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Abstract—An effective condition monitoring system of wind 

turbines generally requires installation of a high number of 

sensors and use of a high sampling frequency in particular for 

monitoring of the electrical components within a turbine, 

resulting in a large amount of data. This can become a burden 

for condition monitoring and fault detection systems. This paper 

aims to develop algorithms that will allow a reduced dataset to be 

used in wind turbine fault detection.  The paper firstly proposes a 

variable selection algorithm based on principal component 

analysis (PCA) with multiple selection criteria in order to select a 

set of variables to target fault signals while still preserving the 

variation of data in the original dataset. With the selected 

variables, the paper then describes fault detection and 

identification algorithms, which can identify faults, determine the 

corresponding time and location where the fault occurs, and 

estimate its severity. The proposed algorithms are evaluated with 

simulation data from PSCAD/EMTDC, SCADA (Supervisory 

control and data acquisition) data from an operational wind 

farm, and experimental data from a wind turbine test rig. Results 

show that the proposed methods can select a reduced set of 

variables with minimal information lost whilst detecting faults 

efficiently and effectively. 

 

Index Terms— Variable selection, principal component analysis, 

fault detection, condition monitoring, wind turbines 

I. INTRODUCTION 

HE importance of continuous and autonomous condition 

monitoring (CM) and fault detection systems for 

engineering applications has increased dramatically in the past 

decades. This is particularly the case for wind power, as 

turbines are often deployed in remote and harsh environments. 

CM techniques can help improve the performance and 

reliability of the wind turbines (WTs) [1]. According to 

IRENA, the operation and maintenance cost of a WT is 

between 10% - 25% of the total cost of electricity [2, 3]. With 

increasing size and complexity of turbines, and the move to 

building more offshore wind farms, maintaining the 

performance and reliability of WTs technically and financially 

has become a challenge.  

Based on the information collected from sensors, a CM 

system monitors and identifies potential anomalies and 

predicts WT’s future operation trend, allowing preventative 

maintenance of the turbine to be undertaken. With a 
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sufficiently early warning, it is possible to reduce down-time 

and avoid component damage due to unexpected failures. 

Moreover, by continuous monitoring of the WT’s components, 

the life cycle of turbine components can be estimated, and 

maintenance activities scheduled accordingly to optimize asset 

management. 

An effective CM system for wind turbines relies upon 

algorithms designed for accurate fault detection and 

prediction; however, there are two major issues. The first of 

these is associated with the amount of data generated by 

sensors. Typically, a wind turbine CM system monitors 

approximately 150-250 variables [4], and its sampling rate 

depends on the nature of the monitoring system, ranging from 

0.002 Hz (e.g. SCADA) to >10 kHz data for dedicated 

diagnostic purposes. The need to store and process these data 

increases the cost, and complicates the performance of both 

the CM system and the interpretation of its output. The second 

issue relates specifically to sensor reliability. Elouedi et al. 

and Guo et al. have both pointed out issues regarding the 

accuracy and accountability of sensors used for pattern 

recognition and fault identification and diagnosis [5, 6]. For a 

CM system, the accuracy of data acquired from sensors has a 

pronounced impact on performance. Moreover, the use of a 

large number of sensors, and hence monitoring variables, may 

reduce the overall reliability of the sensor system.  

Research into optimal sensor selection has been carried out 

for many different applications. An entropy-based selection 

technique for condition monitoring for aerospace propulsion 

was proposed in [7]. Sensor selection for target tracking to 

manage sensor network topology, such as reduction of energy 

use and prolonging network lifetime, can be found in [8]. In 

addition, filtering and estimation methods for nonlinear 

tracking problems, using Cramer-Rao bound criteria-based 

sensor selection, was presented in [9]. It has been proven that 

there are fewer outputs from the filter/estimator than direct 

input measurements. However, the methods referenced above 

require the usage of all data for prediction and for providing 

improved estimated outputs. Hovland et al. suggested a 

stochastic dynamic programming method to solve the sensor 

selection problem for robotic systems in real time [10]. 

Moreover, an experimental design approach was proposed by 

Kincaid et al. to find effective locations to control and sense 

vibration for a complex truss structure built at the NASA 

Research Center through a discrete D-optimal design method 

[11]. This method aims to find a set of observation points that 

have the maximum determinant of the Fisher Information 
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matrix. Considering WT condition monitoring, Zhang et al 

implemented a parallel factor analysis of SCADA data, 

preserving relevant information for feature extraction and 

hence allowing the identification of different operation 

conditions of a WT through K-means clustering [12]. The 

authors of this paper have also carried out a study of PCA-

based variable selection for a WT through maximizing data 

variability [13].  

