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Abstract. In this study, the relationship between auroral ab-
sorption, electrojet currents, and ionospheric plasma convec-
tion velocity is investigated using a series of new methods
where temporal correlations are calculated and analysed for
different events and MLT sectors. We employ cosmic noise
absorption (CNA) observations obtained by the Imaging Ri-
ometer for Ionospheric Studies (IRIS) system in Kilpisjärvi,
Finland, plasma convection measurements by the European
Incoherent Scatter (EISCAT) radar, and estimates of the elec-
trojet currents derived from the Tromsø magnetometer data.
The IRIS absorption and EISCAT plasma convection mea-
surements are used as a proxy for the particle precipitation
component of the Hall conductance and ionospheric electric
field, respectively. It is shown that the electrojet currents are
affected by both enhanced conductance and electric field but
with the relative importance of these two factors varying with
magnetic local time (MLT). The correlation between the cur-
rent and electric field (absorption) is the highest at 12:00–
15:00 MLT (00:00–03:00 MLT). It is demonstrated that the
electric-field-dominant region is asymmetric with respect to
magnetic-noon-midnight meridian extending from 09:00 to
21:00 MLT. This may be related to the recently reported ab-
sence of mirror-symmetry between the effects of positive and
negative IMFBy on the high-latitude plasma convection pat-
tern. The conductivity-dominant region is somewhat wider
than previously thought extending from 21:00 to 09:00 MLT
with correlation slowly declining from midnight towards the
morning, which is interpreted as being in part due to high-
energy electron clouds gradually depleting and drifting from
midnight towards the morning sector. The conductivity-
dominant region is further investigated using the extensive
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IRIS riometer and Tromsø magnetometer datasets with re-
sults showing a distinct seasonal dependence. The region
of high current-absorption correlation extends from 21:00
to 06:00 MLT near both equinoxes, however, it is narrower
and rotated towards the morning (02:00–07:00 MLT) in sum-
mer, while in winter the correlation shows much greater vari-
ability with MLT. During periods of high current-electric-
field correlation, the relationship between electric field and
absorption can be described as an inverse proportionality,
which can be explained by limitation of the electrojet cur-
rent by the magnetospheric generator. Possible cases of elec-
tron heating absorption are also investigated with absorption
showing no obvious dependence on the ion velocity or elec-
tron temperature.

Keywords. Ionosphere (Auroral ionosphere; Electric fields
and currents; Particle precipitation)

1 Introduction

Energetic particle precipitation in the auroral ionosphere
with its spectacular auroral displays represents arguably the
most impressive aspect of Space Weather. Magnetospheric
particles in the 0.5–20 keV energy range precipitating in
the ionospheric E- and F-regions are mostly responsible
for the visual aurora, extensively studied with ground- and
satellite-based optical instruments. More energetic particles
(>20 keV) enhance electron densities in the lower E- and D-
regions (<100 km). The higher abundance of free electrons
absorb more extra-terrestrial (ET) radio waves in the lower
VHF frequency range (30–50 MHz) resulting in less ET ra-
dio wave intensity reaching the Earth’s surface. This phe-
nomenon is known as cosmic noise absorption or CNA. It
is routinely measured by ground-based relative ionospheric
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opacity meters (riometers), which are widely used to mon-
itor and study high-energy particles and their precipitation
(see, for example, reviews byStauning, 1996a,b).

The enhanced electron densities in the lower ionosphere
also result in enhanced electrical conductances (height-
integrated conductivities) and, for constant electric fields, in-
tensification of the auroral electrojet current. The changes in
the electrojet currents are monitored by magnetometers that
measure perturbations in the local geomagnetic field (e.g.
Amm, 2001). The ambient plasma, consisting of cold parti-
cles with energies of<1 keV in the crossed electricE and
magneticB fields, move with theE×B convection drift.
Much research effort has been devoted to studies of global
ionospheric plasma convection, as this information is criti-
cal to our understanding of the magnetospheric-ionospheric
system and the ionospheric response to changes or transitions
from one IMF state to another (e.g.Ruohoniemi et al., 2002).

Understanding the relationships between various auroral
phenomena has been at the heart of space physics research
for the past 50 years (e.g.Meng et al., 1991). The magneto-
sphere and solar wind are coupled to the auroral ionosphere
and hence studies of relationships between auroral phenom-
ena are directly relevant to these coupling processes. De-
spite significant progress, there is still considerable scope to
increase and refine the understanding of the links between
plasma convection, conductances and current systems ob-
served at high altitudes, as discussed below.

Auroral absorption and electrical conductances are closely
related as both are height-integrated characteristics propor-
tional to the plasma density and the electron collision fre-
quency. This was confirmed experimentally byWalker and
Bhatnagar(1989) and, more recently, bySenior et al.(2007).
The Hall conductance6H was shown to be more strongly
related to CNA than Pedersen conductance6P and the cor-
relation between6H and CNA was shown to vary with mag-
netic local time or MLT (Senior et al., 2007). The correlation
between6H and CNA was found to be considerable in all
MLT sectors except for 15:00–19:00 MLT.

The CNA measured by a riometer has also been shown
to depend indirectly on the electric field. This occurs when
strong electric fields drive plasma waves that in turn inter-
act with electrons increasing their temperatures and effective
collision frequencies (St.-Maurice et al., 1981; Schlegel and
St.-Maurice, 1981). The enhanced collision frequency may
result in an increased CNA and such events were indeed iden-
tified in the polar cap, where the much stronger effects due
to enhanced precipitation are not as pronounced as in the au-
roral zone (Stauning, 1984). These events are known as elec-
tron heating absorption or EHA events (Stauning, 1996a).

The electrojet current intensity has been shown to depend
on both the electric field and the plasma density/conductivity,
as expected from Ohm’s law.Kamide and Vickrey(1983)
demonstrated that the westward electrojet is split into two re-
gions: a conductivity-dominant region and an electric-field-
dominant region. The location of the transition within the

westward electrojet has been found to vary with latitude, the
higher the latitude, the earlier in MLT it occurs (see their
Fig. 6). A similar latitude dependence has been found for the
pre-midnight transition between the eastward and westward
electrojets, coinciding with a transition from an electric-
field- to a conductivity-dominant regime (Kamide and Vick-
rey, 1983; Davies and Lester, 1999). Kamide and Vickrey
(1983) thus found that the electric field exerts a dominant
role in the evening and late morning sectors. More recently,
Sugino et al.(2002) showed that the conductivity-dominant
region can extend to 08:00 MLT just after the dawn termina-
tor.

