
A Multi-protocol Framework for Ad-hoc Service Discovery
Carlos A. Flores-Cortés, Gordon S. Blair, Paul Grace

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
+44 (0)1524 510337

(c.florescortes, gordon, gracep)@comp.lancs.ac.uk

ABSTRACT

Discovering the appropriate services in ad-hoc computing

environments where a great number of devices and software

components collaborate discreetly and provide numerous services

is an important challenge. Service discovery protocols make it

possible for participating nodes in a network to locate and

advertise services with minimum user intervention. However,

because it is not possible to predict at design time which

protocols will be used to advertise services in a given context/

environment, it is now becoming clear that dynamic discovery

mechanisms are required by mobile nodes to cope with the

heterogeneity of discovery platforms. Existing adaptive mobile

middleware solutions such as ReMMoC and INDISS have

investigated this style of dynamic discovery. However, these have

yet to consider the emerging suite of protocols for discovery in

ad-hoc networks. In this paper we present a component-based

service discovery framework for the development of an adaptive

multi-personality service discovery middleware, which will

operate in diverse environments e.g. fixed and ad-hoc networks.

This supports a common architecture for individual discovery

protocols to enhance configurability and re-configurability of the

framework, and minimize resource usage through component re-

use. Finally, to evaluate this framework we investigate the

development of four existing ad-hoc service discovery protocols

using our approach.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Applications.

General Terms

Design.

Keywords

Service discovery, middleware, MANET, mobile computing, ad-
hoc.

1. INTRODUCTION
Service discovery is an important aspect of mobile computing.

The dynamic nature of interactions in mobile environments
requires the resource or service to be found first, as there is no
prior knowledge of what resources are available in the
environment, or what method should be used to communicate
with them. Existing adaptive mobile middleware solutions such as
ReMMoC [5] and INDISS [1] have investigated this style of
dynamic discovery and interaction, particularly focusing on
configuring and using the appropriate discovery protocol to find
services in the current environment. These systems have so far
only considered infrastructure-based wireless networks in which
standardised discovery protocols such as Jini[15], Service
Location Protocol (SLP)[6], and Universal Plug and Play
(UPnP)[17] are utilised. However, there is now emerging a suite
of discovery protocols for mobile ad-hoc networks (MANETs),
which have been developed to deal with the limitations of nodes
in such environments, i.e.: unpredictable network topology,
variable number of participating nodes, different levels of
dynamicity, and nodes with restricted knowledge of their
neighbours. Example protocols are Scalable Service Discovery
(SSD) [14], Group Service Discovery (GSD) [2], ALLIA [12] and
SLP-based [11]. Hence, we argue that a reconfigurable
middleware for service discovery must additionally consider these
protocol types for operation in MANETs.

However, this explosion of discovery protocol heterogeneity
causes difficulties for both the operation and software
development of such middleware. Configuring multiple protocols
at run-time can overload the limited resources of the mobile
device (e.g. memory consumption and network traffic generation),
and a significant effort is involved in the development of
individual discovery protocols. Hence, in this paper we propose a
component framework approach for the development of a
configurable and dynamically reconfigurable multi-personality
discovery middleware for operation in both nomadic and MANET
style operation. For this framework, we identify a common
component architecture that individual discovery protocols
follow. In the deployment phase this provides the following
benefits: i) component re-use by multiple protocols minimizes
resource usage, ii) simplified configuration and dynamic
reconfiguration of multiple concurrent protocols. In the
development phase, our framework promotes code re-use
simplifying the development of new protocols, and allowing them
to easily be plugged into a reconfigurable architecture.

