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|dentification of Evolving Fuzzy Rule-Based Models

Plamen AngelovMember, IEEE, and Richard Buswell

Abstract—An approach to identification of evolving fuzzy —application to practical problems where the control object, or
rule-based (eR) models is proposed in this paper. eR modelsthe environment, is changing significantly [9], [19].

implement a method for the noniterative update of both the A typical tendency until early 1990s was to rely on existing
rule-base structure and parameters by incrementalunsupervised

learning. The rule-base evolves by adding more informative rules eXpe_rt knowledge and to just tune fu_zzy sets parameters using
than those that previously formed the model. In addition, existing gradient-based methods or genetic algorithms (GAs) [27].
rules can be replaced with new rules based on ranking using the During the late 1990s, so-calledata-drivenor rule/knowl-
informative potential of the data. In this way, the rule-base struc- edge extractiormethods were intensively developed [5], [8],

ture is inherited and updated when new informative data become _ ; ;
available, rather than being completely retrained. The adaptive [101-{12], [16]. The attempt was to identify the model structure

nature of these evolving rule-based models, in combination with and parameters basgdmarily on data _In the approach, th_e
the highly transparent and compact form of fuzzy rules, makes €xpert knowledge plays a nonessential role. The techniques
them a promising candidate for modeling and control of complex used are mainly clustering, linear least squares and/or non-

processes, competitive to neural networks. The approach has|inear optimization [5], [8], [10], [16] for fine-tuning of both
been tested on a benchmark problem and on an air-conditioning antecedent and consequent parts.

component modeling application using data from an installation Vi tiv. in fact i llel with thi K f |
serving a real building. The results illustrate the viability and ery recently, infact in paraliel wi IS WOrK, Tuzzy neura

efficiency of the approach. The proposed concept, however, hasN€tworks [18] withevolvingstructure have been developed. A
significantly wider implications in a number of fields, including so-called “self-constructing fuzzy-neural network controller”
adaptive nonlinear control, fault detection and diagnostics, [18] is primarily oriented to control applications. It uses dif-
performance analysis, forecasting, knowledge extraction, robotics, ferent mechanisms of rules/neurons update based on the error
and behavior modeling. . . . .
in previous steps [18], while evolving fuzzy rule-based (eR)
Index Terms—evolving fuzzy rule-based (eR) models, fuzzy models [9] use the informative potential of the new data sample
models identification, rule-base adaptation. as a trigger to update the rule-base. The latest mechanism
ensures greater generality of the structural changes (that the
|. INTRODUCTION rules are able to describe a number of data samples) from
the moment of their initialization. In addition, the mechanism
€of rule-base modification (replacement of a less informative
e with a more informative one) is considered in [9] ensures

ONTROL theory (including identification and adaptiv

systems) has matured and is now a well-developed
structured field, its linear part in particular [2]. Real-life apy gradual change of the rule-base structure and inheritance
plications, however, often do not comply with the rigorous ag;

i q hich the basi lusi ¢ this th h the structural information. The mechanism for rule-base
sumptions underwhich the basic conclusions ot this theory aé/t‘?ﬁfture update used in [18] tolerates the first different data

been made. First principle models, which are based on mass an ples rather than the most informative ones. It therefore

energy balances, can be difficult or even impossible to der'K’?akes more changes to the structure and can potentially form

[3]. Many factors and time variations that influence the ProC€s§ies around outlays. It is not possible for an outlay to become
are often ignored or their effects are considered a disturbange

hich itin locall licabl dels. A significant $rule center using eR model method. In [18], the learning
which canresult in locally applicable models. A signilicant pol opeme (gradient-based error back propagation) is iterative and
Bgtentially biased to the local minimums. The consequences

therefore can not be used in such models [19]. (output parameters) are singletons, which is simplified special
Fuzzy rule-based (FRB) models successfully address thesetgs—e of the linear models used in [9]

sues, because of their inherent flexibility and transparency. Re- R models evolve their structure. A new rule is generated if
f:ently, they h_ave been succ_essfull_y used to_effectlvely blend @re is significant new information present in the data collected.
interpolate different operating regimes, which could be local Y the new rule is very close to an existing one the later is re-
linearized [4]. The main obstacle in the design of FRB mode

. . . ) aced. This procedure i®oniterativeand is based on the de-
is the proper, adequate and expedient generation of their st %

