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Abstract

Research on early warning indicators has generally focused on assessing temporal transitions with
limited application of these methods to detecting spatial regimes. Traditional spatial boundary
detection procedures that result in ecoregion maps are typically based on ecological potential (i.e.
potential vegetation), and often fail to account for ongoing changes due to stressors such as land use
change and climate change and their effects on plant and animal communities. We use Fisher
information, an information theory based method, on both terrestrial and aquatic animal data (U.S.
Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our
results to traditional early warning indicators, conventional ecoregion maps, and multivariate
analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and
transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher
information provided explicit spatial information about community change that is absent from other
multivariate approaches. Our results suggest that defining spatial regimes based on animal
communities may better reflect ecological reality than do traditional ecoregion maps, especially in

our current era of rapid and unpredictable ecological change.
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Introduction

The possibility of multiple regimes for ecosystems is now well documented, and methods to detect
temporal regime shifts have received a great deal of attention (Scheffer & Carpenter 2003; Dakos et
al. 2008; Guttal & Jayaprakash 2008). Less well developed is the application of these tools to the
identification of spatial regimes that reflect the boundary between two types of ecosystems (though
see Kéfi and others 2014). Spatial data has unique challenges in that while it is not necessary for
data points to be equally spaced (Dai et al. 2013; Cline et al. 2014), sufficient spatial sampling
resolution is needed to distinguish one spatial regime from another. The identification of spatial
regimes is increasingly important due to habitat fragmentation, which increases the proportion of
boundaries in landscapes (Kent et al. 2006), and anthropogenic climate change, which is expected to
shift ecological boundaries. Studies have already shown rapid altitudinal shifts in montane
ecological boundaries in response to climate change (Allen & Breshears 1998; Beckage et al. 2008).
Similarly, climate-driven boundary shifts are being detected in marine systems as both spatial shifts
in primary production and in individual species ranges, as well as in phenological shifts and changes
in community composition (Beaugrand et al. 2002; Edwards & Richardson 2004; Grebmeier et al.
2006). Because ecological boundaries in terrestrial systems typically demarcate the distribution of
vegetation and ecosystem type, they provide critical information about the extent and rate of the
biological processes shaping the boundary and driving the maintenance of the regime within the
boundary (Yarrow & Salthe 2008). This has implications for both environmental management and

biological conservation (Kent et al. 2006).

Boundary identification has been an active area of research in terrestrial ecology and biogeography,
and is generally both data intensive and statistically challenging, particularly when it involves
vegetation sampling (Kent et al. 2006). The use of remotely-sensed data is less laborious than field
work, but the method is poor at distinguishing between physically similar but floristically different
vegetation; hence, it may require labor-intensive ground-truthing to verify ecological transitions in

plant assemblages (Kent et al. 2006). Boundary detection is further complicated by the multiplicity
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of scales at which different processes and physical patterns are expressed (Fagan et al. 2003; Strayer
et al. 2003), and that the relationship between abiotic variables such as climate, and biotic variables
such as vegetation, is often non-linear across boundaries (Danz et al. 2012). Typically, terrestrial
ecological boundaries defined for ecoregion maps such as those used by U.S. federal agencies are
based on potential plant communities, which in turn reflect differences in bedrock, soil, altitude,
temperature, and moisture (Bailey 1983; Omernik 1987). Terrestrial plant communities may not
respond as rapidly as animal communities to direct anthropogenic change and climate change
(Pearson 2006; Pearman et al. 2008), therefore defining the boundaries between animal
communities may better represent current biotic and abiotic conditions. Variation in animal
population dynamics provides information on the stability of ecosystem mechanisms, processes, and

linkages, and may serve as an early warning signal of shifting regimes (Cline et al. 2014).

Pelagic marine ecological boundaries are typically defined by primary production characteristics
(Longhurst 1998) which reflect aquatic properties such as currents, temperature, salinity, nutrients,
and bathymetry, but are complicated by the ephemeral nature of features such as oceanographic
fronts. Landforms, such as straights, may create another form of boundary between biological
communities. Advection across fronts or through physical constrictions between water masses can
serve as a driver of both physical and ecological homogeneity, though the degree of connectivity can
vary rapidly in space and time (Wassmann et al. 2015). There is much current discussion of
appropriate variables by which to track marine ecological change (Rice & Rochet 2005; Samhouri et
al. 2009; Rombouts et al. 2013). A priori, it is difficult to know which individual taxa or processes
represent a spatial regime and thus ecological boundaries. Because of the central role played by
zooplankton as a prey item and a grazer, zooplankton data have commonly been used (Hooff &
Peterson 2006; Pace et al. 2013), although Scheffer et al. (2003) warn that zooplankton community
composition and abundance may be too chaotic to be useful for regime shift prediction except at

very high level aggregate states.
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Ideally, a monitoring program should be able to forecast far-reaching change such as a regime shift.
However, too often monitoring focuses on particular species of interest, effectively barring
community-level or ecosystem-level analyses. We use spatially explicit avian and zooplankton
community species composition data to test for the identification and location of spatial regimes
using Fisher information, an information-theory method with no strict data requirements that is a

powerful tool for understanding system-level change within a location, or over space.

Regime shifts and Fisher information

There is widespread acceptance in the scientific community that some ecosystems exhibit multiple
regimes, and that the transition between regimes can be abrupt and discontinuous (though see
Fukami & Nakajima, 2011; Hastings & Wysham, 2010). Statistical indicators of regime shifts that can
act as an early warning signal are thought to represent generic properties that behave in similar and
predictable ways across system types (Dakos et al. 2011), and are proposed to have the added
advantage that detailed mechanistic knowledge is not necessary for their use. The indicators include
critical slowing down, which can manifest as slower recovery rates from perturbation, increased
autocorrelation, and increased variance (Scheffer et al. 2009); changing skewness (Guttal &
Jayaprakash 2008); conditional heteroscedasticity (Seekell et al. 2011), and the variance index (Brock

& Carpenter 2006).