The remainder of the paper is organized as follows. Section 2
presents two ad-hoc scenarios to illustrate service discovery
heterogeneity. Section 3 then discusses the common interaction
pattern present in different ad-hoc Service Discovery Protocols
(SDPs) and our general Service Discovery Framework pattern. To
evaluate our framework we implemented four ad-hoc SDPs;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MPAC ’06, November 27-December 1, 2006 Melbourne, Australia

Copyright 2006 ACM 1-59593-421-9/06/11... $5.00.

section 4 describes the implementation details, and section 5
presents an initial evaluation of our approach. Section 6 then
analyses related work in the field of service discovery
middleware. Finally, section 7 concludes the paper and discusses
our future work in this area

2. AD-HOC SCENARIO
In this section we present two scenarios to provide a motivation
for our work. In our first scenario two different taxi companies in
a city offer their services using a MANET based dispatch system
for communication, as in [7]. Ad-hoc terminals have also been
installed in the main city tourist areas to offer tourist information
e.g. restaurants in the area, hotels, maps, museums, etc. Other
companies have also installed their own ad-hoc servers providing
a variety of services e.g. news about weather or traffic conditions,
etc. These services are advertised and can be discovered via the
ad-hoc network using different SDPs. For example the taxi
company A is using GSD to advertise its services whereas
company B is using ALLIA; the tourist office is using SSD for
weather services, and traffic conditions are advertised using SLP-
B. Tourists equipped with ad-hoc devices can send a direct job
request to the nearest taxi, also taxi drivers can receive news about
weather and traffic conditions.

The second scenario is an E-learning scenario [8], where
different information services can be accessed by students using
an ad-hoc network. In this example a student is preparing for her
final exam. The student is working on her PDA on the patio of a
coffee shop on the campus. Before leaving her home, the student
has downloaded the PowerPoint slides related to her exam topic
onto her PDA. After working through a few slides, she comes
across an annotation referring to a paper that provides more
details of a specific aspect. Using her PDA she tries to locate the
paper somewhere and download it. To do so, her PDA joins to
other nearby computers forming an ad-hoc network. Users of
some of these computers have similar interests as her and might
thus be able to provide the requested information. Fortunately, she
has found another computer that not only has the requested paper,
but also, has granted her permission to download it. However, the
paper is in postscript format, which her PDA is not able to
display. Therefore, she tries to locate a conversion service that
transforms the paper into a PDF file. Because her PDA battery is
low, she decides to print the paper. Finally, she prints out the
paper using the library printer which was located using her PDA.
Notably, several services are used in this e-learning environment
e.g. files repository, file format conversion, printer, etc., and the
dynamic nature of interaction means the discovery protocols
advertising the services cannot be predicted in advance; in this
case a number of different SDPs are used for advertising services.

We argue that fixed middleware offering fixed discovery

protocols cannot support these application types. To develop
applications for these scenarios middleware platforms should have
the following requirements: i) discover services using different
ad-hoc protocols, ii) discover services in diverse scenarios and
environmental conditions; iii) provide efficient mechanisms to
interact with different SDPs simultaneously (i.e. configurability,
dynamic re-configurability), and iv) have low performance
overhead in terms of resource usage of the device, and network
bandwidth consumption.

3. SERVICE DISCOVERY FRAMEWORK

3.1 Ad-hoc Service Discovery Protocols
Existing SDPs like Jini, UPNP and SLP have been developed to
advertise and discover services over infrastructure-based wired
networks. However, these approaches are not suitable for
MANETs environments, firstly because many of them require
central directories, and secondly because these solutions were
designed without considering the resource constraints typical in
wireless networks, therefore they make extensive use of multicast
or broadcast transmissions which are almost costless in wired
networks but are power hungry in wireless networks. As a result, a
suite of SDPs for MANETs has emerged.

Therefore, the design of our framework is formed from the
analysis of these existing ad-hoc protocols, where we have found
common patterns of interaction among them; these are discussed
in detail through this section. Firstly, as a common feature, it was
observed that in order to reduce traffic overhead and provide
scalable solutions, these protocols group participating nodes in
vicinities. Such vicinities are determined by the number of hops
(diameter) that a message (i.e. advertisement, request, etc) can
reach. To describe their general interaction pattern ad-hoc SDPs
can be divided into two groups [3], SDPs that utilize dynamic
directories and SDPs that do not.

Figure 1. Interaction pattern of SDPs with dynamic

directories.