Previous studies of the current-conductance-E-field rela-
tionship have mostly used the data collected using incoher-
ent scatter radars (ISRs) that provide plasma convection ve-
locity (electric field) data and information on conductivi-
ties in the limited range of altitudes (typically 90–300 km).
From this information the ionospheric currents are inferred
using Ohm’s law (e.g.Davies and Lester, 1999; Sugino et al.,
2002). In this approach all 3 parameters are provided by the
same instrument at the same resolution and all the measure-
ments are coincident and simultaneous. On the other hand,
ISR is an expensive instrument with which to observe pro-
cesses in the upper atmosphere. As a result they typically
do not operate continuously for extended periods of time, i.e.
months or years. Riometers and magnetometers, on the other
hand, are passive instruments and are inexpensive to operate.
As a result they function nearly continuously, under all con-
ditions. They also provide observations integrated over the
full ionospheric height profile. In addition, in previous stud-
ies, the solar and particle components of conductances were
not considered separately as current depends on the total Hall
and Pedersen conductances. Previous studies have also con-
centrated on nightside observations with the full MLT depen-
dence including dayside sectors still less investigated.

In this study, we employ the CNA riometer measurements
as a proxy for conductance in conjunction with the electric
field and current measurements by an incoherent radar and
magnetometer, respectively, to statistically investigate the re-
lationships between the ionospheric electric fields, electrical
conductances and current systems. A significant dataset is
employed in order (1) to assess the potential of riometers
in studies involving conductance estimates and in particu-
lar in studies of the relative importance of the electric field
and conductance to ionospheric currents in all time sectors
including the dayside and (2) to investigate the electric-field-
absorption relationship and to determine whether electron
heating absorption events are observed in the auroral zone.

2 Experimental data

In this study we used CNA measurements obtained by
the Imaging Riometer for Ionospheric Studies (IRIS) in
Kilpisj ärvi, Finland (69.1◦ N, 20.8◦ E, 65.90◦ MLAT). It
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operates at 38.2 MHz and uses a single phased array of 8×8
dipole antennae to form 50 beams: one wide beam and 49
narrow beams as shown in Fig.1 (Browne et al., 1995). The
time resolution is 1 s although some post-integration is usu-
ally employed in order to increase the signal-to-noise ratio
with a post-integration period of 1 min typically used. Sim-
ilar to numerous previous studies, the absorption measure-
ments in dB employed in this study were obtained from the
IRIS raw power using methods and techniques implemented
in the standard IRIS software (Marple and Honary, 2004).

The European Incoherent Scatter (EISCAT) tri-static UHF
(929.5 MHz) radar was also used in this study (Rishbeth
and Williams, 1985). It consists of 3 parabolic dish anten-
nas. The main antenna, located near Tromsø in Norway
(69.6◦ N, 19.2◦ E, 66.2◦ MLAT, Fig. 1), combines both trans-
mitting and receiving capabilities. The other two remote re-
ceivers are located in Sodankylä, Finland (67.4◦ N, 26.6◦ E,
63.6◦ MLAT) and Kiruna, Sweden (67.9◦ N, 20.5◦ E, 64.5◦

MLAT). In the CP1 common program, the data from which
were used in this study, the UHF transmitter beam from
Tromsø is aligned with the local F-region magnetic-field-line
direction at an elevation of about 77◦ and azimuth of 182◦.

The EISCAT radar measures the ion and electron tempera-
tures, plasma density and line-of-sight ion velocity. The full
ion velocity vector is determined within the tri-static volume.
In the relatively collisionless regime of the F-region, the ions
move with theE×B velocity, and hence the ion velocity
measurements by EISCAT are representative of the electric
field (e.g.Davies et al., 1999; Davies and Lester, 1999). Fig-
ure1 displays the location of the tri-static volume and the re-
ceiver beam directions (in blue) in CP1-K mode of EISCAT.
The red (green) circle represents the location of the tri-static
(projected tri-static) volume at 278-km (110-km) altitude. As
the electric field is approximately the same along the mag-
netic field line, the tri-static volume was projected down to
110 km using the IGRF model. Figure1 shows that in the E-
and D-regions, it is the closest to the IRIS beam 16 and in
this study the data from this beam were employed.

The International Monitor for Auroral Geomagnetic Ef-
fects (IMAGE) Tromsø magnetometer measures local mag-
netic perturbations in three perpendicular directions (Lühr
et al., 1998). The position of the magnetometer is indicated
by a red triangle in Fig.1, which maps close to the pro-
jected tri-static volume. The 20-s resolution data were post-
integrated to give 1-min averages for this study. In order
to obtain a Quiet Day Curve (QDC) for the magnetometer
data, 2–4 days were chosen that were as close to each se-
lected event as possible and that exhibited minimal perturba-
tions. The dataset was then averaged for these quiet days and
Fourier transformed. The number of harmonics was limited
to 6 and then the inverse transform was taken to give the QDC
for the event. The total horizontal magnetic perturbationsδH

were obtained from components usingδH 2
=δX2

+δY 2.
The events in this study were selected based on the avail-

ability of the tri-static ion drift velocity data from EISCAT.

15 25

70

Beam 16

Tromsø

20

69

Kilpisjarvi¨

Kiruna

Tri-static
volume

Sodankylä

Fig. 1. Experimental setup diagram showing the IRIS and EISCAT
fields-of-view. The dots (ellipses) represent the intersection of the
principal directions (−3 dB riometer beams) with the ionosphere at
a height of 90 km. The−3 dB beams at the corners of the array are
not shown as the antenna side lobes are too large. The 3 blue lines
show the receiver beams from the EISCAT in the CP1-K common
mode. The red circle shows the position of the tri-static volume at
an altitude of 278 km. The green circle illustrates the position of the
tri-static volume projected down the magnetic field line to 110 km
in the E-region. At this height it is closest to beam 16 of the IRIS.
The orange triangle is the position of the Tromsø magnetometer,
which maps close to the projected tri-static volume.

The data from the CP1-K common mode for 46 days in
1995–1999 were analysed. An extended dataset compris-
ing all available IRIS and IMAGE Tromsø data in Febru-
ary 1995–January 1999 was also used in one part of this
study (Sect.3.3). All EISCAT velocity measurements above
2000 m/s and all IRIS absorption measurements below 0 dB
were excluded. The effects of radio scintillations due to
the passage of Cassiopeia over the IRIS field-of-view (FoV)
were also removed from the IRIS data. The data from IRIS
and IMAGE were then temporally matched with the EISCAT
data to form a dataset comprised of simultaneous measure-
ments.

