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Abstract  9 

This research uses analyses from Nile catchment rivers, wadis, dunes and bedrocks to constrain the 10 

geological history of NE Africa and document influences on the composition of sediment reaching 11 

the Nile delta.  Our data show evolution of the North African crust, highlighting phases in the 12 

development of the Arabian-Nubian Shield and amalgamation of Gondwana in Neoproterozoic 13 

times. The Saharan Metacraton and Congo Craton in Uganda have a common history of crustal 14 

growth, with new crust formation at 3.0-3.5 Ga, and crustal melting at c.2.7 Ga. The Hammamat 15 

Formation of the Arabian-Nubian Shield is locally-derived and has a maximum depositional age of 16 

635 Ma. By contrast, Phanerozoic sedimentary rocks are derived from more distant sources. The 17 

fine-grained (mud) bulk signature of the modern Nile is dominated by input from the Ethiopian 18 

Highlands, transported by the Blue Nile and Atbara rivers. Detrital zircons in the Nile trunk are 19 

predominantly derived from Phanerozoic cover rocks.  Most detritus from the upstream White Nile 20 

is trapped in the Sudd marshes and contributes little to the Nile trunk. Therefore, the White Nile 21 

downstream is dominated by locally-derived Phanerozoic cover. The White Nile proximal to the 22 

Gezira Fan is influenced by the fan’s Blue Nile signature.  23 

  24 



Modern river sediments can be used to efficiently sample large areas of upstream crust in order to 25 

help understand a region’s geological history (e.g. Iizuka et al., 2013). In this study, we use a range of 26 

provenance techniques, including U-Pb and Hf isotope analysis of zircon from river sands, and Sr-Nd-27 

Hf tracer isotope analysis of river mud samples, in order to characterise the catchment of the 28 

modern Nile River.  Our aims are to gain a broad overview of the geological evolution of NE Africa, 29 

and to constrain the influences on sediment composition to the Nile River and ultimately the Nile 30 

delta cone, an important depocentre for hydrocarbon reservoirs.   31 

We report data for sand and mud samples from the Nile trunk, and its tributaries the Blue 32 

Nile, White Nile and Atbara, together with samples from dry wadis and aeolian dunes from the Red 33 

Sea Hills and Western Desert which represent possible sources of detritus to the river (Fig. 1).  We 34 

have also studied sedimentary rocks from the Red Sea Hills and Western Desert that have draped NE 35 

Africa since the latest Precambrian. These rocks, and the modern wadi sands and aeolian dune sands 36 

which partly overlie them, which we have also studied, represent an important source of detritus to 37 

the river.   We present zircon U-Pb and Hf-isotope data for gneissic basement within the Saharan 38 

Metacraton, which is poorly documented.  These analyses help to characterise the nature of the 39 

Archaean crust of North Africa. 40 

The Nile River is the longest river in the world, extending for more than 6,800 km, and 41 

draining an area of ~3.3 million km2.  The present-day Nile is made up of three main tributaries, the 42 

Blue Nile, White Nile and Atbara (Fig. 1).  The mean annual water discharge during times of peak 43 

flow is dominated by the Blue Nile (68%), followed by the White Nile (10%) and Atbara (22%) 44 

(Williams and Adamson, 1982). Sediment supplied to the Nile trunk in Egypt is dominated by 45 

contributions from the Blue Nile (50-61%) and Atbara (30-42%) (Padoan et al., 2011).  The vast 46 

majority of the White Nile sediment load is trapped in extensive swamps in South Sudan (the Sudd 47 

marshes), thus accounting for <3% of the total Nile trunk sediment budget (Garzanti et al., 2015). 48 



The White Nile drains Archaean – Proterozoic rocks of the Congo craton, and extends 49 

through Precambrian rocks of the Saharan Metacraton (Abdelsalam et al., 2002).  In its terminal 50 

tract, the White Nile has an extremely low gradient due to its positioning along the floor of an 51 

ancient lake that occupied its valley as long ago as 400 ka before present (Williams et al., 2003). The 52 

present flow regime of the White Nile was established  in the late Pleistocene, at c.15 ka, when 53 

northwards flow was reinitiated due to intensification of the summer monsoon and resulting 54 

overflow of Lakes Albert and Victoria (Talbot et al., 2000; Williams et al., 2003).   55 

The Blue Nile and Atbara, together with its tributary the Tekeze are sourced in the Ethiopian 56 

Highlands, where they drain Cenozoic flood basalts (e.g. Pik et al., 1998), Neoproterozoic Arabian-57 

Nubian Shield (Arabian-Nubian Shield) basement rocks (e.g. Evuk et al., 2014; Johnson, 2014) and 58 

Phanerozoic cover sequences (e.g. Gani et al., 2009).  Uplift of the Ethiopian Highlands in the 59 

Oligocene may have led to the initiation of flow in the Blue Nile.  However, there is no consensus in 60 

published literature regarding the timing of initiation of such flow, as summarised below. 61 

Proponents of Oligocene initiation of Nile River sediment supply from the Ethiopian plateau 62 

have used knick-point facies to infer a 3-phase incision in the Ethiopian Highlands at 29-10 Ma, 10-6 63 

Ma and 6 Ma, which instigated erosion in the Tekeze, Atbara and Blue Nile catchments (Gani et al., 64 

2007). Thermochronological studies using apatite and titanite He ages suggest that the elevated 65 

plateau physiography, which controls most of the present-day Nile hydrology, has existed since the 66 

Oligocene, ca.29 Ma (Pik et al., 2003). Authors favouring a Nile drainage originating in the Late 67 

Miocene cite sparse remotely sensed radar data to argue for a south-draining ‘Qena System’ 68 

dominating the Nile valley until the Messinian Salinity Crisis (Issawi and McCauley, 1992). Sediment 69 

volume calculations of the delta cone have been used to infer that a connection with the Ethiopian 70 

Highlands did not occur until the Pleistocene (Macgregor, 2012; Palacios, 2013).  71 

The Red Sea Hills, to the east of the present day Nile trunk, consists of Arabian-Nubian Shield 72 

basement and Phanerozoic sedimentary rocks which are comprised of Palaeozoic and Mesozoic 73 



clastic rocks and Eocene carbonates, partially overlain by modern wadi sands. Although not drained 74 

by the Nile at present, the Western Desert, to the west of the present day Nile trunk, is thought by 75 

Issawi and McCauley (1992) to have once contributed detritus to the main Nile trunk, and aeolian 76 

contribution occurs today (Garzanti et al., 2015). The Western Desert comprises reworked pre-77 

Neoproterozoic crust of the Saharan Metacraton (Abdelsalam et al., 2002), and overlying 78 

Phanerozoic sedimentary successions. Modern day wadi sediment and aeolian dunes currently cover 79 

a large proportion of both these regions. 80 

Geology of the Nile catchment 81 

The geology of east Africa has largely been shaped by the events of the Pan-African Orogeny 82 

when east and west Gondwana collided to form ‘Greater Gondwana’ at the end of the 83 

Neoproterozoic. The Pan-African orogeny in NE Africa involved the collision of Archaean cratons 84 

such as the Congo craton and the Saharan Metacraton with the Arabian-Nubian Shield, a terrane 85 

comprising Neoproterozoic, juvenile, oceanic island arcs. Phanerozoic cover sedimentary rocks 86 

blanket much of NE Africa, reflecting erosion from this mountain belt and subsequent Phanerozoic 87 

tectonics. The most prominent Phanerozoic tectonic events in the region involve rifting associated 88 

with opening of Neotethys, and later inversion associated with Africa-Mediterranean convergence. 89 

Uplift of the Ethiopian Highlands and surrounding area, and the eruption of continental flood basalts 90 

is thought to have had a strong influence on the hydrology of this area in the Cenozoic. 91 

Paleoproterozoic and Archean cratons 92 

The cratons of Central Africa are formed of various blocks of Archaean and 93 

Palaeoproterozoic crust, flanked or truncated by Palaeoproterozoic to Mesoproterozoic orogenic 94 

belts.  Together, these form the Congo Craton, defined as the “amalgamated central African 95 

landmass at the time of Gondwana assembly” (De Waele et al., 2008). The Congo Craton (Fig. 1) 96 

forms part of the West-African-Central-Belt which formed between 2.0 and 3.0 Ga ago and 97 

comprises orthogneiss, metasediments and granitoids of  the Tanzania Craton, Gabon-Kamerun 98 



Shield, Bomu-Kibalian Shield, Kasai Shield,  and Angolan Shield (Cahen et al., 1984; De Waele et al., 99 

2008; Goodwin, 1996; Tchameni et al., 2000; Walraven and Rumvegeri, 1993). 100 

The term Saharan Metacraton  refers to an area of pre-Neoproterozoic continental crust 101 

which has, in part, been highly remobilised during the Pan-African orogeny (Abdelsalam et al., 2002).  102 

It extends from the Arabian-Nubian Shield in the east to the Tuareg Shield in the west and the Congo 103 

Craton in the south. More than 50% of the Saharan Metacraton is overlain by Phanerozoic  104 

sedimentary rocks and desert sands (Abdelsalam et al., 2011).  The poor exposure of the region 105 

means that the Saharan Metacraton, and its relationship to adjacent blocks, is poorly understood.  106 

