synthesis due to a
number of factors, such as available documentation, ease
of use, diversity of diagrams, tool support, and wide-scale
adoption as a language to represent software systems [14].

During synthesis we also incorporated reuse knowledge
and best practices in the form of tactics and patterns to
refine the architecture.

• Architectural evaluation evaluates the synthesized ar-
chitecture against ASRs based on scenarios from the
architectural story. Architectural evaluation is conducted
incrementally for full or partial validation of the ar-
chitecture or its parts based on use cases or scenarios
from ASRs. We used the Software Architecture Analysis
Method (SAAM) to supervise ChatGPT for evaluating
the architecture [13].

Phase 3 - Conducting the Empirical Validations com-
plements the initial two phases with empirical validations
of collaborative architecting as an extension of this study,
outlining future work. The existing scope aims to explore
and present the role of ChatGPT in human-bot collaborative
software architecting (in Section III). Future work on empiri-
cally grounded guidelines to understand a multitude of socio-
technical issues associated with ChatGPT-driven collaborative
architecting is discussed later (in Section V).

III. CASE STUDY ON COLLABORATIVE ARCHITECTING

This section details the process of collaborative architecting
demonstrated with a case study for scenario-based exem-
plification and illustrations (see Figure 3). The case study
detailed in [15] aims to develop a software application named
CampusBike that can be used via a browser or as an app,
allowing campus visitors to ‘register’, ‘view available bikes’,
‘reserve a bike’, ‘make payments’, and ‘view usage reports’
etc. for eco-friendly mobility in and around the campus. The
architect has a working knowledge of software design (UML,
patterns etc.) and implementation (programming and scripting
languages) and is considered a motivated novice engineer with
the responsibility to design and develop CampusBike software.

Snippet of Architecture Story

“ . . . as a step towards maintaining a ‘Green Campus’ - minimising the
carbon footprint, congestion, and noise created by vehicles, University’s
administration has decided to introduce a bike service where campus visitors
can avail of a pay-per-use bicycle facility on an hourly or daily basis for
enhanced mobility in and around the campus. Potential bikers can register
and view available bikes in their proximity (let us say within 500 meters)
and reserve them for a specific time after payment. To facilitate this service,
the administration needs a software application called ‘CampusBike’ that is
available on Web and mobile devices for potential bikers . . . ”
Scenario Example: View available bikes (using location proximity), reserve
a bike for a specific time (pay-and-reserve).

A. Formulating the Architecture Story

Architecture story refers to a textual narration of the en-
visaged solution, i.e., software to be developed by expressing
the core functionality and any constraints narrated in a natural
language. As per the methodological details in Figure 2, the
story is developed based on analysing software domain that
represents an operational context of the system or collection of
scenarios operationalized via a software solution. The architect
can analyse the domain and identify any scenarios to write an
architecture story, fed to ChatGPT, that sets the foundation
for architectural analysis activity in the process. Detailed
architecture story is available at [15], with its sample snippet
and two scenarios highlighted below.

4

Architect

[Engineer/Developer]

Architecture Story

[Textual Scenarios]

system must allow user to view bikes available nearby
and enable reservation of bike instantly and securely

A

B

C

"view via location
proximity"

"under X
seconds"

"encrypt
reservation

token "

Function Quality
Constraints

Analysis

Registration: mail or SMS
Instant: <= 60 sec
Secure: encrypted

refine

B

C

A

refine story

Synthesis

Model Pattern
TacticStyle

user: U register: R

time (<=90 second)

caching

Evaluation

Architectural
Scanarios

Evaluation
Metric

A

B

A

B

A B C

show

ChatGPT

[Large Language Model]

type story
[write ASRs] evaluate archtecture

[validate ASRs]

specify architeture
[model ASRs]

Architecture
Process

Architecture
Story

Architecture
Analysis

Architecture
Synthesis

Architecture
Evaluation

Scenarios Requirements Model

Validation

Process
Abstraction

Process
Example

CampusBike
[Case Study]

