
CLIFFORD ALGEBRA ANALOGUE OF CARTAN’S THEOREM

FOR SYMMETRIC PAIRS

KIERAN CALVERT, KARMEN GRIZELJ, ANDREY KRUTOV, AND PAVLE PANDŽIĆ

Abstract. We extend Kostant’s results about g-invariants in the Clifford al-

gebra Cl(g) of a complex semisimple Lie algebra g to the relative case of k-
invariants in the Clifford algebra Cl(p), where (g, k) is a classical symmetric

pair and p is the (−1)-eigenspace of the corresponding involution. In this setup

we prove the Cartan theorem for Clifford algebras, a relative transgression
theorem, the Harish–Chandra isomorphism for Cl(p), and a relative version of

Kostant’s Clifford algebra conjecture.

1. Introduction

Let G be a compact simple connected Lie group and K a closed subgroup (hence
a Lie subgroup). We do not assume K is connected, but we will be assuming that K
is a symmetric subgroup, i.e., there is an involution Θ of G such that

GΘ
0 ⊆ K ⊆ GΘ,

where GΘ denotes the subgroup of G consisting of the points fixed under Θ, and GΘ
0

denotes the connected component of GΘ. Typical examples of compact symmetric
spaces G/K are the classical ones, such as SU(p + q)/S(U(p) × U(q)), SO(p +
q)/S(O(p) × O(q)), Sp(p + q)/Sp(p) × Sp(q). Among these, K = S(O(p) × O(q))
is not connected. Note that in all these examples K = GΘ for an appropriate Θ

By well known classical results of É. Cartan and de Rham, the de Rham co-
homology (with complex coefficients) H(G/K) of G/K as above can be described
as follows. Let B be a nondegenerate invariant symmetric bilinear form on the
complexified Lie algebra g of G; such a form exists since G is reductive, so one can
take the Killing form on the semisimple part of g and extend by any nondegenerate
form on the center of g. Let k ⊆ g be the complexified Lie algebra of K and let p
be the orthogonal complement of k with respect to B, so that

g = k⊕ p,

and this decomposition is compatible with the adjoint K-action. The space p can
also be described as the (−1)-eigenspace of θ = dΘ. Denote by (

∧
p)K the algebra
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of K-invariants in
∧
p. Then

H(G/K) = (
∧
p)K

as graded algebras.
As mentioned above, this result is old and very well known, but it is not easy to

find a proof in the literature. One place where one can find it is [CNP, §4.1].
The structure of the algebra (

∧
p)k is well understood through the work of Borel,

H. Cartan, Hopf, Koszul, Samelson and others, see [Car1, Car2, Bor, And, Ras].
This is achieved using a series of quasi-isomorphisms and it is quite involved and not
completely explicit; moreover, there is no treatment of (

∧
p)K for disconnected K.

See [Oni, 12.3 Theorem 1] and [GHV, X.2 Theorem III].
On the other hand, one can replace the algebra

∧
p by its filtered deformation (or

quantisation), the Clifford algebra Cl(p) with respect to B. This is an associative
algebra with unit, generated by p, with relations

XY + Y X = 2B(X,Y ), X, Y ∈ p.

Clearly, Cl(p) is a quotient of the tensor algebra T (p) by a nonhomogeneous ideal,
so it inherits a filtration, and the corresponding graded algebra is

∧
p.

One might think that the filtered algebras Cl(p) and Cl(p)K are more complicated
than their associated graded algebras

∧
p and (

∧
p)K , but in many aspects the

filtered versions are in fact simpler. To illustrate this, let us temporarily assume
that g and k have equal rank, and let t be a common Cartan subalgebra. Then dim p
is even, and the Clifford algebra Cl(p) has only one simple module, the spin module
S; moreover, any Cl(p)-module is a direct sum of copies of S, and Cl(p) ∼= EndS.
To construct S, write

p = p+ ⊕ p−,

where p+ and p− are maximal isotropic subspaces of p in duality under B. Then
one can take S =

∧
p+, with elements of p+ acting by wedging, and elements of p−

by contracting. The spin module S carries an action of the spin double cover K̃ of
K; the corresponding action of k is described by the Lie algebra map αp : k → Cl(p),

αp(X) =
1

4

∑
i

[X, bi]di, X ∈ k,

where bi is any basis of p and di is the dual basis with respect to B. As a k-module,
S is multiplicity free and decomposes as

S =
⊕

w∈W 1

Ewρg−ρk
.

Here ρg and ρk are the half sums of compatible positive roots of (g, t) respectively
(k, t). Furthermore,

W 1 = {w ∈Wg

∣∣wρg is k-dominant},

whereWg denotes the Weyl group of (g, t). Finally, Ewρg−ρk
denotes the irreducible

finite-dimensional k-module with highest weight wρg − ρk.
Now Cl(p) ∼= EndS implies

Cl(p)k = Endk S,
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and by Schur’s Lemma this is the algebra of projections prw : S → Ewρg−ρk
. This is

a very simple commutative algebra, isomorphic to C|W 1| with coordinate-wise mul-
tiplication. (The isomorphism is given by identifying prw with (0, . . . , 0, 1, 0, . . . , 0),
with 1 in the place corresponding to w.) This was explained to the fourth-named
author by Kostant [Kos4]; see [CGKP] and [CNP] for more details. We can now
extend our map αp to the universal enveloping algebra U(k) of k, restrict it to
the center Z(k) of U(k), and identify Z(k) with C[t∗]Wk by the Harish-Chandra
isomorphism (here Wk is the Weyl group of (k, t)). In this way we get a map

αp : C[t∗]Wk → Cl(p)k, αp(P ) =
∑

w∈W 1

P (wρ) prw,

which is easily seen to be onto (in the equal rank case). Moreover, the kernel of αp

is generated by the Wg-invariants in C[t∗] that evaluate to 0 at ρ, and thus one gets
to understand Cl(p)k by generators and relations. One can then pass to associated
graded algebras and obtain results about the structure of (

∧
p)k. This approach is

much more direct and explicit than the classical approach described earlier, and has
an additional advantage of simultaneously understanding the filtered deformation
Cl(p)k of (

∧
p)k. Finally, it is not difficult to extend these considerations to the

algebras Cl(p)K and (
∧
p)K for disconnected K; see [CNP] and [CGKP].

If g and k do not have equal rank, Cl(p)k is typically much bigger than the algebra
Pr(S) of projections of the spin module; moreover, it is not abelian any more. In
fact, it is the tensor product of the algebra of projections and a Clifford algebra
isomorphic to Cl(a), where a is the split part of the fundamental Cartan subalgebra
h = t ⊕ a of g. The situation is thus analogous to the case of (

∧
p)k studied by

Borel, H. Cartan, Hopf, Koszul and Samelson. The Clifford algebra setting was
first studied by Kostant [Kos2] who proved that in the “absolute” case when k and
p are both isomorphic to a complex Lie algebra g (and what we denoted by g earlier
is now g⊕g), Cl(g)g is isomorphic to the Clifford algebra Cl(h), where h is a Cartan
subalgebra of g, and this copy of Cl(h) is realized inside Cl(g) as a Clifford algebra
over the primitive elements P∧(g) which correspond to h ⊂ Cl(h), but have various
high degrees. This is analogous to the classical Hopf-Koszul-Samelson theorem
about (

∧
g)g.

The purpose of this article is to prove results analogous to Kostant’s in the
“relative” case. We show that for a symmetric pair (G,K) as above, the algebra
Cl(p)k is isomorphic to a tensor product of the algebra of projections of the spin
module with a Clifford algebra isomorphic to Cl(a). The subalgebra Cl(a) is realized
inside Cl(p) as the Clifford algebra over the “primitives” P∧(p) corresponding to
a but lying in various high degrees. Explicitly P∧(p) is the projection of P∧(g) to
(
∧
p)k. We denote by PCl(p) the image of P∧(p) under the Chevalley map (skew-

symmetrization) q :
∧
p → Cl(p). We define a form B̃ on the vector space (

∧
p)k ∼=

Cl(p)k by setting B̃(a, b) to be the 0th component of ιab, where ιa is the contraction
of
∧
p by a. We can now state our main theorem:

Theorem 1.1. Let (G,K) be a compact symmetric pair such that G is simple and
connected. Assume that (g, k) is different from (e(6), sp(8)).

(a) With the above notation, the inclusion PCl(p) ↪→ Cl(p)K extends to a filtered
algebra homormorpism

Cl(PCl(p), B̃) → Cl(p)K ,
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which is an isomorphism in the primary cases, i.e., when the spin module S contains
only one k-type. For the “almost primary cases” (G,K) = (SU(2n), SO(2n)), the
statement remains true if K is replaced by O(2n).

(b) There is an algebra isomorphism

Cl(PCl(p), B̃)⊗ Pr(S) ∼= Cl(p)k.

(c) There is a filtered algebra isomorphism

Pr(S) ∼= C[t∗]Wk/Iρ,

where Iρ is the ideal of C[t∗]Wk generated by a ∈ C[t∗]Wg such that a(ρ) = 0.
(d) Passing to the associated graded algebras we recover the well known Cartan

(or Cartan-Borel) Theorem for symmetric spaces∧
P∧(p)⊗ C[t∗]Wk/I+ ∼= (

∧
p)k,

where I+ = gr Iρ is the ideal of C[t∗]Wk generated by elements of C[t∗]Wg with zero
constant term.

For the equal rank case, Theorem 1.1(a) is trivial and (b) was proved by Kostant
(see above). For the rest, see [CGKP, Section 2] and [CNP, Section 3.4]. For
(g, k) = (so(2p + 2q + 2,C), so(2p + 1,C) ⊕ so(2q + 1,C)) Theorem 1.1 is proved
in [CNP, Section 3.5]; this case is called almost equal rank because dim a = 1.
In this paper we prove this result in the remaining cases, the primary and almost
primary cases.

One of Kostant’s main tools in the absolute case was the Transgression The-
orem, which allows one to construct primitive invariants in

∧
g starting from the

better known primitive invariants in the symmetric algebra S(g). Analogues of this
theorem play also an important role in our approach. Kostant also used the Hodge
decomposition and the corresponding duality for Lie algebra (co)homology. This is
not available in the relative case, so we developed new tools based on transgression
and Harish–Chandra maps. This also gives an alternative way to prove Kostant’s
results.

We revisit the transgression construction and show that it factorises via the
noncommutative Weil algebra

W̃ (g) = T (g[−2]⊕ g[−1])

defined in [AM3] (see Section 3.3). This allows us to show that the image of the
transgression map consists of “primitives” a la [Ras] and obtain an alternative proof
of Kostant’s results which is more suitable for our generalisations.

In a similar manner we define transgression maps for the relative Weil algebras

W (g,K) =W (g)K−basic = (S(g)⊗
∧
p)K

and prove the relative version of the transgression theorem, Theorem 5.8. It says
that we can produce primitive K-invariants in

∧
p starting from those primitive

g-invariants in S(g) that project trivially to S(k).
We also study other related absolute and relative Weil algebras, as well as corre-

sponding transgression maps. For example, we consider the quantum Weil algebra

W(g) = U(g)⊗ Cl(g)

and its relative version

W(g,K) = (U(g)⊗ Cl(p))K .
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To relate the results about transgression and Theorem 1.1, we use certain Harish-
Chandra type projections of the Clifford algebra. In the absolute case, a Harish-
Chandra map hc from Cl(g)g to Cl(h) was studied by Kostant, Bazlov and others;
see [Mei]. In the relative cases, we define analogues of this map attached to elements
of W 1. We show that each hcw : Cl(p)k → Cl(a) is a surjective algebra map, and
that hc1 is an isomorphism in the primary cases; see Propositions 6.7 and 7.2.

In the absolute cases, it was conjectured by Kostant and proved by Bazlov [Baz2],
Joseph [Jos] and Alekseev-Moreau [AM4], that hc is an isomorphism of filtered alge-
bras, if we introduce a filtration of h using the action of a principal sl(2) subalgebra
of the dual Lie algebra g∨. We show that an analogous result holds in primary and
almost primary cases, see Theorem 8.2.

Proposition 6.7, Proposition 7.2 and Theorem 8.2 can be summarized as follows:

Theorem 1.2. Let (G,K) be a symmetric pair as in Theorem 1.1. Let a be filtered
using the action of the principal sl(2) subalgebra of g∨. Then for each w ∈ W 1,
hcw : Cl(p)k → Cl(a) is a surjective filtered algebra homomorphism. In the primary
case, hc1 is an isomorphism.

The paper is organized as follows. After reviewing some preliminaries in Section
2, we discuss various Weil algebras and transgression maps in Section 3 and 4.
Section 5 is devoted to the proof of Relative Transgression Theorem and in Section
6 we study the Harish-Chandra maps. In Section 7 we prove the main theorem,
Theorem 1.1. Finally, in Section 8 we discuss the relative version of Kostant’s
Clifford algebra conjecture.

2. Preliminaries

In this section we survey some definitions and facts about Clifford algebras and
symmetric pairs.

2.1. Contractions and bilinear forms. Let V be a vector space with a nonde-
generated symmetric bilinear form B.

The transpose anti-automorphism •T of
∧
V is defined by sending a = v1 ∧ . . .∧

vk ∈
∧
V to aT = vk∧ . . .∧v1. Since

∧
V is super-commutative, •T is multiplication

by (−1)k on each graded component
∧k

V .

Definition 2.1. For v ∈ V , we define a derivation ιv :
∧
V →

∧
V by

ιv(v1 ∧ . . . ∧ vk) =
k∑

i=1

(−1)iB(v, vi)v1 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . ∧ vk.

The map ι extends to an algebra homomorphism
∧
V → End(

∧
V ) and is called

contraction.

Definition 2.2. For a ∈
∧
V let (a)[0] be the 0th degree part of a. We extend the

bilinear form B to
∧
V in two ways;

B(a, b) = (ιaT b)[0], B̃(a, b) = (ιab)[0].

2.2. Clifford algebras. In this section we recall definition and main properties of
Clifford algebras. Our main reference is [Mei, Chapter 2]; see also [HP2, §2].
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Definition 2.3. For a vector space V with symmetric nondegenerate inner prod-
uct B, define the Clifford algebra

Cl(V,B) = T (V )/⟨u⊗ v + v ⊗ u− 2B(u, v)⟩.

We often drop the bilinear form in notation and write Cl(V,B) as Cl(V ).
Depending on the dimension of V , Cl(V ) is either an endomorpism algebra or

two copies of an endomorphism algebra of spin modules S and S1, S2 respectively.

Cl(V ) ∼=

{
End(S) if dimV is even,

End(S1)⊕ End(S2) if dimV is odd.

The associated graded algebra of the Clifford algebra Cl(V ) is the exterior algebra∧
V . These are isomorphic as vector spaces. The isomorphisms are given by the

symbol map symb : Cl(V ) →
∧
V and the quantization map q :

∧
V → Cl(V );

see [Mei, Section 2.2.5].
For v ∈ V we define an odd derivation ιv : Cl(g) → Cl(g) by

ιv(v1 . . . vk) =

k−1∑
i=1

B(v, vi)v1 . . . vi−1vi+1 . . . vk,

The quantisation map intertwines contraction operators in
∧
V and Cl(V ): for all

ω ∈
∧
V , v ∈ V we have that ιv(q(ω)) = q(ιvω).

The filtration on Cl(V ) is compatible with the Z-grading of
∧
V in the following

manner

Cl(k)(V ) = q

(
k⊕

m=0

∧m
V

)
for k = 0, . . . ,dim(V ). (2.4)

The degree 2 space q(
∧2
V ) ⊆ Cl(2)(V ) is closed under the Lie bracket [X,Y ] =

XY − Y X. The Lie algebra q(
∧2
V ) is isomorphic to o(V ).

Let L be a compact Lie group and l be the corresponding Lie algebra (in examples
we need, L will be G or K). Now assume that V is a l-module which admits
a non-degenerate invariant symmetric bilinear form B. Since B is symmetric and
invariant, the action of l on V defines a Lie algebra homomorphism l → o(V ).
Hence we get a l-equivariant linear map

λV : l o(V )
∧2
V.≃

Composing it with the embedding of the Lie algebra o(V ) ∼=
∧2
V into the Clifford

algebra Cl(V ), we get a Lie algebra map

αV : l o(V )
∧2
V Cl(2)(V ).≃ q

(2.5)

Explicitly, if ei is a basis of V with dual basis fi with respect to B, then

λV (X) =
1

4

(V )∑
i

[X, ei] ∧ fi, αV (X) =
1

4

(V )∑
i

[X, ei]fi, X ∈ l,

where
∑(V )

i denotes the summation over a basis of V indexed by i. By the universal
properties, λV and αV extend to algebra maps

λV : S(l) →
∧
V, αV : U(l) → Cl(V ),
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(in particular, αV defines a quantum moment map in sense of [Lu]). Therefore, the
spin module S (or S1 and S2) of Cl(V ) can be viewed as an l-module. We define
αZ = α|Z(U(l)) to be the restriction of αV to the centre of U(l).

In a similar manner one defines the corresponding L̃-module structure on S
(or S1, S2), where L̃ is a double cover of L which makes the following diagram
commutative

L̃ Spin(V )

L SO(V,B)

See [HP2, §3.2.1] for details.