These indicators have transformed our ability to identify variables that change in response to
exogenous or endogenous drivers and signal an impending regime shift. However, much remains
uncertain. For example, although the various indicators have been tested on model systems and
historical data sets with known temporal regime shifts (Lindegren et al. 2012), their performance is
not consistent (Seekell et al. 2011; Perretti & Munch 2012; Batt et al. 2013; Dakos et al. 2013) and
their ability to predict future regime shifts is unknown (Boulton et al. 2014). Some methods, such as
conditional heteroscedasticity, require large, high resolution samples (Seekell et al. 2011) and their

applicability to complex systems with multivariate data is questionable because most studies have
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been conducted using either simulated data or very simple systems (Scheffer et al. 2009; Drake &
Griffen 2010; Dai et al. 2012; Dakos et al. 2012). When models have incorporated realistic levels of
ecological noise, the indicators tend to perform poorly (Perretti & Munch 2012). A difficulty in
developing early warning indicators is that the critical variables driving system transitions are
typically unknown. Brock and Carpenter (2012) cite this lack of knowledge as a “fundamental

problem” in leading indicators research.

Researchers have urged that multiple ecosystem variables should be evaluated when interpreting
indictors for real systems (Carpenter et al. 2009; Lindegren et al. 2012). For example, Litzow et al.
(2013) found that when analysing rising variance in catch data from fisheries, trends in individual
fisheries largely failed to be statistically significant, while pooling multiple populations increased
their ability to detect a collapse. The variance index (VI) was developed to capture dominant
variance trends in multivariate systems (Brock & Carpenter 2006). VI should spike prior to a

transition, but results from this index are sometimes unclear (Eason et al. 2014).

Fisher information may address some of the issues listed above. Fisher information is an
information theory approach (Fisher 1922) that captures patterns in system dynamics as evidenced
by the trends in variables that characterize the system’s condition. The approach collapses the
behavior of multiple variables into an index that can be used to track changes in dynamic order,
including regimes and regime shifts. Historical applications of information theory-based approaches
include assessing ecosystem functioning, stability, complexity, and diversity (Anand & Orloci 2000;
Svirezhev 2000; Fath & Cabezas 2004; Patricio et al. 2004). More recently, Fisher information has
been employed for sustainable environmental management at various spatial scales (Karunanithi et
al. 2011; Eason & Garmestani 2012) and to examine temporal patterns in both terrestrial (Mayer et
al., 2007; Eason and Cabezas, 2012;) and aquatic systems (Mantua 2004; Spanbauer et al. 2014;

Eason et al. 2016).
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While other methods like time series analysis requires a sufficient resolution of data to separate
noise from a genuine signal of an impending regime shift, the data requirements for Fisher
information are more lenient. A strength of Fisher information is that it can readily incorporate a
wide variety of data types and variables and has been used to identify regime changes in various
types of systems with data resolutions from relatively small and moderate (Eason & Cabezas 2012)
to quite large (Spanbauer et al. 2014). Furthermore, there is no minimum or maximum number of
variables needed to compute the index. When assessing a complex system characterized by multiple
variables, methods like Spearman rank order correlation have been used in conjunction with Fisher
information to determine which variables or groups of variables are critical for shaping the Fisher
information signal (Eason & Cabezas 2012). Accordingly, one of the key limitations of traditional
statistical indicators is avoided because there is no need to make assumptions about which variables
best act as indicators of an impending regime shift, particularly when much is uncertain and our

knowledge is limited.

Purpose

Our goal is to identify spatial regimes in avian and zooplankton community data using Fisher
information, and compare the extent to which Fisher-identified regime boundaries are coincident
with our a priori understanding of where these ecological boundaries exist, as per classification
systems such as Bailey’s (1983) and Omernik’s (1987) for terrestrial systems, and marine domain
descriptions found in Carmack et al. (2010) and Archambault et al. (2010). The terrestrial ecoregion
maps rely heavily on potential natural vegetation based on underlying geological and climatic
variables, so significant discrepancies between actual land use, actual vegetative cover, and
potential vegetation can exist, and should be reflected in the composition of the animal community.
Boundaries in marine systems are not as spatially constrained as in terrestrial systems and the key
habitat determinants of species’ distributions and community structure are not as easily defined. It

is important to note that we are not trying to identify regime shifts that represent a critical transition
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(e.g. Scheffer 2009), but rather the geospatial point or region at which one ecosystem type

transitions into another.

Although Fisher information is suited to multivariate data encompassing a wide range of biotic and
abiotic data that characterize any given regime, we used a single taxon dataset from each system
(birds and zooplankton). Limiting the data in this way had the benefit of making this a conservative
test of the performance of Fisher information that reflects the data readily available to others
working on similar problems. We compared the Fisher information results with a range of early
warning indicators (critical slowing down, captured by the lag-1 autocorrelation coefficient; variance;
kurtosis; skewness; and the variance index), and multivariate methods commonly employed by

community ecologists (nMDS (Oksanen 2013), and cluster analysis).

