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Abstract
Homeless youth are prone to Human Immunodeficiency
Virus (HIV) due to their engagement in high risk be-
havior such as unprotected sex, sex under influence of
drugs, etc. Many non-profit agencies conduct interven-
tions to educate and train a select group of homeless
youth about HIV prevention and treatment practices and
rely on word-of-mouth spread of information through
their social network. Previous work in strategic se-
lection of intervention participants does not handle un-
certainties in the social network’s structure and evolv-
ing network state, potentially causing significant short-
comings in spread of information. Thus, we developed
PSINET, a decision support system to aid the agencies
in this task. PSINET includes the following key nov-
elties: (i) it handles uncertainties in network structure
and evolving network state; (ii) it addresses these uncer-
tainties by using POMDPs in influence maximization;
and (iii) it provides algorithmic advances to allow high
quality approximate solutions for such POMDPs. Sim-
ulations show that PSINET achieves∼60% more infor-
mation spread over the current state-of-the-art. PSINET
was developed in collaboration with My Friend’s Place
(a drop-in agency serving homeless youth in Los Ange-
les) and is currently being reviewed by their officials.

1 Introduction
Homelessness affects ∼2 million youths in USA annually,
11% of whom are HIV positive, which is 10 times the rate
of infection in the general population (Aidala and Sumar-
tojo 2007). Peer-led HIV prevention programs such as Pop-
ular Opinion Leader (POL) (Kelly et al. 1997) try to spread
HIV prevention information through network ties and rec-
ommend selecting intervention participants based on De-
gree Centrality (i.e., highest degree nodes first). Such peer-
led programs are highly desirable to agencies working with
homeless youth as these youth are often disengaged from
traditional health care settings and are distrustful of adults
(Rice and Rhoades 2013; Rice 2010).

Agencies working with homeless youth prefer a series of
small size interventions deployed sequentially as they have
limited manpower to direct towards these programs. This
fact, along with emotional and behavioral problems of youth
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makes managing groups of more than 5-6 youth at a time
very difficult (Rice et al. 2012b). Strategically choosing in-
tervention participants is important so that information per-
colates through their social network in the most efficient
way.

The purpose of this paper is to introduce PSINET
(POMDP based Social Interventions in Networks for
Enhanced HIV Treatment), a novel Partially Observable
Markov Decision Process (POMDP) based system which
chooses the participants of successive interventions in a so-
cial network. The key novelty of our work is a unique com-
bination of POMDPs and influence maximization to han-
dle uncertainties about: (i) friendships between people in
the social network; and (ii) evolution of the network state
in between two successive interventions. Traditionally, in-
fluence maximization has not dealt with these uncertainties,
which greatly complicates the process of choosing interven-
tion participants. Moreover, this problem is a very good fit
for POMDPs as: (i) we conduct several interventions se-
quentially, similar to sequential actions taken in a POMDP;
and (ii) we must handle uncertainty over network structure
and evolving state, similar to partial observability over states
in a POMDP.

However, there are scalability issues that must be ad-
dressed. Unfortunately, our POMDP’s state (2300 states) and
action spaces (

(
150
10

)
actions) are beyond the reach of current

state-of-the-art POMDP solvers and algorithms. To address
this scale-up challenge, PSINET provides a novel on-line
approximation algorithm, that relies on the following key
ideas: (i) compact representation of transition probabilities
to manage the intractable state and action spaces; (ii) com-
bination of QMDP heuristic (a well known offline approxi-
mate solver) with Monte-Carlo simulations to avoid exhaus-
tive search of the entire belief space; and (iii) voting on mul-
tiple POMDP solutions, each of which efficiently searches a
portion of the solution state space to improve accuracy. Each
such POMDP solution (which votes for the final solution) is
a decomposition of the original problem into a simpler prob-
lem. Thus, PSINET efficiently searches the combinatorial
state and action spaces based on several heuristics in order
to come up with good solutions.

Our work is done in collaboration with My Friend’s Place



(MFP)1, a non-profit agency assisting Los Angeles’s home-
less youth to build self-sufficient lives by providing educa-
tion and support to reduce high-risk behavior. Our collabora-
tors conducted extensive interviews with homeless youth at
My Friend’s Place to ascertain the structure of their friend-
ship based social network. Figure 1 shows some of the
homeless youth at My Friend’s Place while Figure 2 shows
the team of My Friend’s Place. Figure 3 shows a social circus
program called Cirque du Monde, one of the ways in which
My Friend’s Place intervenes with “at-risk” youth. There-
fore, we evaluate PSINET on real social networks of youth
attending this agency. This work is being reviewed by offi-
cials at My Friend’s Place towards final deployment.