3.1.1 SDPs with dynamic directories
In this group three different agent types interact to advertise and
locate services: i) the User agent (UA) which performs service
discovery on behalf of the clients, ii) the Service agent (SA)
which represents and advertise services, and iii) the Directory
agent (DA) which collects service advertisements and responds to
service discovery queries. In contrast with central directories of
fixed solutions, ad-hoc directories do not require pre-defined
infrastructure and are deployed dynamically as in [14] and [9].
Starting on the right of figure 1, initially DAs (1) advertise their
presence by sending multicast messages to nodes in their vicinity;
since DAs are deployed dynamically more than one DA could be
present in the same vicinity. Then, SAs register their services with
DAs by sending unicast messages to them (2,3). UAs interested in
locating a service send unicast requests to the DAs (4). DAs
match requested service descriptions against descriptions that
have been collected from nodes in the vicinity (5). Finally, if a
service was found a unicast reply is sent to requesting UA (6).

3.1.2 Directory-less SDPs
As illustrated in figure 2, the interaction pattern of these protocols
is very similar to the interaction pattern described for the former
group. Notice that even when centralized DA(s) are not required
by these protocols, a local DA is present on each node. Hence, to
advertise and locate services, SAs (1) advertise their services by
sending multicast messages to all nodes in their vicinity (push-
based mode), although some protocols could opt for a pull-based
approach as in [11]. Local DAs are responsible for maintaining a
record of service advertisements from neighbouring nodes (2). So
as to locate services DAs will first perform a search on its local
cache (3). If a match was not found a multicast service request is
sent to neighbouring nodes (4). Finally neighbouring nodes
hosting requested service description send a unicast reply to the
requesting node (5).

Figure 2. Interaction pattern of directory-less SDPs.

3.2 Service Discovery Architecture
Based upon the common interaction pattern described in the
previous section, we are proposing a component framework [16]
approach for the development of a configurable and dynamically
reconfigurable multi-personality service discovery middleware.
To provide support for the UA, SA and DA functionality, six
components were designed in our framework architecture. These
components and their relationships are shown in figure 3 and then
individually discussed in the following sections.

3.2.1 The Advertiser component (Service Agent)
This component is responsible for advertising hosted service
descriptions to neighboring nodes. Service descriptions are stored
in the local cache and a variety of policies can be utilized to adjust
the advertisement’s frequency. Advertisements can be sent in a
unicast or multicast mode using the network component.

3.2.2 The Request component (User Agent)
The request component is used by applications to send and
process service requests. This component is also responsible for
matching requested service descriptions with descriptions stored
in the local cache. On a positive match, a reply message is sent to
the requesting node using the reply component. Also, it is
possible to define a policy to forward service requests to
neighboring nodes when a requested service was not found.
Although in the interaction pattern described before, the matching
process is handled by the DA, we decided to integrate this

functionality to this component since the matching process is
executed after the reception of a service request which is handled
by this component.

Figure 3. The core service discovery framework architecture.

3.2.3 The Reply component
The DA functionality was divided into two components: the
cache and reply components. The reply component generates and
sends service replies to requesting nodes when a positive service
match is found by the request component. Moreover, if a service
reply is received, an event notification is sent to the local
application.

3.2.4 The Cache component
The primary function of the cache component is to manage
temporary information required by protocols to work accurately.
Key messages received and sent by nodes are stored in this cache
component as entries. Different types of messages are stored as
different entry types. Some protocols e.g. SSD, Allia, GSD,
require to store service advertisements in the cache component
with the aim of maintaining an updated directory of services
available in its vicinity. Similarly other protocols like SLP-B store
service requests and replies in the cache with the objective of
automatically retransmitting to maintain an updated view of
services available in their local domain. Also, protocols like GSD
require maintaining a reverse route table for sending back replies
to service requests. This reverse route table can also be defined as
a cache entry and handled by the cache component.

Therefore, the cache component is used by the advertiser, request
and reply components to store, update, replace, delete and retrieve
entry values. Most entries are deleted automatically by the cache
component after a determined TTL (specified on each entry),
unless an update or replace message is received in advance. Also,
cache entries can be deleted at any moment from components
connected to it.