: : o riptive potential of each data sample representing a measure
ture (the rule base, membership functions and linguistic labe the accumulated spatial proximity of the data. The appear-
and parameters. Another stumbling block, which is still unreg

ved. is that f del t adaptive This hinders thei ce of a new rule indicates a region of the data space that has
solved, 1s that fuzzy models anet adaptive This hinders eir ;a6 covered by the initial training data. This could be a new

characteristic of the process or reaction to a new disturbance.
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The proposed approach distinguishes whether a new data this form, it represents multiple-input—single-output
point is an outlay by judging its informative potential. A highsystem. The degree of firing of each rule;) is determined
potential indicates that there are a number of similar data abpg the Gaussian law, which ensures the greatest possible
the point is not an outlay. If the informative potential of thgeneralization
new data sample is high enough and it is not too close to an
existing rule, it is added to the rule base without replacement i = e_a”“”j_’”?”z, 1i=1,2,...,R; (2)
of an old rule. It is important to note that learning could start
withouta priori information and only a few data samples. Thigvhere

interesting feature makes the approach potentially very usefulz™ center of a rule

in autonomous systems and robotics as a tool for accumulationr = 4/7* s a positive constant, which defines the zone
of knowledge. Published approaches for structure adaptation, of influence of the rule. Too great a valueof
like reinforcement learnind21] and pruning [22], adapt or leads to averaging, too small a value, to over-
minimize a given,fixed structure. The proposed approach fitting. As a rule of thumb, it is recommended
considers an evolving model structure throtigé inheritance, to use0.3|x™** — ™| and0.5|z™>* — x|
modification andupgradeof the rule base. to ensure smooth overlapping.

Systems that are abte learnthe behavior of the object of The model output is calculated by weighted averaging of indi-
modeling and control could be considered as a basis for a thitigual rules’ contribution
level of control [9]. The first level comprises local controllers R
and the second, adaptive controllers, including supervisory y = ZyiA‘ 3)
controllers in hierarchical systems. The distinctive element =
is the ability to learn (to change and enrich) their structure.
Such systems could be namédelligent or smart adaptive where

systems [9]. A; € RTP=TD  diagonal matrix with its diagonal ele-
Real-timeonlineapplications, however, are hampered by the ments representing the strength of itte

need to recursive calculation of the model parameters. A com- rule (\; = ui/(Zf:l 15));

putationally effective approach, which avoids the need of mem-¥: output of theith local (linear) submodel.

orizing large matrices with the data or using of moving tim&he problem of fuzzy model identification is treated in more
windows as in [9] is treated in a future paper. Considerations@gtail in [3], [13], and [16]. Generally, the identification of a TS
the present paper are limited to the usalbfwvailable past data. model could be divided into the following two subtasks:

This paper is organized as follows. Fuzzy model identifica- i) identification of the antecedent part of the model (1),
tion is considered in Section Il. Identification of eR models with which consists of determination of the center$;¢ =
recursive calculation of the informative potential is presented  1,2,... R) and spreads-§ of the membership functions;
in Section lll. In separate subsections it is tredted/andwhy ii) identification of the parameters af; and b,
the procedure works and the essential stages are definedandde- : = 1,2,...,R, 5 = 1,2,...,n) of the consequent
scribed. Section IV represents experimental results considering  part.

a benchmark problem of Mackey—-Glass time-series predithe first subtask could be solved tubtractive clustering
tion and an air-conditioning engineering component modelingg], which surpasses other methods, like fuzzy C-means [17],
problem, based on data from a real installation. Concludimgystafson—Kessel [23], fuzzy k-NN [24], etc. because of its

remarks are given in Section V. simplicity and efficiency. This clustering algorithm, which is
an improved version of the originahountain clustering25],
Il. Fuzzy MODEL IDENTIFICATION is based on the notion of the informative potential [16] of a data

point (z;; wherez is the augmented data vectef = [z%; ],

Fuzzy model identification has its roots in the pio—z1 _ 19 TD; TD denotes number of training data sam-
neering papers of Takagi and Sugeno [13] and Pedrycz [1 ]és). This potential depends on the spatial proximity between