2.3. Symmetric pairs of Lie algebras. Let (G,K) be a symmetric pair of com-
pact Lie groups as in the introduction, with Θ being the corresponding involution
of G. Then the complexified Lie algebra g of G has an involution θ = dΘ such that
gθ = k is the complexified Lie algebra of K. The pair (g, k) is called a symmetric
pair (of Lie algebras). Then g has a nondegenerate symmetric bilinear form B
(e.g. the Killing form if g is semisimple) and this form is invariant under θ. The
(−1)-eigenspace of θ is denoted by p. It is clear that p is a k-module. Let t denote
a Cartan subalgebra of k and let h = t⊕ a be a Cartan subalgebra of g with a ⊂ p.

Definition 2.6. The Clifford algebra Cl(p) is defined with a nondegenerate g-
invariant form B on g restricted to p. We denote by S (or S1 and S2 if dim p odd)
irreducible (spin) module(s) for Cl(p).

2.4. Types of symmetric pairs.

Definition 2.7. A symmetric pair (g, k) is called

• primary if S is k-primary, i.e., it contains only one k-type;
• almost primary if S has two k-types and dim a > 1;
• of equal rank if dim a = 0;
• of almost equal rank if dim a = 1.

The classification of compact symmetric spaces G/K for simple g = Lie(G) is
given, for example, in [Hel]. It turns out that all corresponding symmetric pairs
of Lie algebras fall into one of the four categories of Definition 2.7 except for the
pair (e(6), sp(8)).

In this paper we will consider mostly primary symmetric pairs, such as

(sl(2n+ 1), o(2n+ 1), (sl(2n), sp(2n)), (e(6), f(4)),

and almost primary symmetric pairs

(sl(2n), o(2n)).

2.5. Algebra structure of Cl(p)k as endomorphisms of spin modules. Recall
that, if dim p is even, the Clifford algebra is isomorphic to the endomorphisms of
the spinor module and if dim p is odd, equal to the direct sum of two such spaces.

Cl(p) =

{
End(S) dim p even,

End(S1)⊕ End(S2) dim p odd.
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Lemma 2.8. The algebra Cl(p)k is equal to the k-endomorphisms of S (resp. the
direct sum of k-endomorphisms of S1 and S2).

Proof. If dim p is even then Cl(p) = End(S) and Cl(p)k = Endk(S) Analogously,
for dim p odd, Cl(p)k = Endk(S1)⊕ Endk(S2). □

Lemma 2.9. [HP2, §2.3.6] The highest weights of the spin module S (resp. S1 and
S2) are given by

wρg − ρk for w ∈W 1.

Let p = a⊕q where q = q+⊕q− = n+∩p⊕n−∩p. Define Ew to be the irreducible
finite dimensional k-module with highest weight wρg−ρk. Let a+, a− be a dual pair
of maximal isotropic subspaces of a with respect to B. If a or equivalently p is
odd dimensional, let a0 be the 1-dimensional space orthogonal to a+ ⊕ a−. Then
for dim p even, S is isomorphic to

∧
a+ ⊗

∧
q+. For dim p odd, S1, S2 are both

isomorphic to
∧
a+ ⊗

∧
q+, with a0 acting on Seven

1 , Sodd
2 by i and Sodd

1 , Seven
2

by −i.

Lemma 2.10. [HP2, §2.3.6] As k-modules,

S ∼=
⊕

w∈W 1

∧
a+ ⊗ Ew, S1

∼= S2
∼=
⊕

w∈W 1

∧
a+ ⊗ Ew,

with trivial k-action on
∧
a+.

Definition 2.11. Define an algebra Pr(S) isomorphic to C|W 1| with basis of idem-
potents labeled by prw, w ∈W 1, such that

prw1
prw2

= δw1,w2
prw1

.

Lemma 2.12. The k-invariants in Cl(p) are isomorphic as an algebra to

Cl(p)k ∼=

{
End(

∧
a+)⊗ Pr(S) dim p even,

(End(
∧
a+)⊕ End(

∧
a+))⊗ Pr(S) dim p odd.

In both cases

Cl(p)k ∼= Cl(a)⊗ Pr(S).

Moreover, Pr(S) = imαZ .

Proof. The algebra Cl(p)k is the k-endomorphisms of S or S1 and S2. For each
k-type Ew there is a projection prw onto the Ew isotypic component. Furthermore,
this isotypic component is a direct sum of dim

∧
a+ copies of Ew, hence the space of

k-endomorphisms of this isotypic component is isomorphic to End(
∧
a+). An iden-

tical argument can be made for S1 or S2. To finish, one notes that q is always even
dimensional as it contains both positive and negative root spaces. Hence dim p has
the same parity as dim a. Therefore, if dim p is even, then Cl(a) = End(

∧
a+) and

if dim p is odd, then Cl(a) = End(
∧
a+)⊕ End(

∧
a+).

The fact that Pr(S) = imαZ was proved in [CGKP]. □

It is worth noting this is not a filtered algebra isomorphism if we use the usual
filtration on Cl(a). A description of the filtration on Cl(a) which is compatible with
the above isomorphism will be given in Section 8.
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3. Transgressions in Weil algebras

In this section we define various Weil algebras and construct the corresponding
transgression maps. The results of this section will allow us to reprove Kostant’s
description of Cl(g)g as the Clifford algebra on primitives. Furthermore, we are
able to extend our results to the relative case which will be illuminated in section 7.
Theorem 3.26 shows that the image of the transgression map consists of primitives
as defined in [Ras]. It turns out that the transgression maps in various Weil algebras
all factor through the noncommutative Weil algebra.

3.1. G-differential algebras. H. Cartan introduced the notion of g-differential
algebras as a generalisation of algebras of differential forms on manifolds with g-
action, [Car1, Car2]. Later g-differential algebras appeared in the study of equi-
variant cohomology [GS, AM1, AM2], in Chern–Weil theory [AM3, Mei], and in
relation to (algebraic) Dirac operators and Vogan’s conjecture [HP1, HP2, AM3].
Here we review definition and main properties of G-differential algebras; see [GS,
§2-§4] and [Mei, §6] for more details.

Let g be a Lie algebra and ξ be a generator of the Grassmann algebra
∧
[ξ], i.e.,

ξ2 = 0. Let d denote the differential on
∧
[ξ] given by d = ∂

∂ξ ∈ Der
∧
[ξ]. Consider

a semisimple Z-graded Lie superalgebra

ĝ =
∧
[ξ]⊗ g⊕ Cd = ĝ−1 ⊕ ĝ0 ⊕ ĝ1,

where ĝ−1 = span(ιx | x ∈ g), ĝ0 = span(Lx | x ∈ g), and ĝ1 = span(d). In the
following we refer to ιx as contractions and Lx as Lie derivatives. The explicit
brackets in ĝ are as follows

[Lx, Ly] = L[x,y], [Lx, ιy] = ι[x,y], [ιx,d] = Lx,

[d,d] = 0, [Lx,d] = 0, [ιx, ιy] = 0,

for all x, y ∈ g.
A (graded, filtered) g-differential space is a (graded, filtered) super vector space V ,

together with a structure of ĝ-representation ρ : ĝ → gl(V ) (compatible with grada-
tion/filtration). A g-differential algebra is a super-algebra A, together with a struc-
ture of a g-differential space, such that ρ takes values in Der(A).

Similarly, let G be a compact Lie group and denote by g its Lie algebra. A G-
differential algebra is a superalgebra A with a representation ρ of G by automor-
phisms of A and a structure of g-differential algebra on A which satisfies

d

dt
ρ(exp tx)

∣∣∣
t=0

= Lx, ρ(g)Lxρ(g
−1) = LAdg x,

ρ(g)ιxρ(g
−1) = ιAdg x, ρ(g) d ρ(g−1) = d,

for all g ∈ G and x ∈ g, where Ad denotes the adjoint action of G on g.
Let A be a G-differential algebra. The G-horizontal subalgebra of A, denoted

by AG−hor, by

AG−hor = {a ∈ A | ιxa = 0 for all x ∈ g} .
Let us emphasise that AG−hor is not a differential subalgebra.

The G-basic subalgebra of A, denoted by AG−bas is the algebra of G-invariants
in A which are horizontal, i.e. annihilated by all the contractions by the elements
of g. In other words:

AG−bas = AG ∩ {a ∈ A | ιxa = 0,∀x ∈ g}.
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Similarly, the g-basic subalgebra of A is defined by

Ag−bas = Ag ∩ {a ∈ A | ιxa = 0,∀x ∈ g}.

Note that AG−bas ⊆ Ag−bas.
A connection on a (graded, filtered) g-differential algebra A is an odd linear

map ϑ : g∗ → A of degree 1, such that Lxϑ(µ) = ϑ(ad∗x µ) and ιxϑ(µ) = ⟨µ, x⟩
for all µ ∈ g∗ and x ∈ g. A g-differential algebra admitting a connection is called
locally free. If ei is a basis of g then a connection can be represented by the element

ϑ =
∑(g)

i ϑi ⊗ ei ∈ A⊗ g.
The curvature of a connection ϑ is an even map Fϑ : g∗ → A of degree 2, defined

by

Fϑ = dϑ+
1

2
[ϑ, ϑ]. (3.1)

The curvature map can be represented by the element Fϑ =
∑(g)

i (Fϑ)i⊗ei ∈ A⊗g,
where

(Fϑ)i = dϑi +
1

2

(g)∑
a,b

cia,bϑ
aϑb,

where cia,b are the structure constants of g in the basis ea, i.e., [ea, eb] =
∑

i c
i
a,bei.

It is easy to see that the curvature map is g-equivariant and takes values in Ag−hor.

Example 3.2. Consider the case of A =
∧
g∗. Define contractions ιx of

∧
g∗ by

an element x ∈ g by Definition 2.1. Let Lx denote the extension of the coadjoint
action ad∗x on

∧
g∗ for x ∈ g. Let d∧ : g

∗ →
∧2

g∗ be the dual map to the bracket

[−,−] :
∧2

g → g extended to a degree 1 odd derivation of
∧
g∗; explicitly

d∧ =
1

2

(g)∑
a

fa ◦ Lea ,

where ea is a basis of g and fa is the corresponding dual basis of g∗ considered as
the left multiplication operator. It is easy to see that

∧
g∗ is a g-differential algebra.

The g-differential algebra
∧
g∗ is locally free with connection ϑ∧ given by ϑ∧(µ) = µ

for all µ ∈ g∗. It is easy to see that the curvature of the connection ϑ∧ is zero.
See [Mei, §6.7] for further details.

Example 3.3. Assume that g admits a non-degenerate symmetric invariant bilinear
form B so we can identify g∗ ∼= g. Consider the corresponding Cartan 3-tensor

ϕ =
1

3

(g)∑
i

λg(ei) ∧ fi ∈ (
∧
g)g. (3.4)

The Clifford algebra Cl(g) is a filtered g-differential algebra with differential given
by dCl = [q(ϕ),−], the Lie derivatives are induced by the adjoint action, and the
contractions are defined in §2.2. Clearly, the same formula as for

∧
g∗ defines a flat

connection on Cl(g).

3.2. The commutative Weil algebra. We recall the definition of the (commu-
tative) Weil algebra of g and its properties following [Mei, §6]. Let

W (g) = S(g∗)⊗
∧
g∗.
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For µ ∈ g∗, let µ denote generators of 1⊗
∧
g∗ and µ̂ denote the generators of S(g∗)⊗

1. For x ∈ g, let Lx be given by the adjoint action of x and let ιx be defined as

ιx := id⊗ιx,

where ιx in the second factor is as in Example 3.2. Let dK denote the Koszul
differential relative to the generators µ and µ̂, that is, dK µ = µ̂, dK µ̂ = 0. Let dCE

denote the Chevalley–Eilenberg differential given by

dCE =

(g)∑
a

Lea ⊗ fa + id⊗d∧,

where ea is a basis of g and fa is the corresponding dual basis of g∗ considered as
the left multiplication operator. Then a differential on W (g) is given by

dW = dCE +2dK .

The graded G-differential algebraW (g) is called the commutative Weil algebra of g.
We have that

dW (fi) = 2f̂i + d∧(fi) = 2f̂i −
1

2

(g)∑
a,b

cia,bfa ∧ fb.

If g admits a nondegenerate invariant symmetric bilinear form B, then have that

dW (µ) = 2µ̂+ 2λg(µ) for µ ∈ g∗. (3.5)

The Weil algebra is locally free, with connection ϑW : g∗ →W (g) given by µ 7→ µ
for µ ∈ g∗. The commutative Weil algebra is universal among (super)commutative
g-differential algebras: for any commutative (graded, filtered) g-differential alge-
bra A with connection ϑA, there is a unique morphism of (graded, filtered) g-
differential algebras cA : W (g) → A such that cA ◦ ϑW = ϑA. The homomorphism
cA is called characteristic homomorphism. As it was noticed in Example 3.2, the ex-
terior algebra

∧
g∗ is (super)commutative and locally free. Let π∧g∗ : W (g) →

∧
g∗

denote the corresponding characteristic homomorphism. On the generators µ and
µ̂ it is given by

π∧g∗(µ) = µ, π∧g∗(µ̂) = 0.

The Weil algebra W (g) and its g-invariant part W (g)g are acyclic differential
algebras; for example, see [Mei, Proposition 6.9 on p. 149]. Therefore, we can
define the transgression map in the Weil algebra W (g) as follows. Since dW van-
ishes on W (g)g−bas = S(g∗)g, any element p ∈ S+(g∗)g is a cocycle, hence is
a coboundary. A cochain of transgression for p ∈ S+(g∗)g is an odd element
Cp ∈ W (g)g such that dW (Cp) = p. For p ∈ S+(g∗)g the transgression of p is
defined by t∧g∗(p) = π∧g∗(Cp).

Theorem 3.6 (Transgression theorem). Let g be a complex reductive Lie algebra.
Then

(a) For p ∈ S+(g∗)g the transgression map is independent of the choice of
cochain.

(b) The transgression map t∧g∗ satisfies

ker t∧g∗ = (S+(g∗)g)2, im t∧g∗ = P∧(g).
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The construction of the transgression map is due to H. Cartan’s article [Car1].
The transgression theorem was also explicitly stated by Chevalley in [Che]; see
also [Ler].

3.3. The noncommutative Weil algebra. For a Z-graded vector space E =⊕
k E

k and n ∈ Z define a graded space with a degree shift E[n] so that (E[n])k =
En+k. In other words, if x ∈ E is of degree k, then its degree in E[n] is k − n. In
particular, if E is just a vector space we consider it as graded in degree 0, so E[n]
is the same space viewed in degree n ∈ Z.

Following [AM3], define the noncommutative Weil algebra of g as the tensor
algebra

W̃ (g) = T (g∗[−2]⊕ g∗[−1]).

For µ ∈ g∗ denote by µ the corresponding element of g∗[−1] and by µ̄ the cor-

responding element of g∗[−2]. The algebra W̃ (g) has a natural Z-grading, with
generators µ being of degree 1 and generators µ̄ of degree 2. In particular, we can

view W̃ (g) as a Z-graded superalgebra.

The algebra W̃ (g) has a natural structure of a graded g-differential algebra de-
fined as follows; note that by the universal property of the tensor algebra we can
define algebra homomorphisms or derivations freely on the generators µ and µ̄.

The differential of W̃ (g) is the degree 1 derivation d
W̃

defined on generators by

d
W̃
µ = µ̄; d

W̃
µ̄ = 0. (3.7)

Contraction by an element x ∈ g is the odd derivation defined on generators by

ιxµ = ⟨x, µ⟩; ιxµ̄ = ad∗x µ. (3.8)

The Lie derivatives Lx for x ∈ g are the even derivations defined on generators by

Lxµ = ad∗x µ; Lxµ̄ = ad∗x µ̄ = ad∗x µ. (3.9)

The g-differential algebra W̃ (g) is locally free, with connection ϑ
W̃

: g∗ → W̃ (g)
given by

ϑ
W̃
(µ) = µ, µ ∈ g∗. (3.10)

Let ei be a basis of g and fi be the corresponding dual basis of g∗ ∼= g∗[−1]. Since

ϑ
W̃

is the identity map from g∗ to g∗ ∼= g∗[−1] ⊂ W̃ (g), it can be written as

ϑ
W̃

=

(g)∑
i

fi ⊗ ei ∈ W̃ ⊗ g

under the identification Hom(g∗, W̃ (g)) = W̃ (g)⊗ g.

The curvature Fϑ
W̃ =

∑(g)
i (Fϑ)i ⊗ ei ∈ W̃ (g)⊗ g of the connection ϑ

W̃
is given

by

(Fϑ)i = d
W̃
fi +

1

2

(g)∑
a,b

cia,bfa ⊗ fb = f̄i − δ(fi)

where cia,b = B([ea, eb], fi) are the structure constants of g corresponding to the
basis ei, i.e.,

[ea, eb] =
∑
i

cia,bei,



CLIFFORD ALGEBRA ANALOGUE OF THE CARTAN THEOREM 13

and δ : g∗[−1] → W̃ (g) is the linear map defined by

δ(fi) = −1

2

(g)∑
a,b

cia,bfa ⊗ fb. (3.11)

It is easy to see that (Fϑ)i ∈ W̃ (g)g−hor. The map δ is analogous to d∧ and satisfies
(partial) Cartan calculus, see Lemma 3.16 below. It also satisfies

ιxιyδ(µ) = ⟨µ, [x, y]⟩, µ ∈ g∗[−1], x, y ∈ g, (3.12)

i.e., it is dual to the Lie bracket of g.
We define the hat variables, or curvature variables, by

f̂i := (Fϑ)i = f̄i − δ(fi).

