
Using DSML for Handling Multi-tenant Evolution in Cloud Applications

Assylbek Jumagaliyev∗, Jon Whittle†, Yehia Elkhatib∗

∗MetaLab, School of Computing and Communications, Lancaster University, UK
Email: {i.lastname}@lancaster.ac.uk

†Faculty of Information Technology, Monash University, Melbourne, Australia

Abstract—Multi-tenancy is sharing a single application’s re-
sources to serve more than a single group of users (i.e. tenant).
Cloud application providers are encouraged to adopt multi-
tenancy as it facilitates increased resource utilization and ease
of maintenance, translating into lower operational and energy
costs. However, introducing multi-tenancy to a single-tenant
application requires significant changes in its structure to
ensure tenant isolation, configurability and extensibility. In
this paper, we analyse and address the different challenges
associated with evolving an application’s architecture to a
multi-tenant cloud deployment. We focus specifically on multi-
tenant data architectures, commonly the prime candidate
for consolidation and multi-tenancy. We present a Domain-
Specific Modeling language (DSML) to model a multi-tenant
data architecture, and automatically generate source code that
handles the evolution of the application’s data layer. We apply
the DSML on a representative case study of a single-tenant
application evolving to become a multi-tenant cloud application
under two resource sharing scenarios. We evaluate the costs
associated with using this DSML against the state of the art and
against manual evolution, reporting specifically on the gained
benefits in terms of development effort and reliability.

1. Introduction

Many new applications are released following the Soft-
ware as a Service (SaaS) model that enables consumers to
access the provider’s applications running on a cloud over
the Internet [1]. A SaaS application can be designed as
single-tenant or multi-tenant. A tenant is a group of users
that belongs to an organization who has access with specific
privileges to an application [2]. In single-tenancy, each
tenant is served by a dedicated application instance which
runs on a logically isolated hardware, such as a Virtual
Machine (VM) or a container. In multi-tenancy, multiple
tenants share hardware and software cloud resources, while
the application distinguishes the requests and data of each
tenant [3]. Tenants must be able to configure and extend
the application to their needs as it runs in a dedicated
environment.

Multi-tenancy is generally preferred as it enables in-
creased resource utilization, and reduces the operational and
energy costs of resource provisioning and software mainte-

nance through consolidation [4], [5], [6], [7]. These bene-
fits encourage application providers to adopt multi-tenancy
to their existing applications. However, introducing multi-
tenancy affects all layers of the application structure which
requires developers to address multiple challenges and find
a balance between several architectural trade-offs [2]. This,
consequently, increases development and maintenance com-
plexity [8], [9]. The following are multi-tenancy concerns
along with design factors that influence the architecture.

• Configurability and extensibility: Sharing applica-
tion logic and data across different tenants requires
the application to be widely configurable and exten-
sible to cater for tenant-specific needs. This concerns
different functional and non-functional aspects of
the application such as adding or removing features,
changing the user interface, and customizing the
business logic.

• Tenant isolation: The application must ensure that
tenants only view and edit their own data. This
requirement must also ensure that tenant-specific
configurations and extensions do not directly affect
the application for other tenants.

• Scalability: A successful SaaS should be able to
scale horizontally as the number of tenants changes.
During horizontal scaling, cloud resources are cre-
ated or deleted to match application performance
requirements [10].

• Ease of development and maintenance: The com-
plexity in development and maintenance processes
of a multi-tenant SaaS may increase application
cost, potentially leading to concerns about tenant
satisfaction.

In multi-tenancy, one of the highest priorities is to create
a data architecture that supports multi-tenancy requirements,
and one that is also efficient and cost-effective to implement
and maintain [11]. Such data architecture typically requires
a partitioning scheme that enables tenant isolation and scal-
ability. In addition, the architecture must be extensible to
support customization. There are three common multi-tenant
data segmentation patterns [11]: (i) separate databases where
each tenant is deployed on a dedicated database instance, (ii)
a shared database with separate schemas for each tenant,
and (iii) a shared database with a shared schema. However,



finding the desired level of flexibility with sufficient iso-
lation depends on technical consideration (i.e. scalability,
customizability and development effort) and tenant require-
ments [9].