The EISCAT conductivities were calculated from the elec-
tron densities and ion and electron temperatures measured
by EISCAT using a method described byMakarevitch et al.
(2004). The height-integrated conductivities or conductances
were then computed using the height range of 90–275 km.
Similar conductance estimates were employed by numerous
previous studies (e.g.Davies and Lester, 1999; Senior et al.,
2007). To determine the particle component of conductances,
the solar effects were removed from each conductance
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Fig. 2. 2-D plots of(a, b) the IMAGE magnetic perturbationδH
versus the EISCAT ion velocity,(c, d) the IMAGE magnetic per-
turbation versus the IRIS absorption, and(e, f) the IRIS absorption
versus the EISCAT ion velocity for the entire dataset. In panels (a),
(c) and (e) the occurrence of points for each cell up to a maximum of
20 is shown, colour-coded in percentage of maximum as indicated
by the colour bar in panel (a). In panels (b), (d) and (f), the cells
are colour-coded in the mean absorption, velocity, and perturbation,
respectively, as shown on the right of each panel. The correlation
for the entire dataset is shown in the top-left corner of panels (a),
(c), and (e) along with the total number of points. The bin-averaged
parameter dependence is shown by the white histogram.

(Hall or Pedersen) using a square root of squares technique
(Brekke and Hall, 1988): 62

Part=62
Tot−62

S , where6Part and
6S are the particle and solar components of conductance,
respectively, and6Tot is the total conductance. The solar
component was calculated from the solar conductance model
proposed byRobinson and Vondrak(1984).

3 Observations

3.1 Point-by-point comparisons and correlation
analysis

In this section the relationships between magnetic perturba-
tions, CNA, and the field-perpendicular component of the ion
drift velocity are explored for both the entire dataset and for
different MLT sectors. The data have been matched spatially
and temporally, comprising of data points with three values
representing the electrojet current strength, the Hall conduc-
tance, and the ionospheric electric field, respectively. Two
parameters are plotted against each other in a 2-D format
while either the occurrence or the mean value for the third
parameter is represented by the colour of the plot cell.

The comparisons over the entire dataset are displayed in
Fig.2. Panels (a, b) to (e, f) display the 2-D plots of perturba-
tion versus velocity, perturbation versus absorption, and ab-
sorption versus velocity, respectively. The left-column pan-
els show the percentage occurrence of points for each cell,
while the right-column panels are colour-coded in absorp-
tion, velocity, and perturbation, respectively, with the colour
showing the averaged value over all measurements inside a
given plot cell. The white histogram is the bin-averaged pa-
rameter variation. The linear Pearson correlation co-efficient
for the entire dataset is shown in the top-left corner of left-
column panels along with the total number of points. The
panels from (a, b) to (e, f) contain 91%, 83% and 81%, re-
spectively, of the total points available after the previously
defined restrictions were applied (Sect.2).

Figure2a shows an overall increase of perturbation with
ion velocity, which is reflected in the overall positive corre-
lation co-efficient of 0.47 and in the steady increase of the
bin-averaged perturbation with ion velocity. There is some
structuring in the corresponding panel (b) due to absorption
variation which is evident in the colour coding. That is, the
red and yellow cells tend to be in the top-left part of the di-
agram with steady increase occurring in mean absorption as
δH increases and velocity decreases. This suggests that con-
ductance also contributes to the electrojet current.

Another way of studying the perturbation-absorption
(current-conductance) relationship is presented in panels
(c,d) where a direct comparison is made between perturba-
tion and absorption; the colour coding in panel (d) is now in
the EISCAT ion velocity. This panel reveals some increase in
magnetic perturbation with absorption. However, the corre-
lation co-efficient is somewhat lower in panel (d) (0.32 ver-
sus 0.47). The colour coding in velocity, on the other hand,
displays obvious structuring indicating an increase in pertur-
bation with velocity (red cells are higher and blue cells are
lower), in agreement with the correlation between perturba-
tion and ion velocity observed in panel (b). The analysis of
the entire dataset thus suggests that, on average, the electric
field control of current is stronger than that of conductance
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Fig. 3. Scatter plots of magnetic perturbation versus ion velocity for different MLT sectors. The correlation and total number of points are
also shown in the top-left corner of each panel. The colour coding is in absorption as shown to the right of the plot. The points with no
simultaneous absorption measurements are shown by dark red pluses. The bin-averaged perturbation is shown by the red histogram.

as the correlation was higher in panel (b) and structuring was
more pronounced in panel (d).

The comparisons between perturbation and ion velocity
(absorption) have demonstrated positive correlation and ob-
vious structuring in Fig.2b (Fig. 2d). In panels (e, f) ab-
sorption and velocity are compared directly with the colour
coding in panel (f) in the IMAGE magnetic perturbation.
This comparison reveals no significant correlation or anti-
correlation between these parameters for the entire dataset.
Data does seem, however, to be spread along the both axes
in panel (f) suggesting a possible inverse proportionality re-
lationship, which is also evident in the 2-D occurrence plot
of panel (e). This is emphasized in panel (f) by structuring
of the cells according to colour with blue (red) cells gener-
ally closer to (farther from) the axes. Red cells (large mean
perturbations) are observed in the top-right quadrant of the
diagram where both absorption and velocity are large.

Although some correlation was found when analysing the
three parameters over the entire dataset, the temporal vari-
ation of this correlation was not investigated. In the latter
part of this section we investigate the time variation of these
correlations in three-hour MLT blocks (MLT=UT+2.7). This
should give an indication of how the conductance and electric
field control of electric current varies with MLT.

In Fig. 3 the data have been divided into 8 three-hour time
sectors by MLT. For each time sector the perturbation is plot-
ted against the ion drift velocity. The correlation is shown,
along with the number of points in the top-left corner of each
panel. The colour coding is in absorption and is the same

for all time sectors as displayed on the right of the figure.
The dark red pluses represent points without colour coding
information that were nevertheless included in the correla-
tion analysis. The figure shows that the correlation is high-
est just after magnetic noon (0.90 at 12:00-15:00 MLT) and
stays quite high until 21:00 MLT where it sharply decreases
to 0.28. It is minimised in the midnight sector before ris-
ing again in the morning sector (03:00-06:00 MLT). The two
features of interest in the figure are the rapid increase in cor-
relation at 12:00 MLT and the sharp decrease at 21:00 MLT
with the colour coding in absorption also showing some in-
teresting results. There is more data structuring near mid-
night (where red points are at the top and black points are at
the bottom) and less in the afternoon, possibly indicating a
higher correlation between absorption and perturbation near
midnight and less correlation near noon, which is explored
next.