Note that f̂i ∈ W̃ 2(g)g−hor.

Lemma 3.13. Let W ′ be the tensor algebra of the vector space spanned by all µ, µ̂

for µ ∈ g∗ and define f : W ′ → W̃ (g) by f(µ) = µ, f(µ̂) = µ̄− δ(µ). Then f is an
algebra isomorphism.

Proof. By the universal property of tensor algebra f is an algebra morphism. It
is obviously injective. We can construct the inverse homomorphism by putting

f−1(µ) = µ, f−1(µ̄) = µ̂+ δ(µ) and extending to W̃ (g) by the universal property.
□

Therefore, µ and µ̂ form another set of generators of W̃ (g). The main advantage
of this change of generators is that

ιxµ = ⟨µ, x⟩, ιxµ̂ = 0, for x ∈ g.

We set δ(f̂i) = 0, and extend δ to a degree 1 derivation of W̃ (g).

Consider a Z2-grading on W̃ (g)

W̃ (g) =
⊕

i,j∈N0

W̃ i,j(g) (3.14)

given by deg(µ̂) = (1, 0) and deg(µ) = (0, 1), then

d
W̃

: W̃ i,j(g) → W̃ i+1,j−1(g)⊕W i,j+1(g). (3.15)

Let W̃+,0(g) denote the augmentation ideal in the subalgebra W̃ •,0(g) of W̃ (g)
generated by µ̂.

The following lemma shows that δ, ιx and Lx define an analogue of Cartan’s

calculus on W̃ 0,•(g). It will be useful in proving the main result of this subsection,
Theorem 3.26, but it can also serve as motivation for our definition of δ.

Lemma 3.16. For x ∈ g we have that on W̃ 0,•(g)

[δ, Lx] = 0, [δ, ιx] = Lx, ιxδ
2 = 0.

Proof. 1) Since for µ ∈ g∗ the element δ(µ) is an anti-symmetric tensor and the
action of g preserves anti-symmetric tensors, it is enough show that ιx◦ιy◦Lz◦δ(µ) =
ιx ◦ ιy ◦ δ ◦ Lz(µ) for x, y, z ∈ g. We have

ιx ◦ ιy ◦ Lz ◦ δ(µ) = ιx ◦ (Lz ◦ ιy − ι[z,y]) ◦ δ(µ)
= (Lz ◦ ιx ◦ ιy − ι[z,x] ◦ ιy − ιx ◦ ι[z,y]) ◦ δ(µ)
= Lz ◦ ιx ◦ ιy ◦ δ(µ)− ι[z,x] ◦ ιy ◦ δ(µ)− ιx ◦ ι[z,y] ◦ δ(µ).
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Since ιx ◦ ιy ◦ δ(µ) ∈ C, the first term is zero, and using (3.12) we get

= − ⟨µ, [[z, x], y] + [x, [z, y]]⟩ = −⟨µ, [z, [x, y]]⟩
= ⟨Lzµ, [x, y]⟩ = ιx ◦ ιy ◦ δ ◦ Lz(µ).

2) Let ek ∈ g and fi ∈ g∗ be dual bases. We have

[ιek , δ](fi) = ιek

−1

2

∑
a,b

cia,bfa ⊗ fb

 = −
∑
a

cik,afa = Lekfi.

The last equality follows from

⟨Lekfi, er⟩ = −⟨fi, [ek, er]⟩ = −
∑
j

⟨fi, cjk,rej⟩ = −cik,r = −

〈∑
a

cik,afa, er

〉
.

The claim follows.
3) We have

ιxδ
2(µ) = (Lx − δ ◦ ιx) ◦ δ(µ)

= Lx ◦ δ(µ)− δ ◦ (Lx − δ ◦ ιx)(µ)
= Lx ◦ δ(µ)− Lx ◦ δ(µ) = 0.

Which concludes the proof. □

As shown in [AM3, §3.3], the noncommutative Weil algebra has the following
universal property. Given a (graded, filtered) g-differential algebra A with a con-
nection ϑA (such A is called locally free), there is a unique morphism of (graded,
filtered) g-differential algebras

π̃A : W̃ (g) → A, such that π̃A ◦ ϑ
W̃ (g)

= ϑA. (3.17)

The morphism π̃A is called the characteristic homomorphism.

Explicitly, if ϑA =
∑(g)

i ϑiA ⊗ ei ∈ A⊗ g, then

π̃A(fi) = ϑiA, π̃A(f̄i) = π̃A(dW̃ fi) = dA ϑ
i
A, π̃A(f̂i) = dA ϑ

i
A +

1

2

(g)∑
a,b

cia,bϑ
a
Aϑ

b
A.

(3.18)
We will be especially interested in the case when the connection ϑA of the g-

differential algebra A is flat, i.e., its curvature FϑA defined by (3.1) vanishes. Then

the corresponding characteristic homomorphism π̃A : W̃ (g) → A has the following
properties:

Lemma 3.19. Let A be a locally free algebra with a flat connection and π̃A : W̃ (g) →
A be the corresponding characteristic homomorphism. Then

(a) π̃A(µ̂) = 0 for µ ∈ g∗,
(b) π̃A(b) = 0 for b ∈ ker d

W̃
,

(c) π̃A ◦ δ2 = 0.

Proof. (a) Follows from the definition of µ̂ as curvature components and the fact
that the connection on A is flat. Namely, since π̃A is the characteristic homo-
morphism, it is a morphism of g-differential algebras that agrees with connections:
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π̃A(ϑ
i
W̃
) = ϑiA. Hence, the curvature of the connection on W̃ (g) maps to the

curvature of the connection on A:

π̃A((F
ϑ
W̃ )i) = π̃A

d
W̃
ϑi
W̃

+
1

2

∑
a,b

cia,bϑ
a
W̃

⊗ ϑb
W̃


= dA(π̃A(ϑ

i
W̃
)) +

1

2

∑
a,b

cia,bπ̃A(ϑ
a
W̃
)π̃A(ϑ

b
W̃
)

= dA ϑ
i
A +

1

2

∑
a,b

cia,bϑ
a
Aϑ

b
A = (FϑA)i.

(b) From (3.15) it is easy to see that ker d
W̃

∩W̃ 0,+(g) = {0}.
(c) First note that

0 = π̃A(µ̂) = π̃A(µ̄− δ(µ)) = π̃A(dW̃ µ− δ(µ)) = dA ◦π̃A(µ)− π̃A ◦ δ(µ).

Therefore

π̃A ◦ δ2(µ) = dA ◦π̃A ◦ δ(µ) = d2A ◦π̃A(µ) = 0.

This completes the proof. □

We would like to define a transgression map for W̃ (g) in a similar manner as we
did for the commutative Weil algebraW (g) in Subsection 3.2 (see Theorem 3.6 and
the text above it.) We would however like this map to have values in an arbitrary
g-differential algebra A with a flat connection. It turns out we can not define such

a map on all of W̃+,0(g)g := T+(g[−2])g ⊗ 1 ⊂ W̃ (g), but on a certain subspace
that we call the transgression space, defined below.

To define the transgression space, we first recall the symmetrization map

symW : W (g) → W̃ (g)

described in [Mei, Proposition 6.13]. This map is obtained by symmetrizing the
(even) variables µ̄ and skew-symmetrizing the (odd) variables µ. Explicitly, symW

is the linear map defined on monomials v1 . . . vk inW (g) such that each of v1, . . . , vk
is either some µ or some µ̄, by

symW (v1 . . . vk) =
1

k!

∑
σ∈Sk

(−1)Nσ(v1,...,vk)ϕ(vσ−1(1)) . . . ϕ(vσ−1(k)),

where Sk is the symmetric group, and Nσ(v1, . . . , vk) is the number of pairs i < j
such that vi, vj are odd elements and σ−1(i) > σ−1(j).

It is proved in [Mei, Proposition 6.13] that symW is an isomorphism of g-
differential spaces. (It is not an algebra homomorphism, but it is an algebra mor-
phism up to homotopy; see [AM3].) From this and the above definition, it is clear
that

symW (fi) = fi, symW (dW fi) = d
W̃
fi = f̄i,

symW (d∧(fi)) = δ(fi),

symW (f̂i) =
1

2
symW (dW fi − d∧(fi)) =

1

2
(d

W̃
fi − δ(fi)) =

1

2
f̂i;

for the last row, see (3.5).
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If p ∈ S(g∗)g ⊂ W (g), then dW p = 0, hence d
W̃
(symW (p)) = 0. Moreover,

since W (g) is acyclic, we also have that symW (p) ∈ im d
W̃

if p ∈ S+(g∗)g. This
motivates the following definition.

Definition 3.20. The transgression space for W̃ (g) is

T̃(g) = {symW (p) ∈ W̃+,0(g)g | p ∈ S+(g∗)g} ⊂ im d
W̃
.

We note that T̃(g) is a graded subspace of W̃ (g), and that by the above remarks,
it is contained in imd

W̃
.

We now define the transgression map for the non-commutative Weil algebra as
follows.

Definition 3.21. Let A be a locally free g-differential algebra with a flat connec-

tion. The (universal) transgression map of W̃ (g) with values in Ag is the linear

map t̃A : T̃(g) → Ag defined by

t̃A(p) = π̃A(C̃p),

where C̃p ∈ W̃ (g)g is such that d
W̃
C̃p = p. (Any such C̃p is called a cochain of

transgression for p. It always exists, since T̃(g) ⊂ im d
W̃
.)

Lemma 3.22. The transgression map t̃A is well-defined.

Proof. Assume p = d
W̃
C = d

W̃
C ′. Then d

W̃
(C − C ′) = 0, so (C − C ′) ∈ ker d

W̃
.

Thus π̃A(C − C ′) = 0 by Lemma 3.19(b). Therefore, the transgression map does
not depend on a choice of cochain of transgression. □

Let Φ: W̃ (g) → W̃ (g) be the g-equivariant algebra map defined on generators
by

Φ(µ) = µ, Φ(µ̂) = δ(µ). (3.23)

Define the g-equivariant algebra homomorphism

ΦA := π̃A ◦ Φ : W̃ (g) → A. (3.24)

Furthermore, let ιx̂, x ∈ g be the derivation of W̃ (g) of degree -2 defined on gener-
ators by

ιx̂(µ) = 0, ιx̂(µ̂) = ⟨x, µ⟩. (3.25)

The main result of this subsection is the following theorem; it is a generalisation of
Theorem 73 in [Kos2], and its proof is a generalisation of [Mei, Proposition 6.19 on
p. 160].

This result will be used in Subsection 4 to get an analogous relative version,
which will in turn be essential for the proof of our main result, Theorem 1.1.

Theorem 3.26. If x ∈ g and p ∈ T̃m+1(g), then

ιxt̃A(p) =
(m!)2

(2m)!
· ΦA(ιx̂p).

Proof. The first step is to rewrite the map t̃A more explicitly, using a homotopy

map which will send any p ∈ T̃(g) to a cochain of transgression for p.
To define this homotopy map, we consider C[t, dt], the graded commutative

differential algebra with an even generator t of degree 0 and an odd generator dt of
degree 1, and with a single relation (dt)2 = 0. The differential on C[t, dt] is defined
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by d(t) = dt, d(dt) = 0. One can think of C[t, dt] as an algebraic counterpart to
differential forms on the unit interval.

Define an “integration operator” J : C[t, dt] → C by

J

∑
k≥0

akt
k +

∑
l≥0

blt
ldt

 =
∑
l≥0

bl
l + 1

for ak, bl ∈ C. (3.27)

In other words, if P and Q are polynomials in t, then

J(P +Qdt) =

∫ 1

0

Qdt.

Let ε : W̃ (g) → C be the augmentation map and i : C → W̃ (g) be the unit map.

The standard homotopy operator h between id and i ◦ ε on W̃ (g) is defined by

h = (J ⊗ id) ◦ ϕh, (3.28)

where ϕh is the differential algebra morphism from W̃ (g) to C[dt, t]⊗ W̃ (g) defined
on generators by

ϕh(µ) = tµ, ϕh(µ̄) = dtµ+ tµ̄. (3.29)

Lemma 3.30. Let h be the homotopy map defined above, and let i respectively ε

be the unit and the counit map of W̃ (g). Then

hd
W̃

+d
W̃
h = id−i ◦ ε.

Moreover, h commutes with Lx for all x ∈ g and h(p) ∈ W̃ (g)g.

Proof. This is analogous to the commutative case, see [Mei, Section 6.4]. □

Lemma 3.31. Let h be the homotopy operator defined above. Then t̃A = π̃A ◦ h.

Proof. Note that for p ∈ T̃(g) we have that i ◦ ε(p) = 0 and d
W̃
(p) = 0. Therefore,

it follows from Lemma 3.30 that

d
W̃
(h(p)) = p.

Hence we can take h(p) as a cochain of transgression for p. □

We now get back to the proof of Theorem 3.26. Our next task is to write the

left side of the claimed equality using Lemma 3.30. Let g be the derivation of W̃ (g)
defined on generators by

g(µ̂) = µ, g(µ) = 0. (3.32)

Proposition 3.33. For any p ∈ T̃m+1(g),

t̃A(p) =
(m!)2

(2m+ 1)!
ΦA(g(p)).

Proof. Since p is in T̃m+1(g) ⊆ W̃+,0(g)g, we can write it as

p =
∑

µ̂1 ⊗ · · · ⊗ µ̂m+1.

It is easy to see that t̃A = π̃A ◦ h = (J ⊗ id) ◦ (id⊗π̃A) ◦ ϕh. Note that

ϕh(µ̂i) = ϕh(µ̄i − Φ(µ̂i)) = dtµi + tµ̄i − t2Φ(µ̂i) = dtµi + tµ̂i + (t− t2)Φ(µ̂i),
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using the fact that Φ(µ̂i) = δ(µi), and that it is in W̃ 0,2(g), so ϕh acts on Φ(µ̂i) by
multiplying by t2. This implies

(J ⊗ id) ◦ (id⊗π̃A) ◦ ϕh(p) =

=
∑

(J ⊗ id) ◦ (id⊗π̃A)
(
(dtµ1 + tµ̂1 + (t− t2)Φ(µ̂1)) · . . .

. . . · (dtµm+1 + tµ̂m+1 + (t− t2)Φ(µ̂m+1))
)
.

Applying π̃A and remembering that π̃A(µ̂i) = 0 by Lemma 3.19, we find

(J ⊗ id) ◦ (id⊗π̃A) ◦ ϕh(p) =

=
∑

(J ⊗ id)
(
(dtπ̃A(µ1) + (t− t2)ΦA(µ̂1)) · . . .

. . . · (dtπ̃A(µm+1) + (t− t2)ΦA(µ̂m+1))
)
.

which has linear dt term

(J ⊗ id)
∑

(t− t2)mdt
∑
i

ΦA(µ̂1 ⊗ · · · ⊗ µ̂i−1)π̃A(µi)ΦA(µ̂i+1 ⊗ · · · ⊗ µ̂m+1).

The lemma follows by noting that J
(
(t− t2)mdt

)
= (m!)2

(2m+1)! . □

Getting back to the proof of Theorem 3.26, we now see that the left side of the
claimed equality is equal to

(m!)2

(2m+ 1)!
ιxΦA(g(p)) =

(m!)2

(2m+ 1)!
π̃A(ιxΦ(g(p))).

On the other hand, the right side of the equality we need to prove is (m!)2

(2m)!ΦA(ιx̂p),

so the equality to prove becomes

π̃A(ιxΦ(g(p))) = (2m+ 1)ΦA(ιx̂p). (3.34)

Now we rewrite the right side of (3.34) as follows. Let η : W̃ (g) → W̃ (g) be a
derivation of degree 0 defined on generators by

η(µ) = 0, η(µ̂) = δ(µ), µ ∈ g∗. (3.35)

We claim that for any q ∈ W̃m,0(g) we have

ΦA(q) = π̃A

(
ηm

m!
(q)

)
. (3.36)

In particular, this will hold for q = ιx̂p ∈ W̃m,0(g).
To prove (3.36), we can assume q = µ̂1 ⊗ · · · ⊗ µ̂m and write

ΦA(q) = π̃A(Φ(µ̂1)⊗· · ·⊗Φ(µ̂m)) = π̃A(δ(µ1)⊗· · ·⊗δ(µm)) = π̃A(η(µ̂1)⊗· · ·⊗η(µ̂m)).

On the other hand, by Lemma 3.19 π̃A kills all µ̂i, as well as all δ2(µi) = η2(µ̂i).
It follows that

π̃A

(
ηm

m!
(q)

)
= π̃A(η(µ̂1)⊗ · · · ⊗ η(µ̂m)).