Figure 1: Homeless youth at My Friend’s Place

Figure 2: My Friend’s Place team along with a co-author

2 Related work
There are three primary areas of related work that we dis-
cuss in this section. First, we discuss work in the field of in-
fluence maximization, which was first explored by Kempe,
Kleinberg, and Tardos (2003), who provided a constant-
ratio approximation algorithm to find ‘seed’ sets of nodes

1See http://myfriendsplace.org/

Figure 3: Cirque du Monde: A social circus program at My
Friend’s Place for intervening with “at-risk” youth

to optimally spread influence in a graph. This was fol-
lowed by many speed up techniques (Leskovec et al. 2007;
Kimura and Saito 2006; Chen, Wang, and Wang 2010). All
these algorithms assume no uncertainty in the network struc-
ture and select a single seed set. In contrast, we select sev-
eral seed sets sequentially in our work to select interven-
tion participants. Also, our problem takes into account un-
certainty about the network structure and evolving network
state. Golovin and Krause (2011) introduced adaptive sub-
modularity and discussed adaptive sequential selection (sim-
ilar to our work) in viral marketing. However, unlike our
work, they assume no uncertainty in network structure and
state evolution.

Another field of related work involves two (or more) play-
ers trying to spread their own ‘competing’ influence in the
network (broadly called influence blocking maximization,
or IBM). Some research exists on IBM where all players try
to maximize their own influence spread in the network, in-
stead of limiting others’ (Bharathi, Kempe, and Salek 2007;
Kostka, Oswald, and Wattenhofer 2008; Borodin, Filmus,
and Oren 2010). Tsai, Nguyen, and Tambe (2012) try to
model IBM as a game theoretic problem and provide scale
up techniques to solve large games. Just like our work, Tsai
et al. (2013) consider uncertainty in network structure. How-
ever, Tsai et al. (2013) do not consider sequential planning
(which is essential in our domain) and thus, their methods
are not reusable in our domain.

The final field of related work is planning for reward/cost
optimization. In POMDP literature, a lot of work has been
done on offline planning; some notable offline planners in-
clude GAPMIN (Poupart, Kim, and Kim 2011) and Sym-
bolic Perseus (Spaan and Vlassis 2005). However, since it
has been suggested that online planners are able to scale
up better (Paquet, Tobin, and Chaib-Draa 2005), we fo-
cus on online POMDP planners in this paper. For online
planning, we mainly focus on the literature on Monte-
Carlo (MC) sampling based online POMDP solvers since
this approach allows significant scale-ups. Silver and Ve-
ness (2010) proposed the Partially Observable Monte Carlo
Planning (POMCP) algorithm that uses Monte-Carlo tree
search in online planning. Also, Somani et al. (2013) present
the DESPOT algorithm, that improves the worst case perfor-



mance of POMCP. Bai et al. (2014) used Thompson sam-
pling to intelligently trade-off between exploration and ex-
ploitation in their D2NG− POMCP algorithm. These al-
gorithms maintain a search tree for all sampled histories
to find the best actions, which may lead to better solution
qualities, but it makes these techniques less scalable (as we
show in our experiments). Therefore, our algorithm does
not maintain a search tree and uses the QMDP heuristic
(Littman, Cassandra, and Kaelbling 1995) to find best ac-
tions.

Others have also looked at planning/scheduling problems
for optimization. Just like our work, Burns et al. (2012) sam-
ple possible futures to find optimal plans. However, while
they consider online continual planning problems (i.e., prob-
lems in which additional goals arrive during execution of
previous goals), we have fixed goals and uncertain obser-
vations in our problem. Also, Siddiqui and Haslum (2013)
and Asai and Fukunaga (2014) use ideas of decomposition
of planning problems into simpler problems in order to im-
prove efficiency (similar to our work, but they do not handle
POMDPs).

3 Our Approach
Partially Observable Markov Decision Processes (POMDPs)
are a well studied model for sequential decision making
under uncertainty (Puterman 2009). Intuitively, POMDPs
model situations wherein an agent tries to maximize its ex-
pected long term rewards by taking various actions, while
operating in an environment (which could exist in one of
several states at any given point in time) which reveals itself
in the form of various observations. The key point is that
the exact state of the world is not known to the agent and
thus, these actions have to be chosen by reasoning about the
agent’s probabilistic beliefs (belief state). The agent, thus,
takes an action (based on its current belief), and the envi-
ronment transitions to a new world state. However, informa-
tion about this new world state is only partially revealed to
the agent through observations that it gets upon reaching the
new world state. Hence, based on the agent’s current belief
state, the action that it took in that belief state, and the ob-
servation that it received, the agent updates its belief state.
The entire process repeats several times until the environ-
ment reaches a terminal state (according to the agent’s belief
state). More formally, a POMDP is a tuple ℘ given by:

℘ = 〈S,A,O,T,Ω,R〉 (1)

where the various symbols are defined as follows:

• S := Set of possible world states,

• A := Set of possible actions,

• O := Set of possible observations,

• T (s, a, s′) := Transition probability of reaching s′ from
s, upon taking action a,