The southern boundary is not well defined, but is taken to be marked by the Oubangides orogenic 107 

belt which separates it from the Congo Craton (Abdelsalam et al., 2002). Little modern 108 

geochronology has been carried out on rocks of the Saharan Metacraton.  Legacy Rb-Sr and U-Pb 109 

data quoted by Abdelsalam et al. (2002) indicate a range of late Archaean and 110 

Palaeoproterozoic  protolith ages, with significant cratonic reworking and addition of new crust in 111 

the Neoproterozoic. Bea et al. (2011) report SHRIMP U-Pb zircon ages as old as 3.22 ± 0.04 Ga for 112 

gneisses in the Uweinat and Gebel Kamil regions of the Western Desert in southernmost Egypt.  113 

The Arabian-Nubian Shield 114 

The Arabian-Nubian Shield is a collage of Neoproterozoic (c. 870-670 Ma) continental margin 115 

and juvenile island arcs, cut by voluminous granitoid intrusions as young as latest Neoproterozoic, 116 

and overlain by younger sedimentary and volcanic basins (Johnson and Woldehaimanot, 2003; Kusky 117 

and Matsah, 2003; Stern, 1994; Stern and Hedge, 1985). Only minor outcrops of pre-Neoproterozoic 118 

crust are found.  Formation of the Arabian-Nubian Shield began with the initiation of subduction and 119 

development of magmatic arcs at 870 Ma. Terrane amalgamation associated with closure of the 120 

Mozambique Ocean and amalgamation of East and West Gondwana took place between c. 780 Ma 121 

and c. 600 Ma (Johnson and Woldehaimanot, 2003).   To the west of the Red Sea, the oldest arc 122 

terranes (> 800 Ma) of the Arabian Nubian shield occur in the south, in Ethiopia, Eritrea and Sudan 123 



(Johnson and Woldehaimanot, 2003).  Ophiolitic rocks of the Eastern Desert of Egypt range in age 124 

from 810 to 720 Ma (Ali et al., 2010), and are overlain by younger volcanic and sedimentary 125 

sequences (e.g. Breitkreuz et al. (2010).  126 

Ediacaran alluvial sedimentary rocks of the Hammamat Formation overlie the Arabian-127 

Nubian Shield basement in the Eastern Desert of Egypt. The Hammamat Formation clastic rocks 128 

comprise terrestrial conglomerates, sandstones and mudstones in the Red Sea Hills area,  and have 129 

proposed correlatives overlying Midyan Terrane in northwest Saudi Arabia (Bezenjani et al., 2014). 130 

Previous workers, using a variety of approaches (e.g. maximum depositional age determined from 131 

detrital minerals, dating of cross-cutting igneous units), have proposed ages ranging from 630 Ma to 132 

583 Ma for these rocks in Egypt (Bezenjani et al., 2014; Wilde and Youssef, 2002; Willis et al., 1988). 133 

The Hammamat Formation rocks’ depositional environments, and their relationship to the Pan 134 

African Orogeny is of some debate (e.g. Abdeen and Greiling, 2005; Bezenjani et al., 2014; Eliwa et 135 

al., 2010; Johnson et al., 2011; Ries et al., 1983; Wilde and Youssef, 2002); the sediments are 136 

arguably (as per references above and refs therein) considered to be pre-collisional, syn-collisional 137 

or post-collisional, and either locally sourced and deposited in isolated basins, or of distant 138 

provenance deposited from a major fluvial system of continental proportions. 139 

The Pan-African Orogeny 140 

During the Pan-African Orogeny, the final closure of the Mozambique Ocean led to 141 

amalgamation of the Saharan Metacraton and Congo Craton with the Arabian-Nubian Shield and the 142 

formation of the ‘Trans-Gondwanan Supermountains’ in the region that now forms NE Africa 143 

(Meinhold et al., 2013; Squire et al., 2006). To the south, it has been proposed (Abdelsalam et al., 144 

2002) that collision between the Saharan Metacraton and Congo Craton resulted in the formation of 145 

the Oubanguides orogenic belt or Central African Fold Belt. 146 



Phanerozoic Sedimentary Rocks 147 

Erosion of the Trans-Gondwanan mountain belt and subsequent recycling of the eroded 148 

detritus during later inversion tectonics associated with various plate movements, resulted in the 149 

deposition of a thick cover of fluvial and marine sediments overlying the amalgamated terrains, from 150 

the Cambrian onwards. Sedimentation continued until Cenozoic times, influenced by periods of 151 

tectonism.  The most important of these tectonic events is the Mesozoic opening of Neotethys and 152 

later the South Atlantic which resulted in the development of rift basins in the region, with Late 153 

Cretaceous-Early Eocene inversion of such basins due to the convergence of the Mediterranean with 154 

the African margin (Bosworth et al., 2008; Guiraud et al., 2005; Klitzsch and Squyres, 1990). 155 

Previous studies of the cover sedimentary rocks in regions adjacent to the Nile catchment 156 

(i.e. Libya - (Altumi et al. (2013); Meinhold et al. (2011)), Jordan and Israel (Kolodner et al. (2006); 157 

Morag et al., 2011b) have put forward contrasting Phanerozoic palaeodrainage models for these 158 

regions during deposition of the cover. The textural and mineralogical maturity of the bulk of the 159 

cover, and the provenance of the sediments, has been ascribed to varying degrees of recycling, long 160 

distance transport, and/or intense chemical weathering. Particularly debated is the origin of the 161 

c.1000 Ma zircon population for which an obvious significant basement source in the Saharan 162 

Metacraton or Arabian-Nubian Shield has not been recognised (Kolodner et al., 2006; Meinhold et 163 

al., 2011). 164 

Cenozoic Uplift and Flood Basalts 165 

Uplift of the Red Sea Hills associated with opening of the Red Sea rift, and uplift in Ethiopia 166 

associated with eruption of voluminous continental flood basalts, have had a major influence on Nile 167 

drainage. 168 

Many studies have attempted to ascertain the timing of Red Sea Hills uplift, with authors 169 

suggesting that uplift of rift shoulders began around 24 Ma (Bosworth et al., 2005), 25-30 Ma 170 

(Ghebread, 1998), <29 Ma (Kenea, 2001) and 34 Ma (Omar and Steckler, 1995). 171 



The continental flood basalts that dominate much of the Ethiopian Highlands are associated 172 

with East African rift-related magmatism and continental break-up (Buck, 2006; Ebinger, 2005). Pre-173 

rift basaltic and silicic magmatism initiated around 31 Ma (Baker et al., 1996; Rochette et al., 1998; 174 

Ukstins et al., 2002). Magmatic upwelling resulted in the uplift, extensional stresses, and faulting 175 

within what is now the Ethiopian Highlands.  176 

The provenance signal of modern Nile River sediments  177 

The provenance of sediments in the Nile River has previously been studied using heavy 178 

mineral distributions and petrography, Sr and Nd trace isotope studies, and U-Pb analysis of detrital 179 

zircons. 180 

Sr and Nd ratios have proved useful when recording major changes in provenance along the 181 

course of the River Nile (Garzanti et al., 2013; Padoan et al., 2011). High 87Sr/86Sr ratios and low εNd 182 

values in White Nile muds from Archaean cratonic sources, contrast with lower 87Sr/86Sr and higher 183 

εNd in the Sobat River, which receives most of its sediment load from the crystalline basement and 184 

Cenozoic volcanic rocks of the Ethiopian Highlands. Isotope signatures of the Blue Nile and Atbara 185 

rivers are dominated by Ethiopian volcanic detritus and show low 87Sr/86Sr ratios and higher εNd 186 

values. 187 

Heavy mineral analysis and petrography have also been used to characterise the signature of 188 

the Nile catchment area (Garzanti et al., 2006). The Blue Nile, Atbara and Tekeze rivers drain 189 

predominantly flood basalts and rhyolitic ignimbrites in their upper courses until they reach the 190 

Neoproterozoic amphibolite-facies basement of the Arabian-Nubian Shield, consisting of granitoid 191 

gneisses, staurolite-bearing schists, and marbles (Tadesse et al., 2003), and Phanerozoic sedimentary 192 

rocks found in the pre-rift sedimentary succession of the Blue Nile Canyon. Despite both rivers 193 

draining similar lithologies in the Ethiopian Highlands, the Atbara contains significantly less quartz 194 

than the Blue Nile. 195 



The Victoria Nile downstream of its Lake Victoria output carries feldspatho-quartzose sand, 196 

with feldspars derived from granitoid rocks exposed locally (Garzanti et al., 2006). Downstream of 197 

the Lake Albert outlet, Albert Nile sand is quartzose with few feldspars and poor heavy-mineral 198 

suites with epidote, hornblende, kyanite, rutile and zircon. Sediment composition changes across 199 

South Sudan, and White Nile sand of all grain sizes downstream of the Sudd marshes chiefly consist 200 

of monocrystalline quartz, becoming slightly enriched in plagioclase, volcanic lithics and 201 

clinopyroxene when downstream of the Gezira Fan. This fan deposit is ultimately derived from the 202 

Ethiopian Flood Basalts via a Pleistocene overspill from the Blue Nile (Garzanti et al., 2006). 203 

The Red Sea Hills lie adjacent to the Nile River through much of its course through Sudan and 204 

Egypt. However, Red Sea Hills-derived sediment has not been considered as an end-member in 205 

modelling of the Sr and Nd isotope composition of sediments in the Nile delta cone (Krom et al., 206 