This proves (3.36). In particular, (3.36) for q = ιx̂p implies that the right side of
(3.34) is equal to

2m+ 1

m!
π̃A(η

m(ιx̂p)) =
2m+ 1

m!
π̃A(ιx̂η

m(p)); (3.37)
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the last equality follows from the fact that ιx̂η = ηιx̂, which is clear since both ιx̂η
and ηιx̂ are 0 on generators µ and µ̂.

To pass between ιx̂ and ιx, we need the following lemma. Let φ : W̃ (g) →
W̃ (g) be the linear map acting by 0 on the constants, and by 1

i+j on the subspace

W̃ i,j(g) ⊂ W̃ (g) consisting of elements of degree i with respect to the hat variables
and of degree j with respect to the µ variables, with i+ j > 0.

Lemma 3.38. Let p =
∑
µ̂1 ⊗ · · · ⊗ µ̂m+1 ∈ T̃m+1(g). Then

π̃A(ιx̂η
m(p)) = π̃A(ιx ◦ g ◦ φ(ηm(p))).

Assuming Lemma 3.38, we now finish the proof of Theorem 3.26. Recall that we
need to prove (3.34), and that we have rewritten the right side of (3.34) in (3.37).
Using Lemma 3.38, (3.37) becomes

2m+ 1

m!
π̃A(ιx ◦ g ◦ φ(ηm(p))),

which is equal to 1
m! π̃A(ιx ◦ g(ηm(p))) since ηm(p) has bidegree (1, 2m) so φ acts

on it by 1
2m+1 .

It now suffices to prove that

g(ηm(p)) = m!Φ(g(p)); (3.39)

this will show that the above expression for the right side of (3.34) is equal to the
left side of (3.34). The proof of (3.39) is straightforward, using the fact that η sends
the µ variables to 0. This finishes the proof of Theorem 3.26 modulo Lemma 3.38.

□

Proof of Lemma 3.38. By Lemma 3.19(c) π̃A annihilates the ideal Iδ2 of W̃ (g)
generated by im δ2. So it suffices to prove

ιx̂η
m(p)− (ιx ◦ g ◦ φ)(ηm(p)) ∈ Iδ2 . (3.40)

Let dK̂ ∈ Der1 W̃ (g) be the Koszul differential for µ and µ̂ generators defined by

dK̂(µ) = µ̂, dK̂(µ̂) = 0. (3.41)

Recall the derivation g of W̃ (g) defined by (3.32), which sends µ̂ to µ and µ to 0. It

is clear that the derivation [dK̂ , g] acts as multiplication by i+ j on W̃ i,j(g). The

map φ is the inverse of [dK̂ , g] on W̃
+(g). Moreover, g ◦ φ is a homotopy operator

for dK̂ , i.e., if i and ε are as in Lemma 3.30, then

[dK̂ , g ◦ φ] = id−i ◦ ε. (3.42)

It is clear that

ιx̂ ◦ ηm(p) ∈ W̃ 0,+(g), ιx ◦ g ◦ φ ◦ ηm(p) ∈ W̃ 0,+(g).

Since ker dK̂ ∩W̃ 0,+(g) = 0, equation (3.40) (and hence the lemma) will follow if
we show that

(ιx̂ − ιx ◦ g ◦ φ) (ηm(p)) ∈ ker dK̂ +Iδ2 . (3.43)

We claim that the operator ιx̂ − ιx ◦ g ◦ φ preserves ker dK̂ +Iδ2 .
To see this, we first show that

[dK̂ , ιx̂] = −ιx. (3.44)
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Indeed, if µ ∈ g∗ and x ∈ g, then

[dK̂ , ιx̂](µ) = − ιx̂ dK̂(µ) = −ιx̂µ̂ = −⟨µ, x⟩ = −ιxµ,
[dK̂ , ιx̂](µ̂) = 0 = −ιxµ̂,

so the derivations [dK̂ , ιx̂] and −ιx agree on generators and hence are equal. Using
(3.44), (3.42), and the obvious fact [dK̂ , ιx] = 0, we get

[dK̂ , ιx̂ − ιx ◦ g ◦ φ] = −ιx + ιx ◦ [dK̂ , g ◦ φ]
= −ιx ◦ ε = 0.

So ιx̂ − ιx ◦ g ◦φ preserves ker dK̂ . To see that ιx̂ − ιx ◦ g ◦φ also preserves Iδ2 , we
note that

ιx̂ ◦ δ2 = 0, ιx ◦ δ2 = 0, g ◦ ϕ ◦ δ2 = 0;

the first and the third equality are obvious, while the second follows from Lemma 3.16.
It now follows that ιx̂, g ◦ ϕ and ιx all preserve Iδ2 , hence so does ιx̂ − ιx ◦ g ◦ φ.
This finishes the proof of the claim that ιx̂ − ιx ◦ g ◦ φ preserves ker dK̂ +Iδ2 .

We now see that (3.43) (and hence the lemma) will follow if we prove

ηm(p) ∈ ker dK̂ +Iδ2 (3.45)

For this we need the following lemma.

Lemma 3.46. Set ζ := [η,dK̂ ] ∈ Der1 W̃ (g). Then for X ∈ W̃ (g) and p ∈ T̃m+1(g)
we have

(a) [η, ζ](X) ∈ Iδ2 ,
(b) (d

W̃
−dK̂ −ζ)(X) ∈ Iδ2 ,

(c) ζ ◦ ηk(p) ∈ Iδ2 .

We note that ζ is an analogue of dCE.

Proof. For µ ∈ g∗ we have

ζ(µ) = [η,dK̂ ](µ) = η(µ̂)− 0 = δ(µ),

which implies

[η, ζ](µ) = η ◦ δ(µ)− ζ(0) = 0.

Furthermore, we have

ζ(µ̂) = [η,dK̂ ](µ̂) = 0− dK̂ ◦η(µ̂) = −dK̂ ◦δ(µ), (3.47)

which implies

[η, ζ](µ̂) = η ◦ ζ(µ̂)− ζ ◦ η(µ̂) = −η ◦ dK̂ ◦δ(µ)− ζ ◦ δ(µ).

We rewrite this using η ◦ dK̂ = ζ − dK̂ ◦ η and η ◦ δ(µ) = 0; we obtain

[η, ζ](µ̂) = −2ζ ◦ δ(µ).

Finally, since ζ and δ are both odd derivations of W̃ 0,•(g) and since they agree on the

generators µ of W̃ 0,•(g), they agree on all of W̃ 0,•(g), which implies ζ◦δ(µ) = δ2(µ).
So we see that [η, ζ](µ̂) = −2δ2(µ) ∈ Iδ2 .
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To prove (b) we see that

(d
W̃

−dK̂)(fi) = f̂i + δ(fi)− f̂i = δ(fi) = ζ(fi),

(d
W̃

−dK̂)(f̂i) = d
W̃
(f̄i − δ(fi)) = d

W̃
(−δ(fi))

= − 1

2
ciab dW̃ (fa)⊗ fb +

1

2
ciabfa ⊗ d

W̃
(fb)

= − 1

2
ciab(f̂a + δ(fa))⊗ fb +

1

2
ciabfa ⊗ (f̂b + δ(fb))

(By (3.47)) = ζ(f̂i)−
1

2
ciabδ(fa)⊗ fb +

1

2
ciabfa ⊗ δ(fb)

= ζ(f̂i)− δ2(fi).

This proves (b).

To prove (c) we use induction on k. Assume that k = 0. Since p ∈ T̃m+1(g) we
have that d

W̃
(p) = dK̂(p) = 0. Using (b) we get that

ζ(p) = (ζ − d
W̃

+dK̂)(p) ∈ Iδ2 .

This is the base of our induction.
Assume now that ζ ◦ ηk(p) ∈ Iδ2 . We have that

ζ ◦ ηk+1(p) = η ◦ ζ ◦ ηk(p) + [ζ, η](ηk(p))

The first term belongs to Iδ2 by the induction hypothesis since η preserves Iδ2 . The
second term belongs to Iδ2 by (a). Thus ζ ◦ ηk+1(p) is in the ideal Iδ2 . □

Returning to the proof of Lemma 3.38, we first show

dK̂ ηm(p) ∈ Iδ2 (3.48)

by using induction on k.

We note that p ∈ T̃(g) ⊂ ker dK̂ , therefore

dK̂(η0(p)) = 0,

thus the base case is established.
Assume now that dK̂(ηk(p)) ∈ ker dK̂ +Iδ2 , then we have

dK̂(ηk+1(p)) = η(dK̂(ηk(p)))− ζ(ηk(p))

The first term belongs to Iδ2 by the induction hypothesis and the fact that η
preserves Iδ2 . The second term belongs to Iδ2 by 3.46(c). This proves (3.48).

Note that i ◦ ε(ηm(p)) = 0 since ηm(p) ∈ W̃ 1,2m(g). Using (3.42) we get

ηm(p) = dK̂ ◦g ◦ φ(ηm(p)) + g ◦ φ(dK̂(ηm(p))).

The first term belongs to ker dK̂ . Since g and φ preserve Iδ2 , the second term
belongs to Iδ2 . Hence ηm(p) ∈ ker dK̂ +Iδ2 , thus proving (3.45) and Lemma 3.38.

□
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3.4. The quantum Weil algebra. Suppose now g admits a nondegenerate in-
variant symmetric bilinear form B, so we can identify g∗ ∼= g. Recall from Exam-
ple 3.3 that Cl(g) is a g-differential algebra with the flat connection ϑCl(g) given

by ϑCl(g)(µ) = µ. Let π̃Cl(g) : W̃ (g) → Cl(g) be the corresponding characteristic
homomorphism. For µ ∈ g∗ we get that

π̃Cl(g)(µ) = π̃Cl(g) ◦ ϑW̃ (µ) = ϑCl(g)(µ) = µ

and it follows from Lemma 3.19 that π̃Cl(g)(µ̂) = 0.
Define the quantum Weil algebra as

W(g) = U(g)⊗ Cl(g),

and let êi denote generators of U(g) ⊗ 1 and ei denote generators of 1 ⊗ Cl(g).
Consider the cubic Dirac element [Goe, Kos3]

D =

(g)∑
i

êifi + q(ϕ) ∈ W(g),

where ϕ is the Cartan 3-tensor defined by (3.4) and we consider fi ∈ g∗ as elements
of g via identification g∗ ∼= g by B.

The quantum Weil algebra W(g) is a filtered g-differential algebra with the
differential given by dW = [D,−], the Lie derivatives induced by the adjoint action
and the contractions by x ∈ g are defined by ιx = id⊗ιx. The filtration is induced
by the usual filtrations on U(g) and on Cl(g): deg êi = 2, deg ei = 1. We have that

dW µ = 2µ̂+ 2αg(µ), (3.49)

recalling αg is defined in Equation 2.5.

Remark 3.50. Let us compare the explicit formulas for differentials in W̃ (g), W (g),
and W(g). For µ ∈ g∗ we have

in W̃ (g): d
W̃
(µ) = µ̂+ δ(µ),

in W (g): dW (µ) = 2µ̂+ 2λg(µ),

in W(g): dW(µ) = 2µ̂+ 2αg(µ).

The factor 2 that appears when we pass toW (g) and W(g) is related to the Poisson
structure on W (g), see the discussion in [Mei, §7].

One can define πCl(g) : W(g) → Cl(g) as the projection along U+(g)⊗ 1, where

U+(g) is the augmentation ideal of U(g). This projection is a g-differential alge-
bra morphism. From [Mei, Section 7.3] we have an isomorphism of g-differential
spaces qW :W (g) → W(g) such that

πCl(g) ◦ qW = q ◦ π∧(g), (3.51)

and its restriction to S(g) ⊂ W (g), generated by êi, is the Duflo map S(g) →
U(g), see [Duf]. Since qW is an isomorphism of g-differential space we have that
H(W(g)) = C.

Using πCl(g) we can define another transgression, tCl(g): for x ∈ U+(g)g denote

by Cx ∈ W(g)g a cochain of transgression for x, i.e., dW Cx = x. Such a cochain of
transgression for x exists since there is a cochain of transgression for q−1

W (x). Then
the transgression of x is given by tCl(g)(x) = πCl(g)(Cx). Note that tCl(g) depends

only on the differential onW(g) and the map πCl(g) but not on a choice of a cochain.
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Namely, suppose Cx and C ′
x are two cochains of transgression for x, then q−1

W (Cx)

and q−1
W (C ′

x) are cochains of transgression for y := q−1
W (x) ∈ W (g). Since the

transgression map t∧(g) does not depend on a choice of a cochain (Theorem 3.6a),

we have that π∧g(q
−1
W (Cx − C ′

x)) = 0. Thus we conclude that

πCl(g)(Cx − C ′
x) = q ◦ π∧g ◦ q−1

W (Cx − C ′
x) = 0,

which shows that tCl(g) is independent of the choice of cochain hence well-defined.

Lemma 3.52. For p ∈ S+(g∗)g, we have that q ◦ t∧(g)(p) = tCl(g)(qW (p)).

Proof. Since qW intertwines the differentials we have: if Cp is a cochain of trans-
gression for p, then qW (Cp) is a cochain of transgression for qW (p) ∈ U+(g)g. The
claim now follows from (3.51). □

Corollary 3.53. We have that q(P∧(g)) = im tCl(g).

Proof. Recall from Theorem 3.6(b) that P∧(g) is equal to im t∧(g), hence the Corol-
lary follows from Lemma 3.52; q ◦ t∧g(p) = tCl(g)(qW (p)). □

The quantum Weil algebra W(g) also has a connection given by ϑW(µ) = µ, but
this connection is not flat. By the universal property of the noncommutative Weil

algebra W̃ (g) there exists a unique g-differential algebra morphism, the characteris-

tic homomorphism, c : W̃ (g) → W(g) such that c◦ϑ
W̃

= ϑW . Before we calculate c
on generators let us remark the following. Identifying g∗ and g via bilinear form B,
for fi ∈ g∗ ∼= g, we have

⟨Lfiea, eb⟩ = −⟨Leafi, eb⟩ = ⟨fi, [ea, eb]⟩ = cia,b,

so Lfiea =
∑

b c
i
a,bfb and

αg(fi) =
1

4

∑
a

Lfiea · fa =
1

4

∑
a,b

cia,bfb · fa = −1

4

∑
a,b

cib,afb · fa. (3.54)

Recalling dW(µ) = 2µ̂+ 2αg(µ) we get

c(fi) = c(ϑ
W̃
(fi)) = ϑW(fi) = fi,

c(f̂i) = c

d
W̃
fi +

1

2

∑
a,b

cia,b fa ⊗ fb

 = dW fi +
1

2

∑
a,b

cia,b fa · fb

= dW fi − 2αg(fi) = 2(f̂i + αg(fi))− 2αg(fi) = 2f̂i.

Lemma 3.55. We have that ΦCl(g)

(
W̃ •,0(g)

)
= αg(U(g)).

Proof. Since both ΦCl(g) and αg are algebra morphisms and the map c is surjec-
tive, it suffices to show that ΦCl(g)(µ̂) and αg(c(µ̂)) are equal for µ ∈ g∗. Take a
generator fi as before, we have

ΦCl(g)(f̂i) = π̃Cl(g)(δ(fi)) = π̃Cl(g)

−1

2

∑
a,b

cia,b fa ⊗ fb

 = −1

2

∑
a,b

cia,b fa fb.
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From (3.54) we get that

αg(c(f̂i)) = αg(2f̂i) = −1

2

∑
a,b

cib,a fb fa = ΦCl(g)(f̂i).

This proves the claim. □

Lemma 3.56. For p ∈ Sm+1(g∗)g, we have t̃Cl(g)(symW̃
(p)) = tCl(g)(c(symW̃

(p))).

Proof. For p ∈ S+(g∗)g denote p̃ := sym
W̃
(p) ∈ T̃(g), then p := c(p̃) ∈ U+(g)g. If

we denote by Cp̃ a cochain of transgression for p̃, we claim that c(Cp̃) is a cochain
of transgression for p. Indeed, since c intertwines the differentials we have

dW ◦ c(Cp̃) = c ◦ d
W̃
(Cp̃) = c(p̃) = p.

Furthermore, we have π̃Cl(g) = πCl(g) ◦ c; this can be checked on generators:

π̃Cl(g)(µ) = µ, πCl(g) ◦ c(µ) = πCl(g)(µ) = µ,

π̃Cl(g)(µ̂) = 0, πCl(g) ◦ c(µ̂) = πCl(g)(2µ̂) = 0.

Finally, we get that

tCl(g)(c(symW̃
(p))) = πCl(g)(Cp) = πCl(g) ◦ c(Cp̃) = π̃Cl(g)(Cp̃) = t̃Cl(g)(symW (p)).

This proves the claim. □

Lemma 3.56 shows that the transgression map in W(g) factors through W̃ (g)
and the diagram

S+(g∗)g T̃(g)

U(g)g Cl(g)g

symW

qW ◦B♯ t̃Cl(g)

tCl(g)

commutes. (Here B♯ is the isomorphism of g∗ and g induced by B.)

Theorem 3.57. For x ∈ g, p ∈ U+(g)g we have that ιxtCl(g)(p) ∈ imαg.