Methods

Terrestrial data

We used USGS Breeding Bird Survey data (BBS) from 30 survey routes along a ~ 1900 km transect.
Each BBS route is 41 km long and has 50 stop points located at 800 m intervals; at each stop point, a
3-minute point count of sighted and heard birds is recorded, and data from each stop point are
totalled for the route (Sauer et al. 2014). The routes begin in the Rocky Mountains, move due east
through the central prairie region, and then veer north into Minnesota, terminating at the western
border of Lake Superior (Figure 1A). The species abundance data are a snapshot of the 2007 bird
community at each route location. The routes are located in 5 Omernik Level lll ecoregions
(Omernik 1987), but were selected such that there were roughly an equal number of routes in four
gross ecosystem types: 8 routes from the Southern Rockies (montane forest), 7 from the High Plains
(grassland), 3 from the Central Great Plains and 4 from the Western Cornbelt Plains (total of 7 routes
from grassland-agriculture matrix), and 8 from the Northern Lakes and Forest ecoregion (northern
forest-wetland matrix). The unequal number of routes among ecosystems was due to data

availability; not all routes are covered in all years, as route coverage relies on volunteers. Although



209  we used the Omernik ecoregions as an underlying map layer when selecting routes, there are
210  multiple ecoregion maps used by U.S. land agencies, with sometimes substantial differences

211 between them. None are ‘right’ per se, but all are best approximations of potential vegetation
212 based on areas with similar geology, physiography, vegetation, climate, soils, land use, wildlife,
213 water quality, and hydrology (United States Department of the Interior). We downloaded the
214  complete species abundance list for each route (Sauer et al. 2014) and used it to create a route-
215 species abundance matrix, where abundance is the number of individual birds for each species at

216 each route, with values ranging from 0 — 293.

217 Sampling biases are an issue with BBS data, resulting primarily from under detection of wary, rare,
218 and aquatic species, as well as differences between observers. However, those biases are present
219 across all routes and should not impact the very coarse pattern extracted from the

220 absence/abundance data. Remotely-sensed data for land cover type is also available for a 400 m
221 buffer around each route (Sauer et al. 2014). The land cover data provides a sense of the

222 heterogeneity of the habitat type for each ecoregion. We averaged the percent of each land cover

223 type across all routes for each of the five Omernik ecoregions.

224 Marine data

225 Zooplankton community surveys were conducted in 2008, and samples analysed under the auspices
226 of the International Polar Year program, Canada’s Three Oceans project (Carmack et al. 2008). The
227 survey traverses 12,000 km from coastal British Columbia just north of Vancouver Island to the

228 Labrador Sea on the eastern side of Canada, crossing through 6 oceanic domains: the Gulf of Alaska,
229 the Bering Sea, the Chukchi Sea, the Beaufort Sea Shelf, the Canadian Arctic Archipelago, and

230  terminates in the Davis Strait/Labrador Sea (Figure 1B). Although these oceanic domains share some
231  zooplankton species, they are known to be distinct from each other to varying degrees (Archambault
232  etal 2010; Pomerleau et al. 2011, 2014). There were 44 sampling locations irregularly spaced along

233 the transect.
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Mixed zooplankton samples were collected from August to September by vertical net hauls with a
236 micron net (typically to 100 m or 7 metres above the bottom), and were preserved in 95%
ethanol and 10% buffered formalin. The zooplankton samples were keyed out to the lowest possible
taxonomic unit and enumerated and 4™ root transformed, as is standard for marine zooplankton
data. When possible, the developmental stages of each taxa was counted separately. A site-taxa

abundance matrix was created. Sites were ordered from western-most to eastern-most station.

Statistical Methods

Fisher information was developed by Fisher (1922) as a measure of the amount of information about
a particular parameter (or system characteristic) that can be obtained by observation. The form of
Fisher information used in this work is based on the probability of observing various conditions (p(s))

of the system (Fath et al. 2003; Mayer et al. 2007).

_ . ds [dp(s) T
I_Ip(s)[ ds } W

This is appropriate for our study because we are interested in determining patterns of change in the
condition (or state: s) of a system. From this equation, note that Fisher information is proportional

to the change in the probability of observing a system state (dp(s)) over the change in state ds

(i.e. ] « di—(ss) ). The significance of this proportionality may be examined using two cases. The first

example is a system in which the overall condition does not change from one observation to the
next. While such a system may fluctuate within a basin of attraction, it is considered stable because
the overall conditions are predictable and the patterns are evident; accordingly, the probability of
observing a particular state of the system is high and Fisher information tends toward infinity. The
exact opposite is true of a system that is constantly changing. In this case, the system displays no

bias toward a particular condition and there are no distinct patterns useful for characterizing the
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way the system behaves; hence, there is equal probability of the system functioning in any state and

Fisher information is zero (Pawlowski & Cabezas 2008).

Karunanithi et al (2008) adapted Equation 1 to handle empirical data from real systems. Through a

series of derivation steps, Fisher information (henceforth denoted as Fl) is numerically estimated as:

FI =433 1[qs — qs41]? (2)

where p(s) is replaced by its amplitude (q*(s) = p(s)) to reduce calculation errors from very small p(s).
Further details on the derivation and calculation may be found in (Mayer et al. 2007; Karunanithi et
al. 2008; Cabezas & Eason 2010).

Fisher information has traditionally been used to explore temporal patterns, however, the method
can be applied to examine spatial dynamics. The core of the Fl approach is to assess patterns in data
based on tracking systematic changes in line with some ordering principle such that trends are
evaluated over a series of points (e.g., point a, point b, etc.). This sequence may be defined
temporally or spatially. The key distinction is that rather than using time as the basis for assessing
changes, spatial location is the ordering principle. The basic algorithm for computing Fl is as follows:
(1) select variables (e.g. x;, i = 1: n variables) that characterize the condition of the system (in this
case various animal species) and gather data (i.e., species abundance) from each sampling location
(I;) across the route: (x;(l;)), j =1 : m sampling locations), such that the abundance of each species
at each site defines one point (e.g.. pt; (11): [x1(11), X2 (11), x5(11), ..., x,(11)]; (2) assemble the data
into a m x n matrix and divide it into a sequence of overlapping windows that advances one route
location per iteration; (3) determine the measurement uncertainty for each variable (UX;) and use
this to define a boundary (tolerance) around each system state. If the measurement uncertainty is
unknown then the variation in a stable portion of data may be used as a proxy. This boundary (size
of states) defines how much a measurement can vary within a particular state; (4) Use the size of
states to determine which points are similar (dimensions stay within the boundary defining a