2002; Revel et al., 2014).  Although construction of the Aswan High Dam has clearly affected the 207 

trunk Nile sediment flux downstream, comparison of petrographic data from samples collected prior 208 

to and subsequent to construction of the dam indicate that sediment composition is minimally 209 

affected (Garzanti et al., 2015). 210 

Iizuka et al., (2013) present coupled U-Pb, Lu-Hf and O-isotope data for detrital zircons from 211 

a sample of modern Nile sand taken ‘Near Cairo City’.  They identified age peaks at 1.1-0.9, 0.85-0.7 212 

and 0.7-0.55 Ga, with minor groups at c. 2.6 and 2.0 Ga.  They noted that grains with ages between 213 

0.85 and 0.7 Ga had positive εHf values, and were likely to have been derived from juvenile crust in 214 

the Arabian-Nubian Shield.  Zircons with ages of 1.1-0.9 and 0.7-0.55 Ga, coinciding with times of 215 

supercontinent assembly, showed wide variations in O-isotope composition and εHf. 216 

Be’eri-Shlevin et al. (2014) discuss U-Pb and Hf-isotope data for detrital zircons in 217 

Quaternary to Recent Israeli coastal sands, which are believed to have been derived by a 218 

combination of longshore drift and aeolian transport from the Nile delta.  They conclude that the 219 

ubiquitous presence of 0.56-0.75 Ga detrital zircons with negative εHf implies that the Arabian-220 



Nubian shield is not the main source of Nile sands.  Rather, they believe that multiple recycling 221 

through Phanerozoic sedimentary rocks that blanketed North Africa explains the age and hafnium 222 

isotope composition of the detrital zircon populations, as well as the quartz budget of the system.  223 

Analytical Methods 224 

Samples of medium sand and mud were taken from modern rivers, sedimentary bedrock 225 

and modern wadis and dunes. Sample locations are shown in Figure 1 and documented in 226 

Supplementary Item 1. A sample of gneissic basement was also collected from the Saharan 227 

Metacraton. 228 

Detailed analytical methods for techniques used in this study are given in Supplementary 229 

Item 2. 230 

Zircon and rutile grains were separated using standard methods, then hand-picked and 231 

mounted in epoxy disks and polished to reveal their interiors. All zircon grains were imaged using 232 

cathodoluminescence prior to analysis. U-Pb analyses for both zircon and rutile were carried out at 233 

the NERC Isotope Geosciences Laboratory (NIGL), using a single collector Nu-Attom mass 234 

spectrometer with one of three New Wave laser systems, typically using a 35µm laser spot. Hafnium 235 

isotope composition of zircons was measured at NIGL using a Thermo-Electron Neptune Plus mass 236 

spectrometer, coupled to a New Wave 193UC or 193FX Excimer laser. A 50µm spot was used, 237 

targeting previously dated zircon domains.  238 

Plagioclase and white mica were separated from the light fraction remaining after zircon and 239 

rutile separation.  40Ar/39Ar analyses were carried out at SUERC, East Kilbride, using a GVi 240 

instruments ARGUS 5-collector mass spectrometer using a variable sensitivity Faraday collector array 241 

in static collection (non-peak hopping) mode (Mark et al., 2009; Sparks et al., 2008). 242 

Mud samples for Sr, Nd and Hf analysis were leached in 10% acetic acid to remove 243 

carbonate before spiking with 149Sm-150Nd, 176Lu-180Hf, 87Rb and 84Sr isotope tracers.  Standard 244 



dissolution methods and ion-exchange chromatography were used to separate elements of interest.  245 

Sr and Nd isotope compositions were measured at NIGL on a Thermo-Electron Triton mass 246 

spectrometer using dynamic multi-collection.  Hf isotope composition was analysed in static mode 247 

on a Thermo-Electron Neptune mass spectrometer coupled to a Cetac Aridus II desolvating 248 

nebuliser. 249 

XRF major and trace element analysis was carried out at the Open University in Milton 250 

Keynes using standard methods. Pressed powder pellets were used for trace element 251 

measurements, and fused discs for major elements. 252 

Petrographic analysis and heavy mineral analysis of sands and muds were carried out at the 253 

Universita di Milano-Bicocca using methods modified from Garzanti et al. (2006) and Garzanti and 254 

Ando (2007). Assemblages were described in terms of transparent Heavy Mineral Concentrations 255 

(tHMC), Zircon-Tourmaline-Rutile Index (ZTR), Mineral Maturity Index (MMI) and Hornblende Colour 256 

Index (HCI). 257 

Petrography and Heavy Mineral Analysis  258 

The analyses presented below are intended to provide data for regions which are not 259 

adequately covered by published datasets, summarised in Garzanti et al. (2015). Data are provided 260 

in Supplementary Items 3 and 4. 261 

Red Sea Hills, Egypt 262 

Modern wadi sands (RSH03A and RSH05A) in northern Egypt are sub-litharenites (Fig. 2), with 263 

carbonate clasts and minor chert and shale grains, and a poor to moderately poor tHMC of 1.2 ± 1.0. 264 

Epidote-amphibole-clinopyroxene transparent-heavy-mineral assemblages include minor garnet, 265 

zircon, rutile, staurolite and tourmaline (ZTR 10 ± 5). Phanerozoic sandstone samples (RSH08A and 266 

RSH09A) from the Red Sea Hills are quartz arenites with an extremely high ZTR of 98-99 and tHMC 267 

between 12 and 20. The modern wadi sands contain slightly more (4-5%) feldspar than the bedrock 268 



samples. This difference in mineralogical maturity between bedrock and wadi samples may reflect 269 

sampling bias as the modern wadi sands sample a larger area. By contrast, a sample from the 270 

Hammamat Formation (RSH14A) was found to be a sheared lithic-arkose volcaniclastic arenite 271 

dominated by epidote, with ZTR = 0 and tHMC = 73. 272 

Western Desert, Egypt  273 

Aeolian dune sands (WD03C, WD19C and WD20C) from the Egyptian desert west of the Nile 274 

are quartzose, with few feldspars (K-feldspar > plagioclase) and sedimentary rock fragments 275 

(limestone and subordinately siltstone/shale and chert). Very poor to moderately poor (tHMC of 0.8 276 

± 0.4) transparent-heavy-mineral assemblages include epidote, zircon, amphibole, rutile, tourmaline, 277 

clinopyroxene, staurolite, garnet, kyanite and titanite (HCI = 11 ± 1, MMI = 50, ZTR = 34 ± 13). 278 

Nile trunk, Sudan 279 

Downstream of the confluence of the Blue Nile, White Nile and Atbara, (SD04A and SD05A), 280 

sediments are quartz-dominated with plagioclase feldspar more abundant than K-feldspar, and 281 

some volcanic detritus present. Both samples were found to be rich in transparent-heavy-mineral-282 

assemblages (tHMC of 16.8 and 10.1) including clinopyroxene, epidote and hornblende (HCl = 6-7). 283 

The ZTR for both Nile trunk samples was very low (0-1). 284 

Major and trace element chemistry 285 

Trace element results are presented in Figure 3, normalized to the trace element 286 

concentrations of Post Archean Australian Shale (PAAS), compiled by McLennan and Taylor (1985). 287 

V, Cr, Co, Ni and Cu concentrations enable us to determine the relative amount and location of mafic 288 

material within the Nile catchment area. The full dataset is provided in Supplementary Item 5. 289 

Values of V, Cr, Co, Ni and Cu are considerably higher in the Blue Nile and Atbara rivers, 290 

compared to the White Nile, reflecting the significant proportion of continental flood basalts in the 291 

Blue Nile and Atbara catchments. Similarity between the Blue Nile / Atbara values and those of the 292 



Nile trunk in Sudan attest to the dominance of the Blue Nile / Atbara contribution compared to the 293 

White Nile to the trunk river downstream. 294 

Western Desert values are similar to the White Nile values, reflecting their location in proximity to 295 

cratonic rocks. Red Sea Hills values show a greater mafic influence due to their closer proximity to 296 

the Arabian-Nubian Shield. Of note is the difference between Red Sea Hills wadi muds collected from 297 

locations overlying Red Sea Hills Phanerozoic bedrock, and Red Sea Hills wadi muds from locations 298 

directly overlying Arabian-Nubian Shield basement (samples RSH14B and RSH15B). The Ni spike in 299 

the latter most probably reflects significant derivation from the underlying ophiolitic ultramafic rocks 300 

of the Arabian-Nubian Shield. 301 

Zircon U-Pb geochronology and Hf isotope signatures 302 

Zircon U-Pb and hafnium isotope data are shown in Figures 4 to 8. The locations of all analysed 303 

samples are shown in Figure 1. Data are documented in Supplementary Items 6-9. 304 

Cratonic sources 305 

Western Desert Archaean Gneiss 306 

The oldest bedrock sample analysed (WD16A) is a gneiss, mapped as Archaean crust of the 307 

Saharan Metacraton (Daumain et al., 1958), collected east of Uweinat in southernmost Egypt.  Zircon 308 

crystals have oscillatory-zoned cores under cathodoluminescence (CL), with homogeneous CL-dark, 309 

possibly metamorphic overgrowths (Fig. 4 inset).  Cores are commonly broken, with abrupt 310 

terminations, suggesting that the sample may have had a sedimentary protolith that has undergone 311 

high-grade metamorphism. 312 

Fifteen U-Pb analyses of zircon cores have 207Pb/206Pb ages ranging from 2924 to 3235 Ma, 313 

with a single analysis giving a statistically younger age of 2794 Ma.  It is not possible to identify 314 

statistically valid populations within the zircon core dataset due to the small number of cores and 315 

rims found in the samples. This may reflect a detrital source for the zircons.  The zircon cores have 316 



an average εHf of -2.3, and a weighted average depleted mantle model age (TDMHf ) of 3479 ± 47 Ma 317 