Proof. By Theorem 7.2 on p. 174 in [Mei] the map qW : W (g) → W(g) factors
thought the noncommutative Weil algebra:

W (g) W̃ (g) W(g).
symW c

Since the restriction of qW on S(g) is the Duflo map, the same is true for c◦ symW .
The restriction of the Dulfo map to S(g)g defines an algebra isomorphism S(g)g →
U(g)g, see [Duf], the same holds for qW = c ◦ symW : S(g)g → U(g)g. Therefore,
it follows from Lemma 3.56 that im tCl(g) = im t̃Cl(g). Furthermore, Theorem 3.26

shows that ιx(im t̃Cl(g)) ⊂ ΦCl(g)

(
W̃ •,0(g)

)
, hence

ιx(im tCl(g)) ⊂ ΦCl(g)

(
W̃ •,0(g)

)
.

The corollary now follows by applying the result ΦCl(g)

(
W̃ •,0(g)

)
= imαg of

Lemma 3.55). □
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4. Transgressions in relative Weil algebras

The results of this section will allow us to extend Kostant’s results [Kos2] about
the structure of Cl(g)g to the relative case of Cl(p)K . Analogous to the “absolute”
case, the transgression maps in various relative Weil algebras all factor through the
relative noncommutative Weil algebra.

4.1. Relative noncommutative Weil algebra. Let (g, k) be a symmetric pair
of complex Lie algebras and K be a compact Lie group such that

(a) Lie(K) = k,
(b) the adjoint action of K on k extends to an action on g which preserves B,

so p is a K-submodule.

In particular, we are interested in the following cases (g, k,K): (sl(2n+1), o(2n+
1), SO(2n + 1)), (sl(2n), o(2n), O(2n)), (sl(2n), sp(2n), Sp(2n)), (e(6), f(4), F (4)),
where F (4) is the compact connected simply connected group of type f(4).

Let G be a compact connected Lie group and K be its symmetric subgroup,
then (Lie(G),Lie(K),K) is an example of such a triple. The only example that we
consider which is not of this kind is (sl(2n), o(2n), O(2n)).

For such a triple W̃ (g) is a K-differential algebra. Define the noncommutative

relative Weil algebra W̃ (g,K) to be the K-basic subalgebra of W̃ (g).

In what follows we denote the derivation δ in W̃ (g) by δg. Since [k, p] ⊂ p, for

any µ ∈ k∗ the element δg(µ) ∈ W̃ 0,2(g) given by (3.11) decomposes as

δg(µ) = δk(µ) + δp(µ),

where δk(µ) ∈ T 2(k∗[−1]) ⊂ W̃ 0,2(k) ⊂ W̃ 0,2(g) and δp(µ) ∈ T 2(p∗[−1]) ⊂ W̃ 0,2(g).
It is easy to see that this decomposition of δg(µ) is K-equivariant. Explicitly, for
the basis vector fi ∈ k∗

δp(fi) = −1

2

(p)∑
a,b

cia,bfa ⊗ fb. (4.1)

We denote by Resgp the restriction of linear functionals from g to p. For µ ∈ g∗ we
set

Φp(µ) = Resgp µ, Φp(µ̂) =

{
δp(µ) if µ ∈ k∗,

0 if µ ∈ p∗,

and extend it to an algebra morphism Φp : W̃ (g) → W̃ (g). Clearly, Φp = Resgp ◦Φ,
where the algebra morphism Φ: W̃ (g) → W̃ (g) is defined by (3.23). Moreover, Φp

is K-equivariant and preserves the k-horizontal subspace of W̃ (g), hence Φp pre-

serves W̃ (g,K). In what follows we restrict Φp to an algebra morphism Φp : W̃ (g,K) →
W̃ (g,K).

Note that W̃ (g) is a locally free K-differential algebra with connection given

by µ 7→ µ for µ ∈ k∗. Let j : W̃ (k) → W̃ (g) denote the corresponding characteristic
homomorphism of K-differential algebras. For µ ∈ k∗ we have

j(µ) = µ,

j(µ̂) = j(d
W̃
(µ)− δk(µ)) = d

W̃
(µ)− δk(µ) = µ̂+ δg(µ)− δk(µ) = µ̂+ δp(µ).
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Note that µ and µ̂ denote elements of both W̃ (k) and W̃ (g); likewise d
W̃

denotes
the differential of both algebras.

We identify g∗ = k∗ ⊕ p∗ in the usual way, and denote µ = µk + µp accordingly.

Define the projection prk : W̃ (g) → W̃ (k) to be the algebra morphism given on
the generators by prk(µ) = µk, prk(µ̄) = µk. Then prk is a K-differential algebra
morphism which satisfies

prk(µ̂) = prk(µ̂k + µ̂p) = prk(µk − δg(µk) + µp − δg(µp)) = µk − δk(µk) = µ̂k,

i.e., prk takes µ̂ ∈ W̃ (g) to µ̂k ∈ W̃ (k).
Let ψ1, ψ2 : E → E′ be morphisms of K-differential spaces (E,d) and (E′,d′).

A K-homotopy between ψ1 and ψ2 is a morphism of K-differential spaces ψ : E →
C[t, dt]⊗ E′ such that

ψ1 = (ev(0)⊗ id) ◦ ψ, ψ2 = (ev(1)⊗ id) ◦ ψ,
where ev(a) : C[t, dt] → C is defined by ev(a)(P + Qdt) = P (a). If such a ψ
exists, we say that ψ1 and ψ2 are K-homotopic. Similarly, a K-homotopy operator
between ψ1 and ψ2 is a morphism of super spaces h : E[1] → E′ such that

h ◦ ιx + ιx ◦ h = 0, ∀x ∈ k,

h ◦ d+ d′ ◦ h = ψ2 − ψ1.

The maps ψ1 and ψ2 are K-homotopic if and only there exists a K-homotopy
operator between them. We need the second part of this statement; assume there
is a K-homotopy ψ between ψ1 and ψ2, then h := (J⊗ id)◦ψ defines a K-homotopy
operator between ψ1 and ψ2. Here J is the same “integration operator” as in 3.27.

We will say that K-differential space morphisms ψ : E → E′ and φ : E′ → E are
K-homotopy inverses if ψ ◦ φ is homotopic to idE′ and φ ◦ ψ is homotopic to idE .
If a K-differential space morphism admits a K-homotopy inverse it is called a K-
homotopy equivalence.

Lemma 4.2. Let prk : W̃ (g) → W̃ (k) be as above. Then prk is a K-homotopy
equivalence, with inverse j. In more detail, prk ◦j = id

W̃ (k)
, while a K-homotopy

between j ◦ prk and id
W̃ (g)

is given by

ψrel : W̃ (g) → C[t, dt]⊗ W̃ (g), ψrel(µ) = (1− t)⊗ µ+ t⊗ j ◦ prk(µ), µ ∈ g∗,

extended as a morphism of differential algebras using the universal property of W̃ (g).

Proof. Obviously we have prk ◦j = id
W̃ (k)

. Furthermore, it is clear that

id
W̃ (k)

= (ev(0)⊗ id) ◦ ψrel, j ◦ prk = (ev(1)⊗ id) ◦ ψrel,

so it suffices to show that ψrel is a K-differential algebra morphism. Note first
that prk is a morphism of K-differential algebras, as is j, so j◦prk is a K-differential
algebra morphism. To see that ψrel is a K-differential algebra morphism, we first
describe it on generators. For this, let us introduce a differential d⊗ on C[t, d t] ⊗
W̃ (g) by d⊗(t) = dt, d⊗(dt) = 0, d⊗(µ) = µ̄. Now we have

ψrel(µ) = (1− t)⊗ µ+ t⊗ j ◦ prk(µ) = 1⊗ µ− t⊗ µp

and

ψrel(µ̄) = ψrel(dµ) = d⊗(ψrel(µ)) = d⊗(1⊗ µ− t⊗ µp)

= 1⊗ µ̄− dt⊗ µp − t⊗ µp.
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Since ψrel is an algebra morphism, it is enough to check the conditions on generators.
Take x ∈ k and µ ∈ g∗ and note that

Lxt = Lxdt = 0, ιxt = ιxdt = 0.

So we get

ιxψrel(µ) = ιx(1⊗ µ− t⊗ µp) = 1⊗ ιxµ+ t⊗ ιxµp = 1⊗ ιxµ = ψrel(ιxµ),

ιxψrel(µ̄) = ιx(1⊗ µ̄− dt⊗ µp − t⊗ µp) = 1⊗ ιxµ̄− t⊗ ιxµp

= 1⊗ Lxµ− t⊗ Lxµp = ψrel(Lxµ) = ψrel(ιxµ̄).

It now follows from Cartan’s magic formula that ψrel commutes also with Lie deriva-
tives, which proves the claim. □

We denote the K-homotopy operator between id
W̃

and j ◦ prk corresponding
to ψrel by

hrel = (J ⊗ id) ◦ ψrel. (4.3)

Remark 4.4. For p ∈ ker d
W̃

∩W̃ (g,K) such that prk(p) = 0 we have

d
W̃

◦hrel(p) + hrel ◦ dW̃ (p) = p− j ◦ prk(p), i.e., d
W̃
(hrel(p)) = p.

Since hrel(p) ∈ W̃ (g,K), we get that p ∈ d
W̃
(W̃ (g,K)). We use the K-homotopy

operator hrel below to obtain an analogue of Lemma 3.31 for the transgression map

in W̃ (g,K) which will be defined below.

Lemma 4.5. For µ ∈ k∗ we have

ψrel(µ̂) = 1⊗ µ̂+ (2t− t2)⊗ δp(µ)

and for µ ∈ p∗ we have

ψrel(µ̂) = (1− t)⊗ µ̂− dt⊗ µ.

Proof. To calculate ψrel(µ̂) we need ψrel(δg(µ)). Assume that our basis fi of g
∗ is

split into k∗ and p∗, meaning that every element belongs to exactly one of them.

ψrel(δg(fi)) = ψrel(−
1

2

(g)∑
a,b

ciabfa ⊗ fb) = −1

2

(g)∑
a,b

ciabψrel(fa)⊗ ψrel(fb)

= −1

2

(g)∑
a,b

cia,b (1⊗ fa − t⊗ (fa)p) · (1⊗ fb − t⊗ (fb)p)

= −1

2

(g)∑
a,b

ciab
(
1⊗ fa ⊗ fb − t⊗ fa ⊗ (fb)p − t⊗ (fa)p ⊗ fb + t2 ⊗ (fa)p ⊗ (fb)p

)

= 1⊗ δg(fi) +
t

2
⊗

 (g)∑
a

(p)∑
b

ciabfa ⊗ fb +

(p)∑
a

(g)∑
b

ciabfa ⊗ fb

− t2

2
⊗

(p)∑
a,b

ciabfa ⊗ fb.

If fi ∈ k∗, then both sums are over basis of p∗ because ciab = 0 if fa ∈ k∗, fb ∈ p∗ or

the other way around. Also,
∑(p)

a,b c
i
abfa ⊗ fb = −2δp(fi) so we get

ψrel(δg(fi)) = 1⊗ δg(fi)− 2t⊗ δp(fi) + t2 ⊗ δp(fi).
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On the other hand, if fi ∈ p∗, then

(g)∑
a

(p)∑
b

ciabfa⊗fb+
(p)∑
a

(g)∑
b

ciabfa⊗fb =
(k)∑
a

(p)∑
b

ciabfa⊗fb+
(p)∑
a

(k)∑
b

ciabfa⊗fb = −2δg(fi),

and the last summand in the expression above vanishes because ciab = 0 if fi, fa, fb ∈
p∗. (Here we are using that k is symmetric in g.) We obtain ψrel(δg(fi)) = (1− t)⊗
δg(fi).

To summarize, if µ ∈ k∗, then

ψrel(µ̂) = 1⊗ (µ̄− δg(µ)) + 2t⊗ δp(µ)− t2 ⊗ δp(µ) = 1⊗ µ̂+ (2t− t2)⊗ δp(µ)

and if µ ∈ p∗, then

ψrel(µ̂) = 1⊗ µ̄− dt⊗ µ− t⊗ µ̄− (1− t)⊗ δg(µ) = (1− t)⊗ µ̂− dt⊗ µ.

Which concludes the proof. □

4.2. Transgression in the noncommutative relative Weil algebra. Let A be
a flat locally free g-differential algebra such that the action of k ⊂ g integrates to
an action of K. It follows that A is a K-differential algebra compatible with the
g-differential algebra structure. Set B = AK−bas, the K-basic subalgebra of A, and
let AK−hor be the K-horizontal subalgebra of A; see Subsection 3.1. Define the
algebra homomorphisms

Φhor
A := π̃A ◦ Φp : W̃ (g) → AK−hor. (4.6)

It is easy to see that Φp(W̃ (g)) ⊂ W̃ (g)K−hor, so π̃A ◦ Φp(W̃ (g)) ⊂ AK−hor. Let

π̃B : W̃ (g,K) → B be the restriction of π̃A to K-basic subalgebras. Note that π̃B
is a morphism of differential algebras.

Analogously to the W̃ (g) case, we define the relative transgression space of W̃ (g,K)
by

T̃(g,K) =
{
symW (p) ∈ W̃+,0(g,K) | p ∈ S+(g∗)K such that prk(symW (p)) = 0

}
.

Since symW is a morphism of g-differential spaces, T̃(g,K) ⊂ ker d
W̃
. It follows

form the discussion in Remark 4.4 that for every p̃ ∈ T̃ (g,K) there is a C̃ ∈ W̃ (g,K)

such that d
W̃
C̃ = p̃. We call such C̃ a relative cochain of transgression for p̃.

Remark 4.7. In principal, one can define a bigger transgression space as W̃+,0(g,K)∩
im d

W̃
(W̃ (g,K)). However, T̃(g,K) is sufficient for our purposes.

Definition 4.8. The relative transgression map in W̃ (g,K) with values in B is

t̃B : T̃(g,K) → B

defined by sending p̃ ∈ T̃(g,K) to t̃B(p̃) = π̃B(C̃p̃), where C̃p̃ is a relative cochain
of transgression for p̃.

Lemma 4.9. The relative transgression map in W̃ (g,K) is well-defined and can
be expressed as t̃B = π̃B ◦ hrel.

Proof. Let p ∈ T̃(g,K). Suppose C,C ′ are relative cochains of transgression for p.
Then d

W̃
(C − C ′) = 0, hence (C − C ′) ∈ ker d

W̃
. Thus by Lemma 3.19b π̃B(C −

C ′) = π̃A(C − C ′) = 0. This proves that the relative transgression map is well-
defined.
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Using Remark 4.4, for p ∈ T̃(g,K) we get that d
W̃
(hrel(p)) = p and hrel(p) ∈

W̃ (g,K) is a relative cochain of transgression for p. □

Proposition 4.10. Let p ∈ T̃m+1(g,K), then

t̃B(p) = −4m · (m!)2

(2m+ 1)!
Φhor

A (g(p)).

Explicitly, let

p = p′ +
∑

µ̂i1 ⊗ · · · ⊗ µ̂ik−1
⊗ ξ̂ik ⊗ µ̂ik+1

⊗ · · · ⊗ µ̂im+1 ∈ T̃m+1(g,K)

such that µij ∈ k∗, ξij ∈ p∗ and p′ does not contain any monomials of this form.
Then

t̃B(p) = −4m · (m!)2

(2m+ 1)!

∑
Φhor

A (µ̂i1 ⊗· · ·⊗µ̂ik−1
)⊗ π̃A(ξik)⊗Φhor

A (µ̂ik+1
⊗· · ·⊗µ̂im+1

).

Proof. By Lemma 4.9 and the definition (4.3) of hrel, on T̃(g,K) we have

t̃B = π̃B ◦ hrel = π̃B ◦ (J ⊗ id) ◦ ψrel.

Note that π̃A ◦ hrel is a well-defined map on W̃ (g) which restricts to π̃B ◦ hrel
on W̃ (g,K). Therefore we can work with monomials µ̂1 ⊗ · · ·⊗ µ̂m+1 ∈ W̃m+1,0(g)

even though they are not in the relative transgression space T̃(g,K). Let us see

which monomials µ̂1 ⊗ · · · ⊗ µ̂m+1 ∈ W̃m+1,0(g) will not get annihilated by the
map π̃A ◦ hrel. Note that π̃A will annihilate µ̂ and J ⊗ id will send it to itself.
Writing each ψrel(µ̂i) as in Lemma 4.5 we see that

(a) for µi ∈ k∗ we only care about the part (2t− t2)⊗ δp(µi);
(b) for µi ∈ p∗ we only care about the part −dt⊗ µi.

Furthermore, if a monomial µ̂1 ⊗ · · · ⊗ µ̂m+1 is such that two or more µis lie
in p∗, then already ψ will annihilate it because (dt)2 = 0 and if there are no such
factors (meaning all µi ∈ k∗) then J ⊗ id will annihilate it, informally speaking
there would be nothing to integrate over. In conclusion, the only monomials that
survive the map π̃A ◦ hrel are of the form µ̂1 ⊗ · · · ⊗ µ̂j ⊗ · · · ⊗ µ̂m+1, where exactly
one µj is in p∗ and every other µi is in k∗. For such a monomial, recalling that
π̃A ◦ δp(µ̂i) = Φhor

A (µi), we have

π̃A ◦ hrel(µ̂1 ⊗ · · · ⊗ µ̂j ⊗ · · · ⊗ µ̂m+1) =

= (J ⊗ id)
((

(2t− t2)⊗ Φhor
A (µ1)

)
⊗ · · · ⊗

(
−dt⊗ π̃A(µj)

)
⊗ · · ·

· · · ⊗
(
(2t− t2)⊗ Φhor

A (µm+1)
))

= −
∫ 1

0

(2t− t2)mdt⊗ Φhor
A (µ1)⊗ · · · ⊗ π̃A(µj)⊗ · · · ⊗ Φhor

A (µm+1)

= −4m · (m!)2

(2m+ 1)!
Φhor

A (µ1)⊗ · · · ⊗ π̃A(µj)⊗ · · · ⊗ Φhor
A (µm+1).