The IMAGE perturbation and the IRIS absorption are
compared in Fig.4, which has the same format as Fig.3
with colour coding now in the EISCAT ion velocity. The
results clearly display the expected pattern: the data show a
temporal variation in correlation that is roughly opposite to
that observed in Fig.3. Correlation is highest (lowest) in the
21:00-06:00 MLT (09:00-21:00 MLT) sector. In other words,
it is maximised in the post-midnight sector and minimised in
the afternoon sector. There is also a sharp increase in corre-
lation across the 21:00 MLT border and a moderate decrease
through the 03:00-09:00 MLT sector.
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Fig. 5. Same as Fig.3 except absorption and velocity are compared and colour-coded in perturbation.

To complete the analysis, the relationship between absorp-
tion and ion velocity is examined in Fig.5, where points are
now colour-coded in perturbation. The correlation is highest
in the post-midnight/early-morning sector 00:00–06:00 MLT
(0.30) and very low for the other time sectors. There is,

however, some structuring in the 09:00–12:00 and 12:00–
15:00 MLT sectors where points tend to be close to both
axes. This suggests an inverse proportionality between the
two parameters in these time sectors similar to that observed
in Figs.2c, d. This feature is further investigated in Sect.3.5.
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Fig. 6. Clock diagrams showing the correlation of magnetic pertur-
bation(a) with ion velocity (absorption) in blue (red) and(b) with
the total (particle component) Hall conductance in outer (inner) cir-
cular band for different MLT. The colour coding is representative of
the correlation from low (dark) to high (light).

3.2 Correlation clock diagrams

The results of the correlation analysis presented above are
summarised in Fig.6a which presents the level of correla-
tion for each 3-h time sector both numerically and by the
colour of the sector with lighter (darker) shades representing
a higher (lower) correlation. The correlation co-efficients be-
tween magnetic perturbations and ion velocity (absorption)
ρ(δH, Ui) [ρ(δH, A)] are indicated in blue (red) colour in
the outer (inner) circle. Figure6a suggests that, overall, the
electric field exerted more dominance over the electrojet cur-
rents than the conductance. Thus both the overall and maxi-
mum correlations are higher forρ(δH, Ui) thanρ(δH, A):
0.47 and 0.90 versus 0.32 and 0.76. Also, roughly com-
plementary trends/relationships are observed in Fig.6a, i.e.
the current-velocity correlation is substantial whenever the
current-absorption correlation is low and vice versa.

We have also performed a similar correlation analysis with
the actual Hall conductance rather than with its proxy. The
magnetic perturbation correlations with the total (with so-
lar contribution) and particle component of Hall conduc-
tance were determined for each 3-h MLT sector. The re-
sults are presented in Fig.6b. All three types of correla-
tion shown in red in Fig.6 show a very similar picture. Re-
calling that CNA is not representative of the Hall conduc-
tance at 15:00–19:00 MLT (Senior et al., 2007), we observe
that theρ(δH, A) and ρ(δH, 6Part) correlations exhibit a
generally good agreement outside of the 15:00–21:00 MLT
sector. Theρ(δH, 6Tot) and ρ(δH, 6Part) are also quite
close with the differences most pronounced on the day-
side, in particular at 09:00–12:00 and 15:00–18:00 MLT.
The only observation inconsistent with our simple paradigm
suggesting that absorption is a good proxy for particle
component of conductance is at 06:00–09:00 MLT when
ρ(δH, A)<ρ(δH, 6Part)∼=ρ(δH, 6Tot), which may be due
to a failure of the solar conductivity model to fully remove
solar effects for this particular subset of data.
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Fig. 7. Clock diagrams showing the correlation co-efficients be-
tween magnetic perturbations and absorption for 1-h boxcar cor-
relations calculated at 1-min resolution for different seasons. The
colour coding is representative of the correlation as indicated by
the colour bar. The circular bands in each panel represent different
years as indicated at the top of the diagram.

3.3 Auroral absorption and currents for different
seasons

In our previous analysis, the dataset was limited to 46 days
with simultaneous EISCAT ion velocity data. Our novel ap-
proach involving simultaneous and coincident magnetometer
and riometer measurements provides a unique opportunity
to explore in more detail the statistical current-conductance
relationship (using CNA as a proxy). In this section, we
employ an extended Tromsø magnetometer/IRIS riometer
dataset collected over the 4 years February 1995–January
1999. This period is selected to include 81 days around
equinoxes and solstices, that is why 4 calendar years 1995–
1998 are shifted by 1 month. Both datasets have 1-min time
resolution so that up to 1440 data points are available for
each day. The large amount of data also allowed us to im-
prove drastically the time resolution of the correlation analy-
sis. This has been done by calculating the boxcar correlation
co-efficients for a 1-h period centered on every minute. The
boxcar correlation dataset thus comprised 1440 values (for
each min) with each of them calculated using up to 60Nd

points, whereNd is the number of days in a considered pe-
riod.

Figure7 includes 4 clock diagrams, similar to Fig.6, con-
taining data restricted to 81 days centered on the equinoxes
and solstices with panels (a) to (d) showing correlations for
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Fig. 8. Line plots of the hourly correlation co-efficients between
(a) perturbation and velocity,(b) perturbation and absorption, and
(c) absorption and velocity. The red (dark blue) line represents the
mean (median) value of the hourly correlation co-efficients. The
orange dots and lines represent the 3-hourly correlation coefficients
from Figs.3–5. In panel (b) the light blue line shows a 1-h boxcar
correlation computed using an extended dataset.

spring, summer, autumnal and winter periods, respectively.
In addition, the data has been further restricted to specific
years as shown by different circular bands (Nd=81). The
year specified for each circular band in panel (a) is that at the
start of each 81-day period. The correlation co-efficients for
all years combined are also shown in the innermost circular
band (Nd=324). The correlation is represented by the colour
as shown by the colour bar in the centre of the plot.