Abu-Matar and Whittle [7] have noted that Domain-
Specific Languages (DSLs) could address such multi-
tenancy concerns, specifically to generate and/or maintain
cloud implementations. DSLs are concise, simple and ex-
pressive languages that are intended to address problems of a
specific domain through high level and abstract notions [12].
From a software engineering viewpoint, a DSL refers to a
modeling language that offers notations and concepts that
can be directly manipulated by a domain expert to express a
solution as a model [13]. There have been some approaches
in this direction. For example, CloudDSL [14] describes
different cloud services using a common cloud vocabulary.
CloudML [15] is another DSL to specify provisioning,
deployment, and adaptation concerns. However, these efforts
specifically target provisioning issues, primarily scalability,
and do not support multi-tenancy in the data layer of a cloud
application.

In this paper, we address the architectural concerns
during the evolution process of a single-tenant application
to a multi-tenant SaaS. We present a DSML for modeling
a multi-tenant database that supports tenant isolation, con-
figurability and extensibility. We focus on the data layer
as it is often the prime candidate for multi-tenancy [4] as
other layers are typically stateless in cloud applications [16],
[17]. The DSML provides an automated support to de-
sign a data architecture, generate source code and evolve
an application’s data layer. The main goal is to reduce
time and effort required for development, and to improve
maintainability during the evolution of multi-tenant SaaS
applications. We report on a case study of applying the
DSML to re-engineering a single-tenant web application to
a multi-tenant SaaS, and evolving the multi-tenancy data
architecture. Evaluation against other approaches shows that
using the DSML brings benefits in terms of reliability and
maintainability.

2. Domain-Specific Modeling Language

In this section, we present a DSML that allows a modeler
to model a database architecture to support development and
evolution of SaaS applications. The DSML comprises of the
concepts of storage types, database partitioning models, and
it supports multi-tenancy. It has been implemented as a Mi-
crosoft Visual Studio 2015 extension using the Visualization
and Modeling SDK (VMSDK) [18]. VMSDK allows the
creation of a meta-model, graphical representation of each
component in the meta-model, validation of a model, and
generation of code, documents, configuration files and other
artifacts from the model. In modeling languages, a meta-
model describes a domain of the language, and a model is
designed according to the concepts defined in it.

The DSML consists of seven domain classes and their
relationships as depicted in Figure 1 and detailed as follows.

Figure 1: The meta-model of the DSML

1) The DatabaseModel domain class represents a model
where a developer creates a database structure. A
database model must have at least one shard.

2) A Shard is a database partition, and it can contain Ten-
antTypes, Tables and Enumerations. The Partitioning
property of the Shard can be set to one of the data
models that were described in Section 1.

3) A TenantType describes a type of tenant in a shard. For
example, there might be Standard and Premium tenant
types that use different sets of tables in a shard.

4) A Table is a collection of Fields.
5) A field is a single piece of data with several properties

such as name, data type, and isRequired.
6) An Enumeration is a list of Items.
7) The TenantType can reference to tables, whereas the

Table can reference to other Tables or Enumerations.

All domain classes, except Field and Item, are mapped to
their visual representations.

During modeling of a database structure, constraints and
validation are important to keep the model consistent. When
the model has some conflicts with the semantics of the meta-
model, the DSML should notify the modeler. For example,
names of database elements must be unique valid identifiers
and must not be blank. In our DSML, the validation of a
model was implemented using a validation framework that
is provided by VMSDK. Thus, a model is checked when it is
loaded or saved, and the DSML asks for confirmation if the
model is invalid. The modeler decides whether to confirm
or discard invalid models to be saved.

Once a database model is ready, source code is generated
for each shard from the model. The code generator was im-
plemented using T4 Text Templates [18], which is a built-in
Microsoft Visual Studio tool. T4 allows to generate program
code and other files according to data from the model. In
our DSML, the generated code are data models in C# and
a wrap-up class for establishing a database connection. Ini-
tially, data models are generated for shared entities, followed



Figure 2: The data architecture of the multi-tenant Education
Center application.

by data models for each tenant type. Shared and tenant type
specific models are stored in different namespaces.