• Ω(o, a, s′) := Observation probability of observing o,
upon taking action a and reaching state s′

• R(s, a) := Reward of taking action a in state s

A POMDP policy Π maps every possible belief state β
(which is a probability distribution over world states) to an
action a = Π(β). Our aim is to find an optimal policy Π∗

which, given an initial belief β0, maximizes the expected cu-
mulative long term reward over H horizons (where the agent
takes an action and gets a reward in each time step until the
horizon H is reached). Computing optimal policies offline
for finite horizon POMDPs is PSPACE-Complete. Thus, fo-
cus has recently turned towards online algorithms, which
only find the best action for the current belief state (Paquet,
Tobin, and Chaib-Draa 2005; Silver and Veness 2010). Thus,
online planning interleaves planning and execution at every
time step.

POMDP Model of our Domain
In describing our model, we first outline the homeless youth
social network and then map it onto our POMDP. The social
network of homeless youth is a directed graph G = (V,E)
with |V| = n. Every v ∈ V represents a homeless youth,
and every {e = (B,C)|B,C ∈ V} ∈ E represents that
youthB has nominated (listed) youthC in their social circle.

Further, E = Ec ∪ Eu, where Ec(|Ec| = l) is the set of
certain edges, i.e., friendships which we are certain about.
Conversely, Eu(|Eu| = m) is the set of uncertain edges,
i.e., friendships which we are uncertain about. For exam-
ple, youth may describe their friends “vaguely”, which is
not enough for accurate identification (Rice et al. 2012b;
2012a). In this case, there would be uncertain edges from
the youth to each of his “suspected” friends.

Figure 4: A sample 6 node uncertain graph

Each uncertain edge (e ∈ Eu) exists with an existence
probability u(e), the exact value of which is determined
from domain experts. For example, if it is uncertain whether
node B is node A’s friend, then u(A,B) = 0.5 implies that B
is A’s friend with a 0.5 chance. Accounting for these uncer-
tain edges is important as our node selection might depend
heavily on whether these edges exist with certainty or not.
We call this graph G an “uncertain graph” henceforth. Fig-
ure 4 shows an uncertain graph on 6 nodes (A to F) and 7
edges. The dashed and solid edges represent uncertain (edge
numbers 1, 4, 5 and 7) and certain (edge numbers 2, 3 and
6) edges, respectively.

In our work, we use the independent cascade model, a
well studied influence propagation model (Kimura and Saito
2006). In this model, every node v ∈ V has an h-value,
where h : V → {0, 1}. h(v) = 1 and 0 determines whether



a node is influenced or not, respectively. Nodes only change
their h-value (from 0 to 1) once, when they get influenced.
Once a node gets influenced, it cannot go back to being un-
influenced. If node v ∈ V gets influenced at time step t,
it influences each of its 1-hop uninfluenced neighbors with
a propagation probability p(e) ∀e ∈ E for all future time
steps. Moreover, every edge e ∈ Eu has an f-value (which
represents a sampled instance of u(e) and is unknown apri-
ori), where f : Eu → {0, 1}. f(e) = 1 and 0 determines
whether the uncertain edge exists with certainty in the real
graph (i.e., the youth at the end of that uncertain edge are
actually friends) or not (i.e., the youth at the end of that un-
certain edge are not friends), respectively. For e ∈ Eu, the
influence probability (given by p(e)×u(e)) is contingent on
the edge’s actual existence.

Note that eliminating all uncertain edges by replacing
them with certain edges which propagate influence with
probability p(e) × u(e) is not possible. This is because, in
our model, when we pick nodes, we resolve uncertainty in
their neighboring edges (explained later), so the probability
would change from p(e)× u(e) to either p(e) or 0 (depend-
ing on whether we found out that the uncertain edge exists
or it does not). If the probability changes to p(e), then in-
fluence will spread along this edge with probability p(e) for
all future time steps. Otherwise, if the probability changes to
0, no influence will spread in future time steps. Due to this
changing probability value, we cannot apply the transforma-
tion of replacing uncertain edges.

Recall that we need a policy for selecting nodes for suc-
cessive interventions in order to maximize the influence
spread in the network. Nodes selected for interventions are
assumed to be influenced (h(v) = 1) post-intervention with
certainty. However, there is uncertainty in how the h-value
of the unselected nodes changes in between successive in-
terventions. For example, in Figure 4, if we choose nodes
B and D for the 1st intervention, we are uncertain whether
nodes C and E (adjacent to nodes B and D) are influenced
before nodes for the 2nd intervention are chosen. We now
provide a POMDP mapping onto our problem.

States A state consists of the state of the nodes (i.e.,
whether they are influenced or not), along with the state of
the uncertain edges (i.e., whether they exist or not). The state
of the nodes is given by their h-values and the state of the
uncertain edges is given by their f-values. Our POMDP has
2n+m states.