In this paper, a multivariate PCA-based variable selection 

algorithm is proposed for targeting fault signals of wind 

turbines. The proposed algorithm introduces a cost function 

with multiple criteria, such that the selected variables not only 

maximize dataset variability, but also contribute the most to a 

specific fault signal. Moreover, it has the potential of reducing 

the number of sensors installed through estimation of the least 

significant variables. Two fault diagnosis techniques are then 

proposed using the variables obtained from the selection 

algorithm. The first method detects anomalies based on the 

Hotelling T2 statistic, making use of its identification 

capability by decomposing this statistic through an 

instantaneous energy calculation. The second method 

estimates fault severity by establishing an empirical model 

related to a specific fault using principal component (PC) 

coefficients. In both cases, only limited prior knowledge of the 

system is required, as the input dataset is obtained from the 

proposed selection algorithm.  

The remainder of this paper is organized as follows. A 

general overview of PCA is first given in Section II, followed 

by a description of the targeted variable selection algorithm 

and the anomaly detection algorithms. In Section III, the data 

used in the evaluation process are described, including 

simulation data, SCADA data, and experimental data. These 

data are used to demonstrate the robustness of the proposed 

methods in Section IV. Results are also presented in this 

section. Finally, conclusions and ideas for future research are 

discussed in Section V. 

II. PCA BASED DETECTION AND IDENTIFICATION 

PCA has been widely used in dimension reduction and 

feature extraction [14, 15]. By maximizing the variance in 

data, it captures the dominant features in an N-dimensional 

dataset in descending order through an orthogonal 

transformation. Thus the transformed data are linearly 

independent and are referred to as the principal components 

(PCs). The PCs are commonly obtained through Single Value 

Decomposition (SVD) of the covariance matrix S (𝑺 = 𝑿𝑿𝐓) 

of the original dataset X. For a dataset X with dimension of 

(n×p), where p is number of variables and n is number of 

samples, the transformed PCs, Z, are calculated from the 

covariance matrix S where it satisfies,  

𝑼′𝑺𝑼 = 𝑳                                                                                         (1)  

where L (l1,l2,…,lp) are the eigenvalues of S, which can be 

solved from the characteristic equation |𝑺 − 𝑙𝑰| = 0. The 

eigenvalues l1,l2,…,lp are also the variances of each PC and the 

sum of L equals the sum of the variance of the original 

variables.  

After obtaining these eigenvalues, the corresponding 

eigenvectors U= iu , where ui is column of U, ui = (u1i, u2i, 

…, upi), i = 1, …, p, can be calculated. The eigenvector U is 

referred to as the loadings, representing the correlations 

between the variables and PCs. The relationship between the 

PCs, Z (z1, z2,…,zp), and the original dataset X (n×p) is 

expressed as Z = UX. It has been proven that, by retaining q 

(q<p) PCs, the dimensionality of the data can be reduced 

significantly, with only minor data variability being sacrificed 

[16].  

A. Targeted variable selection 

Optimal variable selection techniques for statistical 

applications have been proposed by Jolliffe and Beale et al. 

[17-19]. The idea was to establish a relationship between the 

transformed PCs and the original variables, hence achieving 

dimension reduction with minimal loss in information 

compared to the original dataset. Previous studies by the 

authors of this paper [13] adopted similar approaches to carry 

out variable selection for wind turbine condition monitoring 

based on data variability. It has been demonstrated that the 

technique can reduce the dimensionality of the dataset while 

still maintaining maximum information.  

