
Unsupervised Deep Video Hashing with Balanced Rotation

IJCAI Anonymous Submission 2367

Abstract
Recently, hashing video contents for fast retrieval
has received increasing attention due to the enor-
mous growth of online videos. As the exten-
sion of image hashing techniques, traditional video
hashing methods mainly focus on seeking the ap-
propriate video features but pay little attention to
how the video-specific features can be leveraged
to achieve optimal binarization. In this paper, an
end-to-end hashing framework, namely Unsuper-
vised Deep Video Hashing (UDVH), is proposed,
where feature extraction, balanced code learning
and hash function learning are integrated and opti-
mized in a self-taught manner. Particularly, distin-
guished from previous work, our framework enjoys
two novelties: 1) an unsupervised hashing method
that integrates the feature clustering and feature bi-
narization, enabling the neighborhood structure to
be preserved in the binary space; 2) a smart rota-
tion applied to the video-specific features that are
widely spread in the low-dimensional space such
that the variance of dimensions can be balanced,
thus generating more effective hash codes. Exten-
sive experiments have been performed on two real-
world datasets and the results demonstrate its supe-
riority, compared to the state-of-the-art video hash-
ing methods. To bootstrap further developments,
the source code will be made publically available.

1 Introduction
Hashing, also known as binary coding, has been an effective
method for fast nearest neighbor search due to the low storage
requirement and the high calculation efficiency of the XOR
operation in the Hamming Space [Gong and Lazebnik, 2011;
Xu et al., 2013]. As a result, recent decade has witnessed its
broad range of multimedia computing applications, such as
Content-based Video Retrieval (CBVR).

Early-stage video hashing algorithms are prone to extract-
ing frame-level features from the video so that the available
image hashing techniques can be plugged in directly. Two
representatives are Multiple Feature Hashing [Song et al.,
2011] and Submodular Video Hashing [Cao et al., 2012],
where the former encodes the extracted key frames while

the latter characterizes the video by averaging features of
individual frames. Later on, temporal features over suc-
cessive frames are considered, including motion trajectory
[Wang and Schmid, 2013] and temporal consistency [Ye et
al., 2013]. This sort of features is proved to boost the perfor-
mance even though temporal information might be partially
lost during the frame pooling and dimensionality reduction.

Inspired by the great success of deep learning in image
recognition, several recent systems have incorporated the
hashing functions into the deep learning architecture. For
example, Liong et al. [Liong et al., 2016] train a deep net-
work to exploit the discriminative and temporal information
of video, assuming the video pairwise information is avail-
able. Although this supervised deep network is capable of
generating similar binary codes for videos belonging to the
same category, labeling the training data is rather expensive,
which hinders it from being used in the real-world applica-
tions. Alternatively, Zhang et al. [Zhang et al., 2016] propose
a deep encoder-decoder framework, where a two-layer Long
Short Term Memory (LSTM) unit followed by a binarization
layer is able to directly encode the video features into com-
pact binary codes. Minimizing feature reconstruction distor-
tion allows feature extraction and binarization to be jointly
optimized. Apart from the fact that such an encoder-decoder
framework is quite complicated due to the involvement of de-
binarization and de-LSTM, the objective function based on
minimizing reconstruction error does not seem to preserve
the neighborhood structure of data, which is important for a
similarity search task.

It can be observed that most existing video hashing tech-
niques focus on seeking appropriate video features and wrap-
ping them up as image features so that the binarization de-
veloped for image hashing can be adopted. In other words,
there is no binarization specifically designed for the video
features. Compared to the image features, video features nor-
mally acquire the temporal information of a video sequence,
such as the video dynamics extracted by LSTM, which are
likely to be more scattered (less correlated) in terms of distri-
bution [Karpathy et al., 2016]. When projecting these scat-
tered features into the low-dimensional compact space (e.g.,
using PCA), which is a necessary step of binarization, the
data variances on projected dimensions tend to be large. This
imbalanced projection will degrade the performance of the
generated hash codes because each dimension will be treated



Figure 1: An overview of the proposed Unsupervised Deep Video Hashing for Content-based Video Retrieval. The whole
framework is composed of three parts: feature extraction, code learning and hash function learning. The red arrows represent
the direction of each iteration.