Takagi—Sugeno (TS) fuzzy models have found much wider. : . )
o . . is point andall other data points. Instead of the Gaussian type
application than the relational fuzzy model [14], due mainly t Unction used in [16] and [25] we use the Cauchy form

the computational and interpretation efficiency they have

[

R, . IF (2145 Ry1) ... AND (z, is Nin) THEN b=—pgr > =L3 1D )
(y7 =Qa;1X1 ++a7nxn+b7)a Z: 1a2aam) 1+JZ=:1 IZ:I (d“)

where whered!; = »{ — 2}, denotes projection of the distance between
R ith fuzzy rule; two data points4} andz}) on the axisz', I = 1,2,...n + 1.
R number of fuzzy rules; This form of the potential is also monotonic and inversely
z input vectorz = [z1,2,...,za]"; proportional to the distance as is the exponential form. In addi-
Ry antecedent fuzzy sets,= 1,2, ...,n; tion, however, and as it will be demonstrated in the next section,
Ui output of theith rule; this form of potential it also makes possilserursivecalcula-

a;; andb;  parameters of the consequence. tion.
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In order to solve the second subtask, to estimate the parame- Stage 1: Initialization of the rule-base structure (antecedent
ters of the consequences, first let represent the local submodels part of the rules).

in vector form forall the training data Stage 2: Estimation of the parameters of the consequent
. part by linear least squares.
Yi =TT, (5) Stage 3: Prediction of the output by the eR model.
Stage 4: Reading of the next data sample at the next time
where step.
w; € REwHD vector of parameters of the consequent  gtage 5Recursivesalculation of the potential of each new
part of the:th rule of the TS model; data sample to influence tiséructureof the rule-base.
ze € RFP*(+1) - matrix formed by addition of a uni- Stage 6Recursivaup-date of the potentials of old centers
tary column to the vectog in order taking into account the influence of tewdata sample.
to accommodate the role of the free  gtage 7: Thevewdata sample competes with thgisting
coefficientsb. rules’ centers. Decision tmodifyor innovatethe rule-base

It is interesting to note that for small increments of the inputs gty ctureis taken.
(Az) and the outputdy), i.e., assumingmoothmappingy(zx)
the parameters; resembles the Jacobian ¢fx) obtained by
linearization ofy(x) around certain data pointt, *) [29].

Combining (5) with (3) in vector form faall the training data, ] )
we have Stage 1.The rule-base could contain one single rule only

based, for example, on the first fewir{;) data samples. Then

The execution of the algorithm continues with Stage 2.

A. Proposed Algorithm: How it Works

R
y= ZWﬂ?ZAi (6) k=0, Ini > 1; R:= 1,27 .= 2%, Pf =1 (8)
i=1

where

The vector of consequence parameters { = 1,2,...,R) I index of the data-

could be found by linear least squares [2] applied per rule [9],

[30] Ini number of data available initially;
7 first rule center.
=510 @) In principle, the rule-base could be initialized by existing expert
knowledge. Generally, however, it could be based on the iden-
where tification approaches, described in the previous section. In this
S = 2T Az, case
Q =zl Ay . )
or the recursive version, called the Kalman filter [2], [13], [16] R:=R"™, Pli=Li=12.. R (82)
‘ ‘ o R whereR™ denotes the initial number of rules.
Thy1 =75 + Ch1&gn <y{+1 - Z T (&g ) Stage 2 Parameters of the consequent part are determined by
i=1 least squares technique [2].
‘ . CiEL, (Si 1)T i a) For the case when a new rule is added or a rule is replaced
Ci. ., =Ci— Lokt sk=1,2,..., 7D — 1; i .
+1 k T . IR 3 (see Stage 73ll previous data are used and parameters are cal
1+ (8«+1) Cilit culated by (7). This requires the use of matricesgndy) with
mo =0; Co = QU (7a) increasing dimensions, which hampers direct real-time applica-
tion in online mode. This problem could be overcome by in-
where — , _ . troduction of a time moving window [9] or by using recursive
¢ = Az, vvgghted inputs matrix for théth rule; least squares. It should also be noted that only a small number
& big number; of data (usually about 5% as the experimental results show) has
! identity matrix; high enough potential to modify the rule base and so changes to
C covariance matrix.