In this paper, a selection method that targets a specific fault 

signal is proposed, namely the T selection method. The 

proposed algorithm not only maximizes variance and 

maintains the uncorrelatedness among the selected variables 

but also seeks to preserve the underlying features regarding 

the fault signal/variable within the retained dataset. The 

selection algorithm can be divided into two steps. First, the 

PCs are selected based on the equation below, 

𝓡𝒋
𝒑𝒄
= 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑖∈𝑝
(𝑟𝑖,𝑗

2 − 𝑟𝑡𝑎𝑟,𝑗
2 ) , 𝑗 ∈ 𝑞                                          (2) 

where 𝓡𝒑𝒄 refers to the set of q PCs to be selected by 

minimizing the difference of the squared correlation 

coefficient between 𝑟𝑖,𝑗
2  and 𝑟𝑡𝑎𝑟,𝑗

2 , and 𝑟𝑖,𝑗
2  is the squared 

correlation coefficient between the ith variable and jth PC and 

𝑟𝑡𝑎𝑟,𝑗
2 is the squared correlation coefficient between the targeted 

variable and the jth PC. The squared correlation is calculated 

by, 

𝑟𝑖,𝑗
2 =

{
 

 ∑ (𝑥𝑖 − �̅�𝑖)(𝑧𝑗 − 𝑧�̅�)
𝑝
𝑖=1

√∑ (𝑥𝑖 − �̅�𝑖)
2𝑝

𝑖=1
∑ (𝑧𝑗 − 𝑧�̅�)

2𝑝
𝑗=1 }

 

 
2

                            (3) 

where �̅�𝑖 and 𝑧�̅� are the mean value of xi and zj, respectively. 

The equation is also equivalent to, 

𝑟𝑖,𝑗
2 = 𝑙𝑖𝑢𝑖,𝑗

2                                                                                        (4) 

where li and ui,j are the corresponding eigenvalue and loadings 

obtained from the SVD. 

In the second step, the corresponding original variables are 

identified from the retained PCs, based on (5), 
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𝓡𝒋
𝒗𝒂𝒓 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝒖𝑘, 𝑗 ∈ 𝑞, 𝑘 ∈ ℛ

𝑝𝑐                                         (5)  

𝓡𝒋
𝒗𝒂𝒓 is updated at every iteration and the stopping criteria for 

the iterations is set to the number of variables to be retained,    

found by using a SCREE plot. This plot visually assesses 

which PC components explain most of the variability in the 

data using cross validation techniques [16, 17].  

Once a set of variables is retained, three performance 

measures are used in order to evaluate the selection algorithm. 

The three measures are the cumulative percentage partial 

variance (cppv), the average correlation coefficient (�̅�) and the 

percentage information entropy (ηe). Each of these measures 

analyzes a different aspect of the retained dataset [13].  

B. Hoteling’s T2 method 

The Hoteling’s T2 statistic is often used in process control 

and monitoring [20, 21]. In addition, the T2 statistic has been 

applied to detect faults in wind turbine gearboxes and pitch 

motors [22, 23]. In ref. [23], fault identification was performed 

by relying on the relative contribution index of the original 

measurement to the overall T2 statistic through decomposition. 

However, the variables used in ref. [23] are based on prior 

knowledge of the measurements and the investigation of alarm 

logs. In this paper, two improvements are made for the 

Hotelling’s T2 method. Firstly, the dataset used for anomaly 

detection and identification is obtained from the T selection 

algorithm, as described in the preceding subsection. Secondly, 

a PC energy-based method is used to decompose the T2 

statistic to perform fault identification. 

As can be shown, the original dataset X is estimated using 

the first q PCs, 

𝑿 = 𝒁𝑞𝑼𝑞
𝑇 + 𝑬                                                                                (6) 

where E is the residual matrix signifying the amount of 

information not explained by the PCA model. In the 

perspective of statistical monitoring, Hotelling’s T2 is 

commonly found by, 

𝑻𝟐 = 𝑿𝑇𝑼𝑞𝑳𝑞
−1𝑼𝑞

𝑇𝑿 = 𝒁𝑞
𝑇𝑳𝑞

−1𝒁 𝑞                                               (7) 

where Uq and Lq are the eigenvectors and eigenvalues of the 

first q PCs, respectively. The T2 statistic is monitored 

continuously, and the process is considered abnormal if the 

statistic is above a threshold as defined below, 

𝑇𝛼
2 =

𝑞(𝑛 − 1)

𝑛 − 𝑞
𝐹𝑞,𝑛−𝑞,𝛼                                                                 (8) 

where 𝐹𝑞,𝑛−𝑞,𝛼 is the critical point of the F distribution with n 

and n-q degree of freedom. The significance level α varies 

depending on the data, and is typically between 90% and 95%. 

For the period where anomalies have been identified, the 

relative contribution of ith PC, i.e., the TCi, to the T2 statistic 

can be decomposed by calculating the instantaneous energy, 

𝑇𝐶𝑖 = (|𝑧𝑖|)
2                                                                                   (9) 

where zi is the ith unscaled PC. 