3. Case Study

To investigate the practical feasibility and to evaluate
the utility of applying the presented DSML, we apply it
to a case study where we re-engineer a single-tenant web
application to introduce multi-tenancy. Further, we evolve
the multi-tenant data architecture to provide a more isolated
database approach for particular tenants.

The Education Center service has been chosen as a
prototypical use case. It is a single-tenant application that
can be deployed in Azure, and it was developed as a multi-
tier .NET application with an ASP.NET MVC front-end and
a SQL database for data store. The size of the application
is about 1.5k lines of code (LOC). The application consists
of presentation, business logic, and data layers. This sepa-
ration helps to manage complexity during the development
and evolution processes, and it also enables loose coupling
between the application layers.

Three groups of users interact with the application:
application administrator, instructors and students. The ap-
plication administrator manages instructors, courses, and
student admissions. She also enrolls students to courses, and
assigns instructors to courses. Instructors mark students who
are assigned to the courses they teach. Students view courses
they are enrolled on and their progress on each course.

3.1. Introducing Multi-tenancy

During the adoption of multi-tenancy, we tried to min-
imize the number of changes in the application structure.

However, several modifications were performed to isolate
tenants in the database and the application. The evolution
process was implemented in the following steps:

• Authentication. The authentication mechanism was
modified to identify end users of tenants. When a
user is successfully authenticated, the application
looks for a tenant who owns the user from the Ten-
antUsers table. Then, the application loads a tenant-
specific user interface and connects to an appropriate
database instance from the configuration information
of the tenant.

• Modeling the database using the DSML. The
database structure was modeled following the single
shared database for all tenants model as depicted
in Figure 2. The Tenant and TenantAdministrator
entities were added to the database. The Tenant
entity represents a customer with configuration in-
formation who has subscribed to the service, whilst
the TenantAdministrator is a service administrator
of a tenant who is responsible for managing the
application. Figure 2 also shows that a tenant has
departments, instructors, courses and students. A de-
partment has multiple courses, and an instructor can
belong to a department. In turn, many instructors can
be assigned to many courses. Finally, the data about
student enrollments are stored in the Enrollments
table. Once the database model has been designed,
a source code is generated with a wrapper class to
dynamically connect to an appropriate database.

• Implementing tenant isolation. To provide data iso-
lation for each tenant, the primary keys of tables
that belong to a tenant contain a globally unique
identifier TenantID as a prefix, and end with a four-
digit integer counter. This ensures tenants access to
their data, and it also helps to minimize changes
at the data layer during future evolutions of the
application.

• Modifying the business logic. The business logic
has been modified as new entities, Tenant and Ten-
antAdmin, need to be managed by the application
provider. For entities that belong to a tenant, queries
for creation were modified so that a foreign key will
be generated properly. In addition, all classes that
interact with the data layer use the generated wrap-
per class to establish a connection to an appropriate
database instance.

3.2. Evolution of Multi-tenant SaaS

There are several reasons that trigger application evo-
lution in a multi-tenant application, including fixing bugs,
changes in business environment, improving security and
reliability, changes in existent tenant requirements, or new
tenant requirements. The application should respond to such
changes to maintain tenant satisfaction.

When architecting the application structure, we decided
to use a single database instance shared by all tenants



as opposed to a separate database per tenant or a shared
database with tenant-specific schemas. The former choice
offers lower cost and more ease of management. However,
as the number of tenants increases over time, the number
of concurrent end users and data stored by each tenant
increase as well. Moreover, some tenants may require a
separate database due to privacy requirements. These sce-
narios require a more isolated data storage approach and
need changes in the application structure.

The evolution from the single shared database model to
the separate databases has been performed by changing the
Partitioning property of the shard to ‘Separate Database Per
Tenant’ mode. A dedicated database instance was created for
each tenant, and a tenant-specific database name is stored
in the tenant’s configurations. The modeler creates a shard
per tenant to define tenant-specific schemas. The overall
application structure was changed, as depicted in Figure 3,
based on the external configuration store pattern [10]. The
configuration information of tenants is deployed in the
default database. The application authenticates tenants and
their end users by connecting to the default database. When
the authentication is successful, the application redirects
tenants and their end users to their own database instance.
This provides easier management and control of configura-
tion data. It also allows sharing configuration data across
applications and application instances.