Actions Every subset of k nodes (k is the number of nodes
selected per intervention) is a POMDP action. For example,
in Figure 4, one possible action is {A,B} (assuming k = 2).
Our POMDP has

(
n
k

)
actions.

Observations Previous studies such as Rice et al. (2012b)
show that homeless youth are found to be more willing to
discuss their social ties in presence of outreach workers in
an intervention. Therefore, we assume that we can “observe”
the f-values of uncertain edges outgoing from the nodes cho-
sen in an action. This translates to asking intervention par-
ticipants about their 1-hop social circles, which is within the
agency’s capacity. For example, by taking action {B,C} in

Figure 4, the f-values of edge 4 and 5 (i.e., uncertain edges
in the 1-hop social circle of nodes B and C) would be ob-
served. Consider Θ(α) = {e | e = (B,C) s.t. B ∈ α ∧ e ∈
Eu} ∀α ∈ A, which represents the ordered tuple of uncer-
tain edges that are observed when the agency takes actionα.
Then, our POMDP observation upon taking action α is de-
fined as o(α) = 〈f(e1), f(e2), ..., f(ei)〉 ∀ei ∈ Θ(α), i.e.,
the f-values of the observed uncertain edges. The number of
possible POMDP observations is exponential in Θ.

Transition Probabilities Consider states s = 〈H,F 〉 and
s′ = 〈H ′, F ′〉 and action α ∈ A. In order for T (s,α, s′)
to be non-zero, we require the following three conditions to
hold:

F ′[i] = F [i] ∀ i s.t. ei /∈ Θ(α) (2)

H ′[i] = H[i] ∀ i s.t H[i] = 1 (3)

H ′[i] = 1 ∀ i s.t. vi ∈ α (4)
If any of the conditions (2), (3) or (4) is not true, then

T (s,α, s′) = 0. Intuitively, equation 2 means that all un-
certain edges which were not observed will not change their
f-values. Equations 3 and 4 mean that all nodes which were
already influenced in the previous state, along with all nodes
that we influence as a result of action α will remain influ-
enced in the final state. If they don’t remain influenced in
the final state, then that final state cannot be reached (as in-
fluenced nodes cannot go back to being uninfluenced). For
the cases where these conditions hold, we provide a heuris-
tic method to calculate transition probabilities in the next
section (as accurate calculation needs to consider all possi-
ble paths in a graph through which influence could spread,
which is O(n!) in the worst case).

Transition Probability Heuristic In this section, we ex-
plain our transition probability heuristic that we use for es-
timating our POMDP’s transition probability matrix. Essen-
tially, we need to come up with a way of finding out the
final state of the network (probabilistically) prior to the be-
ginning of the next intervention round. Prior to achieving the
final state, the network evolves in a pre-decided number of
time-steps. Each time step corresponds to a period in which
friends can talk to their friends. Therefore, a time step value
of 3 implies allowing for friends at 3 hops distance to be
influenced.

However, we make an important assumption that we
describe next. Consider 2 different chains of length four
(nodes) as shown in Figure 5. In Chain 1, only the node
at the head of the chain is influenced (shown in black)
and the remaining three nodes are not influenced (shown in
white). The probability of the tail node of this chain get-
ting influenced is (0.5)3 (assuming no edge is uncertain and
probability of propagation is 0.5 on all edges). In Chain
2, all nodes except the tail node is already influenced. In
this case, the tail node gets influenced with a probability
0.5 + (0.5)2 + (0.5)3. Thus, it is highly unlikely that influ-
ence will spread to the end node of the first chain as opposed
to the second chain. For this reason, we only keep chains of



the form of Chain 2 and accordingly prune our graph (ex-
plained next).

Figure 5: Chains in social networks

Consider a weighted adjacency matrix representation for
pruned graph Gσ (created from graph G), s.t.

Gσ(i, j) =


1 if (i, j) ∈ Ec ∧ (H[i] = 1 ∨α[i] = 1)

u(i, j) if (i, j) ∈ Eu ∧ (H[i] = 1 ∨α[i] = 1)

0 if otherwise.
(5)

Gσ is a pruned graph which contains only edges outgo-
ing from influenced nodes. We prune the graph because in-
fluence can only spread through edges which are outgoing
from influenced nodes. Note that Gσ only considers chains
of type 2 and prunes away chains of type 1. Using these as-
sumptions, we use Gσ to construct a diffusion vector

−→
D, the

ith element of which gives us a measure of the probability
of the ith node to get influenced. This diffusion vector

−→
D is

then used to estimate T (s,α, s′).

Figure 6: X is any uninfluenced node. S (the big oval) de-
notes the set of all influenced nodes. All these nodes have
been categorized according to their path length from node
X. For e.g., all nodes having a path of length 1 (i.e., Y, D, S,
K) are distinguished from all nodes having path of length T
(i.e., R, W, L, C). Note that node Y has paths of length 1 and
2 to node X.