Fig. 1 shows the process of anomaly detection and 

identification. During the training stage, a dataset from a 

healthy turbine, that has a mean value of �̅�, is normalized to 

zero mean and unit variance. Variables are selected via the 

above T selection algorithm for a predefined fault signal. Then 

the PCA model is created; its T2 statistic and threshold value 

𝑇𝛼
2 are calculated using (7) and (8) respectively. During the 

testing stage, the data are normalized using the data from the 

healthy turbine. The PCA model and the T2 statistics are also 

calculated for the turbine data being evaluated. If any of the T2 

statistics exceed the threshold value 𝑇𝛼
2, as calculated from the 

normal operational data, the measurement is considered to be 

an anomaly. For the period where anomalies are present, the 

T2 statistics are decomposed using (9) to determine which 

variables have the highest contribution to the anomalies.   

Normal 
operation data

Training stage

Data 
normalisation

PCA model

Calculation of T2 
and threshold T2α

Testing data 
containing fault

Data 
normalisation

Calculation of T2 
for testing data

T2>T2α  

Testing stage

Anomaly 
detected

No 
anomaly

Calculation of   TCi by 
decomposing T2 

Loading (U) 
identification from PC 

with the highest TCi 

Anomaly 
detection phase

Anomaly identification 
phase  

Fig. 1. Block diagram of the Hotelling’s T2 based fault detection and 

identification algorithm. 

C. Feature based fault severity estimation 

In this section, an empirical model is proposed to detect a 

specific fault, and then to estimate its severity under various 

operation conditions. This is achieved using retained variables 

from the T selection algorithm. Suppose there is a set of 

variables X with dimension (n×q) obtained from the T 

selection algorithm and related to a specific type of fault. To 

build the detection model, measurement data for these 

variables are collected multiple times 𝑿𝑑  at different fault 

severities, where d indicates the index for each severity. PCA 

is carried out for all these datasets, where d eigenvector 

matrices U (q×q) and d eigenvalue vectors L (q×1) are 

obtained. It can be shown that there is a relationship between 

the fault severity Sv and eigenvalues L and eigenvectors U, 

described as, 

 𝑆𝑣 = 𝑓(𝑢𝑖,𝑗, 𝐿𝑗), 1 < 𝑖 < 𝑞, 1 < 𝑗 < 𝑞                                 (10) 
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The relationship function f is fault dependent, by which the 

fault can be identified even at an incipient stage.  

III. CASE STUDY - MONITORING DATA 

A. Wind turbine simulation data 

A 2 MW doubly-fed induction generator (DFIG) wind 

turbine model with grid connection is simulated in 

PSCAD/EMTDC. The simulation is based on the benchmark 

model developed by PSCAD [24]. The model comprises a 

mechanical model of a turbine, which simulates the blades’ 

aerodynamic behavior, a mechanical shaft, a generator, an 

AC-DC-AC converter, and a grid network. This simulation is 

primarily used for investigating the performance of wind 

turbine’s transient and steady state conditions. The behavior of 

the turbine during normal and faulty operations can also be 

analyzed. Simulations are performed using wind speed data 

collected at the Hazelrigg site near Lancaster University, 

where a 2.1 MW wind turbine is installed and operating. 

Measurements are taken from both internal and external nodes 

of the simulated system under different operational conditions. 

Computer simulations of a wind turbine incorporating a 

permanent magnetic synchronous generator (PMSG) with a 

grid connection have also been created. It is worth mentioning 

that, in this paper, simulation data are used for severity 

estimation of the faults in the turbine using the proposed 

feature-based fault detection method.  

B. SCADA data 

SCADA data contains a large amount of information 

regarding the operational and performance status of WTs. 

Although SCADA data generally have low sampling rates, 

they can provide an overview of a turbine’s operational and 

performance status and condition, and have been employed 

widely by researchers as the basis for CM systems. The 

SCADA data used in this paper are taken from an operational 

wind farm with 24 turbines in total. The condition of each 

turbine is described by 128 variables, including temperatures, 

vibrations, electrical parameters, wind speed, and digital 

control signals. The data are sampled at an interval of one 

second, but are averaged over 10 minutes and then stored on a 

database for 15 months. Pre-processing of the data is 

performed to eliminate digital signals, constant readings, and 

error signals due to faulty sensors, which are ineffective to the 

PCA analysis. Fault-free data are needed to train the model 

with the proposed detection and identification algorithm. For 

SCADA data, the active power versus wind speed curve, i.e., 

the S-curve, can be adopted to identify if the data are fault-

free, as concluded by S. Gill et al. [25]. The turbine that yields 

an ideal S-curve after pre-processing is selected as the 

reference healthy turbine. 