Now note that p ∈ T̃m+1(g,K) can be written as

p = p′ +
∑

µ̂i1 ⊗ · · · ⊗ µ̂ik−1
⊗ ξ̂ik ⊗ µ̂ik+1

⊗ · · · ⊗ µ̂im+1

so that µij ∈ k∗ and ξij ∈ p∗ and p′ has no summands of this form, meaning that

each summand in p′ contains at least 2 factors ξ̂, for ξ ∈ p∗, so π̃B ◦hrel(p′) = 0. □
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Corollary 4.11. For all p̃ ∈ T̃m+1(g,K) we have that

t̃(∧p∗)K (p̃) = −4m Resgp ◦̃t∧g∗(p̃), t̃Cl(p)K (p̃) = −4mq ◦ Resgp ◦q−1 ◦ t̃Cl(g)(p̃).

Proof. For A =
∧
g or A = Cl(g) and p ∈ T̃m+1(g,K) ⊆ T̃m+1(g), using Proposi-

tion 3.33, we have

Resgp ◦̃tA(p̃) =
(m!)2

(2m+ 1)!
Resgp ◦ΦA ◦ g(p̃)

(Since Resgp ◦π̃A = π̃A ◦ Resgp)

=
(m!)2

(2m+ 1)!
π̃A ◦ Resgp ◦Φ ◦ g(p̃)

(Using that Φhor
A = π̃A ◦ Φp = π̃A ◦ Resgp ◦Φ.)

=
(m!)2

(2m+ 1)!
Φhor

A ◦ g(p̃)

(Using Proposition 4.10.)

= − 1

4m
t̃B(p̃)

Which proves the claim. □

Proposition 4.12. Let A =
∧
g∗ or A = Cl(g), so B = (

∧
p∗)

K
, respectively

B = Cl(p)K . For x ∈ p and p ∈ T̃m+1(g,K) we have

ιxt̃B(p) = −4m(m!)2

(2m)!
Φhor

A (ιx̂p)

Proof. By Theorem 3.26, for p ∈ T̃m+1(g,K) and x ∈ p we have

ιxt̃A(p) =
(m!)2

(2m)!
ΦA(ιx̂p).

Now, using Corollary 4.11 and noting that the maps ιx, x ∈ p commute with Resgp
on A, we have

ιxt̃B(p) = ιx
(
−4m Resgp ◦̃tA(p)

)
= −4m Resgp ◦ιx ◦ t̃A(p)

= −4m Resgp

(
(m!)2

(2m)!
ΦA(ιx̂p)

)
= −4m(m!)2

(2m)!
Φhor

A (ιx̂p).

Which proves the claim. □

4.3. Transgression in the commutative relative Weil algebra. Define the
relative commutative Weil algebra

W (g,K) =W (g)K−bas = (S(g∗)⊗
∧
p∗)

K
.

The relative transgression space in W (g,K) is

T(g,K) =
{
p ∈W+,0(g,K) | ∃Cp ∈ W̃ (g,K) : p = dW Cp

}
.

For p ∈ T(g,K) an element Cp as above is called a relative cochain of transgression
for p.
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Let A be a commutative g-differential algebra with a flat connection and set
B = AK−bas (below we will specialise to the case A =

∧
g∗). Then the relative

transgression map tB : T(g,K) → B for commutative Weil algebra (also considered
in [Gri]) is defined as follows.

Definition 4.13. For p ∈ T(g,K) let C ∈W (g,K) be a relative cochain of trans-
gression for = p. The linear map tB : T(g,K) → B defined by tB(p) = πB(C) is
called the relative transgression map in W (g,K) with values in B.

Similar arguments to the proof of Lemma 4.9 show that the relative transgression
map tB inW (g,K) does not depend on the choice of relative cochain of transgression
and, hence, is well-defined.

Lemma 4.14. For p ∈ T (g,K) we have that

t(∧p∗)K (p) = −4m Resgp t∧g∗(p)

Proof. Let Cp ∈W (g) be a cochain of transgression for p, then symW (Cp) ∈ W̃ (g)
is a cochain of transgression for symW (p).

t∧g∗(p) = t̃∧g∗(sym(p)).

In a similar manner, one can show that

t(∧p∗)K (p) = t̃(∧p∗)K (sym(p)).

The claim of the Lemma now follows from Corollary 4.11. □

4.4. Transgression in the relative quantum Weil algebra. Define the relative
quantum Weil algebra by

W(g,K) = W(g)K−bas = (U(g)⊗ Cl(p))K .

From [Mei, §7.4] we have that H(W (g,K)) ≃ S(k)K and H(W(g,K)) ≃ S(k)K .
The relative transgression space in W(g,K) by

T(g,K) =
{
p ∈ W+,0(g,K) | ∃Cp ∈ W̃ (g,K) : p = dW Cp

}
.

For p ∈ T(g,K) an element Cp as above is called a relative cochain of transgression

for p.
Note that since qW : W (g) → W(g) is a morphism of g-differential spaces, it can

be restricted to K-basic subalgebras. The restriction qW : W (g,K) → W(g,K) is
a morphism of differential spaces. Therefore, we have that

T(g,K) = qW (T(g,K)). (4.15)

Definition 4.16. For p ∈ T(g,K) let C ∈ W(g,K) be a corresponding relative
cochain of transgression such that dW C = p. The linear map tCl(p)K (p) : T(g,K) →
Cl(p)K defined by tCl(p)K (p) = πCl(p)K (Cp) is called the relative transgression map

in W(g,K).

The relative transgression map in W(g,K) is well-defined by similar arguments
as in Subsection 3.4.

Denote the algebra morphism Φhor
Cl(g) : W̃ (g) → Cl(p) which is defined in (4.6)

by ΦCl(p).

Lemma 4.17. We have ΦCl(p)

(
W̃ •,0(k)

)
= αp(U(k)).
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Proof. By abuse of notation let c be the characteristic homomorphism W̃ (k) →
W(k). Since both ΦCl(p) and αp are linear and the map c is surjective, it suffices

to show that ΦCl(p)(µ̂) and αp(c(µ̂)) are equal for µ ∈ k∗. Take a generator f̂i
for fi ∈ k∗, we have

ΦCl(p)(f̂i) = π̃Cl(p)(δp(fi)) = π̃Cl(p)

−1

2

(p)∑
a,b

cia,b fa ⊗ fb

 = −1

2

(p)∑
a,b

cia,b fa fb,

where we used the formula (4.1) for δp. From (3.54) we get that

αp(c(f̂i)) = αp(2f̂i) = −1

2

(p)∑
a,b

cib,a fb fa = ΦCl(p)(f̂i).

This proves the claim. □

Lemma 4.18. For any p ∈ Tm+1(g,K), q ◦ t(∧p)K (p) = tCl(p)K (qW (p)).

Proof. Let Cp ∈ W (g,K) be a relative cochain of transgression for p. Then
by (4.15), qW (Cp) ∈ W(g,K) is a relative cochain of transgression for qW (p). Since
the restriction of qW to

∧
p is q we have that

q ◦ π(∧p)K (Cp) = πCl(p)K (qW (Cp)).

Which proves the claim. □

Lemma 4.19. For p ∈ Tm+1(g,K),

t̃Cl(p)K (sym
W̃
(p)) = tCl(p)K (c(sym

W̃
(p))).

Proof. First note that it is easy to check that π̂Cl(g) = πCl(g) ◦ c. Hence π̂Cl(p)K =

πCl(p)K ◦ c. Let C̃p be a relative cochain of transgression for sym
W̃
(p), then c(C̃p)

is a relative cochain of transgression for c(sym
W̃
(p)). We have

t̃Cl(p)K (sym
W̃
(p)) = π̃Cl(p)K (C̃p) = πCl(p)K (c(C̃p)) = tCl(p)K (c(sym

W̃
(p))),

which proves the claim. □

Theorem 4.20. For any x ∈ p and p ∈ T(g,K), ιxtCl(p)K (p) ∈ imαp.

Proof. Using the same argument as in Theorem 3.57 we can conclude im tCl(p)K =

im t̃Cl(p)K from Lemma 4.19. From Proposition 4.12 we see that ιx(im t̃Cl(p)K ) ⊂
ΦCl(p)

(
W̃ •,0(k)

)
, so ιx(im tCl(p)) ⊂ ΦCl(p)

(
W̃ •,0(k)

)
, which is equal to imαp by

Lemma 4.17. □

This theorem also shows that the image of the transgression map tCl(p)K consists

of primitive elements in the sense of [Ras, §5]. This fact motivates our definition of
the primitive invariants in Cl(p), see Section 5.
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5. Primitive invariants and relative transgression theorem for
primary and almost primary types

In this section we define the space of primitive K-invariants in
∧
p∗ and prove

the relative analogue of the celebrated Transgression Theorem 3.6.
We specify (g, k,K) to be in the following list:

(a) (sl(2n+ 1), o(2n+ 1), SO(2n+ 1)),
(b) (sl(2n), o(2n), O(2n)),
(c) (sl(2n), sp(2n), Sp(2n)),
(d) (e(6), f(4), F (4)).

(5.1)

Lemma 5.2. For (g, k,K) as in the list (5.1) we have that

prk : S(g
∗)g → S(k∗)K

is surjective and admits a splitting map

s : S(k∗)K → S(g∗)g

which is an algebra map.

Proof. We first tackle items (a),(c),(d) on our list (5.1), noting that in these settings
K is connected and S(k∗)K = S(k∗)k. We have the following commutative diagram
of Harish-Chandra isomorphisms

S(g∗)g S(k∗)k

S(h∗)Wg S(k∗)Wk .

S(P (Wg)) S(P (Wk))

prk

hc hc

Resht

∼= ∼=
Resht

where P (Wg) and P (Wk) are primitive invariant polynomials in h∗ and t∗ respec-
tively. In (a) (resp. (c)), let h be traceless diagonal (2n + 1) × (2n + 1) (resp
2n × 2n) matrices, and let xi : h → C be the functional that picks out the ith
entry. The space P (Wg) can be taken to be the span of the degree 2 to 2n+ 1 (or
2n) power sum symmetric polynomials in xi. Let t be diagonal matrices which are
antisymmetric under reflection along the antidiagonal, let {yi ∈ t∗ : i ∈ 1, · · · , n}
pick out the ith entry. Then P (Wk) could be the span of the first n power sum

polynomials in y2i . For i = 1, · · · , n, Resht (xi) = yi and Resht (xn+i) = −yi, hence
the restriction to t of an odd power sum polynomial in xi is zero and the restriction
of an even power sum polynomial is twice the power sum polynomial in {y2i }. Thus
Resht is surjective and we construct a splitting by lifting the degree j power sum
polynomial in y2i to degree 2j power sum polynomial in xi for j = 1, . . . , n.

For (d) one could check by computer or appeal to [Oni, Theorem 1 on p. 216]
which states that when (g, k) is primary then prk : S(g∗)g → S(k∗)k is surjective
and a splitting can be constructed using any preimage of the generators for S(h∗)k,
this will be an algebra morphism since S(h∗)k is a free commutative algebra.

When the triple (g, k,K) is in the category (b) then P (Wg) can again be taken
to be the first 2n power sum polynomials in xi, and again t are diagonal matrices
which are antisymmetric under reflection along the antidiagonal. Note that P (Wk)
can be the first n−1 power sum polynomials in y2i and the Pfaffian

∏n
i=1 yi. In this
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case prk does not surject onto S(h
∗)k. However, the Pfaffian is not K invariant; the

algebra S(k∗)K is congruent under the Harish-Chandra isomorphism to S(t∗)WK ,
withWK

∼=WBn (see [CNP, §3.8]). This algebra is equal to the polynomial algebra
(of rank dim t) generated by the first n power sum polynomials in y2i . Using the

reasoning for (c), this is clearly the image of Resht : S(h∗)Wg → S(t∗)Wk . Again
a splitting lifts the degree j symmetric power sum polynomials in y2i to degree 2j
symmetric power sum polynomials in xi. □

Lemma 5.3. Consider (g, k,K) as in the list (5.1), then the sequence

0 T(g,K) S+(g∗)g S+(k∗)K 0
prk

is exact and split.

Proof. Note that for any x ∈ g and p ∈ T(g,K), since dW p = 0 and p ∈ S+(g∗)K

we have

Lxp = dW ◦ιx(p) + ιx ◦ dW (p) = 0.

Hence, p ∈W+,0(g)g. Thus T(g,K) ⊆ T(g) = S+(g∗)g.
By abuse of notation, let j : W (k) → W (g) denote the characteristic homo-

morphism and prk : W (g) → W (k) is defined by the same formulas on generators
ofW (g) as in Lemma 4.2. Similarly to §4.1, we can show that there is aK-homotopy
operator hrel : W (g) →W (g) such that

hrel ◦ dW +dW ◦hrel = id−j ◦ prk . (5.4)

Suppose that p ∈ T(g,K), therefore, [p] ∈ H(g,K) is zero. Since prk in-
duces an isomorphism in cohomology, [prk(p)] ∈ H(S(k∗)K) is zero too. The dif-
ferential on S(k∗)K is zero, thus, [prk(p)] = prk(p) = 0. Therefore, T(g,K) ⊆
ker prk ∩S+(g∗)g.

Assume that p ∈ S+(g∗)g ∩ ker prk. Applying (5.4) to p,

dW ◦hrel(p) = p.

Since hrel is a K-homotopy operator, by passing to K-basic subspaces we get a ho-
motopy equivalence between j : S(k∗)K → W (g,K) and prk : W (g,K) → S(k∗)K

given by hrel : W (g,K) → W (g,K). Therefore, hrel(p) ∈ W (g,K) and hence it is
a relative cochain of transgression for p. So ker prk ∩S+(g∗)g ⊆ T(g,K).

It was shown in Lemma 5.2 that the map prk : S
+(g∗)g → S+(k∗)K is surjective

and admits a splitting map. □

Definition 5.5. The Z-graded subspace P∧(p) := Resgp P∧(g) ⊂ (
∧
p∗)k is called

the space of primitive invariants in
∧
p∗.

From the explicit form of primitives P∧(p) for (sl(2n), so(2n)) given in [Dol2], it is
easy to see that the primitives are in fact not only k-invariant but also K-invariant.
(They are given as traces, hence are invariant under conjugation by K.)

It follows from [HS, Theorem 12], see also the discussion in [Dol1, §4.2] and [Dol2],
that for triples (g, k,K) from the list (5.1) we have

dimP∧(p) = rank g− rank k = dim a. (5.6)

We claim that the space T(g,K) admits a structure of a S(g∗)g-module induced
by the multiplication in the symmetric algebra S(g∗). Namely, let p ∈ T(g,K) and
x ∈ S(g∗)g. Let Cp ∈ W (g,K) be a relative cochain of transgression for p. Then
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dW (xCp) = xp. Since xCp ∈ W (g,K), xCp is a relative cochain of transgression
for xp. Clearly, if x ∈ S+(g∗)g we have that

tB(xp) = πA(xCp) = πA(x)πA(Cp) = 0 (5.7)

since πA(x) vanishes by Lemma 3.19a. It also follows that T(g,K) is an ideal
in S+(g∗)g.

The following theorem is an extended version of [Gri, Theorem 4.3.11].

Theorem 5.8 (Relative transgression theorem). Let (g, k,K) be as in the list (5.1),
then the transgression map t(∧p∗)K satisfies

ker t(∧p∗)K = S+(g∗)g · T(g,K), im t(∧p∗)K = P∧(p).

In particular, the map

t(∧p∗)K : T(g,K)⧸S+(g∗)g · T(g,K) → P∧(p). (5.9)

is an isomorphism of linear spaces.

Proof. By (5.7), S+(g)g · T(g,K) ⊆ ker t(∧p∗)K .
By Lemma 5.3 the short exact sequence

0 T(g,K) S+(g∗)g S+(k∗)K 0
prk (5.10)

is split. Let s : S+(k∗)K → S+(g∗)g be the splitting map constructed in Lemma 5.2.
We have

S+(g∗)g = T(g,K)⊕ s(S+(k∗)K) ∼= T(g,K)⊕ S+(k∗)K . (5.11)

In particular, noting that T(g,K) ·S+(g∗)g is an ideal in T(g,K) and that T(g,K)
is an ideal in S+(g∗)g, we have that(

S+(g∗)g
)2 ∼= T(g,K) · S+(g∗)g ⊕

(
S+(k∗)K

)2
. (5.12)

Since (by Chevalley’s famous result) S(g∗)g ∼= S(h∗)Wg is a polynomial algebra
of rank dim h and S(k∗)K ∼= S(t∗)WK is a polynomial algebra of rank dim t, it
follows that

dimS+(g)g⧸(
S+(g)g

)2 = dim h and dimS+(k)K⧸(
S+(k)K

)2 = dim t.