12
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minimum range of variation) and group (bin) similar points together into discrete states; (5)
Compute p(s) by counting the number of points binned in each state and dividing this value by the
total number of points in the window; (6) compute g(s) and calculate Fl using Equation 2. This
process is repeated for each window. Based on empirical assessments, a hwin > 8 was suggested
(Cabezas & Eason 2010), however, it is generally set based on the amount of data available.
Increasing the hwin tends to decrease the magnitude of the Fl result and number of Fl points, but

the basic trends remain intact (Cabezas & Eason 2010).

Different system regimes are controlled by fundamentally distinct processes and exhibit unique
patterns. Tracking Fl affords the ability to assess changes in these patterns. Regimes are identified
as periods over time or across space in which Fl is non-zero and the values are relatively stable (i.e.,
dFl/dl = 0). While steadily increasing Fl indicates rising dynamic order, less change and possible
movement to more consistent patterns, declining Fl signifies unstable dynamics, loss of resilience
and may provide warning of an impending shift (Eason et al. 2014). Although FI typically declines
prior to a regime shift (Mayer et al. 2007; Eason & Cabezas 2012; Eason et al. 2014), researchers
examined model dynamics to study the behavior of Fl in the neighbourhood of a tipping point and
found that the behavior of FI depends heavily on the trends in the variables as the system
approaches a shift (Eason et al. 2014; Gonzalez-Mejia et al. 2015). It is therefore possible for Fl to
increase as a system transitions from one regime to another. Such a result is in line with Seekell et
al. (2011, 2012), who found both increasing and decreasing trends in early warning indicators prior

to a shift.

Once a shift has been identified, the underlying variables can be explored to determine (or compare)
the condition of the system in its new state (Eason & Garmestani 2012). Although higher Fl values
are generally associated with a greater degree of dynamic order, the level of dynamic order is not as
important as the ability of the system to remain stable within a desirable regime. When interpreting

Fl, a regime is denoted by a relatively stable Fl trend (i.e., dFl/dl = 0) with a high mean (TuFI) and low
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standard deviation in FI (iGFI) or low coefficient of variation in Fl (ichI = Z—Z ) (Gonzalez-Mejia 2011;

Eason & Garmestani 2012). Transitions are identified as periods outside of stable regimes characterized

by relatively high oFl and cvFl.

The traditional temporal early warning indicators (variance, skewness, and kurtosis) were computed
using standard functions. The spatial variants (Moran’s | spatial autocorrelation and spatial variance
and skewness) were not used because the sequential one-dimensional ordering of the sampling
stations lent itself to a space-for-time substitution. Since critical slowing down can be understood as
increases in short-term autocorrelation, the lag-1 autocorrelation coefficient was used as an
estimate (Dakos et al. 2008). The VI was computed as the maximum eigenvalue of the covariance
matrix from the dataset (Brock & Carpenter 2006). Note that the VI and traditional indicators are
expected to spike or increase prior to a regime shift, while Fl tends to decline (Eason et al. 2014).
Fisher information and the traditional indicators were computed in MATLAB (v. 2014b) usinga 5
station moving window that advanced one station at a time, where a station was either a BBS route
or a plankton sampling site. A window size of 5 ensured that there were Fl results for each
ecoregion for both studies; using smaller or larger windows resulted in similar trends in the FI
results, similar to other studies (Cabezas & Eason 2010). Multivariate analyses were conducted
using metaMDS and ordicluster from package ‘vegan’ (R Development Core Team 2013). The
distance matrices for the nMDS were created using Bray-Curtis, and multiple dimensions were
plotted in a scree diagram to find the lowest dimensionality with an adequate ordination fit as
expressed by a stress value (<0.2, (Clarke 1993)). The mean, standard deviation, and the coefficient
of variation (CV) in Fl were calculated for each regime to explore regime stability.

Results

Terrestrial data

Fisher information detected four regimes and two transition zones which are roughly congruent with

a priori expectations based on ecoregion maps, but diverge in significant ways (Figure 2). The total
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drop in Fl between the high point in regime 1 and the low point in transition 1 is greater than that
between regime 2 and regime 3 (AFI of 2.05 and 0.98, respectively), suggesting that the difference in
Fl between the Southern Rocky Mountains and the 3 Plains ecoregions is greater than the difference
among the Plains regions, which is to be expected. Likewise, the total drop in Fl between regime 3
(all Plains routes) and regime 4 (Northern Lakes and Forest) is the largest of all (AFI of 2.51),

indicating that the greatest variation in bird community structure exists between these two regimes.

The declining trend in FI from west to east means avian community structure is losing order, which
aligns with the reality of increasing intensive agricultural land use. Fl classified the community
structure in the first High Plains route as being similar enough to the eastern Southern Rocky
Mountains to include it in the first regime. There followed a steady loss of order, as reflected in the
Fl value, across the western High Plains. When FI did stabilize, indicating a new regime, that regime
captured routes from both the eastern High Plains and western Central Plains ecoregions, indicating
a blurring of the distinction between the two Plains ecoregions in terms of vegetative cover and
avian community structure. Similarly, the third regime incorporates routes from the eastern Central
Plains and most of the Western Cornbelt Plains ecoregions, indicating that avian community
structure did not significantly differ between the two Plains ecoregions. This is not an unexpected

result, given that those two ecoregions are, in reality, a grassland-agriculture matrix.