C. Experimental wind turbine test rig 

Experimental data from a WT test rig have also been collected 

and used for further evaluation of the proposed algorithm. The 

rig allows specific faults, such as phase-to-phase short circuit 

faults, to be applied. The physical layout and overall 

schematic of the test rig is shown in Fig. 2 and Fig.3, 

respectively. The rotation of the turbine and the aerodynamics 

of the blade are simulated by a computer and emulated with an 

ABB 11 kW squirrel-cage induction motor controlled by a 

frequency drive. The induction motor is directly coupled to a 3 

kW PMSG generator from Mecc Alte. The use of this 

induction motor incorporating the variable frequency drive can 

ensure it provides the required torque to operate the generator 

at different speeds. The AC-DC-AC converter consists of an 

uncontrollable AC-DC rectifier, a DC-link capacitor and a 

DC-AC inverter. The rectifier converts the mains voltage to a 

DC voltage of 540V for DC-filtering and energy buffering via 

the DC-Link capacitor. The IGBT inverter then converts the 

DC power into an AC power at the desired output voltage and 

frequency via the filter (Lf and Cf in Fig. 3). A DC-link 

capacitor discharging circuit (R and Sd) is also added to 

discharge the capacitor after the tests. The test rig operates in 

an island mode, where all the generated power from the AC-

DC-AC converter is dissipated to an off-the-shelf resistive 

load bank via a variable transformer. A number of transducers 

and sensors are installed in the test rig to collect data for 

control and monitoring purposes, including AC currents and 

voltages before and after the converter, and the DC-link 

current and voltage. All signals are interfaced to a data 

acquisition card (NI USB-6229) through signal condition 

modules for measurement data logging. The test rig is 

controlled by a computer running LabVIEW, allowing real 

time operation and measurements. 

PC

Motor

Generator

Motor 

drive

Load

Converter

DAQ

Sensors & 

power 

control

 

Fig. 2. Layout of the wind turbine test rig developed at Lancaster University 

 

Peripheral components such as circuit breakers (CB) and 

switches are also used in the test rig to assist the components 

operation and for safety purposes. Due to safety issues, short 

circuit faults are simulated under a controlled environment 

where a resistance is added between phases to limit the 

current. A switch is used to activate the fault for a given time 

duration during operation of the test rig. Experiments are also 

performed at a low-voltage level with constant wind speeds. 
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IV. RESULTS AND ANALYSIS 

A. Targeted variable selection 

1) SCADA data 

Considering initially the SCADA data, two types of fault 

have been studied: a gearbox fault and a generator-related 

fault. These faults were found by examining the SCADA data 

together with the alarm log. A total of 77 variables were 

obtained after pre-processing, consisting of electrical 

variables, mechanical variables (angular speeds and 

vibrations), and temperatures. Of these, 35 variables were 

chosen to be the threshold for the selection algorithm, based 

on SCREE plot analysis. The target variables, and the 

respective performance measures for both fault-free data and 

data from the faulty turbines are given in Table I. 

TABLE I 

PERFORMANCE MEASURES OF T SELECTION ALGORITHM WITH SCADA DATA 

Type of data 
Original 

data 
Gearbox fault Generator fault 

Target signal  

Gearbox 

bearing 

temperature 

Generator 

winding 

temperature 
Cumulative variance, 

cppv 
100% 97.11% 97.42% 

Average correlation, �̅� 0.3412 0.0677 0.0588 

Percentage entropy, ηe 100% 75.91% 78.09% 

It can be seen that both datasets have a cppv above 97%, 

indicating the retained variables accommodate a high 

percentage of the variance seen in the original dataset. 

Moreover, there are significant reductions in the average 

correlation for both datasets (0.0677 and 0.0588), compared to 

the original data (0.3412). This implies a very low redundancy 

amongst the retained variables. Finally, reasonable percentage 

entropies are also obtained, with approximately 75.91% and 

78.09% of the baseline value respectively. 