Figure 3: The external configuration storage pattern

4. Evaluation

Our evaluation strategy is to use the case study de-
scribed in the previous section to compare our DSML
against Elastic Tools for Azure SQL databases [19] and
against manual code refactoring as a baseline. Elastic Tools
provides libraries to simplify and manage large numbers of
databases that support a SaaS. It also proposes Row-Level
Security [20] that enables the implementation of restrictions
on data row access based on user query characteristics.
During manual code refactoring, we followed the guidance
to develop a multi-tenant SaaS [21] and cloud patterns [10].

In particular, we inspected the time required for evolu-
tion and measured code reliability through counting error
frequencies for the following two evolution scenarios:

• Scenario 1: evolution from single- to multi-tenancy;
• Scenario 2: evolution from a single shared database

model to a separate database per tenant model.

To implement Scenario 1, an application needs to intro-
duce tenant entities (for tenant users and administrators), and
implement authentication logic to handle tenant-specific data
entities. This entails not only modifications to the database
schema, but also to queries through presentation and busi-
ness logic layers. Scenario 2 requires the application to map
each tenant to its own database instance and to remove row-
level security as each tenant connects to a physically isolated
database.

4.1. Developer Time

Figure 4 shows the developer time spent to support each
evolution scenario. To ensure fair comparison, we excluded
the time needed to learn the appropriate APIs for Elastic
Tools and tool support for the DSML.

Figure 4: The time spent for the evolution scenarios in hours

In order to adopt multi-tenancy (Scenario 1), the fol-
lowing implementation modifications were required: (i) En-
hance the authentication mechanism to retrieve tenant con-
figuration information when an end user authenticates; (ii)
Modify the data layer by introducing Tenant and TenantAd-
ministrator entities; (iii) Alter the existing database schema
by adding TenantID to tenant-specific tables in order to
provide row-level access; and (iv) Modify CRUD queries
to ensure tenant isolation at the presentation and business
logic layers.

Using manual evolution, the above implementation steps
required a total of 13 hours. Using Elastic Tools required
14 hours. In contrast, only 10 hours were needed to support
Scenario 1 using our DSML as the required modifications
were easier to introduce through the high level database
architecture it offers. The graphical representation of the
data architecture improves understandability, and the code
generator directly transforms changes in the model to the
data layer. However, manual changes were required in the
business logic and presentation layers.



To support Scenario 2, both our DSML and Elastic Tools
required no additional time on top of that needed to move
to a multi-tenant model. Manual refactoring, on the other
hand, required additional code changes that took about 6
hours in order to dynamically connect to a tenant-specific
database and to remove row-level access.

4.2. Reliability

We also evaluate the reliability of our DSML through the
frequency of making errors in application code during the
evolution processes. For this, we used the Microsoft .NET
unit testing framework for managed code to identify errors
on a module level. We categorized errors according to their
appearance at each layer of the application. The total number
of errors for both evolution scenarios by each approach is
illustrated in Figure 5.

Figure 5: Error counts at each application layer for evolution
through Scenario 1 followed by Scenario 2

The manual approach is noticeably the most error-prone
one. Specifically, 20 and 7 errors were encountered at the
business logic layer and data layer, respectively. This is
not particularly surprising given the additional amount of
logic that has to be manually implemented. Evolution of
the presentation layer to multi-tenancy went smoothly as
this layer only required minor changes.

The automated approaches fared better in terms of error
count. Where these errors occurred, however, differ slightly
between them. At the data layer, there were no errors when
using our DSML due to the automation. The DSML is
specifically designed for this purpose so it makes it easy
to model a multi-tenant data structure, model a database
schema for each tenant type or even per tenant, manage
tenant-specific and shared tables, and generate source code
from the model. In contrast, errors at this level were found
for the remaining approaches: 7 for manual refactoring (as
already described) and 3 for Elastic Tools. The errors were
caused by missed TenantID in the tenant-specific entities,
failures to connect to a database, incorrect routing of a
tenant to its database instance, and faulty implementation
of sharding management.