(MSWD = 4.1, n= 15/16). 318 

Five analyses of zircon rims form a cluster with a weighted average 207Pb/206Pb age of 2701 ± 319 

32 Ma.  Three further rim analyses yield younger 207Pb/206Pb ages, between 2524 and 2587 Ma.  The 320 

zircon rims yield an average εHf of -10.6 and a weighted average TDMHf of 3467 ± 45 Ma (MSWD = 321 

2.2, n=8), within error of the age derived from zircon cores, indicating that new zircon growth took 322 

place in a closed system during high-grade metamorphism (Flowerdew et al., 2006). The weighted 323 

average model age of all zircon analyses in this sample is 3474 ± 31 Ma (MSWD = 3.3, n=23/24).  It is 324 

notable that the Th/U ratio of cores (0.37 – 1.3) is considerably higher than that in the rims (0.03 – 325 

0.14), supporting a metamorphic origin for the rims. 326 

White Nile (Uganda) 327 

Modern river sands were collected from the White Nile upstream of the Sudd marshes at 328 

Wadelai (N7-16S) and Murchison Falls (N7-17S) in northern Uganda. Both samples show a similar 329 

distribution of Archaean ages, with maxima at c. 2620 Ma (Fig. 5), and only a few older grains.  330 

Analyses with 207Pb/206Pb ages of 2500 – 2570 Ma commonly occur as overgrowths on older zircon 331 

cores.  Only 3% of grains in sample N7-16S give younger, Neoproterozoic to Mesoproterozoic ages.  332 

However, sample N7-17S contains 24% of such grains, with significant populations at c. 630, 800 and 333 

900-1000 Ma  334 

The c. 2620 Ma zircon population in sample N7-17S typically shows oscillatory zoning under 335 

CL, and has an average εHf of -7 and a TDMHf of 3412 ± 23 (MSWD = 2.3, n=68/74; Figs. 4 and 6).  336 

Eight grains with ages between 900 and 1000 Ma have an average εHf value of -24, a composition 337 

that is consistent with formation by melting of Archaean crust similar to that represented by the c. 338 

2620 Ma zircon population.  The 900 – 1000 Ma grains show oscillatory zoning with no evidence for 339 

core/rim relationships.  Zircons with ages between 670 and 870 Ma have εHf between +3.5 and -15, 340 



requiring input of juvenile material in addition to Archaean crust.  These grains are typically CL-light, 341 

and weakly zoned or unzoned, with Th/U of 0.22 – 0.89. 342 

Four analyses of rims on Archaean zircon cores give ages of c. 630 Ma, with an average εHf of 343 

-30.5 (Fig. 4).  The overgrowths show no zoning under CL, and have low Th/U (<= 0.03), suggesting a 344 

possible metamorphic origin.  A single zircon rim, which formed on a c. 800 Ma grain, also gives an 345 

age of c. 630 Ma, with εHf = -14, again consistent with growth in a closed system under metamorphic 346 

conditions (Flowerdew et al., 2006). 347 

Figure 4 includes a field for North-East African Archaean Basement, which is derived using 348 

the composition of zircons in the Saharan Metacraton gneiss (WD16A) and the detrital zircon grains 349 

from the White Nile at Murchison Falls (N7-17S).  The slope of the observed trend is consistent with 350 

an average 176Lu/177Hf ratio in the sampled North African crust of c. 0.012.  This field represents the 351 

likely composition of craton-derived grains in other sedimentary rocks of the Nile catchment, 352 

discussed below. 353 

Arabian-Nubian Shield cover – the Hammamat Formation 354 

Sample RSH14A is a volcanic arenite collected within conglomerates of the Hammamat 355 

Formation, in Wadi Hammamat (El-Rahman et al., 2010).  The Hammamat Formation in this area is 356 

folded and cleaved, prior to intrusion of the Um Had granite at 596.3 ± 1.7 Ma (Andresen et al., 357 

2009). 358 

Sample RSH14A has a rich heavy mineral assemblage dominated by epidote.  Zircon grains 359 

are dominated by a c. 630 - 780 Ma grains with juvenile hafnium isotope values (Fig. 6).  80% of the 360 

overall zircon population have positive, juvenile ɛHf values (Fig. 6). Grains in the region of 700-800 361 

Ma show higher ɛHf values (+14) than seen in any other sample in the Nile catchment area. 2% of 362 

analysed grains gave Palaeoproterozoic or Archaean ages. 363 

Only four grains give apparent ages younger than 620 Ma, the youngest having a 206Pb/238U 364 

age of 596 ± 18 Ma – within error of the age of the structurally much later Um Had granite.  The 365 



timing of deposition of the Hammamat Formation is unclear, with suggested ages ranging between 366 

630 Ma and 583 Ma (Bezenjani et al., 2014; Wilde and Youssef, 2002; Willis et al., 1988). It is 367 

therefore critical to establish whether these young grains could be used to determine a maximum 368 

depositional age for the Hammamat Formation, or whether these grains may have been affected by 369 

Pb-loss. Several grains with ages younger than 645 Ma were therefore revisited, and five new 370 

analyses were carried out on each grain.  Data and age calculations are presented in Supplementary 371 

Data File 8.  All grains yielded ages of c. 635 Ma or older, confirming that the original analyses had 372 

been affected by Pb-loss (Fig. 7).  The original analyses used a large laser spot size (35 µm, cf. 20 µm 373 

for the new analyses), and may have been more likely to intersect cracks and defects in the grains.  374 

Phanerozoic cover rocks 375 

Western Desert (Egypt) 376 

Samples WD04A, WD12A and WD18A (Figs 5 and 6) are Phanerozoic sandstones. These 377 

samples have a dominant zircon population at c. 600 Ma, with > 60% of grains of this age showing 378 

negative ɛHf.  Zircons between 700 and 900 Ma are dominated by more juvenile grains, with positive 379 

ɛHf.  A population of c.  1000 Ma grains appears to fall into two distinct groups, with juvenile and 380 

more crust-dominated hafnium compositions.  In addition, subordinate populations of 381 

Paleoproterozoic and Archaean grains (totalling c. 10%), and sparse Phanerozoic grains are present. 382 

Red Sea Hills (Egypt) 383 

Sample RSH09A is a Phanerozoic sandstone from Wadi Kharit in the Red Sea Hills. Zircons are 384 

dominated by peaks at c. 620, 730-900 and 1000 Ma, with predominantly juvenile ɛHf.  A minority of 385 

grains at c. 620 and 1000 Ma show more cratonic ɛHf values.  25% of c. 620 Ma grains and 42% of c. 386 

1000 Ma grains show negative ɛHf.  8% of grains give Archaean or Palaeoproterozoic ages. 387 



Modern wadi sands 388 

Sample RSH07A is a modern wadi sand collected in Wadi Hammamat in the Red Sea Hills, 389 

deposited on Phanerozoic sandstone bedrock.  The zircon age and ɛHf isotope distribution are similar 390 

to the Red Sea Hills Phanerozoic bedrock sample, with peaks at c. 620, 770 and 1000 Ma.  50% of 391 

620 Ma grains and 42% of c. 1000 Ma grains have cratonic ɛHf values.  8% of grains give Archaean or 392 

Palaeoproterozoic ages. 393 

Modern river sands 394 

Blue Nile 395 

Sample ETH02A was collected from the Blue Nile Gorge in the Ethiopian Highlands.  It shows 396 

two main zircon age populations at 660-720 Ma and 800-850 Ma. ɛHf values are dominantly juvenile, 397 

although sparse grains at 500-600 Ma yield ɛHf values as low as -10.  Sparse c.1000 Ma ages are also 398 

present, but Archaean and Palaeoproterozoic ages are absent.  Juvenile Cenozoic grains are present 399 

(Fig. 8).  Sample SD03A was collected near Wad Madani in Sudan.  It is dominated by 750-850 Ma 400 

zircons with juvenile ɛHf values. Only sparse c.600 Ma grains are found, and only one 401 

Palaeoproterozoic age was recorded. 402 

Tekeze 403 

Sample ETH06A was collected from the Gibai River, a tributary of the Tekeze, while Sample 404 

ETH08A was collected further downstream at Malemin Bridge.  Both samples show dominant peaks 405 

at c. 620 Ma and a number of peaks ranging back to c.1000 Ma. Sparse Palaeoproterozoic and 406 

Archaean grains make up c. 6% of each population.  A single Cenozoic grain was identified in each 407 

sample. 408 

Atbara 409 

Sample SD06A was collected from the Atbara close to its confluence with the Nile trunk in 410 

Sudan. The most dominant population forms a peak at c.600 Ma, with a subordinate peak at c.800 411 



Ma, both dominated by juvenile ɛHf values. Palaeoproterozoic and Archaean grains are sparse (3%).  412 

Cenozoic grains make up 6% of the population. 413 

White Nile 414 

Sample SD02A was collected from the White Nile downstream (north) of the Sudd marshes 415 

in Sudan, and south of the Gezira Fan. Zircons are dominated by c.600 Ma grains, with 416 

subpopulations showing both juvenile and more cratonic ɛHf values.  Older age peaks at c. 850 and 417 