In general, parameters such as wind speed, pitch angle, 

environmental conditions (e.g. pressure, wind direction), and 

vibrations are selected. It should be noted that the variables 

selected by the T selection algorithm should share common 

features with the targeting variable in the reduced dimensional 

space; but this does not necessary mean the selected variables 

must be physically close to it. For example, for a gearbox 

fault, the gearbox bearing temperature is used as the targeting 

variable; this does not mean that all variables relating to the 

gearbox should be retained. In fact, if that was the case, the 

retained variables could have very high redundancy. 

2) ANN validation 

This section addresses the problem in which the fault 

feature is present in the retained variables. By adopting a 

NARX (nonlinear autoregressive exogenous) ANN (Artificial 

Neural Network) model, predictions between different input 

variable sets can be compared. Three different input variable 

sets are considered: the original dataset (without any 

reduction), the first q PCs with a cumulative variance greater 

than 0.95 [16], and the retained variables from the T selection 

method. 

The selection of input variables can greatly affect the 

performance of the ANN model. With regards to fault 

detection, it is preferable if the inputs are independent to the 

output variable; thus, anomalies can be identified by 

comparing the predicted and the actual outputs. If the input 

variables share common features with the fault signal 

(targeting variable), this could mean the model will match the 

actual data, even during the period of a fault. Consequently, 

the ANN model is used to further evaluate the retained 

variables from the T selection algorithm, and to demonstrate 
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Fig. 3. Schematic block diagram of the wind turbine test rig 
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whether the fault features of interest are still present in the 

retained variables. A good model match is expected to be 

obtained, especially during the period of the fault. The ANN 

model established using the original dataset is used here as a 

benchmark, with the squared correlation coefficient, R2, and 

the root mean squared error (RMSE) are used to quantify the 

model accuracy. 

As an example, SCADA data with a gearbox-related fault 

are used for evaluation. Fig. 4 shows the actual (red) and 

predicted (blue) gearbox bearing temperature using different 

input datasets. The anomaly occurs at approximately 720 

hours, where the gearbox bearing temperature starts to 

increase to an abnormal level. It can be seen that the 

prediction using all of the data is very close to the actual 

value, with RMSE and R2 of [0.276, 99.5%]. Similarly, in the 

case of the targeted selection data, a high model prediction is 

also obtained [0.397, 99.2%]. As for the PCA reduced data, it 

has the worst performance of [1.793, 82.3%], where there is 

an obvious difference between the actual and predicted 

gearbox bearing temperature. It is worth mentioning that, for 

all cases, the predictions during the fault-free period are very 

similar. The difference between the actual and the predicted 

value becomes clear when the fault begins. Based on these 

results, it is straightforward to conclude that the dataset 

retained by the T selection algorithm has captured the fault 

signatures from the original dataset. 

 
Fig. 4. Actual and predicted gearbox bearing temperatures from the ANN 

model for three input SCADA datasets. Top: original dataset; middle: PCA 
reduced dataset; bottom: dataset obtained from T selection algorithm.  

B. Hoteling’s T2 method 

In this section, SCADA data are used to validate the 

proposed Hoteling’s T2 detection and identification algorithm. 

One of the assumptions made for T2 statistics is that the 

original data should be approximately normally distributed. 

Therefore, an additional pre-processing step is carried out to 

normalize the data by means of a Box-cox transformation. 

𝑥𝑖
(𝜆) = {

𝑥𝑖
𝜆 − 1

𝜆
   if 𝜆 ≠ 0

ln(𝑥𝑖)      if 𝜆 = 0

                                                         (11) 

where x is the original data and λ is the coefficient optimized 

through the maximum likelihood function such that the 

resulting data is approximately normally distributed. The 

distribution of wind speed before and after this transformation 

is shown in Fig. 5.  

 

Fig. 5. Example of histogram of wind speed from SCADA data before (top) 
and after (bottom) the Cox-box transformation 

1) SCADA data with gearbox fault 

The T2 statistic and the threshold of the normal operating 

(top) and the test data with gearbox fault (bottom) are shown 

in Fig. 6. As can be seen in the bottom plot, between sample 

points 1400 to 1450 and 1510 to 1545, the T2 statistic is well 

above the threshold. The SCADA data has a sampling rate of 

10 minutes, which implies the detected anomalies lasted for a 

period of 8 hours. By decomposing the T2 statistic, PC1 has 

the highest contribution index (Fig. 7, top). The loading values 

for PC1 are then shown in the bottom plot of Fig. 7. Any 

loading, which is greater than the threshold value of 0.3, is 

considered significant [17].  