3.2.5 The Policies component
Most MANET SDPs define policies that take into consideration:
user preferences, application needs and/or inclusive context
requirements. Bandwidth overhead, expected number and
mobility of participating nodes, and node capabilities are some of
the issues important to consider when defining these policies.
Policies that users define and applications require include but are
not limited to: i) caching preferences, like refresh rate, activation,

size etc. ii) advertisement preferences e.g. time to live, vicinity
diameter, frequency etc. iii) directory preferences, like

advertisement period, type of activation, etc. and iv) forwarding
preferences e.g. no forwarding, just process, or process and
forward of incoming messages. This component provides
functionality for: loading policies from a specified XML file;
applying policies to components connected to it and changing
policy values according to user preferences, application needs or
context requirements.

3.2.6 The Network component
The network component is responsible for providing network
level communication to components connected to it. Through this
component different routing schemes e.g. unicast, multicast,
bordercast, and ad-hoc routing can be provided.

4. IMPLEMENTATION ISSUES
We have evaluated our framework by implementing the GSD,
SSD, ALLIA and SLP-B protocols. Our implementations were
based on [2],[14],[12] and [11] respectively. For our
implementations we used OpenCOM [4] as the underlying
component technology. Because the policies, cache and network
component required the same functionality in all protocols, they
were implemented once as generic components. Hence, these
components are capable to provide simultaneous support to
multiple components connected to them (figure 4). However, even
though the advertiser, request and reply component also follow
similar patterns of interactions individual implementations were
required for each protocol.

In our framework, the advertiser component is not only
responsible for handling service description advertisements but
also for managing other additional protocol messages. For
instance, SSD protocol includes a set of messages required for the
directory election process and ALLIA utilizes a heartbeat message
to notify to nodes in the vicinity the presence of a platform.
Therefore, since different protocols use different types of
messages, different implementations were required for each
protocol.

In all cases the request component is responsible for sending and
handling incoming service requests. When a service request is
received a matching process is executed. However, SDPs use
different languages to describe their services. Also, service
descriptions are not always only matched against local service
descriptions, but also additional information is considered for
matching a service. For instance, GSD describe its services using
an ontology based on the DARPA Agent Markup Language
(DAML+OIL) and services are matched based on service groups,
whereas SSD uses WSDL to describe its services and service
descriptions are not only matched against service descriptions in
the local cache but also against other directories’ summaries.
Besides, in some cases additional processes should also be
handled by this component. For instance GSD maintains a
Reverse-Route table that is used to send a service reply back to
the source of the request. This table must be updated every time
that a service request is received.

Similarly to the reply component, specific processes must be
executed in some protocols when a reply is received or sent. For
instance, ALLIA maintains hit-rate statistics of successful service

requests; therefore intermediate nodes update their statistics when
a service reply is forwarded.

However, even though some components were implemented
individually for each protocol, the same type of components was
used in all implementations and all components have the same
type and number of interfaces and receptacles for their bindings.
This allows them to be plugged in easily into the framework. For
example, a configuration of the multi-personality service
discovery framework with all four protocols we implemented is
shown in figure 4.

Figure 4. Multi-personality discovery configuration.

5. EVALUATION
A first benefit of our framework implementations comes from the
ability to easily configure a middleware platform to provide
support to different discovery protocols simultaneously. Having
protocol implementations with common component architecture
simplifies the configuration process since the component types
and connection bindings remain the same for any protocol
implementation. Therefore a common algorithm can be used to
configure any personality (i.e. single, multiple protocols). A
typical configuration process requires a base of three components
(i.e. policies, cache and network), plus three protocol based
components (i.e. advertiser, request and reply) for each supported
protocol to be configured.

Re-configurability is another benefit of our framework. Fine-
grained changes can be made to support environmental context
changes. For instance, the network component that is supporting
N discovery protocols can be replaced by a new component with a
different routing scheme; this is simple single component
replacement algorithm. Also, individual protocols can be changed
in a fine-grained manner using simple re-configuration algorithms
because of the well known configuration pattern e.g. a protocol’s
advertiser component can be extended with richer descriptions.

Furthermore, our framework approach supports re-use of
components; components are re-used at development and
deployment time, this simplifies the development effort and time,
reduces resource use, and enhances configurability. In our
implementations the policies, cache and network components
were reused. Additionally, we have found that component
implementations for different protocols have similar interaction

patterns; hence we were able to re-use internal component
algorithms from one discovery protocol to another.