Figure7 shows a lot more detail in correlation as a func-
tion of MLT than Fig.6. For majority of the years, the re-
gion of high correlation extends from 21:00 to 06:00 MLT
during the equinoctial periods, panels (a) and (c), which is
also reflected in all-years correlations. During the summer
period, panel (b), it is shifted later into the morning and cov-
ers a smaller MLT range (02:00–07:00 MLT). There is also
an “anomalous” region of very high correlation near local
noon for summer 1996. The winter period, panel (d), dis-
plays highly variable correlation with no clearly defined re-
gion of high correlation consistent over the years. The cor-
relation on the dayside before 12:00 MLT, however, is no-
ticeably higher than in other seasons. One can conclude that

the current-absorption correlation exhibits a distinct seasonal
dependence. One should bear in mind though that the corre-
lation values at 15:00–19:00 MLT are not representative of
the current-conductance correlation (Senior et al., 2007).

3.4 Hourly correlation analysis

Figures3–5 summarised in Fig.6a revealed that the correla-
tion between the 3 parameters varied throughout the day. The
correlation co-efficients were calculated for each 3-h sector.
In Sect.3.3 the correlation co-efficients were also computed
using 1-h boxcar periods. In both analyses the correlations
were calculated for all events combined together. In this sec-
tion the correlation is further examined using a different anal-
ysis. The correlation co-efficients are calculated at hourly in-
tervals for each event and then averaged over the 46 events
for each hourly period in MLT. We will refer to these val-
ues as “hourly” correlations to distinguish from “1-h” box-
car correlations from Sect.3.3 and “3-h” correlations from
Sects.3.1–3.2. A similar hourly correlation analysis was em-
ployed earlier byMakarevitch and Honary(2005).

The correlation co-efficient for each hourly period was
only calculated and entered into the dataset if there were suf-
ficient number of points in the hourly period. This was de-
termined by comparing the data available for each hour to
the maximum number of data points that the instrument was
capable of collecting during the hour (typically 30 points for
EISCAT and 60 points for IRIS and IMAGE). If this number
was greater than 60% then the number of points was deemed
sufficient.

In order to compare the results from the hourly correlation
analysis with those presented in Figs.3–6, the mean and me-
dian hourly correlation co-efficients were calculated over the
entire dataset for each of the 3 pairs of parameters. These are
presented as a function of MLT in Fig.8. The 3-h values from
Figs.3–5 are also shown for reference by the orange lines.
The extended IMAGE/IRIS dataset of Sect.3.3 was em-
ployed in panel (b) to compute 1-h boxcar correlations (light
blue) over the entire 4-year dataset (Nd=365.25×4=1461).

The 1-h boxcar correlations for the extended dataset show
very similar variation to 3-h values. Panel (a) clearly shows
the hourly correlationρ(δH, Ui) starting low in the midnight
to early morning sector, then rising quickly after 12:00 MLT
and reaching a maximum just after the 12:00–15:00 MLT
sector. It then drops off more smoothly through the after-
noon. An almost opposite pattern is observed between per-
turbation and absorptionρ(δH, A) in panel (b). The correla-
tion is highest just post-midnight between 02:00–03:00 MLT
and smoothly drops off to reach a minimum during the
12:00–15:00 MLT sector. It then rises again to higher values
pre-midnight. Panel (c) displays a low correlationρ(A, Ui)

throughout the day with minimal variation, although a small
anti-correlation is observed in the afternoon. All these results
are consistent with those from the previous analysis as both
the mean and median trends behave in a similar fashion to the
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3-h correlations. The hourly correlations are smaller than ei-
ther 3-h or 1-h boxcar values, which is most likely indicative
of some over-averaging occurring in this approach.

3.5 Electron heating absorption

The two analyses presented in the previous sections (Figs.3
and8) revealed that the data from the afternoon sector exhib-
ited enhanced correlation between magnetic perturbation and
ion velocity. This suggested that the electric field is a pre-
dominant factor in determining the electrojet current strength
in the afternoon. One can argue that the correlation between
conductance and electric fields should be maximised during
the periods when the correlation between perturbation and
ion velocity is close to 1. In this situation, the electric field
affects the current both directly (as current is proportional to
the electric fieldJ∝E) and indirectly through conductance,
collision frequency, and temperature (J∝6∝νe∝T

1/2
e ) with

the latter increasing with electric field. This should result in
the maximum correlation observed. To test this idea, 9 days
exhibiting high hourly correlations between perturbation and
ion velocity were extracted from the dataset. On average, the
period of maximum correlation for each interval was found
to be close to the high correlation period of 12:00-15:00 MLT
in Fig. 3 and this 3-h period was selected as the common
period for all 9 days. The days selected, in “yyyymmdd”
format, were: 19950301, 19950302, 19950329, 19950928,
19960214, 19960619, 19961211, 19970515 and 19990212.

Figure 9 displays a comparison between absorption and
ion velocity for the high correlation period days. The dia-
gram format is the same as for each panel in Fig.5. However,
in Fig.9 the dataset is restricted to the 12:00–15:00 MLT sec-
tor for the 9 selected days. An inverse proportionality is
apparent in the data, similar to that observed in the 09:00-
15:00 MLT sectors in Fig.5. The red line represents a curve
of inverse proportionality defined byA=200/Ui , whereA is
the IRIS absorption andUi is magnitude of the EISCAT ion
drift velocity. The choice of a constant in this simple model
is rather arbitrary; for this study a value of 200 dB/m/s was
selected to best represent the structuring of the data, in par-
ticular that the upper envelope of the data points follows the
inverse proportionality curve. As will be argued later, this
feature is consistent with the notion of limiting of the current
by the magnetospheric generator. No significant correlation
between the ion velocity and absorption is found in this ap-
proach though.

The electron heating effects are expected to exhibit a
threshold in the ion drift velocity as the two-stream instability
(which is responsible for electron heating) is only operational
when the drift velocity exceeds the ion acoustic speed. The
accepted value for the threshold velocity is∼400 m/s (e.g.
Fejer and Kelley, 1980, and references therein). However,
Fig. 9 showed little evidence of absorption increase with the
ion drift velocity (expected in the EHA mechanism) either at
small or at large, above-the-threshold ion velocities.
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Fig. 9. Scatter plot of absorption versus velocity for the 12:00–
15:00 MLT time sector for 9 days exhibiting high correlation inter-
vals within this period (see text for details). The format is the same
as for each panel in Fig.5. The red curve represents an inverse
proportionality trend described by the equation shown on the graph.

Another approach is to consider the absorption depen-
dence on the electron temperatureTe as this is expected to
show a more direct effect on absorption through collision
frequency:A∝νe∝T

1/2
e . The electron temperature in the E-

region centre, in turn, is expected to show some dependence
on the drift velocity above the velocity threshold (e.g.Davies
and Robinson, 1997). Consequently, in the following analy-
sis only theTe data points at a height of 111 km and above
the certain temperature threshold were considered. Simi-
lar to Davies and Robinson(1997), the electron temperature
data were obtained using the alternating code technique. The
electron and ion temperatures were derived from the separa-
tion and sharpness of the two peaks in the ion acoustic spec-
tra measured by EISCAT; no equality between them was as-
sumed (Rishbeth and Williams, 1985).