Figure 6 illustrates the intuition behind our transition
probability heuristic. More details on the heuristic can be

found in our IAAI 2015 paper (Yadav et al. 2015). For
each uninfluenced node X in the graph, we calculate the to-
tal number of paths (like Chain 2 in Figure 5) of different
lengths L = 1, 2, . . . , T from influenced nodes to node
X . Since influence spreads on chains of different lengths
according to different probabilities, the probabilities along
all paths of different lengths are combined together to deter-
mine an approximate probability of nodeX to get influenced
before the next intervention round. Since we consider all
these paths independently (instead of calculating joint prob-
abilities), our approach produces an approximation2.

Observation Probabilities Calculating Ω(o,α, s′) is triv-
ial as the final state s′ already has f-values of uncertain
edges, and you know which nodes you pick in action α.
Thus, given s′ and α, only one observation is possible:
o(α, s′) = {F ′[i] ∀ei ∈ Θ(α)}.
Rewards The reward of taking action α ∈ A in state
s = 〈H,F 〉 (denoted by R(s,α)) is given as: R(s,α) =∑
s′∈S T (s,α, s′)(‖s′‖ − ‖s‖), where ‖s′‖ is the number

of influenced nodes in s′. This gives the expected number of
new influenced nodes.

PSINET
Initial experiments with the ZMDP solver (Smith 2013)
showed that state-of-the-art offline POMDP planners run out
of memory on 10 node graphs. Thus, we focused on online
planning algorithms and tried using POMCP (Silver and Ve-
ness 2010), a state-of-the-art online POMDP solver which
relies on Monte-Carlo (MC) tree search and rollout strate-
gies to come up with solutions quickly. However, it keeps
the entire search tree over sampled histories in memory, dis-
abling scale-up to the problems of interest in this paper.
Hence, we propose a MC based online planner that utilizes
the QMDP heuristic and eliminates this search tree.

POMDP black box simulator MC sampling based plan-
ners approximate the value function for a belief by the av-
erage value of η (say) MC simulations starting from states
sampled from the current belief state. Such approaches
depend on a POMDP black box simulator Γ(st,αt) ∼
(st+1, ot+1, rt+1) which generates the state, observation and
reward at time t + 1, given the state and action at time t, in
accordance with the POMDP dynamics. In Γ, ot+1, st+1 and
rt+1 are generated as follows:
• ot+1: Every edge e in Θ(αt) is sampled (either kept or

removed) according to the existence probability on the
edge in order to generate ot+1.
• st+1: In order to get st+1 from st, we sample the h-values

of nodes which are neither influenced in st or in the action
αt by using the Di values of these nodes. So, we flip a
weighted coin with probability Di to find whether node i
is influenced in st+1. Note that st+1 calculated this way
represents a state sampled according to T (st,αt, st+1).
• rt+1: ‖st+1‖ − ‖st‖, where ‖st+1‖ is the number of in-

fluenced nodes in st+1.
2http://teamcore.usc.edu/people/amulya/appendix.pdf provides

details/proofs.



Algorithm 1: PSINET
Input: Belief state β, Uncertain graph G
Output: Best Action κ

1 Sample graph to get Υ different instances;
2 for δ ∈ Υ do
3 FindBestAction(δ,αδ, β);

4 κ = V oteForBestAction(Υ,α)
5 UpdateBeliefState(κ, β);
6 return κ;

QMDP It is a well known approximate offline plan-
ner, and it relies on Q(s, a) values, which represents the
value of taking action a in state s. It precomputes these
Q(s, a) values for every (s, a) pair by approximating them
by the future expected reward obtainable if the environ-
ment is fully observable (Littman, Cassandra, and Kaelbling
1995). Finally, QMDP ’s approximate policy Π is given by
Π(β) = arg maxa

∑
sQ(s, a)β(s) for belief β. Our in-

tractable POMDP state and action spaces makes it infeasible
to calculate Q(s, a) ∀ (s, a). Thus, we propose to use a MC
sampling based online variant of QMDP in PSINET.

Algorithm Flow Algorithm 1 shows the flow of PSINET.
In Step 1, we randomly sample all e ∈ Eu in G (accord-
ing to u(e)) to get Υ different graph instances, forming a set
Υ. Each of these instances is a different POMDP as even
though we remove uncertainty about f(e)∀e ∈ Eu, the h-
values of nodes are still partially observable (i.e., we know
that nodes that we picked for the intervention get influenced
with certainty, but we do not have any observation concern-
ing the other nodes). Since each of these instances fixes
f(e) ∀e ∈ Eu, the belief β is represented as an unweighted
particle filter where each particle is a tuple of h-values of all
nodes. This belief is shared across all instantiated POMDPs.
For every graph instance δ ∈ Υ, we estimate the best action
αδ in graph δ, for the current belief β in step 3 (this pro-
cess is done in parallel for each distinct graph instance, as
shown in Figure 7). In step 4, we find our best estimation κ
of the optimal action for belief β, over all δ ∈ Υ by voting
amongst all the actions chosen by δ ∈ Υ. Then, in step 5,
we update the belief state based on the chosen action κ and
the current belief β. PSINET can again be used to find the
best action for this or any future updated belief states. We
now detail the steps in Algorithm 1.