Finally, we analyzed the overhead of our framework by measuring
the size of the Java classes (that made up the component
configurations) loaded into memory. These measures are
illustrated in figure 5; these show the cost of each individual
protocol in the framework. Then we measure the cost when
multiple protocols are configured. We compare these measures
against the side-by-side measurement of individual protocols (not
configured in the framework). It can be seen that resource usage is
reduced (due to component re-use), and that the overhead of a
multiple protocol personality is not restrictive for resource-poor
mobile devices.

Figure 5. Size of framework personalities

6. RELATED RESEARCH
In the last years, a number of middleware approaches that deal
with service discovery heterogeneity have emerged. ReMMoC is a
configurable and reconfigurable reflective middleware that
interoperates with heterogeneous services in mobile environments
by dynamically adapting both its binding and discovery protocol.
ReMMoC consists of two component frameworks: (1) a binding
framework that allows the interaction between services by
plugging-in different binding type implementations e.g. IIOP
client, publisher, SOAP client, etc., and (2) a service discovery
framework which can be configured to use different service
discovery protocols in order to discover services advertised by
those protocols. To tackle heterogeneity of protocols, the service
discovery framework continuously checks the environment,
identifying discovery protocols currently in use and different
discovery personalities are configured based on the discovery
protocols present in the environment. However the service
discovery framework was not designed to support ad-hoc SDPs.
Our approach is also more configurable and re-configurable than
ReMMoC; the common framework pattern of protocol
implementations supports fine-grained configuration and
reconfiguration of discovery protocol behaviour, and component
re-use reduces the resource usage.

INDISS is another service discovery middleware designed to
provide service discovery interoperability in highly dynamic
networked home environments. To achieve SDP interoperability a
set of parsers and composers dedicated to different SDPs must be
embedded into the system. INDISS decouples components from
protocols based on event-based parsing techniques. To do so, a set
of events were identified based on conceptual similarities among
SDPs. Therefore, because communication between parsers and
composers does not depend on any syntactic detail of any protocol
a parser from a determined protocol can communicate with

composers from any other protocol and vice versa. Protocol
translation is useful when interoperability between different
protocols is required. However, there is unlikely to be a direct
mapping between the functionality provided and required in
heterogeneous discovery applications e.g. a UPnP application
requiring service status notifications, cannot receive these from an
SLP-b advertised, ad-hoc service. In addition, in ad-hoc
environments the placement of bridges cannot be controlled.
Therefore, we argue a configurable and re-configurable multi-
protocol personality is better placed to integrate into the operation
of ad-hoc applications.

Finally, uMiddle [10] and MSDA [13] both investigate bridging
mechanisms to support service discovery interoperability across
different communication middleware and network domains.
Again, these do not consider all types of ad-hoc discovery
protocols, and the bridging solutions place requirements on
network infrastructure that cannot be guaranteed in all ad-hoc
operating conditions.

7. CONCLUSIONS AND FUTURE WORK
This paper has introduced a component-based service discovery
framework for the development of an adaptive multi-personality
service discovery middleware in ad-hoc environments. We have
also presented a common component pattern for the development
of protocols to be plugged into the framework; this pattern is
based upon common patterns within existing ad-hoc SDPs. The
evaluation of our framework was based around the
implementation of four ad-hoc SDPs using our common pattern,
and then plugging them into the framework. We have shown that
this approach enhances configurability and re-configurability,
minimizes resource usage through component re-use, and
additionally simplifies the development of new protocols by
promoting code reuse.

Future work includes the development of a more fine-grained
architecture to increase code re-usability and configurability. For
instance, by identifying the commonalities present in the
advertiser, request and reply component, new components can be
created. For instance, a component responsible for managing
directory messages could be created to separate service
description advertisements from directory messages in the
advertiser component. Also a component capable to handle
service descriptions from different protocols could be useful to
have a more dynamic request component capable for matching
service descriptions from different protocols using a variety of
matching algorithms. Furthermore, is necessary to investigate
efficient mechanisms that allow our framework identify ad-hoc
SDPs present in the environment. Also, we envisage resource
optimisation e.g. bandwidth by integrating ad-hoc protocols to
existing routing protocols for MANETs.