The threshold values for temperature were determined for
different 3-h MLT sectors as follows. The electron temper-
atures were plotted versus the ion drift velocity (not shown
here). These plots showed a quadratic-like temperature in-
crease with velocity but with different rates of increase for
different MLT. This result was reminiscent of the similar
quadratic dependence found to well represent the ion acous-
tic speedCs=A+BU2

i with fitting co-efficientsA andB de-
pendent on MLT (e.g.Nielsen and Schlegel, 1985; Makare-
vich et al., 2007). In this study, we used a similar approach,
in which a quadratic function of the formTe=C+DU2

i was
fitted to the data for each MLT sector. The threshold elec-
tron temperatureT ∗

e for each MLT sector was found by
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Fig. 10. Scatter plot of absorption versus the electron temperature
colour-coded in MLT. The data in each MLT sector is restricted to
include temperatures above the threshold electron temperature (see
text for details).

substitutingU∗

i =400 m/s into the above equation. Above
T ∗

e , the electron temperature should be affected by the heat-
ing associated with the unstable two-stream waves (see our
Sect.1). Thus one can further explore the electron heating
effects by restricting the absorption versus electron tempera-
ture data to above-the-threshold values.

The results of this analysis are displayed in Fig.10 which
shows absorption versus the electron temperature colour-
coded in MLT. Figure10 shows that, overall, there appears
to be no direct relationship between the two parameters ei-
ther near the threshold (300–400 K) or well above it (e.g.
>600 K). Interestingly, a possible inverse proportionality re-
lationship can be recognized, similar to that in Fig.9. One
can conclude thus that little evidence of electron heating ab-
sorption was observed in this study.

4 Discussion

In this paper, the magnetic perturbations, ion velocity, and
absorption were compared and the relationship between the
current, electric field, and conductance in the auroral region
was studied. Compared to previous studies, the MLT cov-
erage was extended to all time sectors including the day-
side and the height-integrated characteristic of absorption
was used as a proxy for the ionospheric conductance in-
stead of the conductance estimates from incoherent radars.
Also, most of the previous statistical studies have drawn
their conclusions from analysis and comparison of the aver-
aged/median MLT variations of the electric fields, currents,

and conductances. In this study, we used a somewhat dif-
ferent approach in which the measurements were compared
and correlated within each MLT sector, Sects.3.1–3.2. We
also employed a significantly larger dataset of simultaneous
magnetometer/riometer observations collected over 4 years
to statistically investigate the current-absorption relationship
in Sect.3.3. This approach was complemented by the hourly
correlation analysis of Sect.3.4.

4.1 Electric field and conductance control of currents

An important thing to bear in mind while interpreting the re-
sults of the current study is that riometer measurements pro-
vide information on the particle component of conductance.
One can expect that on the dayside the correlation between
the current intensity and total conductance (due to both solar
radiation and precipitation) would be larger. Figure6b sup-
ports this assumption with most time sectors showing larger
correlation with the total conductance. The fact that in one
time sector (15:00–18:00 MLT) the correlation was signifi-
cantly smaller (0.25 vs. 0.37) suggests that this simple view
is not necessarily always correct.

From above, one should be careful when drawing con-
clusions in relation to the relative importance of electric
field and conductance based on theρ(δH, A) correlation
only. However, it is reasonable to expect that the solar con-
tribution would not change the correlation so significantly
so that it will exceed theρ(δH, Ui) correlation in the sec-
tors whereρ(δH, A) is low andρ(δH, Ui) is high, i.e. at
09:00–21:00 MLT. Again, this is strongly supported by Fig.6
that shows that the enhanced correlation due to inclusion
of the solar conductanceρ(δH, 6Tot) still does not exceed
ρ(δH, Ui). By the same token, ifρ(δH, A) is substantially
greater thanρ(δH, Ui) (at 21:00–09;00 MLT) and hence the
particle component conductivity dominates over the electric
field, this is likely to be the case for the total conductance as
well, which agrees well with Fig.6.

Another possible complication is that magnetometers pro-
vide information on the Hall current rather than the to-
tal (Hall and Pedersen) current. However, as absorption
is closely related to the Hall conductance, the comparisons
performed in this study involve the three parameters that
are expected to be related via a simple proportionality rule:
JH =6H UiB. One has to nevertheless bear in mind that in-
terpreting the observations in terms of the total current may
not be so simple in some cases. One important case though
when this is possible is when the Hall and Pedersen currents
vary synchronously, which happens when they are both con-
trolled by the electric field. That is, one can assume that high
ρ(δH, Ui) values imply high total-current-electric-field cor-
relation. This means that our results and conclusions from
the dayside are unlikely to be affected, which is important
as this was the region that was less investigated in the past.
In addition, the same approach involving the Hall current es-
timates from magnetometer measurements has been adopted
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by other researchers (e.g.Kamide and Vickrey, 1983), so that
comparisons with their results will provide a straightforward
way of verifying our results and conclusions.

Kamide and Vickrey(1983) andDavies and Lester(1999)
demonstrated that on the nightside throughout the eastward
convection electrojet the electric field is the dominant fac-
tor and that the Hall conductance tends to dominate in the
westward electrojet. So the transition from the eastward to
westward electrojets is commonly believed to coincide with a
transition from electric-field- to conductance-driven currents.
In our observations, the transition between MLT sectors with
high and lowρ(δH, Ui) occurred at 21:00 MLT in Fig.6a,
which is consistent with pre-midnight location of transition
from the eastward to westward electrojets.

Interestingly, ρ(δH, Ui) values temporarily increased
again at 03:00–06:00 MLT. This feature may be related to
the transition between the conductivity- and electric-field-
dominant regions reported byKamide and Vickrey(1983) to
occur in the late morning (near 03:00 MLT) within the west-
ward electrojet. Extending the same argument further to-
wards the dayside, one can propose that a drop inρ(δH, Ui)

at 06:00–09:00 MLT is due to relative weakening of the elec-
tric field control in this time sector. Statistically,Sugino et al.
(2002) showed that for allKp conditions the electric field
orientation switched from southward to northward in the late
morning sector, just prior to 12:00 MLT, which is normally
a characteristic of a change from the westward to eastward
convection electrojets. The substantial increase inρ(δH, Ui)

across the 12:00 MLT boundary and considerableρ(δH, Ui)

correlations at 09:00–21:00 MLT observed in this study thus
suggest that the entire eastward convection electrojet is dom-
inated by the electric field including the dayside.