Errors at the business logic layer include incorrect im-
plementation of tenant-isolation, invalid queries to interact
with the data layer and issues with mapping an end user

to its tenant. The number of such errors is high (20) with
the manual approach but relatively low with both our DSML
(12) and Elastic Tools (9). Adjusting queries to ensure tenant
isolation using the manual approach and Elastic Tools intro-
duced many problems, especially with complex queries. In
case of the DSML, errors were found during the generation
of a primary key for tenant-specific entities.

Interestingly, presentation layer errors were only found
with our DSML (2). In single-tenancy, entities are retrieved
by their primary keys using HTTP GET requests. In multi-
tenancy, we include TenantID as a prefix of tenant-specific
entities’ primary keys. This revealed the TenantID in the
query string in the web browser address bar when an entity
was requested for editing, and the errors occurred when we
tried to conceal it from end-users.

As a tool prescribed for highly evolving data applica-
tions, Elastic Tools evidently still requires substantial effort
and cost for the fairly steady workload presented by our
basic use case. Furthermore, Elastic Tools has been designed
for Azure SQL databases only, which limits its application
for other cloud platforms. Nonetheless, it is representative
for our comparative purposes here as it is available for pub-
lic, is suitable for the application structure, and it supports
all multi-tenancy patterns for the data layer.

5. Discussion

Overall, our results indicate that using the DSML to
handle evolution in multi-tenant SaaS applications saves de-
velopment time and greatly minimizes the number of errors
at the data layer. However, it also comes with minor errors in
other layers of the application, namely the presentation layer.
This could be minimized through defining dependencies
between the application layers and transforming changes
from one layer to subsequent layers.

The DSML allows a developer to model a database
structure and generate a source code from the model. During
further evolution of the application, sometimes it is easier
to make minor changes in the generated code rather than
modifying the model and re-generating the application code.
Currently, changes in the code are not transformed back
into the model. As a result, synchronization issues emerge
between the model and the code. We attempted to address
this issue, however, the VMSDK tool that we used to imple-
ment the language lacks the capability to handle such two-
way synchronization. This might be an area of future de-
velopment, although making reverse synchronization work
properly will lead to a higher implementation cost of the
DSML.

Moreover, to evaluate the generalizability of the DSML,
we need to extend a code generator so that it is compatible
with the programming languages and frameworks for other
cloud providers. Finally, when the data layer is evolved
the relevant layers of the application must be traversed as
modification in this layer entails corresponding changes in
related layers.



6. Related Work

In this section, we discuss existent literature on handling
multi-tenancy and evolution challenges in the context of
SaaS cloud applications. We categorized the approaches
as DSLs for cloud applications and industrial work that
manages multi-tenancy at the data layer.

6.1. DSLs

CloudDSL supports application migration across cloud
platforms [14]. It is a graphical DSL for describing different
cloud IaaS services. The DSL itself was implemented by
exploiting the Epsilon tool and it uses a cloud meta-model
that covers a wide range of different cloud platform entities.
The meta-model was implemented by extensive analysis of
cloud platforms, identification of similarities of entities in
cloud platforms, and combining entities and their relation-
ships into a new meta-model.

Another DSL-based approach for cloud application de-
velopment and deployment has been presented in [22] where
a DSL designer implements a graphical DSML using Visual
Studio DSL Tools and hosts it as a SaaS. This eliminates
the need for installation and configuration of a modeling
environment, thus an application designer models an appli-
cation using a web browser and automatically deploys it to
the Google App Engine cloud platform. A further DSL for
creating automated functional tests for SaaS applications has
been described in [23]. The approach addresses functional
user interface and platform compatibility testing problems.
The DSL is supported by a Visual Studio extension tool
which allows to create, execute and debug tests.