1000 Ma are dominated by juvenile ɛHf values.  Only two Archaean grains were identified (c. 2%), in 418 

marked contrast to sample N7-17S (see above) from upstream (south) of the Sudd marshes.  419 

Sample SD01A was collected downstream of the Blue Nile-sourced Gezira Fan. It shares 420 

similar peak characteristics to sample SD02A, but with more dominant c.650 and 1000 Ma 421 

populations. 422 

Nile trunk 423 

Sample SD04A captures the signature of the Nile trunk in northern Sudan, downstream of 424 

the confluences of the Blue Nile, White Nile and Atbara, but upstream of the Aswan Dam.  The 425 

detrital zircon age and ɛHf distribution are similar to the upstream Blue Nile sample (ETH02A), with 426 

peaks at c. 630, 680 and 830 Ma, all dominated by juvenile ɛHf values.  Only two Archaean to 427 

Palaeoproterozoic ages are present (2%).  Four Cenozoic ages were measured. 428 

Sample BS01 was collected north of the Aswan dam at Al Wasta, south of Cairo. It is 429 

dominated by c. 600 Ma zircons, with smaller populations at c.830 and 1000 Ma.  ɛHf values show 430 

dominantly juvenile values, but 11% of c. 600 Ma and 73% of c. 1000 Ma grains have negative, 431 

craton-influenced values.  Archaean and Palaeoproterozoic grains make up 9% of the zircon 432 

population.  No Cenozoic grains were observed. 433 



Ar/Ar Mica and Plagioclase Feldspar and U/Pb Rutile 434 

Samples analysed include White Nile, Blue Nile and Atbara, Nile trunk, Red Sea Hills modern 435 

wadi and bedrock, and Western Desert aeolian samples. Data tables are provided in Supplementary 436 

Items 10 and 11. 437 

The 40Ar/39Ar mica and plagioclase data and the U-Pb rutile data all show an overwhelming 438 

Pan-African signature (c.600 Ma). This includes the White Nile samples upstream of the Sudd, 439 

despite having a strongly Archaean signature in U/Pb zircon analyses, and indicates strong 440 

overprinting by the Pan-African orogeny in this region. The Blue Nile also contains Cenozoic 441 

feldspars, derived from the Ethiopian Highlands and in agreement with the presence of Cenozoic 442 

zircons also recorded in this river (see above). 443 

Although the number of white mica analyses is small, we observe a change in signal between 444 

White Nile sands south of the Sudd marshes, and the Nile trunk and Red Sea Hills to the north.  The 445 

White Nile sample (N7-17S) is dominated by a single population with a mean age of c. 615 Ma.  By 446 

contrast, both the Nile trunk in Sudan (Sample SD04A) and a Red Sea Hills wadi sand (RSH07A) show 447 

age peaks at c. 600 and 650 Ma. 448 

Sr, Nd and Hf isotope bulk analysis 449 

Bedrock mudstone, and mud samples from the surface of flash-flood deposits, were 450 

collected in the Red Sea Hills. The samples show a limited range in isotope composition (Figs. 9, 10, 451 

Supplementary Item 12), with moderately radiogenic 87Sr/86Sr (averaging 0.7096), and non-452 

radiogenic εNd (averaging -6.1) and εHf (averaging -4.9).  Mudstones, muds and aeolian sands were 453 

collected in the Western Desert. These show considerably more scattered results, with radiogenic 454 

87Sr/86Sr (0.708 to 0.716) and non-radiogenic εNd (-5.8 to -12.8) and εHf (-8 to -21.6). 455 

Modern river mud samples collected from the Atbara and Tekeze rivers have Sr, Nd and Hf 456 

isotope compositions similar to average Ethiopian basalts (Figs. 9 and 10; Meshesha and Shinjo, 457 



2010; Pik et al., 1999). Samples from the Blue Nile and the Nile trunk in northern Sudan plot on 458 

trends towards higher 87Sr/86Sr, and lower εNd and εHf, consistent with incorporation of older 459 

sediment derived from sources other than Ethiopian basalt.  Average values for Holocene Nile trunk 460 

sediments in Northern Sudan, and sand samples collected in Egypt before the construction of the 461 

Aswan High Dam also plot on this trend (Shukri, 1949; Woodward et al., 2015).  A sample collected 462 

from the White Nile just south of its confluence with the Blue Nile at Khartoum plots close to the 463 

Nile trunk trend.  464 

Three modern river mud samples have what, at first glance, appear to be anomalous isotope 465 

compositions, given their locations.  A sample from the Uri River, Ethiopia, (ETH07B), a tributary of 466 

the Tekeze in Ethiopia, has values unlike those one might expect from the Ethiopian plateau 467 

continental flood basalt region. However, the Uri River’s local catchment drainage basin geology is in 468 

fact Phanerozoic cover (Fig. 1), consistent with its isotopic signature. Samples SD01B and SD02B are 469 

White Nile samples, yet their Sr-Nd signatures are similar to the Blue Nile and Phanerozoic cover 470 

respectively. This is consistent with, in the case of SD01B, its location downstream of the Gezira Fan 471 

which is an overspill of Blue Nile detritus, and in the case of SD02B, its location downstream of the 472 

Sudd Marshes which acts as a sediment trap to the upstream White Nile and thus its provenance is 473 

locally derived, as discussed in more detail in following sections. 474 

Two samples collected from the Albert and Victoria branches of the Nile in Uganda were also 475 

analysed.  These have highly radiogenic 87Sr/86Sr (0.718, 0.721), and non-radiogenic εNd (-26.3, -34.1) 476 

and εHf (-25.9, -55.4) consistent with derivation from local cratonic basement. 477 

Excluding the three anomalous samples described above, for which local geological 478 

anomalies provide explanation, and the White Nile samples taken from Uganda, the range in isotope 479 

composition shown by the Nile and its tributaries is rather limited:  87Sr/86Sr varies from 0.7043 in 480 

the Atbara to 0.7067 in the White Nile sample from Khartoum; εNd varies from 5.5 to -1.8; and εHf 481 

varies from 10.8 to -1.8. 482 



Discussion  483 

Our data document early crust-forming events, Precambrian orogenies culminating in the 484 

Neoproterozoic assembly of Gondwana, subsequent erosion and deposition of voluminous 485 

sediments, and finally Cenozoic uplift of the Red Sea Hills and Ethiopian Highlands and eruption of 486 

continental flood basalts in Ethiopia. Additionally, our data track the influence of geomorphology 487 

and local geology on the progressive evolution of the Nile sedimentary signal downstream. 488 

Palaeoproterozoic and Archaean cratons 489 

The Nile traverses Precambrian rocks of the Congo Craton and Saharan Metacraton. The 490 

geology of the Saharan Metacraton (Fig. 1) is poorly understood due to the overlying sedimentary 491 

cover and desert sands, and as a result very little modern isotope data is available to help constrain 492 

its age and tectonic evolution; the U-Pb ages reported by Abdelsalam et al. (2002) are discordant 493 

pre-chemical abrasion ID-TIMS ages, or model ages derived by zircon evaporation techniques, which 494 

yield poorly constrained 207Pb/206Pb ages only. However, Bea et al. (2011) report Archaean U-Pb 495 

SHRIMP ages as old as 3 Ga for gneisses at Uweinat, with evidence for crust as old as 3.22 Ga at 496 

Gebel Kamil in southern Egypt. Similar ages have been obtained in this study for gneisses from c. 80 497 

km east of Uweinat, within the region mapped as the meta-igneous Gebel Kamil Series by  Bea et al. 498 

(2011). The sample studied here (WD16A) has evidence for a metasedimentary protolith (broken 499 

pre-metamorphic zircon cores), with evidence for zircon growth between c. 3.2 and 2.9 Ga, and 500 

subsequent metamorphism at c. 2.7 Ga. Depleted mantle Hf model ages lie between 3.4 and 3.5 Ga. 501 

We see no evidence in our data for the c.2 Ga thermal event (the Eburnean orogeny) recorded by  502 

Bea et al. (2011). 503 

Sample N7-17S, a modern river sand sample collected at Murchison Falls, Uganda, was 504 

sampled from within the Northeast Congo Block of the Congo Craton, close to the Aswa Shear Zone, 505 

which forms the boundary with remobilized crust of the Saharan Metacraton to the north (Appel et 506 

al., 2005; Katumwehe et al., 2015), adjacent to the Pan-African Central African Fold belt. Zircons 507 



from this sample have similar Hf model ages (Fig. 4) to the Archaean gneiss sample from the Saharan 508 

Metacraton (WD16A). Zircons in the Murchison Falls sample record crystallisation at c.2.7 Ga, c.960 509 

Ma and c. 600 Ma; the younger age population forms rims with Hf isotope compositions that are 510 

consistent with re-melting of similar Archaean crust.   The fields defined by the Saharan Metacraton 511 

and modern river White Nile provides the best estimate of the composition of Precambrian cratonic 512 

basement in the Nile catchment.  600 Ma zircon rims, and similar aged rutile, plagioclase and mica 513 

indicate penetration of the effects of the Pan-African orogeny deep into the craton interior, in 514 

agreement with the previous work and conclusions of Appel et al. (2005) and Schenk et al. (2007). 515 

The Hammamat Formation 516 

The depositional and tectonic environment of the Hammamat Formation, which overlies the 517 