This is contrary to the situation in the westward electro-
jet that exhibited consistently large values ofρ(δH, A) al-
though variableρ(δH, Ui) correlations. The former fea-
ture suggests that the westward electrojet is predominantly
conductivity-driven. This result disagrees somewhat with
that byKamide and Vickrey(1983) who demonstrated that
the westward electrojet in the late morning sector is electric-
field-dominant. However, this result is consistent with the
statistical study byDavies and Lester(1999) who also did
not observe the opposite transition within the westward elec-
trojet. An increase inρ(δH, Ui) observed in our study at
03:00–06:00 MLT was reminiscent of this opposite transi-
tion, however theρ(δH, A) value was still quite substantial
(0.65) so that, overall, it is difficult to conclude whether the
electric-field-dominant region is observed within the west-
ward electrojet on a statistical basis using the EISCAT-
restricted events. One possible reason is that this feature
may only be seen during substorm intervals. However, the
results of Fig.7 based on the extended dataset showed that
conductivity-dominant region is 21:00–06:00 MLT near the
equinoxes and only 02:00–07:00 MLT in summer. Thus the
statistical behaviour near the equinoxes is in agreement with
Kamide and Vickrey(1983).

An extension of the conductivity-driven region into the
late morning up to 09:00 MLT suggested by the present
study is also in rough agreement with the conductivity-
dominant interval of 20:00–08:00 MLT proposed bySugino
et al. (2002). These authors observed two peaks of con-
ductivity dominance: one near midnight and one in the late
morning around 06:00 MLT. This result also agrees well with
our observations that showed a significant drop inρ(δH, Ui)

at 06:00–09:00 MLT. One should note that the positive dif-
ference betweenρ(δH, A) and ρ(δH, Ui) in the 06:00–
09:00 MLT sector becomes even larger if solar contribu-
tion to conductance is taken into account, Fig.6b, so that
the above conclusion that the entire westward electrojet is
conductivity-dominant is not affected.

Figure6a also shows that highρ(δH, A) correlation starts
abruptly at 21:00 MLT, continues through the midnight sec-
tor, and stretches out into the morning sector where it slowly
declines. We believe that this slow decline may be attributed
to the slowly varying absorption (SVA) effect (Stauning,
1996a) as described below. The energetic particle precipi-
tation could easily ionise particles in the upper D- to lower
E-regions to which the Hall conductivity and CNA are most
sensitive. Satellite observations employed byCollis et al.
(1984) showed that the spectrum of drifting electrons hard-
ens with increasing time up to 09:00 MLT, which for the
same particle flux would cause a larger detected CNA and
correlation with the Hall current. The sharp fall inρ(δH, A)

across the 09:00 MLT border is consistent with this idea. The
steady decrease in correlation through the morning sector to
09:00 MLT seems to be inconsistent withCollis et al.(1984),
as one would expect the correlation to increase with the hard-
ening electron spectrum. However, the decline in correlation
with increasing MLT may be related to the eventual deple-
tion of the electron clouds drifting around the Earth east-
ward towards the dayside. This results in more energetic but
less intense precipitation, which would contribute less to the
conductance. Local substorms are also more likely to occur
at 19:00–04:00 MLT, which would enhance the conductance
and hence the current together with the CNA detected by the
IRIS at these times. Substorms thus may account, in part, for
the larger correlation observed at earlier MLT.

Coming back to the seasonal dependence of current-
absorption correlation, Fig.7 revealed that the high corre-
lation region was wider in MLT near the equinoxes than in
summer. This may be simply due to the larger absorption
values during equinoxes (Ranta et al., 1983), which is itself
possibly one of the manifestations of the Russell-McPherron
effect (Russell and McPherron, 1973). However, in this in-
terpretation the correlations should be larger in winter than
in summer as well, which is not seen in Fig.7. Another in-
teresting feature that is difficult to explain is that the corre-
lations are lower near midnight 00:00 MLT and higher near
dawn 06:00 MLT in summer than near equinoxes so that the
high-correlation region is observed at 02:00–07:00 MLT. The
second observation may be related to an increase in particle
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number flux on the dayside and a corresponding increase in
energy flux in summer as compared to winter reported by
Liou et al.(2001) (see their plates 3–5), while the first obser-
vation appears not to have a direct counterpart in low-energy
(<10 keV) particle observations. This suggests that absorp-
tion signatures of the high-energy particles, in particular in
the context of their relationship with auroral currents, are sig-
nificantly different from their low-energy counterparts.

Our observations suggest that, on average, the
conductance- (electric-field-) dominant region is centered at
00:00–03:00 (12:00–15:00) MLT. This result is consistent
with previous statistical studies that found that the west-
ward electrojet centre was generally located post-midnight
(Kamide, 1991). The post-midnight shift was explained by
the DP2 (DP1) current system contributing to the westward
electrojet at 00:00–06:00 MLT (21:00–03:00 MLT) so that
averaging over all events shifts the westward electrojet
center, and hence the conductivity-dominant region centre,
from midnight to the early morning.

In Fig. 6a, a similar shift (towards later MLT) is also ob-
served in the current-velocity correlation which is substan-
tial at 09:00–21:00 MLT. This overall rotation of the electric-
field-dominant region clockwise from the noon-midnight
meridian could be related to the properties of the plasma con-
vection pattern as discussed below. The high-latitude plasma
convection pattern is known to depend strongly on the direc-
tion and magnitude of the IMFBy component (e.g.Heelis,
1984). Statistically,Ruohoniemi and Greenwald(2005) and,
more recently,Haaland et al.(2007) demonstrated the lack
of mirror-symmetry between the effects of positive and neg-
ative IMFBy . Similar results for several events during small
By conditions were also reported byKustov et al.(1998).
The significant shift towards earlier MLT in location of the
“throat” region (where plasma flows into the polar cap) and
the resulting rotation in the convection cells only occurred for
positive (negative) IMFBy in the Northern (Southern) Hemi-
sphere (Haaland et al., 2007). This implies that, on average,
the transition between the westward to eastward convection
electrojet occurs in the late morning sector. The results of
the current study are consistent with these findings, as in our
observations the transition from the conductance- to electric-
field-dominant region also occurred in the late morning, at
09:00 MLT in Fig.6a.