Fig. 7 shows that the active power (Var3), gearbox bearing 

temperature (Var18) and gearbox oil sump temperature 

(Var16) have the top three loading values. Other variables 

with significant loadings are the generator bearing temperature 

(Var15), power factor (Var5) and pitch motor 1 RPM (Var11). 

This result indicates that the root cause of the fault might 

occur at the cooling system of the gearbox; hence, the gearbox 

bearing temperature is also increased. Furthermore, the turbine 

data show a reduced active power output during the faulty 

period, and a warning of a high gearbox temperature is also 

found in the alarm log. The turbine was intentionally 

controlled to operate at a lowered power rating in order to 

avoid damaging the turbine. Evidently, the anomaly is related 

to the gearbox. 

 

Fig. 6. T2 statistic from the SCADA data with a gearbox fault. Top plot: 

normal operation data; bottom plot: data with a gearbox fault 
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Fig. 7. Fault identification of the SCADA data with a gearbox fault. Top plot: 

T2 contribution; bottom plot: PC loadings showing the highest contribution 

2) SCADA data with generator fault 

Considering the SCADA data obtained from the turbine 

with a generator fault, the T2 statistic and the corresponding 

decomposition are shown in Figures 8 and 9 respectively. An 

anomaly is detected between sampling point 1610 and 1630, 

lasting for a period of 3.3 hours.  It was found that the first PC 

is the most significant. Parameters such as the temperature of 

the generator cooling water (Var13), the generator bearing 

temperature (Var15), vibration in the z direction (Var12), and 

the temperature of the main bearing  (Var11) have significant 

loading values above 0.3. The result shows that the anomaly is 

caused by abnormal temperature changes, which are localized 

in the generator. This result corresponds to findings from the 

analysis of data and the alarm log, where a warning of a high 

generator bearing temperature has been flagged. As both the 

main bearing and the generator bearing temperature are high, 

along with increased vibration, the main contributor to this 

anomaly is likely to be wear of the generator bearing. 

Consequently, the proposed method can detect anomalies in 

the dataset and highlight variables contributing to it, thereby 

identifying and locating the fault based on the highest loading 

values corresponding to the most significant PC. 

 
Fig. 8. T2 statistic from the SCADA data with a generator fault. Top plot: 

normal operation data; bottom plot: data with a generator fault 

 
Fig. 9.  Fault identification of the SCADA data with a generator fault. Top 

plot: T2 contribution; bottom plot: loadings showing the highest contribution 

C.  Feature based fault detection 

Because the feature-based detection method requires 

datasets of faults at different severity levels, this section firstly 

considers simulation data with a DC-link capacitor ageing 

fault. The fault is simulated as a loss of capacitance at various 

severities, from the normal operation condition of 7800 μF at a 

reduction step of -5% until -50%. An empirical model has 

been created using these data and variables obtained from the 

T selection algorithm. It was found that there is a clear 

relationship to the rl/u ratio between 𝐋1
𝑟  (the first eigenvalue) 

and 𝐔1,1
𝑟  (the first element of the first eigenvector), as shown 

in Fig. 10 (top). The following nonlinear function has been 

fitted to the data, 

𝑟𝑙/𝑢 =
𝑙1
𝑟

𝑢1,1
𝑟 = 𝑎tanh(𝑏𝑆𝑣 + 𝑐) + 𝑑                                          (12) 

where tanh is the hyperbolic function; the coefficients a, b, c, 

and d are estimated through nonlinear least squares by 

minimizing the residual, found to be 3.234, 0.9597, -5.7903 

and 19.06, respectively. The fitted curve has a R2 of 94.49%, 

indicating an accurate fit. It can be seen that the rl/u has an 

increasing trend when the capacitance losses increase, with the 

largest rise between -15% to -35%.  

To test the empirical model, additional data have been 

obtained with a different fault severity compared to those used 

to train the model. The rl/u ratio for the dataset with an 

unknown fault level is 19.7805. Using the inverse relationship 

function, as described in (13), the estimated severity Sv is 

found to be -26.362%. The actual fault level is -27%, as 

shown in the bottom plot of Fig. 10, an error of 2.4%, 

implying an accurate detection and severity estimation.  