Fig. 3. Overview of the Human-Bot Collaborative Architecting Process

B. Architectural Analysis

Once the architecture story is fed to ChatGPT, during
architectural analysis, the focus is to specify ASRs as required
functionality (e.g., view available bikes) and desired quality
(e.g., response time ¡ N) along with any constraints (e.g.,
compliance with relevant data security policies) of Campus-
Bike software. ChatGPT is capable of outlining the ASRs or
any necessary constraints if queried by the architect. However,
as per the case study, ChatGPT expressed the ASRs and
constraints that were refined (add, remove, and modify any
requirements) by the architect. For example, the ‘Reserve
Bike’ requirement articulated by ChatGPT read as: ‘... system
must allow user to view bikes available nearby and enable
reservation of the bike instantly and securely’. The architect
refined the requirements:

Architect’s Refinements
Functionality: View Bike - via location proximity
Quality: Instantly - within 90 seconds, Securely - encrypt reservation token
Constraint: apply data minimization on registration data (GDPR constraint)

After narrating the architecture story, Figure 4 shows ar-
chitects’ query and ChatGPT’s response (human-bot collabo-
ration) to specify the functionality, quality, and constraints,
collectively referred to as the ASRs. ASRs are iteratively
refined via a dialog between the two to produce a final list
presented here [15].

Specify functional, non-functional requirements, and any
relevant constraints for the campus bike application

Here are some example functional and non-functional
requirements, as well as constraints, for the Campus Bike
application:

Architect

ChatGPT

...
... ...

Functionality Quality Constraints

location
proximity

within X seconds(architect's
intervention) reservation token encryption

Registration

View Bikes Reserve Bike

location privacy

Response Time Security

Scalability

Data
Minimisation

Consent
EnforcementData

Transfer

Fig. 4. Formulating and Refining the Requirements

C. Architectural Synthesis
The ASRs are synthesized into an architectural model that

can be expressed with an architectural (modeling) language,
like UML or other architectural languages [14]. We used UML
class and component diagrams to create the architecture model,
specifically; component diagrams to represent the overall
architecture, and class diagram for fine-grained representation
of the architectural design. During synthesis, we refined the
UML class diagram with the application of singleton pattern
to ‘UserLogin’ class to restrict a single login session across
the devices. We applied the caching tactic on ‘ViewBikes’
and data minimization constraint on ‘User Location’. Figure 5

Craete plantuml script for UML class diagram for Campus
Bike system

1

Refine plantuml script and apply
singelton pattern to User Login

2 3 Refine plantuml script and apply
caching tactic to View Bikes

Apply data minimisation to User
Location

4

Here's an example PlantUML script for a class diagram
for the Campus Bike System:

Architect

ChatGPT1

PlantUML script for
UML Class Diagram

2

Script updated with Singleton
pattern applied on User Login

3

Script updated withCaching
tactic applied to View Bikes

Script updated with Data
Minimisation on User Location

View
Cache

Repository

Login
Client_2

Client_1

Login

Client

Singelton

@startuml
class
UserLogin { }
...
@enduml

4

Repository

minimise

User
 Data

Fig. 5. Modeling and Refining the Architecture Design

shows the architect’s instruction for ChatGPT’s to create the
script for UML class diagram. Additional dialog between the
two enabled application of singleton pattern, caching tactic,
and data minimisation constraint on class diagram, presented
in [15].

D. Architectural Evaluation
Once synthesized (Figure 4), the architecture needs to be

evaluated to assess if it satisfies the ASRs and the constraints
(Figure 5). We have used the SAAM method [13] to evaluate
the synthesized architecture, as illustrated in Figure 6. For
example, the architect specifies the application of SAAM
to evaluate the ‘View Bike’ component. ChatGPT presents
the scenario for evaluating the ‘View Bike’ component in-
dividually and also scenarios where it interacts with other
components. Based on the interaction of individual and inter-
acting scenarios, an evaluation report is produced that shows
the evaluation of the functionality, quality, and constraints of
CampusBike architecture.

5

Apply the Software Architecture Evaluation Method (SAAM)
to evaluate the ViewBike component of the CampusBike

1 Architect

To apply SAAM scenario to evaluate the "View Bikes"
feature in the Campus Bike System, you can follow these
steps:

1

Overall Evaluation

Functionality
Quality

Constraints

View Bike
Component

Classify and Prioritise
Evaluation Scenarios

View Bike
Evaluation Individual

Scenario
Scenario

Interaction

Evaluation Report
Classified and Prioritised
Evaluation Scaenarios

Evaluation of Individual and
Interacting Scaerios

Evaluation Report for ASRs and
Constraints

2 List Individual Scenarios and Interacting
Scenarios for Evaluation

3 Share the list of functionality, quality and
constrainst that have been evaluated

2 3

Fig. 6. Evaluating the Architecture

IV. RELATED WORK

We discuss the most relevant existing research that
overviews the application of AI in SE and ACSE (Section
IV-A), and the role of ChatGPT in software development
(Section IV-B).