equivalently and allocated with the same number of bits in the
quantization step afterwards. That is to say, directly applying
image binarization to video features is unable to achieve ef-
fective hash codes for video retrieval. To address the above
problem, we propose an end-to-end hashing framework (Fig-
ure 1), namely Unsupervised Deep Video Hashing (UDVH),
with the aim to generate effective hash codes for fast retrieval.
Our work differs from the existing methods in two aspects:

1. We propose an unsupervised deep hash framework and
organize learning in a self-taught manner. Instead of
minimizing feature reconstruction distortion [Zhang et
al., 2016], our framework minimizes the quantization
error of projecting video features to a binary hypercube,
allowing the feature extraction and hash function learn-
ing to engage with each other. Involving the feature
clustering in the code learning enables the neighborhood
structure to be preserved. To solve the objective func-
tion, which is a non-convex problem, an alternate ap-
proach is proposed, where the rotation matrix, binary
code generation and the deep framework parameters are
jointly optimized.

2. During the code learning, balanced rotation specifically
designed for video features is proposed to find a proper
projection matrix such that the variance of each pro-
jected dimension can be balanced. The balanced vari-
ance is maintained in each dimension, thereby facilitat-
ing the quantization step afterwards. The experimental
results reveal that this improved binarization is suitable
for hashing video features.

2 Methodology
In this section, we will introduce the main algorithmic mod-
ules involved in the proposed framework. First of all, some

notations are defined here for ease of explanation. Assum-
ing that there are N videos in the training set and each video
contains m frames. In UDVH, VGG-19 [Simonyan and Zis-
serman, 2014] is used to extract the 4096-d feature vec-
tors for all frames. The input feature matrix is denoted as
Z ∈ R4096×(N×m) and it remains fixed in UDVH. Our goal
is to develop the deep hash function that encodes Z into k-
bit binary codes bN ∈ {−1,+1}N×k, where k << 4096.
We further denote the video feature matrix from fc7 layer
as Z ∈ RN×1024. In the code learning stage, we first use
K-means to categorize the training videos and then reduce
the feature dimensionality by Canonical Correlation Analysis
(CCA) [Hardoon et al., 2004]. We denote the video feature
matrix after dimensionality reduction as H ∈ RN×k, where
k is the targeted bit size. Finally, with the proposed rotation
matrix R ∈ Rk×k, the binary code B ∈ {−1,+1}N×k can
be generated to guide the hash function learning while itera-
tively updating the network parameters. In the following sub-
sections, the proposed modules in UDVH will be elaborated.

2.1 Deep Hash Function
In this section, the deep hash function is defined along with
a brief introduction about LSTM, which has been widely de-
ployed in the sequence study for its powerful ability in deal-
ing with the sequential input. The output of LSTM is actually
depended on the previous state and the current input. Com-
pared with the traditional Recurrent Neural Network (RNN)
[Chung et al., 2014], LSTM overcomes the problems of van-
ishing and exploding gradient by adding the memory cell,
which is designed to store information such that the long-
range temporal relationship could be exploited [Srivastava et
al., 2015]. Typically, a 2-layer LSTM unit is to tackle the
frame-level features for the temporal-awareness. The frame-
level features of training videos are encoded by the LSTM



units sequentially and the encoded frame features are aver-
agely fused by the connected fc7 layer to generate the video
feature matrix Z. Thus, a robust representation for videos
can be achieved taking both spatial and temporal information
into account. We further denote the deep hash function as
F(Z; θ), where θ represents the parameters from LSTM and
fully-connected layers for the concise description. Those pa-
rameters will be updated automatically during the process of
hash function learning, thus producing the desirable output.