. the rule base do not occur often.
It should be noted that (7) could lead to numerical problems if b) The structure of the model is not changed. Then, parame-

matrix S is singular or closg to singglazfsi' is positive definite ters of the consequent are determined recursively by [9]
because of (2)—(3), but for distant points it could have very small

yalues. An accept_ed way to overcome such numerical problems 7r5+1 _ [Sf I 655“*1] -1 (Qf " 6Qf§‘+1)
is to use pseudo-inversion [16], [28]. . A
1=1,2,... . R k=Int,Ini+1,.... 7D -1 (9)
lll. I DENTIFICATION OF ER MODELS where the first equation shown at the bottom of the next page
In this paper, a procedure for data-driven identification of eRolds.

models is considered. This allowsrementalearning of both It should be noted, that the matrix, which is invertet} ¢+
structure and parameters of tip@dually evolvingnodel as op- 655“*1) has much smaller dimensiofn(+1)*(n+1)) in respect
posed to thdixed structure models considered in the previou® the dimension aof. andy asn <« (Ini+ k). Large portion of
section. It includes the following stages. information is passed in compressed form trough the recursive
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update of the co-variation matricésand() from the previous At Stage 6 the potentials of the centers of the existing clus-
step’s calculation speeding up the algorithm execution. ters/rules areecursivelyupdated by an amount governed by the
At Stage 3 the output for the next time step ¢+ 1) is esti- spatial proximity between the new data point and each of them:

mated using (6) as [P?»_]Ini—l—k—l

s Initk _
ATnitk+1 S itk ( Initk\T 4 Tnitk ] N | L (pryInii1 n+l p ;  (13)
G =y [ () AL (10) +[27] % (Hrusein)
i—1

ikl N _ where[P;]"** denotes the potential of théh center for the

whereg/"+k+1 is the estimation (prognosis) of the output chth data.
the eR model. _ The use of already calculated potentials of clusters, leads to

At Stage 4 the next data sample is collected. . significant time and calculation savings because these values are

At Stage 5 the potential of each new data sampler@s .o\ jated from large matricegi{i -+ & will usually be a large
cursively calculated. Transforming (4) the potential could bg mper). At the same time, they have accumulated information
expressed for the firdtni + & data available as regarding the spatial proximity @fll previous data.
1 Stage 7compares the potential of theew data sample to
Ttk Tl ' 5 ' ' 5 the potential of existing centers and takes decision whether to
1+ > > {(7}7”“) — szlm_i_kzg + (7;) } modifyor innovatethe rule-base.

i=1 j=1 (11) IF the potential of the new data point is higher than certain

. . —/ _thresholde AND the new data point islose to an old center
or as in shown in (11a) at the bottom of the page. Subst|tut|n?l4) < P

Plni—l—k —

angyy 2 sy ; argminft | [|ZI7ithk — ¥ P (zImitk
a=y (ern,i+k) R LR HT - mx(R e (7)*) <1 (14)
j=1 j=1 Ari=1 “3
Initk—lntl 5, Initk—1 where
Critk = >, Y (7f ) Bl = > A pAmitk new data sample;
=l =l i=1 zF center of thetth rule;
: . _ P(z™+%) potential of the new data;
the recursive expression follows: P(=) potential of theith rule.
plnith 1 " THEN the new data pointz/"*t¥) replacesthis old center
1+ (Ini+k—1Da—2b+ crpivk (12) itk .

z = ZImitk, P = prmitk forz; = arg 1117111 Hz z;
Analyzing, it is easy to see tha&' (j = 1,2,...,n + 1) and - (15)
¢ could be memorized from calculations of the previous stéfhis mechanism (Fig. 1) is calledodificationof the rule base
(Int + k — 1), while a depends on the new data point only. [9].

T(Tnitk+ DI A IR+ k18 (Tnidkt 1)1 " T(Initkd DI A Ini+k+1 T (Inith4Dn  T(Inith4+1)1 A Initk+1
ot T(Inith+1)2 A itk +1Z(Tnitk+1)1 *°° T(Initk+1) 2 Ini+k+1T (Inith+Dn  T(Iniph+1)2 A Initk+1
SR+ —
?
T(Init kA Dn A Tnit k-1 T (Initk+ 1)1 T(Initk+1)n A nitk-+1T(Initk+1)n  L(Initk+L)n A Tnitk-+1
ALnitk+1%(Tnitk41)1 a ALnitk+12(Tnitk+1)n Alnith+1
T (Tridk+1)1 A\Tnitk+1YIni+k+1
oot T (Inidk+1)2 A Initk+1YInitk+1
SQFTT =
?
37(1m+k+1)n)\1m+k+1ylm‘+k+1
ATnid k1Y Tri+h41
plnitk _ 1

n+1 ; 2 n+1 ; Ini+k—1 ; n+1 ; 2 Initk—1n+1 ; 2 n+l ; 2"
1+ (Ini+k) 3 (Zlni-l—k) =23 gk 2 AT L (Zlni-l—k) + X X (Zz) + . (Zlni-l—k)
=1 j=1 =1 j=1 =1 j=1 1
(11a)
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ELSE IF the potential of the new data point is higher than
certain threshola@
THEN it is accepted as a new rule’s center