A. AI in Software Engineering and Architecting
The research on synergizing AI and SE can be classified

into two distinct dimensions namely AI for SE (artificial
intelligence in software engineering) and SE for AI (software
engineering for artificial intelligence) [5] [6]. Considering
the AI for SE perspective, Xie [5] argued that SE research
needs to go beyond traditional efforts of applying AI for tool-
based automation and pattern selection with an exploration
of methods that instil intelligence in software engineering
processes and solutions. Specifically, SE solutions need to
maintain the so-called ‘intelligence equilibrium’ – i.e., uni-
fying and balancing machine intelligence and human intellect
– in processes, patterns, and tools etc. for emergent classes of
software, such as blockchain and quantum applications [16].
Barenkamp et al. [6] combined the findings of a systematic
review and interviews with software developers to investigate
the role of AI techniques in SE processes. The results of
their study pinpoint three areas where SE needs intelligence
to tackle (i) automation of tedious and complex SE activities
such as code debugging, (ii) big data analytics to discover
patterns, and (iii) evaluation of data in neural and software-
defined networks. Considering the context of AI in software
architecting, Herold et al. [8] investigated existing research
and proposed a conceptual framework for the application of
machine learning to mitigate architecture degradation.

B. ChatGPT Assisted Software Engineering
From the SE perspective, ChatGPT is viewed as an un-

precedented example of a chatbot that can produce well-
articulated responses to complex queries. However, it remains
an unexplored territory in terms of its potential and perils in
the context of software development processes [17], [18]. Most
recently, a number of proposals and experimental findings
indicate that the research on ChatGPT focuses on supporting
engineering education [11], [10], software programming [18],
[9], and testing [12]. Avila-Chauvet et al. [9] detailed how
conversational dialogs of a programmer with ChatGPT enable
a human-bot assisted development of an online behavioral

task using HTML, CSS, and JavaScript source code. They
highlighted that although ChatGPT requires human oversight
and intervention, it can write well-scripted programming so-
lutions and reduces the time and effort of a developer during
programming. A similar narrative in a blogpost [18] advocated
for an incremental process (human dialog with ChatGPT) to
enable genetic programming - JavaScript code to solve the
traveling salesman problem. In addition to developing the
source code, a couple of studies have focused on testing
and debugging with ChatGPT [11], [12]. Sobania et al. [12]
evaluated the performance of ChatGPT in automated bug
fixing. In contrast to the status-quo on automated techniques
for bug fixing [7], ChatGPT offers a dialogue with a software
tester for an incremental identification and fixing of bugs.

Conclusive summary: Based on a review of the existing
literature, there do not exist any research or development
that explores the role of ChatGPT (LLM-driven AI) that
can engage software engineers in conversational dialogs to
lead and support ACSE. This study complements the most
recent research efforts on software test automation and bug
fixing with ChatGPT [12] but focuses on architecture-centric
development for software systems. In the broader context of
AI for SE [5], this study argues for human-bot collaborative
architecting that can enrich ACSE process with the architects’
knowledge and supervision synergized with bot’s capabilities
to architect software-intensive systems and services.

V. DISCUSSION AND VALIDITY THREATS

We discuss the socio-technical aspects of collaborative
architecting (Section V-A) and highlight potential threats to
validity (Section V-B).

A. Socio-Technical Issues of ChatGPT in ACSE
In addition to highlighting ChatGPT’s potential, we also

highlight some perils as shortcomings of collaborative ar-
chitecting process that need to be discussed in the context
of socio-technical aspects. By socio-technical aspects, we
refer to a unified perspective on issues such as what can
be ‘social’ concerns and what are the ‘technical’ limitations
of collaborative architecting. Dedicated research is required
to systematically investigate such issues, however, we only
pinpoint several prominent ones, as below.