Sampling Graphs In Step 1, we randomly keep or remove
uncertain edges to create one graph instance. As a single in-
stance might not represent the real network well, we instan-
tiate the graph Υ times and use each of these instances to
vote for the best action to be taken.

Finding Best Action Step 3 uses Algorithm 2, which finds
the best action for a single network instance, and works
similarly for all instances. Figure 8 illustrates the flow of
Algorithm 2. For each instance, we find the action which
maximizes long term rewards averaged across η (we use
η = 28) MC simulations starting from states (particles) sam-
pled from the current belief β. Each MC simulation samples
a particle from β and chooses an action to take (choice of
action is explained later). Then, upon taking this action, we

Figure 7: Parallelizing execution of several threads

follow a uniform random rollout policy (until either termina-
tion, i.e., all nodes get influenced, or the horizon is breached)
to estimate the long term reward, which we get by taking the
“selected” action. This reward from each MC simulation is
analogous to a Q(s, a) estimate. Finally, we pick the action
with the maximum average reward.

Figure 8: Flow inside Find Best Action

Multi-Armed Bandit We can only calculate Q(s, a) for a
select set of actions (due to our intractable action space). To
choose these actions, we use an Upper Confidence Bound
(UCB1) implementation of a multi-armed bandit to select
actions, with each bandit arm being one possible action. Ev-
ery time we sample a new state from the belief, we run
UCB1, which returns the action which maximizes this quan-

tity: σ(s, a) = QMC(s, a)+c0

√
logN(s)
N(s,a) . Here,QMC(s, a)

is the running average of Q(s,a) values across all MC simu-
lations run so far. N(s) is number of times state s has been
sampled from the belief. N(s, a) is number of times action
a has been chosen in state s and c0 is a constant which deter-



Algorithm 2: FindBestAction
Input: Graph instance δ, belief β, η simulations
Output: Best Action αδ

1 Initialize counter = 0;
2 while counter + + < N do
3 s = SampleStartStateFromBelief(β);
4 a = UCB1 MultiArmedBandit(s);
5 {s′, r} = SimulateRolloutPolicy(s, a);

6 αδ = action with max average reward;
7 return αδ;

mines the exploration-exploitation tradeoff for UCB1. High
c0 values make UCB1 choose rarely tried actions more fre-
quently, and low c0 values make UCB1 select actions having
highQMC(s, a) to get an even betterQ(s, a) estimate. Thus,
in every MC simulation, UCB1 strategically chooses which
action to take, after which we run the rollout policy to get
the long term reward.

Voting Mechanisms In Step 4, each network instance
votes for the best action (found using Step 3) for the un-
certain graph and the approximate best action is chosen
by aggregating these votes according to different voting
schemes. We propose using the following three different vot-
ing schemes:

• PSINET-S Each instance’s vote gets equal weight.

• PSINET-W Every instance’s vote gets weighted differ-
ently. The instance which removes x uncertain edges has
a vote weight of W (x) = x ∀x ≤ m/2 and W (x) =
m − x ∀x > m/2. This weighting scheme approximates
the probabilities of occurrences of real world events by
giving low weights to instances which removes either too
few or too many uncertain edges, since those events are
less likely to occur. Instances which remove m/2 uncer-
tain edges get the highest weight, since that event is most
likely.

• PSINET-C Given a ranking over actions from each in-
stance, the Copeland rule makes pairwise comparisons
among all actions, and picks the one preferred by a major-
ity of instances over the highest number of other actions
(Pomerol and Barba-Romero 2000). It is a popular voting
rule because it is Condorcet consistent (i.e., if an action is
preferred to every other action in a majority of the votes,
it will be selected with certainty). Similar to Jiang et al.
(2014), we generate a partial ranking for each instance by
using multiple runs of Algorithm 2.

Belief State Update Recall that every MC simulation
samples a particle from the belief, after which UCB1
chooses an action. Upon taking this action, some random
state (particle) is reached using the transition probability
heuristic. This particle is stored, indexed by the action taken
to reach it. Finally, when all simulations are done, corre-
sponding to every action α that was tried during the simu-
lations, there will be a set of particles that were encountered
when we took action α in that belief. The particle set corre-
sponding to the action that we finally choose forms our next
belief state.