Therefore, using (5.11) and (5.12), we see that

dimT(g,K)⧸S+(g)g · T(g,K) = dim h− dim t = dim a.

Let P (Wg) and P (WK) be as in the proof of Lemma 5.2. Set

PS(g) = hc−1(P (Wg)) ∼= S+(g)g⧸(
S+(g)g

)2,
PS(K) = hc−1(P (WK)) ∼= S+(k)K⧸(

S+(k)K
)2.

It follows from Lemma 5.2 that the image of PS(g) under prk is PS(K) and the
splitting map s sends PS(K) to PS(g).

Furthermore, let

PS(g, k) := PS(g) ∩ T(g,K).

Using the split exact sequence (5.10), we get

PS(g) = PS(p)⊕ s(PS(K)) ∼= PS(p)⊕ PS(K)
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From the discussion above we get

PS(g, k) ∼= T(g,K)⧸S+(g)g · T(g,K).

So the following diagram is a split exact sequence.

0 PS(g, k) PS(g) PS(K) 0
prk

s

(5.13)

Recall that the involution θ fixes k and acts by −1 on p. It is easy to check that
the transgression map t∧g∗ commutes with θ.

We claim that PS(g) is stable under θ. Since we can choose a θ-stable triangular
decomposition g = n+ ⊕ h⊕ n−, the Harish–Chandra isomorphism can be assumed
to be θ-equivariant. So it is enough to show that the space P (Wg) of Lemma 5.2 is
θ-stable.

For (g, k) = (sl(n), so(n)) the action of θ on the space of diagonal matrices h ⊂ g
is given by minus the transpose with respect to the antidiagonal. (Here we are
taking the realisation of k = o(n) to be matrices that are skew-symmetric with
respect to the antidiagonal.) Hence the even power sums are fixed by θ while the
odd power sums are in the (−1)-eigenspace of θ. The claim follows.

For (g, k) = (sl(2n), sp(2n)), the involution θ is X 7→ −JXtJ−1 = JXtJ , where
J is the antidiagonal matrix having first n components equal to 1 and last n com-
ponents equal to -1. As in the (sl(n), so(n)) case, the action of θ on the diagonal
matrices comprising h is given by minus the transpose with respect to the antidi-
agonal. Hence the same proof works also in this case.

Assume now that (g, k) = (e(6), f(4)). Let µ1, . . . , µl ∈ h∗ be the weights of
one of 27-dimensional irreducible e(6)-modules, then by [Oni, §11 Theorem 3] the
polynomials

pk =

l∑
j=1

µmk+1
j , k = 1, . . . , 6,

where mi are exponents of e(6), form a basis of P (Wg). The involution θ which
fixes f(4) in e(6) is induced by the outer automorphism. Therefore, θ(µj) = −µj .
Hence we get that

θ(pk) =

{
pk if mk is odd,

−pk if mk is even.

Which proves that PS(g) is θ-stable.
Set

P∧(g)
±θ = {p ∈ P∧(g) | θ(p) = ±p} , PS(g)

±θ = {p ∈ PS(g) | θ(p) = ±p} ,
We now consider the following diagram with the first row equal to (5.13).

0 PS(g, k) PS(g) = PS(g)
θ ⊕ PS(g)

−θ PS(K) 0

P∧(p) P∧(g) = P∧(g)
θ ⊕ P∧(g)

−θ

t(∧p∗)K

prk

t∧g∗

Resgp

Clearly, θ acts by −1 on
∧odd

p∗. Since P∧(g) is odd, P∧(p) is odd too. Thus
θ acts by −1 on P∧(p), hence Resgp t∧g∗(PS(g)

θ) = 0 and Resgp t∧g∗(PS(g)
−θ) =

P∧(p). Therefore, dimPS(g)
−θ ≥ dimP∧(p) = dim a. Because S(k) is θ-invariant,
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PS(g)
−θ ⊂ ker prk = PS(g, k). Since we have seen that dimPS(g, k) = dim a, it

follows that PS(p) = PS(g)
−θ. Therefore,

Resgp ◦t∧g∗(PS(g)) = Resgp ◦t∧g∗(PS(g)
−θ)

Since the left hand square commutes (up to multiplication by a non-zero scalar) by
Lemma 4.14, we have t(∧p∗)K (PS(g, k)) = P∧(p), hence (5.9) is an isomorphism. □

6. Harish–Chandra projections

In this section we construct relative analogues of the Harish–Chandra map
Cl(g)g → Cl(h). They are attached to elements of W 1 and denoted by hcw. We
show that for each w ∈ W 1, hcw : Cl(p)k → Cl(a) is a surjective algebra homo-
morphim. We stress that in general it is not a filtered algebra homomorphism.
However, in Section 7 we introduce a filtration on a which makes hcw compatible
with filtrations.

Fix a triangular decomposition of g

g = n+ ⊕ h⊕ n−.

By the Poincaré-Birkhoff-Witt Theorem, this decomposition of g induces a decom-
position of Cl(g)

Cl(g) = Cl(h)⊕
(
n− Cl(g) + Cl(g)n+

)
,

which in turn defines a projection hcg : Cl(g) → Cl(h). By results of Kostant and
Bazlov [Baz1, Theorem 4.1], see also [Mei, Theorem 11.8], the restriction of hcg
to Cl(g)g is an algebra isomorphism

hcg : Cl(g)g → Cl(h).

As it was shown in [AM4] the Harish-Chandra projection becomes a filtered algebra
isomorphism when h is given a special filtration, described in §8.

Assume now that t = h ∩ k is a Cartan subalgebra of k and fix a choice ∆+(k, t)
of positive t-roots in k and a choice of ∆+(g, t) ⊃ ∆+(k, t). This determines the
subset W 1 of the Weyl group Wg (see the introduction).

Each w ∈W 1 fixes a choice ∆+
w(g, t) of positive t-roots in g containing ∆+(k, t).

Consider the corresponding triangular decomposition

g = n+w ⊕ h⊕ n−w .

Set

p+w := p ∩ n+w , p−w := p ∩ n−w , a := p ∩ h,

so that

p = p+w ⊕ a⊕ p−w .

Note that p+w and p−w are isotropic and in duality under B.
By the Poincaré-Birkhoff-Witt Theorem, there is a basis of Cl(p) consisting of

monomials

f i11 . . . f ipp h
j1
1 . . . hjaa e

k1
1 . . . ekp

p , (6.1)

with f1, . . . , fp a basis of p−w , h1, . . . , ha a basis of a, e1, . . . , ep a basis of p+, and
the exponents ir, js, kt all equal to 0 or 1. This induces a decomposition

Cl(p) = Cl(a)⊕
(
p−w Cl(p) + Cl(p)p+w

)
and consequently a Harish-Chandra projection hcw : Cl(p) → Cl(a).
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Lemma 6.2. The restriction of the linear map hcw to the t-invariants C(p)t is
an algebra homomorphism. Consequently, hcw : Cl(p)k → Cl(a) is also an algebra
homomorphism.

Proof. If x ∈ Cl(p)t, then x can be written as sum of monomials (6.1) of t-weight
0. For the weight to be 0, each such monomial contains a factor in p+w if and only
if it contains a factor in p−w . It follows that

Cl(p)t ∩
(
p−w Cl(p) + Cl(p)p+w

)
= Cl(p)t ∩

(
p−w Cl(p)

)
= Cl(p)t ∩

(
Cl(p)p+w

)
,

and this is clearly an ideal in Cl(p)t. Consequently, the projection hcw : Cl(p)t →
Cl(a) is an algebra homomorphism. □

Lemma 6.3. The Harish-Chandra projection hcw : Cl(p) → Cl(a) maps αp(U(k))
to C.

Proof. In writing the basis (6.1), we may assume that fi and ej are dual bases
(with respect to B) of p−w respectively p+w , such that each ei is a root vector for the
(g, t)-root βi, while fi is a root vector for the (g, t)-root −βi. We can also assume
that the hi form an orthonormal basis for a.

Denote by ρg, respectively ρk, the half sum of roots in ∆+(g, t), respectively
∆+(k, t). The half sum of roots in ∆+

w(g, t) is then wρg. We claim that

hcw(α(H)) = (wρg − ρk)(H), H ∈ t. (6.4)

To see this, we compute

α(H) =
1

4

( p∑
i=1

[H, ei]fi +

a∑
i=1

[H,hi]hi +

p∑
i=1

[H, fi]ei

)
(since H ∈ t we have [H,hi] = 0)

=
1

4

p∑
i=1

βi(H)eifi −
1

4

p∑
i=1

βi(H)fiei

=
1

4

p∑
i=1

βi(H)(eifi − fiei) =
1

4

p∑
i=1

βi(H)(2− 2fiei)

= (wρg − ρk)(H)− 1

2

p∑
i=1

βi(H)fiei.

The last sum vanishes under the map hcw by its definition and (wρg−ρk)(H) stays
unchanged by the same map because it is a constant. This proves (6.4).

Next, we claim that hcw ◦α annihilates elements of n+w ∩ k. By the definition of
hcw it is enough to show that for any root vector x ∈ n+w ∩ k, α(x) ∈ Cl(p)p+w . The
summands in the expression for α(x) are of the form

[x, ei]fi or [x, hi]hi or [x, fi]ei.

Of these summands, [x, fi]ei is clearly in Cl(p)p+w . Furthermore, [x, hi]hi is in
Cl(p)p+w , since [x, hi] is a positive root vector in p, hence in p+w , and it anticom-
mutes with hi. Finally, [x, ei] is a positive root vector in p, so it is in p+w , and it
anticommutes with fi, hence [x, ei]fi is also in Cl(p)p+w .

One shows similarly that if y ∈ n−w ∩ k, then α(y) ∈ p−w Cl(p) (so hcw(α(y)) = 0).
Let now M be a monomial in U(k) of the form

M = F1 · · ·FmH1 · · ·HkE1 · · ·En,
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where F1, . . . , Fm ∈ n−w ∩ k, H1, . . . ,Hk ∈ t, E1, . . . En ∈ n+w ∩ k. By the Poincaré-
Birkhoff-Witt Theorem, such monomials span U(k). We claim that hcw(α(M)) is
a constant; this will finish the proof.

If n > 0, then we can write M = M ′En, so α(M) = α(M ′)α(En) ∈ Cl(p)p+w , so
hcw(α(M)) = 0. Similarly, if m > 0, then M = F1M

′′, so α(M) ∈ p−w Cl(p) and
again hcw(α(M)) = 0.

Finally, if M = H1 · · ·Hk, then α(M) = α(H1) . . . α(Hk) is t-invariant, so by
Lemma 6.2 and by (6.4),

hcw(α(M)) = hcw(α(H1)) . . . hcw(α(Hk)) = (wρg−ρk)(H1) . . . (wρg−ρk)(Hk) ∈ C.
□

Let ei and fi be dual bases for p+w , p
−
w as before, let p = dim p+w . Define

Pw =
1

2p
e1 · · · epfp · · · f1 ∈ Cl(p).

It is easy to verify that Pw is a projection, i.e., P 2
w = Pw; as we shall see, Pw is

closely related to the Harish-Chandra map hcw.

Lemma 6.5. Let a+ be a fixed maximal isotropic subspace of a with respect to B. If
p is odd dimensional let Z1, Z2 = 1

2 (1±Ztop) be idempotents in the centre of Cl(p)
and Z1, Z2 be idempotents in the centre of Cl(a). We construct p+ to be p+w ⊕ a+

and model S (resp. S1, S2 =
∧
p+Z1,

∧
p+Z2) by

∧
(p+). Then the projection Pw

when considered in End(S) (resp End(S1)⊕ End(S2)) is the projection of S (resp.
S1, S2) to the subspace

etop ∧
∧
a+ = e1 ∧ · · · ∧ ep ∧

∧
a+ (resp. etop ∧

∧
a+Z1, etop ∧

∧
a+Z2)

along the span of monomials not containing e1 ∧ · · · ∧ ep.

Proof. It is clear that Pw fixes every monomial in etop ∧
∧
a+, and kills every other

monomial in
∧
p+. The claim follows. □

Define the linear map pw : Cl(p) → Cl(p) by pw(x) = PwxPw. Since Pw com-
mutes with Cl(a), pw|Cl(a) is a nonzero Z2-algebra morphism. The only Z2-ideals in
Cl(a) are Cl(a) and {0}, thus pw|Cl(a) is injective, and its image is clearly the sub-
algebra Pw Cl(a)Pw ⊆ Cl(p). Let ϕw : Pw Cl(a)Pw → Cl(a) be the inverse algebra
isomorphism

ϕw(PwaPw) = a, a ∈ Cl(a).

Lemma 6.6. The Harish-Chandra projection hcw is equal to ϕw ◦ pw.

Proof. Since p+wPw = 0 and Pwp
−
w = 0, the kernel of hcw is contained in the

kernel of pw. The image of pw is Pw Cl(a)Pw, which has dimension 2dim(a), just as
Cl(a) = imhcw. It follows that ker pw = ker hcw. On the other hand, ϕw ◦ pw and
hcw are both equal to the identity on Cl(a), so they must be the same. □

Clearly, we can think of pw as the projection of End(S) to End(etop ∧
∧
a+) ∼=

End(
∧
a+) (resp. pw : End(S1) ⊕ End(S2) → End(etop ∧

∧
a+Z1) ⊕ End(etop ∧∧

a+Z2)).

Proposition 6.7. For each w ∈W 1 the corresponding Harish–Chandra projection
hcw restricts to a surjective algebra homomorphism

hcw : Cl(p)k → Cl(a).
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Proof. We already know (Lemma 6.2) that hcw is an algebra homomorphism on
Cl(p)k, so it remains to prove surjectivity. Since ϕw is an isomorphism, it is enough
to show that pw is surjective.

Assume first that Cl(p) = End(S) (i.e., dim p is even). We want to show that
any endomorphism of V = etop ∧

∧
a+ extends to a k-morphism of S, i.e., to an

element of Cl(p)k. Let v1, . . . , vm be a basis of V , i.e., a basis of the space of highest
weight vectors for the k-isotypic component of S corresponding to w. Let ψij be the
linear map on V sending vi to vj and vk, k ̸= i, to 0; it is enough to lift such maps
since they span End(V ). The highest weight vectors vi and vj generate isomorphic
copies of the k-module Ewρg−ρk

with highest weight wρg−ρk, and there is a unique
k-isomorphism of these two copies of Ewρg−ρk

sending vi to vj . Now we extend this
isomorphism by 0 to the copies of Ewρg−ρk

generated by vk, k ̸= i, and to the other
k-isotypic copies of S. In this way we get a k-endomorphism of S which is sent to
ψij by pw.

The argument for dim p odd is similar. Using the same reasoning as above,

Pw Cl(a)Pw = End(etop ∧
∧
a+Z1)⊕ End(etop ∧

∧
a+Z2).

Now let V1 = etop
∧
a+Z1 and V2 = etop ∧

∧
a+Z2. In an identical way to the even

dimension case, given a linear map ψij of either V1 or V2 we can lift this map to a
k-module endomorphism of the Spin module S1 =

∧
p+Z1 and S2 =

∧
p+ ∧Z2. □

Remark 6.8. By Lemma 6.3, the Harish-Chandra homomorphism hcw sends Pr(S) =
α(Z(k)), see Definition 2.11, to constants. It is easy to see that in terms of projec-
tions, hcw sends prw to 1, and other prσ to 0.

Indeed, since all elements of etop ∧
∧
a+ are of weight wρg − ρk, this space is

contained in the k-isotypic component of S corresponding to w. Thus prw is the
identity on this space, so pw(prw) = Pw and therefore hcw(prw) = ϕw(Pw) = 1. On
the other hand, for σ ̸= w, prσ kills the space etop ∧

∧
a+, so pw(prσ) = 0 and thus

also hcw(prσ) = 0.

7. Clifford algebra analogue of Cartan’s theorem for primary and
almost primary cases

In this section we prove an analogue of Cartan’s theorem for Cl(p)K for primary
and almost primary cases. Let (g, k,K) be a triple from the list (5.1).

Lemma 7.1. Assume that (g, k,K) = (sl(2n), o(2n), O(2n)). In this case |W 1| = 2.
Let hc1 and hc2 be the corresponding Harish–Chandra homomorphisms and pr1, pr2
be the corresponding projections. Then the restrictions of hc1 and hc2 to Cl(p)K

coincide and define an isomorphism hc: Cl(p)K → Cl(a).

Proof. Let k = diag(1, . . . , 1,−1), so k is a representative of the disconnected com-

ponent of K. Let k̃ be a lift of k in the pin double cover K̃ of K. The two k-types
in S differ only by the sign of the last coordinate of the highest weight. The ac-
tion of k̃ switches these two highest weights because the action of k on h changes
the sign of the last coordinate. This implies that Adk pr1 = pr2 and therefore
hc1 = hc2 ◦Adk. Thus for ω ∈ Cl(p)K , hc1(ω) = hc2(ω) since Adk ω = ω.