Response Variation: In the context of human-bot con-
versational dialogs, ChatGPT may produce varied responses
for exact same queries. For example, we observed that a
query such as ‘... what architectural style can be best suited
to CampusBike system’ may yield varied responses, such as
microservices, layered, client-server etc. architecture can be
best suited for the system. This and alike variation in recom-
mendations or scripted artifacts (UML script, ASR specifica-
tion etc.) can impact the consistency of architecting process
and ultimately varied analysis, synthesis, and evaluation of
the architecture. One of the solutions to minimize response
variations is an iterative dialog with ChatGPT to refine its
output and architects’ oversight to ensure that the architectural
artifacts being produced are consistent and coherent.

Ethics and Intellectual Property: Textual specifications,
architecture specific scripts, and source codes etc. articulated
by ChatGPT could give rise to ethical issues or in some cases
copyright or intellectual property infringements. For example,
ChatGPT generated script for a component (GETLOCATION)
that senses user location in CampusBike system may lead to
leakage of user location privacy and non-compliant software

6

with regulatory guidelines (GDPR, CCPA etc.) that must be
dealt with vigilance. In such cases, the role of architect is
critical to ensure the generated architecture does not violate
ethics or intellectual property rights (if any).

Biased Outputs: The biases in outputs of such conver-
sational bots can be attributed to a number of possible as-
pects including but not limited to input, training data, and/or
algorithmic bias. From an architectural perspective, recom-
mendation bias about specific architectural modeling notation,
tactic, pattern, or style etc. may be based on its widespread
adoption or bias in training data rather than optimal use in
a specific context. Moreover, architectural recommendations
(specific style), design decisions (pattern selection), or vali-
dation scenarios (evaluation method) may suffer such bias to
produce sub-optimal artifacts in ACSE.

B. Threats to the Validity
Validity threats represent limitations, constraints, or po-

tential flaws in the study that can affect the generalization,
replicability, and validity of results. Future work can focus on
minimizing these threats to ensure methodological rigor and
generalization of results.

Internal validity examines the extent to which any sys-
tematic error (bias) is present in the design, conduct, and
analysis etc. of the study. To design and conduct this study,
and considering the internal validity, we followed a systematic
approach and utilized a well-known architecting process [2]
and architecture evaluation method [13]. The case study based
approach combined with incremental architecting (Figure 3)
helped us to analyze and refine the study, however, more work
is required to understand if the study can be validated with a
different architecting process or by adopting other evaluation
methods.

External validity examines whether the findings of a
study can be generalized to other contexts. We only exper-
imented with a single case study of moderate complexity
that can compromise study’s generalization. Specifically, sce-
narios with the increased complexity of architecting process
(cross-organisational development), class of software to be
developed (mission-critical software), and human expertise
(novice/experienced engineers) can affect the external validity
of this research. Future work is planned, highlighted in the
conclusions section, to validate the process of collaborative
architecting by engaging architecting teams and analyzing
their feedback to understand the extent to which the external
validity can be minimized.

Conclusion validity determines the degree to which the
conclusions reached by the study are credible or believable. In
order to minimize this threat, we followed a three-step process
(Figure 2) to support a fine-grained process to architect the
software and validate the results (future work). Moreover, a
case study based approach was adopted to ensure scenario-
based demonstration of the study results. However, some
conclusions (e.g., architect’s productivity, ChatGPT’s efficacy)
can only be validated with more experimentation involving
multiple case studies, diverse teams, and real context scenarios
of collaborative architecting.

VI. CONCLUSIONS AND FUTURE RESEARCH

ChatGPT has emerged as a disruptive technology, an un-
precedented conversational bot, that mimics human conversa-
tions and generates well-articulated textual artifacts (recom-
mendation, scripts, source codes etc.) - often referred to as a

‘solution that seeks a problem’. Among a plethora of its use
cases that range from content creation to digital assistance
and acting as a virtual teacher etc., ChatGPT’s role as a De-
vBot and its capability to architect software-intensive systems
remain unexplored. This research investigates the potential
and perils of ChatGPT to assist and empower the role of an
architect who leads the process of architecting, and collaborate
with a human to enable ACSE. The research advocates that in
the context of AI for SE, traditional efforts of applying AI for
tool-based automation should focus on a broader perspective,
i.e., enriching existing processes by instilling intelligence in
them via efforts like human-bot collaborative architecting.
The case study reflects a practical case of how a software
can be architected with ChatGPT? and what factors need
to be considered in collaborative architecting? Variance in
responses and artifacts, types of ethical implications, level
of human decision support/supervision, along with legal and
socio-technical issues must be considered while integrating
ChatGPT in SE or ACSE processes. The research needs
empirical validations, grounded in evidence and experimen-
tation, to objectively assess factors like enhancing engineers’
productivity, SE process optimization, and assisting novice
developers and designers to engineer complex and emergent
classes of software effectively with ChatGPT.