2.2 Feature Embedding
At the beginning stage of code learning, the video feature
matrix Z obtained from fc7 layer is clustered by K-means
with the intention to classify the similiar videos into the same
category, where the clustering parameter K is randomly se-
lected. Such a clustering process is repeated in each loop for
the more precise categorization. After K-means, the training
videos are represented by their feature vectors and the cor-
responding fake labels ({0, 1}N×k). They provide dedicated
supervisory information for the following binarization such
that the similar videos would be represented by the similar
binary codes. Subsequently, CCA is adopted to reduce the
dimensionality of video feature into the required bit size as
the projected video feature matrix H, where the correlation
between features and labels is maximized and well preserved
in the low-dimensional space. In contrast to PCA, CCA is
more effective in extracting discriminative information with
the robustness in anti-noise [Gong and Lazebnik, 2011], thus
obtaining more robust video features after the projection. We
denote the projection matrix as P ∈ R1024×k, then the pro-
cess of dimensionality reduction can be simplified as:

H = Z×P, s.t. Z ∈ RN×1024. (1)

However, the projection concentrates the most information in
a few top eigenvectors, which will lead to imbalanced data
and may lower the hash code quality [Xu et al., 2013]. In
the next section, we show the problem can be addressed by a
novel rotation matrix.

2.3 Balanced Rotation
As mentioned previously, video features, compared to the
image features, are likely to be more scattered in terms of
distribution, leading to larger variance difference among pro-
jected dimensions. Usually, the quantization step after the
projection treats each dimension equally and allocates the
same number of bits to each dimension. That means the di-
mensions with low variance containing less information will
have the same impact on Hamming distance calculation as
the high variance dimensions containing more information.
The hash codes generated by this scheme deemed ineffec-
tive. To address this problem, a balanced rotation matrix
is required such that the information of each dimension is
balanced and some important properties can be maintained.
Firstly, the effect of rotation on the data variance is inves-
tigated, assuming the video features are zero centralized,
i.e.,

∑N
i=1 Zi = 0. Given the optimal projection P, the

projected data H = ZP ∈ RN×k is obtained by Eq.(1).
Since Z is centralized, the variance for the j-th dimension

is vj =
∑N
i=1 H

2
ij/N . Given an orthogonal rotation matrix

R and the adjusted data Ha = HR, the new variance of di-
mension vj can be obtained. The sum of variance of each
dimension can be calculated by:

N

k∑
j=1

vj
′ =

k∑
j=1

N∑
i=1

(HR)2ij = tr(HRRTHT )

= tr(HHT ) =

k∑
j=1

N∑
i=1

(H)2ij = N

k∑
j=1

vj .

(2)

Eq. (2) indicates that the sum of variance on all dimensions
in the centralized data is invariant after rotation. Our goal is
to find a rotation such that the variance of each dimension
can be balanced. Specifically, the degree of balance can be
measured by the variance of standard deviation (VSD) of each
dimension. Denote the standard deviation (SD) of the j-th
dimension as sj = vj

0.5, VSD is computed as:

VSD =
1

k

k∑
i=1

(si − s)2. (3)

Theoretically, smaller VSD implies more balanced data.
Hence, the goal can be achieved by finding a rotation which
minimizes VSD. Directly minimizing Eq. (3) is, however, not
intuitive. Based on the above analysis, we have

∑k
i=1 s

2
i =∑k

i=1 vi = c, where c is a constant. Therefore, the VSD in
Eq. (3) can be further deduced as:

VSD =
1

k

k∑
i=1

(si − s)2 =
1

k

k∑
i=1

s2i + s2 − 2

k

k∑
i=1

sis

=
c

k
− s2 =

c

k
− (

1

k

k∑
i=1

si)
2 =

c

k
− 1

k2
SSD2.

(4)

So, it is straightforward to validate the following equivalence,

min VSD⇔ min− 1

k2
SSD2 ⇔ max SSD. (5)

This indicates that minimizing the VSD of data by a rota-
tion is equivalent to maximizing the sum of standard devia-
tion (SSD). Furthermore, the SSD can be written in the matrix
form as:

SSD =

k∑
j=1

(
1

N

N∑
i=1

H2
ij)

0.5 =
1√
N
‖HT ‖2,1, (6)

where ‖.‖2,1 is the l2,1-norm of matrix. Now, with Eq. (5)
and Eq. (6), the rotation matrix which can balance the vari-
ance of each dimension can be learned from the following
optimization formulation,

max
R
‖RTHT ‖2,1, s.t. RRT = Ik, (7)

where Ik is the identity matrix. Eq. (7) is also the objective
function of balanced rotation.