4 Experimental Evaluation
We provide two sets of results. First, we show results on
artificial networks to understand our algorithms’ properties
on abstract settings, and to gain insights on a range of net-
works. Next, we show results on the two real world homeless
youth networks that we had access to. In all experiments,
we select 2 nodes per round and average over 20 runs, un-
less otherwise stated. We set the value of T = 3 (the num-
ber of hops considered for influence spread in Equation ??)
in all experiments. PSINET-(S and W) use 20 network in-
stances and PSINET-C uses 5 network instances (each in-
stance finds its best action 5 times) in all experiments, unless
otherwise stated. The propagation and existence probability
values were set to 0.5 in all experiments (based on findings
by Kelly et al. (1997)), although we relax this assumption
later. In this section, a 〈X,Y, Z〉 network refers to a net-
work with X nodes, Y certain and Z uncertain edges. We
use a metric of “indirect influence spread” (IIS) throughout
this section, which is the number of nodes “indirectly” influ-
enced by the intervention participants. For example, on a 30
node network, by selecting 2 nodes each for 10 interventions
(horizon), 20 nodes (a lower bound for any strategy) are in-
fluenced with certainty. However, the total number of influ-
enced nodes might be 26 (say) and thus, the IIS is 6. All com-
parison results are statistically significant under bootstrap-t
(α = 0.05).
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Figure 9: Comparison on BTER graphs

Artificial networks First, we compare all algorithms on
Block Two-Level Erdos-Renyi (BTER) networks (having
degree distribution Xd ∝ d−1.2, where Xd is number of
nodes of degree d) of several sizes, as they accurately cap-
ture observable properties of real-world social networks (Se-
shadhri, Kolda, and Pinar 2012).

In Figure 9(a), we compare solution qualities of De-
gree Centrality (DC), POMCP and PSINET-(S,W and C) on
BTER networks of varying sizes. In DC, nodes are selected
in subsequent rounds in decreasing order of out-degrees,
where every uncertain edge e ∈ Eu adds u(e) to the node
degrees. We choose DC as our baseline as it is the cur-
rent modus operandi of agencies working with homeless
youth. The x-axis shows number of network nodes and the y-
axis shows IIS across varying horizons (number of interven-
tions). This figure shows that all POMDP based algorithms
beat DC by ∼60%, which shows the value of our POMDP
model. Further, it shows that PSINET-W beats PSINET-
(S and C). Also, POMCP runs out of memory on 30 node
graphs.



In Figure 9(b), we show runtimes of DC, POMCP and
PSINET-(S,W and C) on the same BTER networks. The x-
axis shows number of network nodes and the y-axis shows
log (base e) of runtime (in seconds). Figure 9(b) shows that
DC runs quickest (as expected) and all PSINET variants run
in almost the same time. Thus, Figures 9(a) and 9(b) tell
us that while DC runs quickest, it provides the worst solu-
tions. Amongst the POMDP based algorithms, PSINET-W is
the best algorithm that can provide good solutions and can
scale up as well. Surprisingly, PSINET-C performs worse
than PSINET-(W and S) in terms of solution quality. Thus,
we now focus on PSINET-W.
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Figure 10: Increasing number of graph instances

Having shown the impact of POMDPs, we analyze the
impact of increasing network instances (which implies in-
creasing number of votes in our algorithm) on PSINET-W. In
Figure 10(a), we show solution quality of PSINET-W with
increasing network instances, for a 〈40, 71, 41〉 BTER net-
work with a horizon of 10. The x-axis shows the number of
network instances and the y-axis shows IIS. Unsurprisingly,
this figure shows that increasing the number of network in-
stances increases IIS as well.

In Figure 10(b), we show runtime of PSINET-W with in-
creasing network instances, for a 〈40, 71, 41〉 BTER net-
work with a horizon of 10. The x-axis shows the number
of network instances and the y-axis shows runtime (in sec-
onds). This figure shows that increasing the number of net-
work instances increases the runtime as well. Thus, a solu-
tion quality-runtime tradeoff exists, which depends on the
number of network instances. Greater number of instances
results in better solutions and slower runtimes and vice
versa. However, for 30 vs 70 instances, the gain in solution
quality is <5% whereas the runtime is ∼2X, which shows
that increasing instances beyond 30 yields marginal returns.
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Figure 11: Comparison of Degree Centrality with PSINET-
W across varying parameters

Next, we relax our assumptions about propagation (p(e))

probabilities, which were set to 0.5 so far. Figures 11(a)
shows the solution quality, when PSINET-W and DC are
solved with different p(e) values on the network edges (the
p(e) values were changed for both the network that was input
to the algorithm and the network on which the algorithm’s
policy was executed) for a 〈40, 71, 41〉 BTER network with
a horizon of 10. The x-axis shows p(e) and the y-axis shows
IIS. This figure shows that varying p(e) minimally impacts
PSINET-W’s improvement over DC, which shows our algo-
rithms’ robustness to these probability values (we get similar
results upon changing u(e)).