4.2 Auroral absorption and electric field

In Figs. 2e and2f absorption was compared with the ion
velocity over the entire dataset and a negligible correla-
tion found. Although one expects no direct relationship
between absorption (conductance) and plasma convection
speed (electric field), various indirect links have been pro-
posed in the past including the electron heating mechanism
in which absorption may exhibit an increase with the electric
field (see Sect.1). No such increase was seen in Figs.2e,2f,
5, 9. Thus these results indicate that no evidence of electron

heating absorption is observed on a statistical basis in the au-
roral zone. However, an interesting result was that in Fig.8c
some anticorrelation was observed at 12:00–15:00 MLT and
that in Figs.5 (09:00–15:00 MLT) and9, an inverse propor-
tionality was present.

The inverse proportionality between absorption and
plasma velocity found in this study can be explained if a
simple model of the magnetospheric generator is used such
as that proposed byRobinson(1984), based on the work
done byReiff et al. (1981). In the magnetospheric gener-
ator model, the field-aligned currents are assumed to flow
in large sheets that are connected in the ionosphere by Ped-
ersen currents. The field-aligned current integrated across
one sheet,J0, is fixed, but the magnetospheric convection
and the electric field adjust themselves to ionospheric con-
ductance variations. Therefore the Pedersen currents, which
close the circuit in the ionosphere, are limited byJ0, so that
6P E=JP ≤J0. The observed inverse proportionality rela-
tionship between the conductance and electric field can thus
be attributed to this limit on the Pedersen current. If the cur-
rent is limited then any further increase in the electric field
must be associated with a decrease in the Pedersen conduc-
tance and vice versa. Later this limitation was described in
terms of the magnetospheric current generator (or source) as
opposed to the voltage generator in which the electric field
does not change much regardless of conductance changes
(Fujii and Iijima, 1987).

There are two potential problems with this interpretation
though. Firstly, the simple magnetospheric generator model
suggested byRobinson(1984) would not hold in perturbed
current systems such as that observed in the midnight sec-
tor when precipitation is the main contributor to currents and
DP1 systems are in action. Secondly, the magnetic pertur-
bations are mostly representative of the Hall currents, while
CNA correlates best with the Hall conductance (Senior et al.,
2007). However, the time period 12:00–15:00 MLT is away
from the midnight sector and provided that the Pedersen and
Hall currents varied more or less synchronously, the sim-
ple model ofRobinson(1984) can be employed as a pos-
sible explanation of our results. As mentioned, one can cer-
tainly expect the two currents to vary synchronously during
the high correlation periods between the current and elec-
tric field. The data collected in the 09:00–12:00 and 12:00–
15:00 MLT sectors in Fig.5 for the entire dataset also showed
some evidence of inverse proportionality, which suggests that
the especially high correlation between electric fields and the
current may not be necessary. Rather, an electric field control
during the late morning and early afternoon in general, could
be indicative of the magnetospheric generator effect.

Possible cases of electron heating absorption within the
dataset were further investigated by considering the absorp-
tion dependence on the EISCAT alternating code electron
temperature at 111 km above certain MLT-dependent thresh-
old value, Fig.10. Overall, there was no direct relationship
found between the two parameters either near the threshold
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or well above it in any MLT sector. However, a possible in-
verse proportionality relationship could be seen in the data,
which was reminiscent of the relationship between the ab-
sorption and the electric field.

5 Summary and conclusions

The relationship between magnetic perturbations, absorp-
tion, and ion drift velocity was studied, for the first time,
using a temporal correlation analysis technique for differ-
ent MLT sectors. This analysis method was augmented
by an hourly correlation analysis for individual events
which displayed a similar MLT variation of mean and me-
dian hourly correlations. In addition, an extended per-
turbation/absorption dataset was considered with correla-
tions showing a distinct seasonal dependence. This study
demonstrates the strong potential of riometers in studies of
the current-conductance-E-field relationship, particularly in
combination with magnetometers.

The current-electric-field correlation was generally higher
than the current-absorption correlation, which suggests that,
on average, the electric field is more dominant in the control
of the current than conductance. The current-electric-field
correlation was found to be higher on the dayside (09:00–
21:00 MLT). It was maximised in the 12:00–15:00 MLT sec-
tor reaching 0.90, with a sharp increase across the 12:00 MLT
border. The current-absorption correlation was higher on the
nightside (21:00–09;00 MLT) reaching its maximum of 0.76
in the post-midnight sector (00:00–03:00 MLT). This sug-
gests that the conductance is more dominant on the nightside.

The transition from an electric-field-dominant region to
a conductivity-dominant region in the pre-midnight sector
(21:00 MLT) was associated in the past with a transition
from eastward to westward electrojet currents. The results
from the nightside showing predominantly conductivity-
driven current were generally consistent with previous sta-
tistical studies, with some evidence of the opposite transition
observed in the late morning sector near 03:00 MLT, which
was previously observed only for individual events. An ex-
tension of the conductivity-dominant region to 09:00 MLT
with a gradual decrease in the current-absorption correla-
tion was also observed, which was explained as being in
part due to energetic electrons drifting eastward around the
Earth and gradually precipitating in the morning sector. The
analysis of the extended 4-year dataset discovered a dis-
tinct seasonal dependence in the absorption-current rela-
tionship. The region of high current-absorption correlation
was found to be at 21:00–06:00 MLT near the equinoxes,
while in summer it was narrower and rotated towards dawn
02:00–07:00 MLT. The significant asymmetry/rotation of the
electric-field-dominant region with respect to the 00:00–
12:00 MLT meridian found in this study, may be related to
the lack of mirror symmetry between the effects of positive
and negative IMFBy on the plasma convection pattern.

There was no correlation found between absorption and
electric field for the entire dataset. Also, no significant cor-
relation was found for different MLT sectors, during peri-
ods of high correlation between electric fields and current, or
for drift velocities and electron temperatures above the two-
stream instability threshold. Thus no substantial evidence of
electron heating absorption in the auroral zone was found.
However, an inverse proportionality was found between the
absorption and electric field during the high current-E-field
correlation periods and, generally, in the 09:00–15:00 MLT
sector, which was attributed to a limit on the Pedersen cur-
rent imposed by the magnetospheric generator during these
time intervals.

Acknowledgements.This research was supported by the Aus-
tralian Research Council Discovery grant to R. A. M. (project
DP0770366). The Imaging Riometer for Ionospheric Studies (IRIS)
is operated by the Department of Communications Systems at Lan-
caster University (UK) in collaboration with the Sodankylä Geo-
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