The traditional indicators did not provide clear results and yielded graphs with no interpretable
pattern (Figure 3), however, VI provided results that were complementary to Fl (Figure 2). The VI
peaks in several places which are congruent with regime shifts identified by FI (routes 10, 18, and
21). In general, the VI provides complementary information that supports the trend captured by Fl,
but is significantly more difficult to interpret when evaluated alone because it is not possible to

ascertain whether a peak marks the beginning or end of a stable regime or of a transition zone.

While all three descriptive statistics (mean (uFl), standard deviation (cFl), and coefficient of variation

(cvFl) in F1) indicate relative stability in each of the first three regimes, the fourth regime, wholly
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comprised of routes from the Northern Lakes and Forest region, has a lower mean, higher standard
deviation, and higher coefficient of variation in Fl than the other regions, indicating that there is
greater variation in community structure within this ecoregion (Figure 4). Furthermore, the two
transition zones have a higher CV than the regimes (except the 4™ regime), indicating zones of high

variability as community structure transitions from one regime to another.

The results of the multivariate analyses suggest that while the nMDS (stress value of 0.080 for 2
dimensions) and cluster analysis (not shown on Figure 5 because results are identical to the nMDS)
identifies distinct communities that align with the a priori expectations of the Omernick ecoregions,
they do not distinguish between the High Plains and Central Plains communities. The nMDS (Figure
5) shows the dissimilarity in community structure in terms of the relative position of each route to
every other in ordination space, as well as how those routes align with ecoregion expectations by
drawing polygons that connect the routes belonging to each Omernik-defined ecoregion. The routes
from the three Plains ecoregions are closer to each other in ordination space than either the
Southern Rockies or Northern Lakes and Forest routes, indicating that they are more similar in
community structure. The first route of the Northern Lakes and Forest region, indicated by Fl as part
of a long transition zone between regimes, is also very proximate in ordination space to the Cornbelt
Plains routes, reflecting their closeness in geographic space. However, the High Plains and Central

Plains overlap each, indicating that the nMDS does not perceive them as dissimilar.

Marine data

Fisher information detected two regimes and two transition zones, which partially align with the a
priori expectations for the locations of the oceanic domains (Figure 6). Flis low and rises steadily

throughout two-thirds of the Bering Sea domain. Since Fl never stabilizes in this domain, much of
the Bering Sea is classified as a transition zone. The first regime extends from the northern Bering
Sea through the Chukchi Sea. As the transect enters the Beaufort Sea, Fl climbs steeply without

stabilizing, indicating increasing dynamic order in community structure and classifying the Beaufort
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Sea as a second transition zone. The second regime extends from the more geographically closed-in
waters of the Canadian Arctic Archipelago through the sixth oceanic domain, the Davis
Strait/Labrador Sea. The entire distance from the western edge of the Archipelago to the Labrador
Sea is represented by only 12 stations, so it is relatively under-represented compared to the western

half of the survey.

Like the terrestrial case study, when the Fl trends are compared to the traditional regime shift
indicators, only the VI was able to provide sensible results (Figure 6). The Variance Index peaks at
the boundary of the Bering Sea, the Chukchi Sea, and to a lesser extent the Beaufort Sea Shelf.
However, it does not distinguish whether the increased variance denotes the beginning of a stable
regime, or signals a transition zone. The descriptive statistics support an overall picture of change in
community structure which reflects successive patterns of an ecoregion with high variability (i.e.

high oFl and cvFl) transitioning into a more stable regime (high pFl, and low oFl and cvFl) (Figure 7).

The multivariate analyses support the Fl results, and suggest that the boundaries between the a
priori defined ecological domains are soft, particularly between the Bering Sea and Chukchi Sea.
When viewed in ordination space, the nMDS places the stations so they more or less flow from west
to east along the arc, but there is also strong overlap in community structure at sampling locations
near the edges of the domains (Figure 8; (stress value of 0.121 for 3 dimensions)). The cluster
analysis (Figure 8; pruned to 6 clusters) divides the stations of the Bering Sea into two clusters, and
places two of the Bering Sea stations in the Chukchi cluster, as well as fails to distinguish between
the Canadian Arctic and the Davis Strait/Labrador Sea. The overall result is that the zooplankton
communities do not have crisp boundaries which fully align with the a priori defined domains
described in the methods, but have softer boundaries with considerable overlap in community
structure between domains. Furthermore, FI communicates a richer story of community structure
transitioning across space than either the nMDS or cluster analysis. However, unlike the BBS case

study, the transition zones were marked by a rise in Fl, as opposed to a drop, which may suggest a
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possible slowing down of changes in community structure before the patterns destabilized and the
system organized into a new regime. Further work on the underlying system dynamics would be

instructive.

Discussion

Detecting spatial regimes with Fisher information

Given animal community data, we found that Fisher information was able to detect spatial regimes
and transitions between spatial regimes in both terrestrial and aquatic ecosystems, across regional
scales (1900 and 12,000 kilometres respectively). These studies were an important step towards
determining the utility of Fl in detecting spatial regimes in both aquatic and terrestrial systems, even
given data limitations. In contrast, the traditional indictors we examined, such as variance,
skewness, kurtosis, and critical slowing down, were unable to detect spatial regimes, though this
was unsurprising as they are not suited for multivariate data. The VI helped to confirm general
trends, but it does not reveal details about the regime dynamics that are useful for assessing the
behavior of the system, e.g., whether there is a stable regime between two peaks, or whether
changes in the VI are capturing a transition. Our results suggest that Fisher information can be a
powerful, easy-to-use tool to assess regime shifts in animal (or other) community data, providing a
biological link between anthropogenic disturbances such as land use and climate change and spatial

shifts in ecological communities.