6.2. Multi-tenant Databases

Multi-tenancy at the data layer has been addressed using
DB2 software for a SQL database by IBM [24]. It supports
all data models that were described in Section 1, and the
author highlights the benefits and challenges of each data
model. In addition, the following approaches to handle
configurability have been described: (i) a tenant identifier
for each row in a shared schema, and (ii) pureXML to
store data. This approach limits flexibility as extensions
require to alter the table, and extension columns will be
included for all tenants. In pureXML, a table consists of two
columns: a tenant identifier and XML data types. This allows
tenants to have separate schemas per column. A similar
approach has been introduced by [25] where PostgreSQL
uses semi-structured data types, such as json, jsonb and
hstore, to support multi-tenancy and configurability. The
main difference from pureXML is that only variable fields
are stored in a semi-structured data type.

As sharding SQL databases was not enough to sup-
port scalability and reliability of the AdWords system,
Google has designed a distributed relational database system
F1 [26]. F1 combines high availability and scalability of
NoSQL systems, and consistency and usability of SQL
databases. It proposes a hierarchical database model where

the child table contains a foreign key to its parent table
as a prefix of its primary key. For example, the Education
Center schema may contain a table Tenant with primary
key (TenantID) that has a child table Department with
primary key (TenantID, DepartmentID), which in turn has a
table Instructor with primary key (TenantID, DepartmentID,
InstructorID). Including a tenant identifier in primary keys
ensures that tenant related data are in the same partition.
Likewise, Twitter introduced Manhattan, a multi-tenant dis-
tributed database, that ensures scalability and low latency in
a real-time environment [27]. Customers interact with the
storage system through a dedicated interface layer. As in
Google’s F1, a hierarchical key structure is used to design a
data architecture. However, these databases are not publicly
available, and they depend on other proprietary technologies.

7. Conclusion and Future Work

Multi-tenant cloud applications have a potential of sav-
ing different operational costs through consolidation. How-
ever, evolving a single-tenant SaaS application into a multi-
tenant one is a relatively costly and error-prone process. In
this paper, we presented the architectural concerns during
the evolution process of a single-tenant web application
to a multi-tenant SaaS. We also proposed a DSML to ad-
dress multi-tenancy challenges at the data layer. The DSML
provides automated support to design a data architecture,
generate source code and evolve an application’s data layer.

We conducted a case study by applying our DSML on
a typical single-tenant three-tier web application, and used
that to compare our DSML to a manual code refactoring
technique and to Microsoft Elastic Tools for Azure SQL.
The outcomes show that using our DSML can decrease the
number of errors in application code, and reduce the time
and effort during the evolution from single- to multi-tenancy.

For future work, we intend to expand the application of
our DSML to include further case studies on more cloud
platforms (e.g. Amazon Web Services, Google App Engine)
to further evaluate the generalizability of the DSML. We
plan to conduct another case study with a more complex data
model to validate the results. We also plan to improve the
DSML to traverse all the relevant layers during evolution.

References

[1] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of
Cloud Computing,” National Institute of Standards & Technology,
Gaithersburg, MD, United States, Tech. Rep., 2011.

[2] R. Krebs, C. Momm, and S. Kounev, “Architectural concerns in multi-
tenant SaaS applications,” in Proceedings of the 2nd International
Conference on Cloud Computing and Services Science (CLOSER),
vol. 12, 2012, pp. 426–431.

[3] C.-P. Bezemer and A. Zaidman, Challenges of reengineering into
multi-tenant SaaS applications. Delft University of Technology,
Software Engineering Research Group, 2012.

[4] J. R. Hamilton et al., “On designing and deploying internet-scale
services,” in Large Installation System Administration Conference,
vol. 18. USENIX, 2007, pp. 1–18.



[5] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” in Proceedings of the Conference on Power
aware computing and systems, vol. 10, 2008, pp. 1–5.

[6] R. Boutaba, Q. Zhang, and M. F. Zhani, “Virtual machine migra-
tion in cloud computing environments: Benefits, challenges, and
approaches,” Communication Infrastructures for Cloud Computing,
pp. 383–408, 2013.

[7] M. Abu-Matar and J. Whittle, “MDE opportunities in multi-tenant
cloud applications,” in Proceedings of the 2nd International Workshop
on Model-Driven Engineering on and for the Cloud, co-located with
the 17th International Conference on Model Driven Engineering
Languages and Systems, CloudMDE@MoDELS, 2014, pp. 1–5.