We also wish to extend our approach further to consider all
network types, and then evaluate our architecture with other
diverse discovery protocols including: Bluetooth, SLP, UPnP,
UDDI, JXTA, and other peer-to-peer resource discovery
technologies. Finally, we foresee the development of a
configurable and re-configurable middleware to provide service
discovery interoperability across different network styles e.g.
integrating discovery across fixed and ad-hoc network types.

8. REFERENCES
[1] Bromberg, Y.D., and Issarny, V. INDISS: Interoperable

Discovery System for Networked Services. In Proceedings of

Middleware 2005. Grenoble France November 2005.

[2] Chakraborty, D. Joshi, A., Finin, T., and Yesha, Y. GSD: A
Novel Group-based Service Discovery Protocol for
MANETs. In Proceedings of the 4th IEEE MWCN.
Stockholm, Sweden, September 2002.

[3] Cho, C., and Lee, D. Survey of Service Discovery
Architectures for Mobile Ad hoc Networks. Term paper,
Mobile Computing, CEN 5531, Department of Computer
and Information Science and Engineering (CICE), University
of Florida, Fall, 2005.
http://www.cise.ufl.edu/class/cen5531fa05/, October, 2006.

[4] Clarke, M., Blair, G.S., Coulson, G., and Parlavantzas, N. An
Efficient Component Model for the Construction of Adaptive
Middleware. In Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms and Open

Distributed Processing (Middleware). Heidelberg, Germany,
November 2001.

[5] Grace, P., Blair, G.S., and Samuel, S. ReMMoC: A
Reflective Middleware to support Mobile Client
Interoperability. In Proceedings of International Symposium

on Distributed Objects and Applications (DOA). Sicily, Italy.
November 2003.

[6] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service
Location Protocol, Version 2, RFC 2608 (Proposed
Standard). June 1999.

[7] Huang, E., Hu, W., Crowcroft, J., and Wassell, J. Towards
Commercial Mobile Ad Hoc Network Applications: A Radio
Dispatch System. In Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and

computing. Illinois, USA, May 2005.

[8] Konig-Ries, B., and Klein, M. Information Services to
Support E-Learning in Ad-hoc Networks. In Proceedings of

1st. International Workshop on Wireless Information

Systems (WIS). Ciudad Real, Spain, April 2002

[9] Kozat, U.C., Tassiulas, L. Service discovery in mobile ad
hoc networks: an overall perspective on architectural choices
and network layer support issues. In AdHoc Networks

Journal, Vol. 2, No. 1, pp. 23-44, 2004, ELSEVIER.

[10] Nakazawa, J., Tokuda, H., Edwards, W.K., and
Ramachandran, U. A Bridging Framework for Universal
Interoperability in Pervasive Systems. In Proceedings of the

26th International Conference on Distributed Computing

Systems (ICDCS’06). Lisboa, Portugal. July 2006.

[11] Penz, S. SLP-based Service Management for Dynamic Ad-
hoc Networks. In Proceedings of the 3rd International

Workshop on MPAC, Grenoble, France, November 2005.

[12] Ratsimor, O., Chakraborty, D., Joshi, A., and Finin, T. Allia:
Alliance based service discovery for ad-hoc environments. In
Proceedings of the 2nd international Workshop on Mobile

Commerce. Atlanta, Georgia, USA, September, 2002.

[13] Raverdy, P., Rive, O., de La Chapelle, A., Chibout, R., and
Issarny, V. Efficient Context-aware Service Discovery in
Multi-Protocol Pervasive Environments. In Proceedings of

the 7th International Conference on Mobile Data

Management (MDM'06). Nara, Japan. May 2006.

[14] Sailhan, F., and Issarny, V. Scalable Service Discovery for
MANET. In Proceedings of the 3rd IEEE PerCom. Kauai
Island, USA, March 2005.

[15] Sun Microsystems. JINITM Architecture Specification.
Version 2.0, June 2003.

[16] Szyperski, C. Component Software: Beyond Object-Oriented

Programming, Ad-dison Wesley, December 1997.

[17] UPnP Forum. UPnPTM Device Architecture. Version 1.0,
June 2000.