The ecological reality of community regimes

Our analyses demonstrated that the bird community boundaries only roughly coincided with the
expectations of ecoregion maps. There are substantial differences between the potential vegetation
underpinning the ecoregion classifications, and the actual spatial locations of stable avian
communities. If Fl were to fully coincide with the ecoregion maps, then we would expect to see a
stable Fl value through the center of each ecoregion, with evidence of increasing variability at the

borders, indicated by declining Fl. Instead, the High Plains had high variability in community
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structure throughout the core of the ecoregion. And rather than Fl identifying three distinct Plains
regimes, as per the ecoregion expectation, it identified two regimes, each of which straddled routes
from the Central Plains. In other words, the avian community structure was simplified relative to
ecological expectations, with a blurring of the boundaries between what are considered distinct
ecoregion types by US land agencies. Indeed, the difference in Fl between regime 2 and regime 3 is
such that the argument could be made that the entire Great Plains is one regime, with a slow but
steady loss of order as one moves from west to east, corresponding with an increasing intensity of
agriculture. The transitions to and from the Plains are both much steeper than that between the

two Plains regimes, as would be expected.

The land cover summary (Table 1) supports the findings of Fl as it demonstrates that the three
prairie landscapes exist on a gradient of actual vegetative cover. As we move east from the High
Plains to the Cornbelt Plains, the percent grassland cover drops dramatically from 60% to 5%, and
the percent of row crop land cover rises 14% to 74% (Table 1). The most significant changes occur
between the High Plains and the Central Great Plains. These patterns are in contradiction to
ecoregion maps (Omernik 1987; Bailey 2015), which hold the difference between the Central Great
Plains and the Western Cornbelt Plains as much more fundamental (a Level | division) than that
between the High Plains and the Central Great Plains (a Level Ill division). To the extent that the
land use cover in each 400 m route buffer around the ~40 km route reflects on a gross level the land
cover of each ecoregion, it seems likely that the heterogeneity within the Plains landscapes due to

agriculture and grazing has been reduced.

The length of each transition zone is suggestive of soft, rather than the hard boundaries depicted on
ecoregion maps (Bailey 1983; Omernik 1987). The long transition from the Cornbelt Plains to the
Northern Lakes and Forest, which covered more than 400 kilometres, may be impacted by two
factors: First, the final two routes in the Cornbelt Plains occur on the upward sweep of the transect

and so are substantially more northern than the other Cornbelt Plains routes. Latitude is known to
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affect animal communities (Clergeau et al. 2006). Second, the first route in the Northern Lakes
ecoregion technically falls into a narrow band of the North Central Hardwood Forest. This rapid
shifting across three ecoregions is captured by Fl as a long transition before the fourth regime
begins. Finally, the higher cvFl and thus relative variability of Fl in the fourth regime, which falls
wholly within the Northern Lakes and Forest ecoregion, is possibly explained by the heterogeneity of
the land cover, though it is also possible that further data points would reveal the fourth regime as
another transition as the study ends at a geographic rather than ecological border. However,
community structure in this ecoregion is likely more variable than in the other regimes because the

landscape itself is more variable, as it is a patchy mosaic of water features and forest (Table 1).

The zooplankton data tell a similar story to the avian data. Although there is correspondence
between zooplankton community structure, large scale oceanic structure, and regime transitions as
detected by Fl, some boundaries are less defined than a priori expectations. Domains thought to
contain distinct communities, such as the Bering Sea or Beaufort Sea Shelf (Springer et al. 1989;
Hopcroft et al. 2010; Pomerleau et al. 2014), appear to be transition zones between stable
communities. The failure of both Fl and the nMDS to distinguish between the Canadian Arctic
Archipelago and Davis Strait/Labrador Sea may be a function of inconsistent sample coverage.
Further work examining how the frequency of sampling affects the power and sensitivity of Fl is

warranted.

The inability of FI to crisply distinguish between the Bering Sea and the Chukchi Sea is consistent
with our understanding of the region as a mixing zone where Bering Shelf water mixes with water
from the Anadyr current, which enters from the west, and Alaska coastal water, which enters the
Bering Strait from the east (Coachman et al. 1975). These three water masses are believed to
harbour unique zooplankton communities (Springer et al. 1989), and as the water masses do not mix
until they pass through the Bering Strait into the Chukchi Sea, the zooplankton community contains

a mixture of communities that differ from the southern Bering Sea and have high patchiness (Eisner
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et al. 2014; Pomerleau et al. 2014). As the transect enters the Beaufort Sea, there is a decline in
both Pacific taxa and zooplankton community patchiness associated with the mixing of the three
Pacific water masses and Arctic water, corresponding to greater similarity among samples and
increasing dynamic order in Fl. The expectation was that the Chukchi, understood to be a mixing
zone of watermasses, would be identified by Fl as a transition zone, while the Beaufort Sea Shelf
would be a stable regime. Instead, the northern part of the Bering Sea and the Chukchi had a stable
Fl value denoting it as a regime, while the Beaufort Sea Shelf underwent a long and significant
increase in dynamic order that never flattened sufficiently to qualify as a regime. This means that
the variability in zooplankton community structure as the transect traverses the Beaufort Sea was
much higher than that of the northern Bering/Chukchi Sea, despite the latter region consisting of a
mixing zone of multiple water masses. The Fl results suggest that studies on dominant zooplankton
species within each domain (Nelson et al. 2009; Walkusz et al. 2010; Pomerleau et al. 2014) may not
strictly correlate to bigger picture studies which assess variability in community structure over space,
or that zooplankton species compositional data or the way in which they are collected are not a

good proxy for spatial regimes.