[8] P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications: Main-
tenance dream or nightmare?” in Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE), ser. IWPSE-EVOL ’10.
ACM, 2010, pp. 88–92.

[9] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and
W. Joosen, “Efficient customization of multi-tenant Software-as-a-
Service applications with service lines,” Journal of Systems and
Software, vol. 91, pp. 48–62, May 2014.

[10] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson,
Cloud Design Patterns prescriptive architecture guidance for cloud
applications. Microsoft Corporation, 2014.

[11] F. Chong and G. Carraro, Architecture Strategies for Catching the
Long Tail. Microsoft Corporation, 2006.

[12] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[13] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26–36,
Jun. 2000.

[14] G. C. Silva, L. M. Rose, and R. Calinescu, “Cloud DSL: A language
for supporting cloud portability by describing cloud entities,” in
Proceedings of the 2nd International Workshop on Model-Driven En-
gineering on and for the Cloud, co-located with the 17th International
Conference on Model Driven Engineering Languages and Systems,
CloudMDE@MoDELS, 2014, pp. 36–45.

[15] N. Ferry, G. Brataas, A. Rossini, F. Chauvel, and A. Solberg,
“Towards Bridging the Gap Between Scalability and Elasticity,” in
Proceedings of the 4th International Conference on Cloud Computing
and Services Science (CLOSER)—Special Session on Multi-Clouds.
SCITEPRESS, 2014, pp. 746–751.

[16] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines,”
Synthesis Lectures on Computer Architecture, vol. 8, no. 3, pp. 1–154,
2013.

[17] Y. Elkhatib, G. S. Blair, and B. Surajbali, “Experiences of using a
hybrid cloud to construct an environmental virtual observatory,” in
Proceedings of the 3rd Workshop on Cloud Data and Platforms, co-
located with the 8th European Conference on Computer Systems, Apr
2013, pp. 13–18.

[18] A. Cameron Wills. (2011) Visualization and
modeling sdk,” microsoft. [Online]. Available:
https://code.msdn.microsoft.com/Visualization-and-Modeling-
313535db

[19] S. Acharya, C. Rabeler, and K. Toliver, “Design patterns for multi-
tenant SaaS applications and Azure SQL database,” 2017. [Online].
Available: https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-design-patterns-multi-tenancy-saas-applications

[20] R. Byham and C. Guyer, “Row-level security,” May 2016. [Online].
Available: https://msdn.microsoft.com/en-gb/library/dn765131

[21] D. Betts, A. Homer, A. Jezierski, M. Narumoto, and H. Zhang,
Developing Multi-tenant Applications for the Cloud on Windows
Azure. Microsoft patterns and practices, 2013.

[22] K. Sledziewski, B. Behzad, and A. Rachid, “A DSL-based approach
to software development and deployment on cloud,” in 24th IEEE
International Conference on Advanced Information Networking and
Applications, April 2010, pp. 414–421.

[23] D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas, and T. M.
King, “Towards domain-specific testing languages for Software-as-a-
Service.” in MDHPCL@MoDELS, 2013, pp. 43–52.

[24] R. Chong, “Designing a database for multi-tenancy on the cloud
considerations for SaaS vendors,” IBM Corporation, Tech. Rep., 2012.

[25] E. Ozgun. (2016) Designing your SaaS database
for scale with Postgres. [Online]. Avail-
able: https://www.citusdata.com/blog/2016/10/03/designing-your-
saas-database-for-high-scalability/

[26] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz,
I. Rae, T. Stancescu, and H. Apte, “F1: A distributed SQL database
that scales,” Proc. VLDB Endow., vol. 6, no. 11, pp. 1068–1079, Aug.
2013.

[27] S. Peter, “Manhattan, our real-time, multi-tenant dis-
tributed database for Twitter scale,” April 2014. [On-
line]. Available: https://blog.twitter.com/2014/manhattan-our-real-
time-multi-tenant-distributed-database-for-twitter-scale