Needs for future research: We plan to extend this study
as a stream of research that explores human feedback and
validation (i.e., architects’ perspective) and integrating Chat-
GPT in a process to develop software services for quantum
computing systems. More specifically, quantum computing
and quantum software engineering has emerged as a quan-
tum computing genre of SE that faces a lack of human
expertise to synergize the skills of engineering software and
knowledge of quantum physics. We are currently working
in engaging a number of software development teams with
diverse demography attributes (e.g., geo-distribution, type of
expertise, level of experience, class of software system) in
controlled experiments to architect software systems using
ChatGPT and document architects’ responses. Specifically,
with a case study that involves ChatGPT assisted architecting
shall allow us to capture feedback of architects via interviews
or documents to empirically investigate aspects like usefulness,
rigor, acceptance, impact on human productivity, and potential
perils of ChatGPT in ACSE.

REFERENCES

[1] P. Kruchten, H. Obbink, and J. Stafford, “The past, present, and future
for software architecture,” IEEE Software, vol. 23, no. 2, pp. 22–30,
2006.

[2] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design derived
from five industrial approaches,” Journal of Systems and Software,
vol. 80, no. 1, pp. 106–126, 2007.

[3] A. Ahmad, A. A. Khan, M. Waseem, M. Fahmideh, and T. Mikkonen,
“Towards process centered architecting for quantum software systems,”
in Proceedings of the 1st IEEE International Conference on Quantum
Software (QSW). IEEE, 2022, pp. 26–31.

[4] J. F. Hoorn, R. Farenhorst, P. Lago, and H. Van Vliet, “The lonesome
architect,” Journal of Systems and Software, vol. 84, no. 9, pp. 1424–
1435, 2011.

[5] T. Xie, “Intelligent software engineering: Synergy between ai and soft-
ware engineering,” in Proceedings of the 11th Innovations in Software
Engineering Conference (ISEC). ACM, 2018, pp. 1–1.

[6] M. Barenkamp, J. Rebstadt, and O. Thomas, “Applications of ai in
classical software engineering,” AI Perspectives, vol. 2, no. 1, p. 1, 2020.

[7] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a pro-
gram repair bot? insights from the repairnator project,” in Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). ACM, 2018, pp. 95–104.

7

[8] S. Herold, C. Knieke, M. Schindler, and A. Rausch, “Towards improving
software architecture degradation mitigation by machine learning,” in
Proceedings of the 12th International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE). IARIA, 2020, pp.
36–39.

[9] L. Avila-Chauvet, D. Mejı́a, and C. O. Acosta Quiroz, “Chatgpt as a
support tool for online behavioral task programming,” SSRN preprint
SSRN:4329020, 2023.

[10] J. Qadir, “Engineering education in the era of chatgpt: Promise
and pitfalls of generative ai for education,” TechRxiv preprint
techrxiv.21789434, 2022.

[11] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “Chatgpt
and software testing education: Promises & perils,” arXiv preprint
arXiv:2302.03287, 2023.

[12] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” arXiv preprint
arXiv:2301.08653, 2023.

[13] L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Transactions on Software Engineering, vol. 28, no. 7,
pp. 638–653, 2002.

[14] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2012.

[15] A. Ahmad, M. Waseem, P. Liang, M. Fehmideh, M. S. Aktar, and
T. Mikkonen, “Replication package for the paper: Towards human-bot
collaborative software architecting with chatgpt.” https://github.com/
shamimaaktar1/ChatGPT4SA, 2023.

[16] E. Woods, “Software architecture in a changing world,” IEEE Software,
vol. 33, no. 6, pp. 94–97, 2016.

[17] A. Borji, “A categorical archive of chatgpt failures,” arXiv preprint
arXiv:2302.03494, 2023.

[18] F. Doglio, “The rise of chatgpt and the fall of the software developer
- is this the beginning of the end?” Dec 2022. [Online]. Available:
https://tinyurl.com/3mxrfmjh