𝑆𝑣 =
arctanh (

𝑟𝑙/𝑢 − 𝑑
𝑎

) − c

𝑏
                                                    (13) 
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Fig. 10. Fault severity plot of simulation data with capacitor ageing fault 
through PCA. Top: plot of actual and fitted model of rl/u ratio; bottom: 

estimation of unknown fault severity from the established model. 

Data obtained from the WT test rig with a phase-to-phase 

short circuit fault have been used to evaluate further the 

feature-based detection and severity estimation algorithm. Fig. 

11 shows the root mean square (rms) value of the current (top) 

and voltage (bottom) under different fault severities emulated 

by short circuit resistance values ranging from no-fault 

(1MΩ), to 2000 Ω, 351 Ω, 135 Ω, and 27 Ω respectively. 

Results show that, although performed with a low power 

rating, the experiments still reflect the transient behavior of 

the fault. Thus, the data have been considered to be adequate 

for evaluating the proposed detection method.  

An empirical model has been obtained following the PCA 

of the measured line-voltages and phase-currents. The red dots 

in the top plot of Fig. 12 show the rl/u ratio of 𝐋1
𝑟  and 𝐔2,2

𝑟  (the 

second element of the second eigenvector) from measurements 

at different fault severities Sv. The relationship function fitted 

is, 

𝑟𝑙/𝑢 =
𝑙1
𝑟

𝑢2,2
𝑟 = 𝑎 × 𝑒

𝑏
𝑆𝑣                                                                   (14) 

where the coefficients a and b are 0.2857 and 8.685, 

respectively. The fitted curve has an R2 of 97.41%. It can be 

seen that the rl/u ratio increases exponentially when the fault 

resistance decreases, implying a more severe fault.  

To test the model, additional data with an unknown fault 

severity is used, and the rl/u ratio is 10.8789. Using the inverse 

relationship function, as given in (15), the estimated severity 

Sv is found to be 2.3863, as shown in the bottom of Fig 12. 

𝑆𝑣 =  𝑏 × 𝑙𝑛 (
𝑟𝑙/𝑢 

𝑎
 )
−1

                                                               (15) 

This corresponds to a fault resistance of 243.4Ω with an error 

of only 0.2%, compared to the actual value of 243Ω. The 

results show that the fault can be identified and its severity can 

be estimated accurately.  

 
Fig. 11. Measured rms voltages and currents under the phase-to-phase fault 

with different fault severities 

. 

Fig. 12. Fault severity plot of the test rig data with phase-to-phase fault 
through PCA. Top: plot of actual and fitted model of rl/u ratio; bottom: 

estimation of unknown fault severity from the established model 

V. CONCLUSION 

In this paper, a PCA-based variable selection algorithm 

targeting specific fault signals is proposed for condition 

monitoring of wind turbines. Three performance measures 

(cumulative percentage variance, average correlation, and 

percentage entropy) have been employed to evaluate different 

aspects of the algorithm regarding variable selection. SCADA 

data exhibiting different types of fault have been used to 

evaluate the T selection algorithm. A dimension reduction of 

45.5% is achieved for SCADA data. The retained variables 

also have a high cppv and percentage entropy, and a very low 

average correlation coefficient. This implies that the proposed 

algorithm can identify a set of variables containing sufficient 

information and minimum inter-correlation to diagnose the 

fault signals.  

By adopting an ANN model, predictions between different 

input variable sets are compared. Results show that the model 

with these retained variables has a very high prediction 

accuracy. This has been attributed to the removal of irrelevant 

signals and information redundancy during the selection 

process, minimizing overfitting of the model.  

Using the retained variables, two anomaly detection 

methods have been proposed: the first is capable of identifying 

anomalies, and the second can estimate the severity of the 

fault through an empirical model. Both methods have been 

tested with simulation data, SCADA data, and experimental 

data, each with different types of fault. Results have shown 

that the algorithms allow accurate detection, identification, 

and estimation of the severity of the faults. Moreover, the 
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proposed methods require minimal human interaction once the 

model is built. Consequently, the method possesses great 

potential in developing an autonomous condition monitoring 

system. In future studies, the development of the algorithms in 

real-time for online monitoring purposes will be investigated, 

and selection methods based on nonlinear algorithms will be 

analyzed. 
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