Precambrian Arabian-Nubian Shield basement, is disputed (e.g. Abdeen and Greiling, 2005; 518 

Bezenjani et al., 2014; Eliwa et al., 2010; Johnson et al., 2011; Ries et al., 1983; Wilde and Youssef, 519 

2002).  Proposed depositional ages lie close to the time of the Pan-African Orogeny, and both pre-520 

collisional and post-collisional setting have been proposed. Local versus long distance provenance is 521 

debated.  Previous work has recorded detrital zircon grains with ages as young as 585  Ma in the 522 

Hammamat Formation (Wilde and Youssef, 2002), which has implications for assigning a maximum 523 

depositional age to these rocks. The volcanic arenite sample from the Hammamat Formation studied 524 

here contains four zircon grains that give 206Pb/238U ages younger than 620 Ma.  In detail, these 525 

grains are slightly discordant, and repeat analysis (5 analyses for each grain) demonstrated that 526 

these grains had indeed suffered Pb-loss, and had crystallisation ages of 635-640 Ma (Fig. 7).  This is 527 

consistent with the age of the youngest concordant zircon population with consistent hafnium 528 

isotope composition in the data set, which has an age of c. 640 Ma.  In the light of this, we suggest 529 

that any maximum depositional ages for the Hammamat Formation based on sparse young grain 530 

ages should take into account the possibility that such grains have suffered Pb-loss.  531 



Hammamat Formation zircon data analysed as part of this study (Figs. 5, 6 and 7) can be 532 

largely explained entirely by derivation from underlying local Arabian Nubian Shield bedrock, which 533 

is dominated by zircons with juvenile hafnium isotope compositions derived from 870-630 Ma 534 

oceanic arc rocks (e.g. Stern et al., 2010). A small number of Pre-Neoproterozoic detrital zircons are 535 

found in the Hammamat Formation. Wilde and Youssef (2002) suggest possible source areas for 536 

these Pre-Neoproterozoic grains could be the Central and South Eastern Desert, or further afield in 537 

the Arabian Nubian Shield in parts of Saudi Arabia where sparse zircons of this age have previously 538 

been recorded. However, we believe that such distal sources are not required to explain our data 539 

because it is possible that they have been derived from the more proximal Egyptian ANS (Ali et al., 540 

2009). The Arabian Nubian Shield bedrock in Egypt incorporates some inherited pre-880 Ma igneous 541 

zircons with juvenile ɛHf values indicating either incorporation of sediments during subduction along 542 

a passive margin or inheritance from the mantle source region, or both (Stern et al., 2011). 543 

The volcanic lithic arenite composition and epidote-rich nature of the Hammamat bedrock 544 

sample (RSH14A) supports our interpretation that it is derived directly from Arabian-Nubian Shield 545 

arc rocks. Furthermore, the composition and zircon U-Pb ages of the sample are in stark contrast to 546 

the overlying post-collisional Phanerozoic cover sequences in the region, which are quartz arenites 547 

with ZTR indices as high as 99 and have diverse zircon U-Pb age spectra, including a typical 600 Ma 548 

peak as described below. We therefore see no requirement to invoke long-distance transport of 549 

detritus to form the Hammamat Formation. 550 

Phanerozoic Sedimentary Cover Rocks and overlying modern sediment 551 

Our analyses provide the first isotopic data from the Phanerozoic sedimentary cover bedrocks in 552 

Egypt. Samples from Phanerozoic sandstone cover sequences in the Western Desert and Red Sea 553 

Hills of Egypt are mineralogically mature. They compare well to Phanerozoic cover successions in 554 

surrounding regions across North Africa and the Middle East in terms of both zircon age spectra  555 

(e.g. compare with North African data in Avigad et al. (2012); and Avigad et al. (2003)), and zircon εHf 556 



characteristics, namely the typical “double plunge” to negative values at c.600 Ma and c.1000 Ma  557 

(e.g. compare to data from Jordan; Morag et al., 2011a), first recognised as characteristic in Israeli 558 

coastal sands by Be’eri-Shlevin et al. (2014). 559 

 Red Sea Hills Phanerozoic cover rocks and modern wadi samples do not consist entirely of 560 

material recycled from the underlying Arabian-Nubian Shield basement. They are derived, at least in 561 

part, from out with the underlying Arabian-Nubian Shield basement. This is indicated by: 562 

 the occurrence of >2000 Ma zircons, which are extremely rare in the Arabian-Nubian Shield 563 

(Stern et al., 2010);  564 

 the increased mineralogical maturity and more complex zircon populations compared to the 565 

underlying locally sourced Hammamat Formation (see above);  566 

 the presence of a significant 1000 Ma population with cratonic εHf values, which is 567 

incompatible with derivation from the juvenile arc of the Arabian-Nubian Shield.  568 

A similar conclusion was reached by Morag et al. (2011b) who looked at εHf values of the 1000 569 

Ma zircon population in cover sequences of Israel and Jordan. Although their data showed a 570 

preponderance of grains with negative εHf values, our data from Egypt shows two populations at 571 

c.1000 Ma, one with positive εHf values and one with negative values. Whilst the population with 572 

positive values would be compatible with derivation from an as yet unrecorded arc from within the 573 

Arabian-Nubian Shield, the provenance of the population with negative εHf values remains 574 

enigmatic. The cratonic c.1000 Ma zircons found in the Mesozoic cover of both Western Desert and 575 

Red Sea Hills samples can be most simply explained by recycling from underlying Palaeozoic cover 576 

sequences, but the original basement source is debated. As pointed out by Kolodner et al. (2009), 577 

long distance transport from suitable cratonic source areas far to the south are ruled out by the 578 

paucity of >2000 Ma grains which would also be present if derived from such a region. Avigad et al. 579 

(2003) proposed that the source could be material transported from East Africa towards the margins 580 

of Gondwana by Neoproterozoic glaciers. We suggest that the original source may have been from a 581 



region since rifted off Gondwana, which may have also supplied zircons to, for example, the 582 

Neoproterozoic Arkenu Formation cover sediments of Libya, which contains grains of an appropriate 583 

age (Meinhold et al., 2011). 584 

Phanerozoic bed rock samples and Red Sea Hills modern wadi sand which partially covers the 585 

bedrock, have similar zircon U-Pb age spectra and show a similar “double plunge” of εHf 586 

characteristics to negative values at c. 600 Ma and c.1000 Ma (Figs 5 and 6). This similarity suggests 587 

that the origin of the modern sand is broadly that of recycled material from Phanerozoic 588 

sedimentary rocks which the sand mantles.  Some component of aeolian transport undoubtably 589 

contributes in the deposition of such modern sands. However, the extent of such transport distance 590 

is difficult to determine given the similarity of Phanerozoic sedimentary cover signature across vast 591 

distances of north Africa.  Western Desert dune sands were not analysed for zircon U-Pb, and thus 592 

an assessment of far-field aeolian input distinct from that recycled from Phanerozoic sandstones 593 

cannot be assessed. The similarity in bulk rock data between the Western Desert mudstone and the 594 

aeolian dune sand leads us to tentatively suggest that, like in the Red Sea Hills, composition of the 595 

modern sand is broadly similar to Phanerozoic sedimentary bedrock. 596 

Young zircons derived from the Ethiopian Highlands 597 

Cenozoic zircons were found in the Blue Nile (sample ETH2A), the Tekeze and Atbara rivers 598 

(ETH6A, ETH8A, SD06) and downstream in the Nile trunk in Sudan (SD04). Grains of such age were 599 

not recorded in the White Nile or modern wadi sediment from the Red Sea Hills (Fig. 8). The obvious 600 

source for these grains is the Cenozoic Ethiopian volcanic province in the Ethiopian Highlands (Fig. 1) 601 

which includes a variety of volcanics from flood basalts to shield volcanoes, and bimodal 602 

compositions with significant ignimbrites and rhyolitic airfall tuffs intercalated with the basalt lava 603 

flows (Kieffer et al., 2004; Prave et al., 2016; Ukstins et al., 2002). Our Cenozoic grain ages extend 604 

from ~23-33 Ma, with population peaks at 25 Ma and 30 Ma. These compare well with the timing of 605 

a major period of bimodal and silicic volcanism in Ethiopia, dated at ~25-30 Ma (Ukstins et al., 2002). 606 



Furthermore, Hf analyses we undertook on both our samples and on grains from Lake Tana Rhyolites 607 

of the Ethiopian Highlands, previously analysed for U-Pb by Prave et al. (2016), show an excellent 608 

match (Fig. 8). Ukskins et al. (2002) documented pre-rift bimodal magmatism in Ethiopia from 31 to 609 

24 Ma. They recorded a major decrease in volcanism between 25-20 Ma, which they associated with 610 

the transition from pre- to syn-rift volcanism triggered by the separation of Africa and Arabia. The 611 

zircons we have analysed would, by their definition, be of pre-rift origin.  612 

Effects of geomorphology, local bedrock geology and aeolian input on the isotope signal 613 

of the Nile River 614 

North of Uganda, the White Nile passes through an extensive area of marsh land (The Sudd) 615 

which has trapped most of the detritus from the river since 2.7 Ma (Williams and Talbot, 2009). This 616 

is clearly reflected in the detrital zircon data. Zircons in Ugandan White Nile modern river sediments, 617 

south of the Sudd, are dominated by Archaean grains with evidence for crustal reworking and new 618 

zircon growth at c.960 and 600 Ma.  A craton-dominated signature is also displayed by the highly 619 

negative ɛNd values and high 87Sr/86Sr values of the White Nile muds.  620 

By contrast, north of the Sudd at Kosti, the detrital signature of White Nile zircons is much 621 

less cratonic. In sample SD02A, located north of the Sudd but south of the Gezira Fan, Archaean 622 

grains are almost completely absent, and instead the zircon populations show strong similarities to 623 