What Fisher information captures that multivariate analysis does not

The nMDS analysis largely aligned with the a priori ecoregion and oceanographic domain
expectations, but was not always able to distinguish between ecoregions (the High Plains and
Central Plains) or domains (Canadian Arctic and Davis Strait/Labrador Sea), though in the case of the
zooplankton data, may be a function of insufficient sampling stations in those domains. Perhaps
most importantly, the multivariate analyses are largely visual; ordination methods create their own
space, and thus do not tell us about spatial shifts in the location of a community. Routes that were
geographically farther away from each other tended to be more dissimilar than routes that were
close together. However, this rather crude depiction of community structure does not tell us where
the boundaries between communities occur, whether they are hard or soft, or if the soft boundaries

are themselves ecotones with stable community structure. Furthermore, the approach does not
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509 provide any insight on the spatial extent of the transitions. The ability to assess whether or not a
510  particular community is gaining or losing order over time could allow land use managers to

511 anticipate a potential regime shift within a location, or document if community locations shift in

512 space over time. That said, our ability to detect change using FI may be improved by employing

513 post-hoc tests to assess trends in the index. Researchers have explored approaches such as cut-offs,
514 Mann-Kendall tests, and Bayesian methods to help reduce interpretive uncertainty (Heberling &
515 Hopton 2010; Vance et al. 2015; Gonzalez-Mejia et al. 2016), but these methods are still under

516 development.

517 Idio- or non-idiosyncratic changes in animal community regimes?

518  To what extent can we expect changes in plant and animal communities to occur in a fashion

519 detectable by monitoring and analytical methods like the one presented here? Our contention is
520 thatit will depend on whether or not species’ response to anthropogenic change is idiosyncratic
521 within and across taxa. If species’ responses are fully idiosyncratic, then the patterns at the

522 community level will become chaotic as a function of independent species’ responses as

523 anthropogenic impacts accumulate and intensify. Accordingly, tracking spatial regimes and the

524 location of the transition zones between them would not be a useful activity for managers or

525 scientists. There are, however, constraints on individual response such that pattern identification
526  will remain useful and feasible on shorter timescales, though the possibility of no-analog

527 communities seems highly likely for multi-decadal or longer time scales (Williams & Jackson 2007).
528 In general, we expect to see changes in animal abundances in the short term as a response to

529 climate change and anthropogenic influence, as opposed to changes in presence/absence. Changes
530 may result from range shifts, as there is substantial evidence documenting vagile species recently
531 shifting their ranges to track their climatic niche (Parmesan, 2006; Parmesan & Yohe, 2003; Tingley
532 et al., 2009), but the rate of climate change is such that migration capabilities are unlikely to keep up
533  with the rate of thermal change (Thuiller et al. 2008), and the ability to shift ranges is further

534  impeded by habitat fragmentation, which has been shown to reduce range shift (lverson et al. 2004;
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Thuiller et al. 2008). As a result, range contraction due to a lack of suitable habitat and reduced

survivorship within their original range is also expected (Davis & Shaw 2001; Parmesan 2006).

These issues confound the identification of ecological boundaries and our ability to track changes in
boundaries over time. Fisher information can assist researchers and managers in tracking changes in
the patterns of community structure associated with habitat types or biogeographical distribution
areas, as well as the temporal dissolution of community structure as no-analog communities
assemble over time. A substantial benefit to Fisher information is that it circumvents many of the
difficulties currently present in defining ecological boundaries, such as problems of non-linear
responses across ecotones, landscape fragmentation, and land use change in terrestrial systems, or
the ephemeral nature of some oceanographic boundaries, as well as the vast spatial scales involved,
all of which can be difficult to capture without exhaustive data collection (Strayer et al. 2003; Kent et
al. 2006; Danz et al. 2012). Other researchers have discussed the challenges of tracking boundary
region shifts as a way to monitor climate change, when, for example, little to no native vegetation
remains (less than 5% of the original prairie in the United States due to land conversion), and critical
structuring processes have been repressed or altered (natural fire regimes supressed) (Danz et al.
2012). Fisher information allows for the simultaneous analysis of multiple, disparate variables and
provides a synoptic approach that may allow for detection of ecological change and boundary shift
without pre-supposing key taxa as bell-weather species of change. However, future studies wishing
to estimate more precisely the location of boundaries and how they may shift over time may also

need to account for phonological/seasonal detection differences in the taxon under question.

We also propose that monitoring animal populations is more likely to reflect currently changing
conditions and is easier than detecting variation in plant communities or oceanographic properties.
Remotely-sensed data remain challenged to identify physically similar but floristically different
species, and ground-truthing large ecological regions is unfeasible. Animal species’ responses are

likely to occur more rapidly than plants, as there can be a large mismatch between vegetation and
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climate change, with changes in vegetation lagging substantially behind changes in climate (Beckage
et al. 2008). Long-lived species such as trees can exhibit ecosystem responses to land use and
climate change at century-scales because of the spatial and temporal processes structuring forests
(Starfield & Chapin 1996), while terrestrial animal species are more vagile and can act as a leading
indicator of vegetation change, or of a change in climatic variables such as temperature.
Furthermore, as we demonstrated, there can be significant differences between ecoregion mapping,
which is based on potential vegetation as a function of geomorphology and soils, and the location of
spatial regimes actually present after decades of land use changes. All of these issues make it critical
to identify reliable spatially-explicit tools for mapping the effects of climate and land use change on
biodiversity (Mokany & Ferrier 2011), and our research suggests that Fisher information can be one

of those tools.