In Figure 11(b), we show solution qualities of PSINET-
W and DC on a 〈30, 31, 27〉 BTER network by varying the
number of nodes selected per round (k). We use a horizon
of 3 (in order to ensure the performance of our algorithm on
varying horizon lengths). The x-axis shows increasing k, and
the y-axis shows IIS. This figure shows that even for a small
horizon of length 3, PSINET-W significantly beats DC. For
increasing values of k, PSINET-W beats DC with increasing
margins.

Figure 12: One of the friendship based social network of
homeless people visiting My Friend’s Place
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Figure 13: Solution Quality for Real World Network

Real world networks Figure 12 shows one of the two
real-world friendship based social networks of homeless



Figure 14: Sample BTER Graph

youth (created by our collaborators through surveys and in-
terviews of homeless youth attending My Friend’s Place),
where each numbered node represents a homeless youth.
Figure 13 compares PSINET variants and DC (horizon =
30) on these two real-world social networks (each of size
∼ 〈155, 120, 190〉). The x-axis shows the two networks
and the y-axis shows IIS. This figure clearly shows that
all PSINET variants beat DC on both real world networks
by ∼60%, which shows that PSINET works equally well
on real-world networks. Also, PSINET-W beats PSINET-
S, in accordance with previous results. Above all, this sig-
nifies that we could improve the quality and efficiency of
HIV based interventions over the current modus operandi of
agencies by ∼60%.

We now differentiate between the kinds of nodes selected
by DC and PSINET-W for the sample BTER network in Fig-
ure 14, which contains nodes segregated into four clusters
(C1 to C4), and node degrees in a cluster are almost equal.
C1 is biggest, with slightly higher node degrees than other
clusters, followed by C2, C3 and C4. DC would first select
all nodes in cluster C1, then all nodes in C2 and so on. Se-
lecting all nodes in a cluster is not “smart”, since selecting
just a few cluster nodes influences all other nodes. PSINET-
W realizes this by looking ahead and spreads more influence
by picking nodes in different clusters each time. For exam-
ple, assuming k = 2, PSINET-W picks one node in both C1
and C2, then one node in both C1 and C4, etc.

5 Implementation Challenges
Looking towards the future of testing the deployment of this
procedure in agencies, there are a few implementation chal-
lenges that will need to be faced. First, collecting accurate
social network data on homeless youth is a technical and fi-
nancial burden beyond the capacity of most agencies work-
ing with these youth. Members of this team had a large three
year grant from the National Institute of Mental Health to
conduct such work in only two agencies. Our solution, mov-
ing forward (with other agencies) would be to use staff at
agencies to delineate a first approximation of their homeless
youth social network, based on their ongoing relationships
with the youth. The POMDP procedure would subsequently
be able to correct the network graph iteratively (by resolving
uncertain edges via POMDP observations in each step). This
is feasible because, as mentioned, homeless youth are more
willing to discuss their social ties in an intervention (Rice et
al. 2012b). We see this as one of the major strengths of this
approach.

Second, our prior research on homeless youth (Rice and
Rhoades 2013) suggests that some structurally important
youth may be highly anti-social and hence a poor choice for
change agents in an intervention. We suggest that if such a
youth is selected by the POMDP program, we then choose
the next best action (subset of nodes) which does not in-
clude that “anti-social” youth. Thus, the solution may re-
quire some ongoing management as certain individuals ei-
ther refuse to participate as peer leaders or based on their
anti-social behaviors are determined by staff to be inappro-
priate.

Third, because of the history of neglect and abuse suf-
fered by most of these youth, many are highly suspicious of
adults. Including a computer-based selection procedure into
the recruitment of peer leaders may raise suspicions about
invasion of privacy for these youth. We suggest an ongo-
ing public awareness campaign in the agencies working with
this program to help overcome such fears and to encourage
participation. Along with this issue, there is a secondary is-
sue about protection of privacy for the individuals involved.
Agencies collect information on their youth, but most of this
information is not to be shared with researchers. We sug-
gest working with agencies to create procedures which allow
them to implement the POMDP program without having to
provide identifying information to our team.

6 Conclusion
This paper presents PSINET, a POMDP based decision sup-
port system to select homeless youth for HIV based inter-
ventions. Previous work in strategic selection of interven-
tion participants does not handle uncertainties in the social
network’s structure and evolving network state, potentially
causing significant shortcomings in spread of information.
PSINET has the following key novelties: (i) it handles un-
certainties in network structure and evolving network state;
(ii) it addresses these uncertainties by using POMDPs in in-
fluence maximization; and (iii) it provides algorithmic ad-
vances to allow high quality approximate solutions for such
POMDPs. Simulations show that PSINET achieves ∼60%
improvement over the current state-of-the-art. PSINET was
developed in collaboration with My Friend’s Place and is
currently being reviewed by their officials.
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