Blue Nile and/or Phanerozoic cover sediment signatures. A mud sample from the same location has 624 

Sr-Nd-Hf values similar to Phanerozoic cover (Figs 9 and 10).  Potential contributing sources to this 625 

White Nile sample north of the Sudd could be the Sobat River, and/or alluvial fans draining into the 626 

river from the Nuba Mountains. 627 

The River Sobat drains similar lithologies to the Blue Nile.  Published data show it to have 628 

87Sr/86Sr values of 0.708-0.712 and ɛNd values of -1.6 to -9.1 (Padoan et al., 2011), spanning the range 629 

of our data for modern muds from Phanerozoic cover, as sampled in the Red Sea Hills However, the 630 

River Sobat flows through an extensive region of marsh land north of the Sudd (the Machar 631 



Marshes) and thus was not considered to be a significant source of sediment to the Nile trunk 632 

downstream by Padoan et al., (2011). 633 

Sample SD02 was collected north of Kosti, close to the southern limit of the Gezira Fan, so 634 

significant input of Blue Nile material from the fan is not thought to be likely, and furthermore, such 635 

input would not be compatible with the bulk sediment Sr and Nd data.  However, from the Last 636 

Glacial Maximum (c. 20 ka) onwards, a major alluvial fan (the Khor Abu Habl alluvial fan) has drained 637 

into the river from the Nuba Mountains to the west  (Williams et al., 2000).  Ephemeral rivers 638 

feeding the fan drain Proterozoic basement rocks and overlying Phanerozoic siliciclastic cover 639 

sequences, thus compatible with the isotopic signatures observed in this sample. 640 

Further downstream, a mud sample at SD01B, collected just to the south of Khartoum has 641 

an ɛNd of -1.8 and 87Sr/86Sr of 0.7067, a signature with affinity to the Ethiopian Continental Flood 642 

Basalts. This is due to the sample location being adjacent to the Gezira Fan (Williams 2009), which 643 

formed during the Late Pleistocene by overspill from the Blue Nile, and contributes today to White 644 

Nile sediment load. Significant contribution from the palaeo-Blue Nile sourced Gezira Fan is also 645 

reflected in the zircon age spectrum of sample SD01A (Fig 5) where the dominant peak at 800 Ma 646 

strongly resembles the modern Blue Nile signature of sample SD03A in Sudan. 647 

Further downstream to the north, the Blue Nile, and then the Atbara, join the Nile trunk. 648 

Both the Blue Nile and the Atbara (with its tributary the Tekeze) drain, from south to north 649 

downstream: Cenozoic volcanic rocks, Phanerozoic cover, Arabian-Nubian Shield, and Proterozoic 650 

basement with Pan-African mineral cooling ages (Mock et al., 1999). Sr-Nd-Hf isotope data indicate 651 

that the Atbara has a higher proportion of volcanic detrital contribution to the river sediment 652 

compared to the Blue Nile. This is also reflected in petrographic data showing a higher proportion of 653 

clinopyroxene and olivine (Garzanti et al., 2006), and the higher proportion of V and Cr in the Atbara 654 

compared to the Blue Nile (Fig. 3). By contrast, a sample collected from a tributary of the Tekeze (the 655 

Uri River) in an area of Phanerozoic cover rocks has an isotope composition typical of Phanerozoic 656 



cover successions (Figs. 9 and 10). Variation in the contributing bedrock lithology is also illustrated 657 

by the significant change in proportions of major zircon populations in the Blue Nile downstream.  658 

Notably, the region of Arabian-Nubian Shield cut by the Blue Nile in NW Ethiopia contains granitoids 659 

with U-Pb zircon ages in the ranges from 650 – 700 and 800-880 Ma, and juvenile ɛNd values (data 660 

summarised in Johnson (2014)).  These populations are clearly represented in our Blue Nile dataset 661 

(Fig. 5), with prominent peaks at 800-830 Ma in samples ETH02A and SD03A, persisting into the Nile 662 

trunk at Dongola (sample SD04A).  680 Ma zircons are also abundant in sample ETH02A from the 663 

Blue Nile, and in the southern Nile trunk (SD04A). 664 

The Nile trunk sample downstream of the White Nile confluence with the Blue Nile and 665 

Atbara, at Dongola in Sudan (SD04A), shows a U/Pb zircon signature much the same as the Atbara 666 

and Blue Nile combined. Garzanti et al. (2006) suggested a greater input to the trunk Nile from the 667 

Blue Nile compared to the Atbara, based on petrographic data. The greater similarity in Sr-Nd and Cr 668 

and V values between the Blue Nile and Nile trunk, compared to the Atbara and Nile trunk (Figs. 3 669 

and 9) are consistent with this proposal. 670 

By the time the Nile River reaches northern Egypt (sample BS01A; Figs 5 and 6), its signature 671 

has changed to more closely resemble that of typical Phanerozoic sedimentary cover in terms of 672 

zircon age spectra,  with more Palaeo-Proterozoic to Archaean grains, and the double plunging εHf to 673 

negative values at c.600 Ma and c.1000 Ma (also clearly observed in a Nile sample collected near 674 

Cairo by Iizuka et al. (2013). This downstream change can be explained by the Nile’s route in this 675 

stretch of the river, which flows across the Phanerozoic sedimentary bedrock cover and overlying 676 

modern sediment of the Red Sea Hills to the East, and Western Desert to the west. Any such input to 677 

the Nile from the west would more likely be transported to the river by aeolian processes, and from 678 

the east would include flash flood transportation, given the higher topography of the Red Sea Hills 679 

compared to the Western Desert. 680 



Overall, when considering the entire length of the Nile, undoubtably aeolian transportation 681 

plays a part in delivering detritus to the river. However, such input does not mask the dominant 682 

bedrock and geomorphological controls which we have demonstrated to effect the changes in the 683 

river’s signature downstream, for both sand and mud grade material. 684 

Finally, we consider that the contribution of the White Nile to the Nile delta is small, the 685 

result both of its significantly lower mean annual discharge compared to the Blue Nile, and sediment 686 

trapping in the Sudd Marshes. Both Sr-Nd and trace element values of the trunk Nile are more 687 

similar to those of the Blue Nile / Atbara than the White Nile (Figs 3, 9 and 10). Additionally, the 688 

white micas of the trunk Nile show similarity in Ar-Ar age distribution to grains collected from the 689 

Red Sea Hills, and dissimilarity with the age spectra from the White Nile south of the Sudd. Whilst 690 

Pre-Neoproterozoic zircon grains make up to 97% of sediment in the White Nile south of the Sudd, 691 

such aged grains in the Nile trunk are not required to be delivered by the White Nile.  Pre-692 

Neoproterozoic grains are in fact extremely sparse in the White Nile north of the Sudd (average 2%). 693 

Pre-Neoproterozoic grains are relatively common in the Phanerozoic cover sedimentary rocks and 694 

modern wadi sediments sampled in the Red Sea Hills (average 9%) and the Western Desert (average 695 

12%) and are also found in the Blue Nile (average 1%) and in sediments from the Atbara and Tekeze 696 

(average 6%) (Fig. 5). Any of these regions could have supplied the Neoproterozoic zircons recorded 697 

in the Nile trunk. 698 

Supercontinent Assembly and the Pan-African Orogeny 699 

Figure 11 shows all of the U/Pb and Hf isotope data derived from Nile hinterland samples as 700 

part of this study.  The largest peak at c.600 Ma relates to the assembly of East and West Gondwana,  701 

when Neoproterozoic juvenile intra-oceanic island arcs of the Arabian-Nubian Shield accreted, and 702 

finally collided with the Saharan Metacraton and Congo Craton (Johnson et al., 2011). This can be 703 

seen in samples derived from as far afield as the White Nile in Uganda. 704 



The influence of the Pan-African Orogeny was also seen in U/Pb rutile, and Ar/Ar plagioclase 705 

and mica ages which reflect post orogenic cooling. This is in agreement with hornblende, muscovite, 706 

amphibole, biotite and sericite 40Ar/39Ar data from Arabian-Nubian Shield bedrock (Johnson et al., 707 

2011).  708 

In detail, the zircon U-Pb / Hf isotope data show two maxima at c. 840-780 and 700-600 Ma 709 

with juvenile εHf values, which represent two major episodes of arc development within the Arabian-710 

Nubian Shield. The reduction in data density between the two episodes may relate to reduced 711 

subduction-related magmatism at this time, perhaps resulting from collisions between arcs within 712 

the Arabian-Nubian Shield.  Arc-collision is  documented by the emplacement of ophiolites at this 713 

time (Ali et al., 2010), and may be represented in our dataset by c. 750 Ma detrital zircons from the 714 

Hammamat Formation, which have the highest (most juvenile) ɛHf values in the entire data set.  715 