2.4 Learning Objective
In this section, we introduce the objective function of UDVH
in details. There are two terms involved in defining the objec-
tive function. First, we use the binary code B as the guidance
in the hash function learning, where the Euclidean distance is
minimized between the output of top layer (fc8) in the deep
network and B. It can be formulated as:

min
θ,R
‖F(Z; θ)−B‖2F , s.t. B ∈ {−1,+1}N×k. (8)

Considering also the balanced rotation, the final objective
function of UDVH will be

min
θ,B,R

‖F(Z; θ)−B‖2F − λ‖RTHT ‖2,1,

s.t. B ∈ {−1,+1}N×k, RRT = Ik,
(9)

where λ is the balance parameter. However, it is not possible
to solve Eq. (9) directly due to the binary constraints.

3 Optimization
Since it is a non-convex problem with the binary constraints
in Eq. (9), an alternate approach is proposed to optimize
the objective, where the deep hash function F(Z; θ) can be
learned by iteratively updating the parameters, such as θ, B
and R, during each loop. Usually it takes just a few iterations
to complete the optimization process for one specific bit size.
Initially, a random value is specified to θ and the input matrix
Z is encoded by the initialized deep network. Conducting
clustering and dimensionality reduction can obtain the pro-
jected video features. Afterwards, we carry out the following
three steps to accomplish the goal.
Update R. With other parameters fixed, problem (9) is re-
duced to the orthogonality constrained l2,1-norm maximiza-
tion problem in Eq. (7), which is defined as:

min
R
‖−RTHT ‖2,1 = max

R
‖RTHT ‖2,1,

s.t. RRT = Ik, H ∈ RN×k.
(10)

The above problem can be efficiently solved by the gradient
flow method [Wen and Yin, 2013]. Specifically, we first de-
fine Mk = {R ∈ Rk×k : RRT = Ik} as the feasible set,
which is also called the Stiefel manifold. Then, the tangent
space for Mk is TRMk = {T ∈ Rk×k : TTR+RTT = 0}.
Here, the basic idea is to find an optimal direction in the
tangent space of current point R like conventional gradient
descent, then project the direction to the feasible manifold,
and replace the current point with the projected one. Iterating
such steps and finally it will arrive at a stationary point. To
optimize problem (10), the convergence theorem is proposed
and illustrated as: given a point Rt in the feasible set, the be-
low updating rule will lead to larger value unless it has arrived
at a stationary point,

Rt+1 = QtRt, (11)

where Qt is the Cayley transformation matrix defined by

Qt = (Ik +
τ

2
Wt)

−1(Ik −
τ

2
Wt), (12)

Wt = GtR
T
t −RtG

T
t , (13)

Gt = −HT
t HRtDt, (14)

Dt = diag(
1

N0.5st1
, ...,

1

N0.5sti
, ...,

1

N0.5stk
). (15)

Here, the subscript t denotes the t-th iteration, τ is a step size
satisfying Armijo-Wolfe conditions [Nocedal and Wright,
2006], and sti represents the standard deviation of (HRt)∗i.
The above steps are iteratively executed until convergence
and the obtained R is the rotation matrix.
Update B. By fixing Z, H and R, Eq. (9) has been reduced
to:

min
θ,B
‖F(Z; θ)−B‖2F , s.t. B ∈ {−1,+1}N×k. (16)

Since we have obtained the rotation matrix R in the previous
step and the binary code B can be directly computed as:

B = sgn(H×R),

s.t. H ∈ RN×k, R ∈ Rk×k,
(17)

where sgn(x) = 1 if x > 0 and -1 otherwise.
Update θ. With fixed Z, R and B, Eq. (9) is reduced to

min
θ
‖F(Z; θ)−B‖2F , s.t. B ∈ {−1,+1}N×k. (18)

This minimization problem can be solved by fine-tuning the
deep network with Stochastic Gradient Descent (SGD) un-
til it gets converged, where the Euclidean loss is minimized
via mini-batch back-propagation and the low bound can be
found. The network parameter θ is updated simultaneously
and determined in the current loop after convergence. Then,
the deep network can produce new video features for the next
loop. Those parameters are updated sequentially for 10 loops
and finally the deep hash function can be built. Given a query
video Zq , we can create its hash codes with sgn(F(Zq; θ)).
The overall UDVH is summarized in Algorithm 1.