Conclusion

Our analyses confirmed that when using multivariate data, traditional early warning indicators are
very difficult to interpret, and integrated indicators such as Fl and VI more consistently detect
regime shifts. We found that Fisher information provided the clearest, most detailed, and
interpretable signal of spatial regime shifts. Although the Variance Index did not provide clear
signals as a stand-alone indicator, some congruent trends are found when the results are presented
in conjunction with Fl. Fisher information has the further benefit of being highly flexible in terms of
the choice of variable selection and data input, and is able to detect a clear signal without the need

for difficult-to-acquire high resolution data.

This research had the further benefit of highlighting the incongruence between terrestrial ecoregion
maps, which are focused on ecological potential, and the ecological reality of community regimes
given land use and climate change. The method presented would allow researchers to track both

the shifting spatial locations of communities over time, as well as the change over time within a
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location, both of which are critical as the consequences of anthropogenic change manifests in

community structure and dynamics over time and space.

We appreciate that for both systems analysed, a different taxa could show spatial regimes in
different locations. Reptile or mammal community regime location may or may not overlap bird
regime location, and the transitions between ecoregions may be more or less steep given the taxa
under consideration. Neither mammals nor reptiles tend to be as vagile as birds, and their ability to
disperse in response to climate or land use change is accordingly more limited. Further research
evaluating the spatial regimes of other taxa and the extent to which they overlap bird and

zooplankton species would be useful.

Finally, further studies that looked more deeply into community structure within a spatial regime
could inform managers as to which subgroups of species are most dominant within each regime,
while correlation analysis could identify the subgroups of species responsible for driving the value of
Fisher information within each regime, both of which would allow managers to objectively select

subgroups of species to monitor as the primary indicators of ecological stability within a community.
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923 Figure 1A. The USGS Breeding Bird Survey route locations in the central and northern United States.
924  The Omernik Level Il ecoregion boundaries are colored in grayscale , while the Bailey Level llI
925  ecoregion boundaries are shown using dotted lines.
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928 Figure 1B. Zooplankton data collection locations.
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Figure 2. Fisher information ((Fl; bold solid line)) and Variance Index (VI; faint dotted line) for Breeding Bird Survey community data from 30 routes (numbered from 1 to 30
on the x-axis, reflecting the west to east ordering of the routes in geographic space). Regimes identified by Fl are shown as shaded boxes around the plotted line. The
Omernik ecoregion domains under the x-axis allow comparison as to how well the regimes align with the ecoregions, which represent potential rather than actual

vegetation. Because one Fl value is produced per window, the first Fl value is at route 5.
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Figure 3. Results for traditional regime shift parameters applied to the BBS avian community data:
variance, skewness, kurtosis, and ARI (critical slowing down). The graphs are largely uninterpretable
when used on multivariate data such as this.
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Figure 4. The stability of each terrestrial regime over space, as defined by the mean (uFl), standard

deviation (oFl), and coefficient of variation (cvFl) of FI. While regimes 1-3 are clustered together and

relatively stable with high pFl, low oFl and cvFl, Regime 4 was highly variable (low uFl, high cFl and

cvFl). The transition periods exhibited the least amount of stability.
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Figure 5. Ordination plot for the BBS avian community data (k = 2, stress = 0.080). The BBS routes
are shown with open circles, while the polygons contain all the routes that fall into the ecoregions
(Omernik 1987). The overlap between the High Plains and the Central Plains suggests that these two
ecoregions do not substantially differ in avian community structure.
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Figure 6. Fisher information (Fl; bold solid line) and Variance Index (VI; faint dotted line) for zooplankton community data collected from 44 stations along a

transect that begins in the Pacific ocean, traverses the Arctic, and ends in the Labrador Sea (humbered from 1 to 44 and ordered from west to east along

the x-axis). Because one Fl value is produced per window, the first Fl value is at route 5. The regimes and transition zones identified by Fl are shown as

boxes drawn around the Fl plotted line. The a priori-defined oceanic domains are under the x-axis, to see how well the location of the regimes identified by

Fl align with the oceanic domains identified in the literature.
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Figure 7. The stability of each marine regime over space, as defined by the mean (uFl), standard
deviation (oFl) and coefficient of variation of FI (cvFl). While the two regimes are relatively stable
with high pFl, low oFl and low cvFl, the transition periods exhibited the least stability. Note:
Regimes reflect the domains identified by the trend in Fl, not the regimes a priori identified using
Carmack et al. (2010)) and Archambault et al. (2010).
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Figure 8. Ordination plot for the zooplankton community data (k = 3; stress =0.121. The sampling
stations are shown with open circles. The results of a cluster analysis (pruned to 6 clusters) are
shown with black spiders, while the oceanic domains a priori identified from the literature are
represented by the colored polygons. Both the nMDS and the cluster analysis fail to assign some
sampling stations to the ‘correct’ oceanic domain for all domains except the Gulf of Alaska.
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Table 1. Land cover classification for a 400 m buffer around each 41 km BBS route. The dominant

land cover type for each ecoregion is in bold. Note that Northern Lakes and Forest is roughly evenly

split between Deciduous Forest and Woody Wetlands, evidence for the hetereogeneity of the

region.

Landcover Type South'ern High Cen.tral Western  Northern Lakes
Rockies Plains Plains Cornbelt and Forest

Open Water 0.01 0.01 0.01 0.04

Low Intensity Residential 0.02

Deciduous Forest 0.14 0.02 0.03 0.25

Evergreen Forest 0.47 0.12

Mixed Forest 0.01 0.11

Shrubland 0.15

Grassland/Herbaceous 0.18 0.61 0.20 0.05

Pasture/Hay 0.02 0.04 0.08 0.12 0.10

Row Crops 0.14 0.66 0.74 0.03

Small Grains 0.13 0.02 0.01

Fallow 0.07

Woody Wetlands 0.28

Emergent Herb Wetland 0.01 0.04

*Only showing those categories for which at least one ecoregion has > 1%
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