Suppose that hc(ω) = 0. Note that ω = ω pr1 +ω pr2, hc1(ω pr2) = 0 and
hc2(ω pr1) = 0, so it follows that hci(ω pri) = 0. Since hci is injective on Cl(p)k pri,
it follows that ω pri = 0. So ω = ω pr1 +ω pr2 = 0. This proves injectivity
of hci : Cl(p)K → Cl(a) and surjectivity follows by dimension counting. □
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Proposition 7.2. For any w ∈W 1 the restriction of hcw to Cl(p)K is an algebra
isomorphism. Moreover, the restrictions of all hcw to Cl(p)K coincide.

Proof. For the primary cases we have that |W 1| = 1 and dimCl(a) = dimCl(p)K =
2dim a, so the claim follows from Proposition 6.7 which states hcw is surjective. The
claim for the remaining almost primary cases (sl(2n), o(2n), O(2n)) follows from
the Lemma above. □

Definition 7.3. The space of primitive invariants PCl(p) in Cl(p)K is defined as
q(P∧(p)), where P∧(p) is as in Definition 5.5.

It follows from the relative transgression Theorem 5.8 and Lemma 4.18 that
PCl(p) = im tCl(p)K .

Theorem 7.4. For each w ∈ W 1 the Harish Chandra projection hcw : Cl(p) →
Cl(a), takes primitives ϕ ∈ PCl(p) to linear elements of Cl(a), i.e., to q(

∧1
a).

Moreover, hcw(PCl(p)) = a.

Proof. Lemma 6.3 shows that hcw : imαp → C. Theorem 4.20 states that we have
ιxϕ ∈ imαp for all x ∈ p, hence hcw ιxϕ ∈ C. The linear map hcw commutes with
contractions by elements from a hence

ιx hcw(ϕ) = hcw(ιxϕ) ∈ C ∀x ∈ a.

Since ϕ is odd, this implies that hcw(ϕ) is linear.
The fact that hcw(PCl(p)) = a follows from two facts:
1) dimPCl(p) = dim a by (5.6),
2) hcw : Cl(p)K → Cl(a) is an algebra isomorphism by Proposition 7.2. □

Corollary 7.5. For any two elements ϕ, ψ ∈ PCl(p), the commutator [ϕ, ψ] is in C.

Proof. Theorem 7.4 shows that for every w ∈ W 1 the Harish Chandra map hcw
takes elements of PCl(p) to linear terms. For any a1, a2 ∈ a ⊂ Cl(a), [a1, a2] ∈ C,
hence the primitives P∧(p) have the same property in Cl(p)K , since the Harish
Chandra map is an isomorphism of algebras hcw : Cl(p)K → Cl(a). □

7.1. The form on primitives in Cl(p)K . ForX ∈ Cl(p), letXL be the operator of
left-multiplication by X, and XR the operator of (Z2-graded) right-multiplication:

XL(Y ) = XY, XR(Y ) = (−1)p(X)p(Y )Y X.

for parity homogeneous elements X,Y ∈ Cl(p), and XL −XR = [X,−]Cl. If x ∈ p,
we have

xL = q ◦ (εx + ιx) ◦ q−1, xR = q ◦ (εx − ιx) ◦ q−1,

where εx is the operator of left-multiplication by x in
∧
p.

Lemma 7.6. Let X ∈
∧m

p, Y ∈
∧n

p, then

q−1([q(X), q(Y )]) ∈
m+n⊕

k=|m−n|

∧k
p.

Moreover, if m ≥ n then q−1([q(X), q(Y )])[m−n] = (1− (−1)m)ιXY .
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Proof. Recall that [q(X), q(Y )] = (q(X)L − q(X)R)q(Y ).
Assume that X = x1 ∧ . . . ∧ xm, where x1, . . . , xm ∈ p. Then

q(X)L(q(Y )) = q ◦ (εx1 + ιx1) ◦ . . . ◦ (εxm + ιxm)(Y )

When expanding out the brackets (ϵxi + ιxi) we find that the resulting operator
q(X)L is a summand of monomials with k multiplication operators and m − k
contraction operators, for k ∈ {0, · · · ,m}. Since deg εxi

= 1 and deg ιxi
= −1,

then q(X)L(q(Y )) ∈
⊕m+n

k=n−m

∧k
p, a similar argument shows that q(X)R(q(Y )) ∈⊕m+n

k=n−m

∧k
p, thus

q−1([q(X), q(Y )]) ∈
m+n⊕

k=n−m

∧k
(p).

On the other hand, we have that

[q(X), q(Y )] = (−1)mn[q(Y ), q(X)] = (−1)mn(q(Y )L − q(Y )R)q(X).

Thus by an identical argument considering operators q(X)L and q(X)R we find

q−1([q(X), q(Y )]) ∈
m+n⊕

k=m−n

∧k
(p).

Thus q−1([q(X), q(Y )]) is concentrated between degrees |n−m| and n+m. When
m ≥ n, the m− nth degree term of [q(X), q(Y )] is equal to

q(X)L(q(Y ))[n−m] − q(X)R(q(Y ))[n−m] = ιX(Y )− (−1)mιX(Y ).

Thus [q(X), q(Y )][n−m] = (1− (−1)m)q(ιX(Y )). □

Lemma 7.7. Suppose two odd homogeneous elements X,Y ∈
∧
p are such that

[q(X), q(Y )] ∈ C. Then [q(X), q(Y )] = 2(ιXY )[0].

Proof. Suppose that X ∈
∧m

p, Y ∈
∧n

p and n ̸= m. Then (ιXY )[0] = 0. On the
other hand, by Lemma 7.6,

q−1([q(X), q(Y )]) ∈
m+n⊕

k=|m−n|

∧k
p.

In particular, since |m− n| > 0 we have that q−1([q(X), q(Y )])[0] = 0. By assump-

tion we get that [q(X), q(Y )] = q−1([q(X), q(Y )])[0] = 0 = 2(ιXY )[0].

Now suppose that X,Y ∈
∧m

p have the same degree, then

q−1(q(X)Lq(Y ))[0] = ιXY, q−1(q(X)Rq(Y ))[0] = (−1)mιXY.

Hence we get that

q−1([q(X), q(Y )])[0] = q−1(q(X)Lq(Y ))[0] − q−1(q(X)Rq(Y ))[0]

= ιXY − (−1)mιXY = (1− (−1)m)ιXY = (1− (−1)m)(ιXY )[0].

Since m was assumed to be odd, we conclude that [q(X), q(Y )] = 2(ιXY )[0]. □

Recall that B̃ : Cl(p) × Cl(p) → C is the form defined on elements a, b ∈ Cl(p)
by

B̃(a, b) = ιq−1(a)(b)[0].

By abuse of notation, we denote the restriction of the form B̃ on PCl(p) again by B̃.
Applying Lemma 7.7 and Corollary 7.5 to the primitives PCl(p) we find:
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Corollary 7.8. Let ϕ, ψ ∈ P∧(p) be homogeneous elements. Then

[q(ϕ), q(ψ)] = 2(ιϕψ)[0] = 2B̃(ϕ, ψ).

7.2. Proof of Theorem 1.1 for primary and almost primary symmetric
pairs. To prove statement (a) of Theorem 1.1, note first that the elements of
PCl(p) ⊂ Cl(p)K satisfy the relations from Corollary 7.5. Thus it follows from the

universal property of Cl(PCl(p), B̃) that the inclusion P∧(p) ↪→ Cl(p)K extends to
an algebra homomorphism

f : Cl(PCl(p), B̃) → Cl(p)K .

Furthermore, Theorem 7.4(a) shows that for every w ∈W 1

hcw(PCl(p)) ⊆ a ⊂ Cl(a).

By Proposition 7.2 we have that hcw |Cl(p)K is an isomorphism and hcw(P∧(p)) =

a ⊂ Cl(a). We conclude hcw(PCl(p)) generates Cl(a) and PCl(p) generates Cl(p)
K .

In particular,

hcw ◦f : Cl(PCl(p), B̃) → Cl(a)

is an algebra homomorphism and hcw(f(PCl(p))) = a. The restriction of the

form B̃ on PCl(p) must therefore be non-degenerate. Indeed, suppose that a nonzero

ϕ ∈ PCl(p) is orthogonal to PCl(p), then ϕ anticommutes in Cl(PCl(p), B̃) with all
of PCl(p) (including itself), so the nonzero element hcw(f(ϕ)) ∈ a anticommutes
with a (including itself). But there is no such element in a.

(b) When (g, k) is primary, Cl(PCl(p)) ∼= Cl(p)K and imαZ = Pr(S) is C (see
Lemma 2.12). So there is nothing left to prove. In the almost primary cases,
imαZ = Pr(S) is two dimensional spanned by pr1 and pr2. It is clear that
imαZ is in the centre of Cl(p)k thus there is a filtered algebra homomorphism
from Cl(PCl(p))⊗ Pr(S) to Cl(p)k. We are left to show that this map is injective.

Let a1, a2 ∈ Cl(PCl(p)) be such that a1 ⊗ pr1 +a2 ⊗ pr2 is in the kernel, then
taking the Harish Chandra projection hci shows that ai = 0, thus this algebra
homormorphism is an injection. Dimension counting shows it is a filtered algebra
isomorphism.

(c) This is proved in [CNP] and [CGKP] for any symmetric pair.

Statement (d) follows from the fact that grCl(p)k ∼= (
∧
p)

k
, gr(Cl(P∧(p)) ∼=∧

P∧(p), grC[t∗]Wk/Iρ ∼= C[t∗]Wk/I+ and gr(A⊗B) ∼= grA⊗ grB. □

Remark 7.9. In a similar manner, starting from Theorem 3.57 and the Harish–
Chandra projection hcg : Cl(g) → Cl(h), one can prove Kostant’s result that Cl(g)g

equals Cl(q(P∧(g)), B̃) without using the Hodge theory for
∧
g.

7.3. Contractions by primitive elements. Let x, a, b ∈ Cl(p) then

[x, ab] = xab− (−1)|x||a|+|x||b|ab

= xab− (−1)|x||a|axb+ (−1)|x||a|axb− (−1)|x||a|+|x||b|ab

= [x, a]b+ (−1)|x||a|a[x, b].

That is, [x,−] is a derivation of Cl(p).
Let (g, k,K) be a triple from the list (5.1).

Corollary 7.10. Let ϕ ∈ P∧(p), then the restriction of ιϕ to Cl(p)K is equal to
1
2 [q(ϕ),−] and hence is a derivation of Cl(p)K .



44 KIERAN CALVERT, KARMEN GRIZELJ, ANDREY KRUTOV, AND PAVLE PANDŽIĆ

Proof. Let ϕi be a basis of P∧(p), orthonormal with respect to B̃, and such that
ϕi ∈ (

∧mip)K . For 1 ≤ i1 < i2 < . . . < ik ≤ dimP∧(p), set ψ = ϕi1 ∧ . . . ∧ ϕik ∈
(
∧M

p)K , where M = mi1 + . . . +mik . Since ϕi are orthonormal, Theorem 1.1(a)
implies that q(ψ) = q(ϕi1) . . . q(ϕik).

Using the fact that [q(ϕj),−] is a derivation of Cl(p), we have that

[q(ϕj),q(ψ)] =
∑
a

(−1)a−1q(ϕi1) . . . [q(ϕj), q(ϕia)] . . . q(ϕik)

(Since [q(ϕa), q(ϕb)] = 2δa,b and all ia are distinct.)

=

{
2(−1)a−1q(ϕi1) . . . q̂(ϕia)) . . . q(ϕik) if there exists a such that ia = j,

0 otherwise.

Here q̂(ϕia) denotes the omission of q(ϕia). We have that q−1([q(ϕj), q(ψ)]) ∈(∧M−mjp
)K

. By Lemma 7.6 we get that

q−1([q(ϕj), q(ψ)]) = q−1([q(ϕj), q(ψ)])[M−mi] = 2ιϕj
ψ.

Thus 1
2 [q(ϕj),−] and ιϕj

agree on every monomial of the form q(ϕi1) . . . q(ϕik)

which form a basis in Cl(p)K , since they are both linear these operators agree on
Cl(p)K . □

Corollary 7.11. For ϕ ∈ P∧(p) the restriction of ιϕ to (
∧
p)

K
is a derivation

of (
∧
p)

K
.

Proof. By Corollary 7.10, for ψ ∈ P∧(p) the operator ιϕ is a derivation of Cl(p)K .
The associated graded map of ιϕ ∈ End(Cl(p)) is ιϕ ∈ End(

∧
p) when we pass

from Cl(p) to the associated graded
∧
p. Since ιϕ is a derivation of Cl(p)K it

preserves Cl(p)K , hence its graded version ιϕ preserves (
∧
p)K . Moreover, the

associated graded algebra to Cl(p)K is (
∧
p)K . The associated graded map of

a derivation is a derivation of the associated graded algebra, thus we get that ιϕ is
a derivation of (

∧
p)K . □

8. An analogue of Kostant’s Clifford algebra conjecture.

In this section we define a filtration on a which makes the Harish–Chandra projec-
tions hcw : Cl(p)k → Cl(a) filtered algebra morphisms. This generalises Kostant’s
Clifford algebra conjecture to the relative case.

We first review some background material about principal sl2-triples, for exam-
ple, see [Dyn, Kos1, Vog]. Let g be a semisimple Lie algebra. Up to conjugacy,
there is a finite number of Lie algebra embeddings i : sl2 → g. An sl2-embedding
is called principal if g splits into the smallest number of i(sl2)-submodules under
the adjoint action. Recall that by the Hopf–Koszul–Samelson Theorem P∧(g) is
a graded vector space with generators in degrees 2mi +1 defined by the exponents
m1, . . . ,mr of g

Let ǧ be the Lie algebra defined by the dual root system and ȟ ⊂ ǧ be the corre-
sponding Cartan subalgebra. Kostant observed that ρg ∈ h∗ viewed as an element

of ȟ coincides with the regular element ȟ of the principal sl2-embedding to ǧ given
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by (ě, ȟ, f̌) ⊂ ǧ. Since ȟ∗ and h are canonically isomorphic, the coadjoint action
of ě induces a filtration on h:

F (m)h =
{
x ∈ h | (ad∗ě)m+1x = 0

}
.

The dimension of the vector space F (m)h jumps at values m = m1, . . . ,mr which
follows from results of [Kos1].

Since hcg(q(P∧(g))) = h, we can define a different filtration on h:

F (m)h = hcg(q(P
(2m+1)
∧ (g))),

where P
(k)
∧ (g) denotes the filtration on P∧(g) induced by the Z-grading. Kostant

suggested the following conjecture which was proved for type A in [Baz2] and for
any reductive Lie algebra in [Jos, AM4].

Theorem 8.1 (Kostant’s Clifford algebra conjecture). Two filtrations on h coin-
cide, namely, for any m ∈ N, we have F (m)h = F (m)h.

Similarly, for any w ∈W 1 define two filtrations on a by

F (m)a =
{
x ∈ a | (ad∗ě)m+1x = 0

}
, F (m)a = hcw(P

(2m+1)
∧ (p)),

where P
(k)
∧ (p) denotes the filtration on P∧(p) induced by the Z-grading. Note that

the filtration F (m)a does not depend on w since by Proposition 7.2 we have that
the image of P∧(p) under hcw does not depend on w.

Theorem 8.2 (Relative Kostant’s Clifford algebra conjecture). Let (g, k) be a sym-
metric pair of primary or almost primary type, then the two filtrations on a coincide,
namely, for any m ∈ N, we have F (m)a = F (m)a.

Proof. Given that P∧(p) = Resgp(P∧(g)) then the filtration F (m)a is just the restric-

tion of F (m)h to a. Furthermore, since a ⊂ h, F (m)a is the restriction of F (m)h to a.
Thus the theorem follows from restriction to a of the results from Theorem 8.1; the
following diagram commutes

F (m)h F (m)h

F (m)a F (m)a.

∼=

Resgp Resgp

∼=

Which concludes the proof. □
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Bijenička cesta 30, 10000 Zagreb, Croatia
Email address: pandzic@math.hr


	1. Introduction
	2. Preliminaries
	2.1. Contractions and bilinear forms
	2.2. Clifford algebras
	2.3. Symmetric pairs of Lie algebras
	2.4. Types of symmetric pairs
	2.5. Algebra structure of `3́9`42`"̇613A``45`47`"603ACl(p)k as endomorphisms of spin modules

	3. Transgressions in Weil algebras
	3.1. G-differential algebras
	3.2. The commutative Weil algebra
	3.3. The noncommutative Weil algebra
	3.4. The quantum Weil algebra

	4. Transgressions in relative Weil algebras
	4.1. Relative noncommutative Weil algebra
	4.2. Transgression in the noncommutative relative Weil algebra
	4.3. Transgression in the commutative relative Weil algebra
	4.4. Transgression in the relative quantum Weil algebra

	5. Primitive invariants and relative transgression theorem for primary and almost primary types
	6. Harish–Chandra projections
	7. Clifford algebra analogue of Cartan's theorem for primary and almost primary cases
	7.1. The form on primitives in `3́9`42`"̇613A``45`47`"603ACl(p)K
	7.2. Proof of Theorem 1.1 for primary and almost primary symmetric pairs. 
	7.3. Contractions by primitive elements

	8. An analogue of Kostant's Clifford algebra conjecture.
	References