Algorithm 1: Unsupervised Deep Video Hashing
Input: The input feature matrix Z; Randomly initialize deep

parameters θ;
Output: F(Z; θ): deep hash function;

1: for t = 1 to 10 do
2: Obtain projected video feature matrix H;
3: Update rotation matrix Rt according to Eq.

(11)∼(15);
4: Update binary code Bt according to Eq. (17);
5: Update deep parameters θ according to Eq. (18);
6: Until Convergence;
7: end for
8: return F(Z; θ);

4 Experiment
4.1 Datasets and Experimental Settings
In this experimental study, two large-scale video datasets are
adopted, which contain:
FCVID [Over et al., 2014]: There are 91,223 videos col-
lected from Youtube in the dataset, which are classified into



239 categories. It covers a wide range of popular topics, such
as animals, events and various scenes. In the training phase,
we randomly select 45,611 videos for the train split and the
rest is used as the test split. In the retrieval phase, 1,000
videos randomly picked up from the test slip are used as the
query and others form the gallery.
YFCC [Thomee et al., 2015]: It is the largest public video
dataset, containing over 0.8M videos. Due to the invalid
urls and the corrupted video files, about 0.7M videos have
been processed in the experiment, where 0.1M labeled videos
[Zhang et al., 2016] construct the test split in the retrieval
while 0.6M unlabeled videos form the train split in the un-
supervised learning. In the labeled split, there are 80 cate-
gories collected from the third level of MIT SUN scene hier-
archy [Xiao et al., 2010]. For the fair comparison, we select
1,000 videos randomly as the query and 99,000 videos as the
gallery. For each video, 20 frames are uniformly selected as
the representation of the video.

The algorithm is implemented under the open-source Caffe
framework [Jia et al., 2014]. The server configurations are:
Intel Core i7-5960X CPU, 64GB RAM and a TITAN X GPU.

4.2 Baselines and Evaluation Metrics
Several recent hashing methods are adopted as baselines in
the experiment, which are Deep Hashing (DH) [Erin Liong
et al., 2015], Iterative Quantization (ITQ) [Gong and Lazeb-
nik, 2011], Submodular video hashing (SubMod) [Cao et al.,
2012], Spectral Hashing (SP) [Weiss et al., 2009], Multiple
Feature Hashing (MFH) [Song et al., 2011], Anchor Graph
Hashing (AGH) [Liu et al., 2011] and Self-Supervised Tem-
poral Hashing (SSTH) [Zhang et al., 2016]. Identical train
and test sets are organized for all methods and the best per-
formance is tuned based on the data settings in their papers.
Regarding the evaluation, mean average precision at top K
retrieved videos (mAP@K) [Over et al., 2014] is adopted as
the main metric. Precision-Recall curve and HD2 precision
are two additional ones [Davis and Goadrich, 2006].

4.3 Results and Discussions
Architecture Investigation
In the proposed framework, the number of clusters during the
clustering is the only hyper parameter. Figure 2(a) shows the
effect on mAP@20 when varying the cluster numbers. Due
to the space limit, only the results of 64 bits and 128 bits
are reported. Seen from the figure, the mAP value increases
dramatically with the bigger cluster number selected at the
beginning and remains stable over 400 categories. This in-
dicates the cluster number has tremendous influence on the
system performance. The sophisticated clustering encour-
ages the similar videos to be classified into the same cate-
gory such that similar hash codes can be generated for those
videos. For both datasets, it seems that the performance get
saturated when the cluster number reaches 400, meaning this
parameter is easy to set. Additionally, the Euclidean loss dur-
ing the hash function learning on FCVID is plotted in Figure
2(b). Clearly, fast convergence (after about 4 loops) can be
achieved because of the dedicated LSTM units included in
the proposed hashing framework.

Figure 2: (a) The mAP@20 of various cluster numbers on
both datasets when using 64 bits and 128 bits; (b) The Eu-
clidean Loss after the hash function learning in each loop.