The final closure of the Mozambique Ocean is documented by the marked switch to more 716 

negative εHf values in the c.600 Ma population, due to the intrusion of post-collisional granites 717 

derived by melting of continental crust within the suture zone.  718 

A notable feature of the data is the discontinuity of the field of c.1000 Ma grains with 719 

juvenile εHf versus those with more cratonic influence (i.e. εHf < 0). Whilst the ultimate source of 720 

these grains remains unknown, our data suggest two distinct ultimate sources, one from an oceanic-721 

arc setting and a second involving re-melting of a cratonic source. 722 

The most cratonic (i.e. lowest εHf ) grains within each age population in our dataset plot close 723 

to the 3500 Ma evolution line for North African crust derived using our basement data from the 724 

Saharan Metacraton in Egypt and Congo Craton in Uganda. 725 

The supercontinent cycles which led to the creation of Gondwana (650-500 Ma) are 726 

represented in all of the samples collected as part of this study (Fig. 11). The isotope signatures of 727 

the samples analysed from the Nile River and its hinterland contain Mesoproterozoic and older 728 

zircons that may be related to earlier supercontinent cycles.  However, the location of the Congo 729 



craton in reconstructions of Rodinia (De Waele et al., 2008) is a matter of debate and the lack of 730 

exposure and reliable geological data from the Saharan Metacraton means that its location in 731 

Rodinia and earlier supercontinent configurations is unknown.  Although our data contain some 732 

c.2000 Ma zircons, these cannot be directly related to the formation of the supercontinent ‘Nuna’ 733 

(aka. Colombia) because Nuna did not involve North African cratons (Rogers and Santosh, 2002). 734 

Conclusions  735 

Gneissic basement of the Saharan Metacraton in southern Egypt, and detrital zircons derived 736 

from rocks of the Congo Craton in northern Uganda, both indicate an age of crust formation 737 

between 3.0 and 3.5 Ga, with subsequent melting and/or metamorphism at c. 2.7 Ga.   738 

Our combined U-Pb and Hf-isotope zircon dataset document the evolution of the North African 739 

crust, in particular highlighting phases in the development of the Arabian-Nubian Shield and its 740 

collision with the Saharan Metacraton.  The data show two phases of arc magmatism, at c. 840-780 741 

and 700-600 Ma, with a reduction in magmatism at c. 750 Ma, during a period of arc collisions within 742 

the Arabian Nubian Shield.    743 

The Hammamat Formation, sampled in Wadi Hammamat, has a maximum depositional age of 744 

635 Ma, based on reanalysis of anomalously young zircon grains, which are shown to have suffered 745 

Pb-loss. Provenance analysis indicates that the Hammamat Formation is locally-derived. By contrast, 746 

the Phanerozoic cover sedimentary rocks overlying the Arabian-Nubian Shield are derived, at least in 747 

part, from distal sources beyond the Arabian-Nubian Shield. Phanerozoic cover sedimentary rocks 748 

which blanket much of North East Africa represent an important source of detritus to the Nile River 749 

and are characterised by the presence of a major zircon population with both juvenile and crustal ɛHf 750 

values reflecting the Pan African orogenic event, and a significant (9-12%) population of pre-751 

Neoproterozoic zircon grains.  The original source of c.1000 Ma grains in the Phanerozoic 752 

sedimentary cover rocks remains enigmatic, but we have identified that there are two distinct 753 

populations: one indicating a juvenile ultimate source and one a cratonic source.  754 



In the modern Nile drainage, there is considerable evolution downstream, controlled 755 

predominantly by changes in local geology and geomorphology. The provenance signature of the 756 

White Nile is dramatically different upstream and downstream of the Sudd marshes as a result of 757 

sediment trapping. South of the Sudd, White Nile sediments are craton-derived.  North of the Sudd, 758 

at Kosti, the signature of the White Nile is dominated by material derived from Phanerozoic 759 

sandstones supplied via alluvial fans to the west of the river.  Further north, south of Khartoum, 760 

White Nile sediment composition is affected by its proximity to the Pleistocene Blue-Nile sourced 761 

Gezira Fan. The Blue Nile’s and Atbara’s signatures are influenced predominantly by input from the 762 

Ethiopian Flood Basalts in terms of their bulk rock signature, and by proximity to the Arabian-Nubian 763 

shield in terms of zircon characteristics. A further shift in sediment signature in terms of zircon 764 

characteristics is seen by the time the Nile reaches northern Egypt, reflecting the river’s passage 765 

through Phanerozoic cover sedimentary rocks and overlying modern sands of the Red Sea Hills and 766 

Western Desert through this stretch of river. By contrast, the bulk isotopic Sr-Nd-Hf data show little 767 

downstream evolution and remain dominated by mafic input from the Ethiopian Highlands as far 768 

south as northern Egypt.   769 
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Figure Captions 779 

Figure 1.  Modern river samples and hinterland geology of Nile River source areas. Inset shows 780 

location of map as boxed area. Map modified from (al-Miṣrīyah, 1981; Johnson, 2014; Kazmin, 1972; 781 

Ministry of Energy and Mines, 1981). 782 

Figure 2.  Petrographic variability of detrital modes in modern river sands, bedrock and aeolian 783 

sands from the Nile trunk and hinterland, illustrating the proportion of quartz (Q), K-feldspar (Kfs) 784 

and plagioclase feldspar (Pl). Samples are modern river sands unless otherwise stated.  Data from 785 

Garzanti et al. (2006)(*) and Garzanti et al. (2015) (**).  786 

Figure 3. Selected trace element concentrations from each of the Nile source areas and the main 787 

Nile trunk, normalized to trace element concentrations of Post Archean Australian Shale (PAAS: 788 

McLennan and Taylor (1985). All samples are modern muds or mudstones, except for samples from 789 

the Nile trunk in Egypt collected prior to construction of the Aswan Dam (Shukri, 1949), which are 790 

modern sands. * Data from Garzanti et al.  (2013).  The field for Red Sea Hills samples encompasses 791 

eleven samples.  Other distributions represent single analyses, or averages of small groups of 792 

samples (See Supplementary Item 5). 793 

Figure 4. U/Pb age and hafnium isotope composition of complex zircons in Archaean gneiss within 794 

the Saharan Metacraton (WD16A), and detrital zircons in White Nile sand draining Archaean craton 795 

(N7-17S).  Two-sigma uncertainties are smaller than the symbol size, typically c. 20 Ma on the age 796 

determinations, and 1-2 εHf units. 797 

Figure 5.  Detrital zircon U-Pb age frequency and relative probability plots for samples from the Nile 798 

catchment and surrounds. 799 

Figure  6.  Detrital zircon U-Pb age frequency and relative probability plots with ɛHf vs U-Pb age. The 800 

blue line at 600 Ma marks the approximate time of the Pan-African orogeny and the collision of the 801 

Arabian-Nubian Shield with the Saharan Metacraton and Congo craton.  The blue line at 1000 Ma 802 

highlights the dual juvenile and cratonic populations of the enigmatic 1000 Ma population. The 803 



reference line for 3500 Ma crust is calculated using 176Lu/177Hf ratio of 0.017 which is derived from 804 

the apparent crustal evolution trend displayed in Fig. 4. 805 

Figure 7. Tera-Wasserburg plot illustrating the effect of Pb loss on an apparently ‘young’ Hammamat 806 

Formation zircon grain.  Replicate analyses of the same grain indicate a true age c. 40 Ma older. 807 

Figure: 8. Cenozoic zircon data from the modern Nile catchment. (a) Histograms for Cenozoic detrital 808 

zircons from the Nile and its tributaries, together with zircons from Lake Tana rhyolites from the 809 

Ethiopian Highlands (ages from Prave et al. (2016)). Probability density plot is shown for combined 810 

data. (b) Plot of initial εHf values against age for detrital zircons from the modern Nile and its 811 

tributaries, together with zircons from the Lake Tana rhyolites.  Numbers in parentheses in the key 812 

indicate the number of Cenozoic grains detected in each sample relative to the total number of 813 

grains analysed. Note that zero Cenozoic grains were recorded in the modern White Nile and Red 814 

Sea Hills modern wadi sediments. 815 

Figure 9. 87Sr/86Sr versus ɛNd isotope data for Nile  river muds;  Egyptian Nile trunk sands taken prior 816 

to the construction of the Aswan dam (samples from Shukri, 1949); Nile hinterland mudstones, wadi 817 

muds and aeolian sands; and Sudanese Holocene Nile trunk samples (Woodward et al., 2015). Also 818 

shown for comparison are average data from the Ethiopian Contintental Flood Basalts (Pik et al., 819 

1999). 820 

Figure 10 ɛHf plotted against ɛNd for the same samples as shown in Fig 8.  *Ethiopian basalt data from 821 

Meshesha and Shinjo (2010). Symbols as in Fig 9, except as noted. 822 

Figure 11.  Probability density plot illustrating the Hf isotope – time evolution of the Nile source 823 

regions supplying detrital zircons discussed in this study.  The density of the data distribution is 824 

calculated using a modified version of the MATLAB implementation of the Kernel Density Estimation 825 

procedure supplied by Botev et al (2010) using bandwidths equivalent to the typical analytical 826 

uncertainty of the U/Pb ages (±20 Ma) and epsilon hafnium values (± 1 epsilon units).  Contours are 827 

generated by the MATLAB contour3 function and plotted using the plot3d function.  Also shown is 828 



the compilation of African detrital data from Condie and Aster (2010), and the modern African river 829 

data of Iizuka et al (2013) filtered using the discordance criteria applied in this paper. 830 

Supplementary information 831 
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