Table 1: The mAP@K of 64 bits and 128 bits when using
CCA+ITQ, PCA+BR and CCA+BR respectively in the code
learning process on both datasets.

Next, the retrieval results are evaluated by using various
hashing strategies adopted in the phase of code learning in or-
der to validate the claimed contributions. Three combinations
are included: CCA+ITQ, PCA+BR and CCA+BR, as illus-
trated in Table 1. The results show combination of CCA and
BR substantially outperforms the other two methods on the
datasets. Compared with the PCA method, more valuable in-
formation is concentrated in the top eigenvectors by CCA af-
ter the dimensionality reduction because of the dedicated su-
pervisory information (predicted labels) created by the clus-
tering. It turns out the choice of CCA, rather than PCA,
is sensible. Moreover, the comparison results of CCA+ITQ
against CCA+BR clearly demonstrate that the balanced hash
codes help to improve the retrieval performance.

Comparison with State-of-The-Arts
We also compare our UDVH with the baselines, given a re-
trieval task. Figure 3 shows the mAP@K results of various bit
sizes on both datasets when using different methods. As can
be seen, the proposed method outperforms the state-of-the-art
hashing approaches significantly. Specifically, the mAP@5
value of our algorithm is 41.2% when using 128-bit code on
FCVID, which is about 6% higher than the results achieved
by the most comparable SSTH. The mAP curves are even
more stable than the other methods with the increasing re-
turned video number. When testing the algorithms on YFCC
dataset, the mAP values of all algorithms drop down, com-
pared to the results on FCVID using the same bits. The gap
between the mAP@5 values of UDVH and SSTH is reduced
trivially to around 4%, which is still big. The reason behind
is that most videos in YFCC are taken by mobile phones from
the amateurs instead of the professionals in FCVID [Thomee



K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2
16bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

32bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4

64bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4

0.5

128bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

16bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3
32bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4
64bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4
128bits

Figure 3: The mAP@K of various video hashing methods at different bit sizes. Top: FCVID; Bottom: YFCC.

Figure 4: Precision-Recall curves when using 64 bits and 128
bits on both datasets. Left: FCVID; Right: YFCC.

Figure 5: HD2 precision at various bit sizes on both datasets.
Left: FCVID; Right: YFCC.

et al., 2015]. The video retrieval has become a more challeng-
ing task for the low-quality videos when using YFCC dataset.
Figure 4 and Figure 5 respectively show the Precision-Recall
curves and HD2 precision curves at various bit sizes on both
datasets, in which the ranking number is 100 and the Ham-
ming radius is 2. Compared with the results from several
conventional hashing methods, the best performance is again
achieved by UDVH on both evaluation metrics.

In Figure 6, the detailed performance of the mAP@5
achieved by two methods, UDVH and SSTH, is illustrated
when using 128 bits. Due to the limited space, only the re-
sults on FCVID are reported here. Given three query videos,
our UDVH correctly finds five similar videos for each of them
whereas SSTH makes mistakes in recognizing swimming am-
ateur and dolphin. The major reason is that our UDVH tends

Figure 6: The retrieval results of 128 bits when using SSTH
and UDVH on FCVID.

to preserve the neighborhood structure by incorporating the
clustering into the hash code learning, which is crucial for a
nearest neighbour search task like this.

5 Conclusion

In this paper, a novel unsupervised video hashing framework
called Unsupervised Deep Video Hashing has been proposed
to address the existing problems in the large-scale video re-
trieval. Compared with the conventional video hashing meth-
ods, the proposed approach is clearly superior because the
feature extraction, code learning and hash function learning
are combined jointly in a self-taught fashion. Moreover, we
applied a balanced rotation to the video-specific features such
that the variance of dimensions when projecting them into
low-dimensional space can be balanced, which helps to gen-
erate effective video hash codes. The effectiveness of pro-
posed framework is demonstrated based on the superior re-
trieval results from two video datasets.



References
[Cao et al., 2012] Liangliang Cao, Zhenguo Li, Yadong Mu,

and Shih-Fu Chang. Submodular video hashing: a unified
framework towards video pooling and indexing. In ACM
Multimedia, pages 299–308. ACM, 2012.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[Davis and Goadrich, 2006] Jesse Davis and Mark Goadrich.
The relationship between precision-recall and roc curves.
In ICML, pages 233–240. ACM, 2006.

[Erin Liong et al., 2015] Venice Erin Liong, Jiwen Lu, Gang
Wang, Pierre Moulin, and Jie Zhou. Deep hashing for
compact binary codes learning. In CVPR, pages 2475–
2483, 2015.

[Gong and Lazebnik, 2011] Yunchao Gong and Svet-
lana Lazebnik. Comparing data-dependent and data-
independent embeddings for classification and ranking of
internet images. In CVPR, pages 2633–2640. IEEE, 2011.

[Hardoon et al., 2004] David R Hardoon, Sandor Szedmak,
and John Shawe-Taylor. Canonical correlation analysis:
An overview with application to learning methods. Neural
computation, 16(12):2639–2664, 2004.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM Multime-
dia, pages 675–678. ACM, 2014.

[Karpathy et al., 2016] Andrej Karpathy, Justin Johnson,
and Fei-fei Li. Visualizing and understanding recurrent
networks. In Proceedings of ICLR, 2016.

[Liong et al., 2016] Venice Erin Liong, Jiwen Lu, Yap-Peng
Tan, and Jie Zhou. Deep video hashing. IEEE Transac-
tions on Multimedia, 2016.

[Liu et al., 2011] Wei Liu, Jun Wang, Sanjiv Kumar, and
Shih-Fu Chang. Hashing with graphs. In ICML, pages
1–8, 2011.

[Nocedal and Wright, 2006] Jorge Nocedal and Stephen J
Wright. Sequential quadratic programming. Springer,
2006.

[Over et al., 2014] Paul Over, Jon Fiscus, Greg Sanders,
David Joy, Martial Michel, George Awad, Alan Smeaton,
Wessel Kraaij, and Georges Quénot. Trecvid 2014–an
overview of the goals, tasks, data, evaluation mechanisms
and metrics. In Proceedings of TRECVID, page 52, 2014.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Song et al., 2011] Jingkuan Song, Yi Yang, Zi Huang,
Heng Tao Shen, and Richang Hong. Multiple feature hash-
ing for real-time large scale near-duplicate video retrieval.
In ACM Multimedia, pages 423–432. ACM, 2011.

[Srivastava et al., 2015] Nitish Srivastava, Elman Mansi-
mov, and Ruslan Salakhutdinov. Unsupervised learning
of video representations using lstms. In ICML, pages 843–
852, 2015.

[Thomee et al., 2015] Bart Thomee, David A Shamma, Ger-
ald Friedland, Benjamin Elizalde, Karl Ni, Douglas
Poland, Damian Borth, and Li-Jia Li. The new data and
new challenges in multimedia research. arXiv preprint
arXiv:1503.01817, 1(8), 2015.

[Wang and Schmid, 2013] Heng Wang and Cordelia
Schmid. Action recognition with improved trajectories.
In ICCV, pages 3551–3558, 2013.

[Weiss et al., 2009] Yair Weiss, Antonio Torralba, and Rob
Fergus. Spectral hashing. In NIPS, pages 1753–1760,
2009.

[Wen and Yin, 2013] Zaiwen Wen and Wotao Yin. A fea-
sible method for optimization with orthogonality con-
straints. Mathematical Programming, 142(1-2):397–434,
2013.

[Xiao et al., 2010] Jianxiong Xiao, James Hays, Krista A
Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In
CVPR, pages 3485–3492. IEEE, 2010.

[Xu et al., 2013] Bin Xu, Jiajun Bu, Yue Lin, Chun Chen,
Xiaofei He, and Deng Cai. Harmonious hashing. In IJCAI,
2013.

[Ye et al., 2013] Guangnan Ye, Dong Liu, Jun Wang, and
Shih-Fu Chang. Large-scale video hashing via structure
learning. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2272–2279, 2013.

[Zhang et al., 2016] Hanwang Zhang, Meng Wang, Richang
Hong, and Tat-Seng Chua. Play and rewind: Optimizing
binary representations of videos by self-supervised tempo-
ral hashing. In ACM Multimedia, pages 781–790. ACM,
2016.