Rule Potential

R:= R+ 1z} = 2I""**  pj = plnith (16) X .
=

———
oid rulel 1

This mechanism is termed rule-bas®ovation [9]. The
preservationof R — 1 rules andgradual upgrade by one rule
only instead of completely rebuilding the model when signifi- bin or archive
cant new information is available providesiaheritanceof the . _
useful information contained in rule-base structure. It shoufd: 1- Rule-base innovation.
be noted that outlying data are automatically rejected because
their potential is significantly lower due to their distance fron

eIn

the other data.
The algorithm continues with Step 2 until="7'D — Ini.
In this paper, as in [9] and [16], the values of the thresholc

are determined as KOk o
)
£ = 0 15* IPEI‘X Pz*7 €= 05* IPEIX -Pz* (17) Determine ™ from (7) or (9) 2]
The upper threshold ensures that data samples with potentic l
above the half of the best are accepted only. Its value influenc e
the number of rules present in the final model. The value Fredicty  from(10 ©
50% of the maximal potential showed a good balance betwe -
the model complexity and precision [9], [16] on a numbe v
of examples. The lower one definesgeay zone [16] where ekl 9
the data are checked on the proximity to the existing cente Read = it
It influences the number of replacements of centers, whi l Export y : i,
. . Jni+k "-___l’ ...,R;k
will take place. Alternatively, both thresholds could be equ Caleutate P from (12) © l e
to the meanpotential of all rules l
1 R |Update [P’ 1" by (13) ® [
= *
§—E—E2Pi. (18) I
=1

A graphical representation of the algorithm that realizes tt cxpizeaNDas @
proposed approach is demonstrated in Fig. 2. All steps ¢ v
noniterative Using the approach, a transparent compact ai 2, =2 P = P 15)
accurate model can be found by rule-base evolution based
experimental data with the simultaneous estimation of the fuz
set parameters. It is interesting to note, that the upgrade r e
with new rules does not lead to an excessively large rule ba a6
The reason for this is that the proximity of a candidate cent

to already existing centers is controlled by a hard restriction,
differing from [18] that employs pruning. Fig. 2. Flow chart of the proposed identification algorithm.

B. Proposed Algorithm: Why it Works On this basis, the mechanism fale-base innovatiorand pa-
Initially, the algorithm, as with the other approaches, usesametersioniterativeupdate is triggered when a data sample is
fixed set of rules as given in Section Il. This is illustrated ifiound to represent some new feature, to the extent that estab-

Fig. 3 using the simplest two-dimensional case. The data avéithes a new rule in the model.

able initially are depicted with stars. They are described by five In Fig. 3, the potential of the data sample depicted by a bold
rulesR;—R;5, and the zone of influence of each rule is depictetk” symbol is an outlay and its potential is not high enough to
by solid line circles in Fig. 3. Subsequently, new data samplestablish it as a new rule. The potential of one of the other data
are collected. They are depicted in Fig. 3 by “x” and “0” symsamples depicted by “’x"symbols, however, lays between the
bols. Each time a new data sample becomes available, its infibwesholds (17) and hence the rutg is replaced by a new rule
mative potential (a reciprocal form of the Euclidean distance 1. Similarly, one of data samples depicted by “0” symbol has
all already available data) is calculategtursivelyby (12). The high enough potential and is not too close to existing rules (14)
rules centers potentials are also updataulirsivelyusing (13). and hence a new rulg) is introduced.
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A Inputs=[z(¢t — 18); z(¢ — 12);2(¢t — 6); z(¢)].

The data range af18 < ¢ < 1117 has also been adopted,

doa‘::zr;;lfv“v’im Replacement/ with the first 500 samples forming the training data set and the

low potential (’:}";’ﬁ‘fj“"" second 500 forming the validation data set. The nondimensional
' ) error index (NDEI), used in [5], [16], and [20] has been calcu-

jr— lated to compare model performance.

The values of the thresholds used are given in (17). Since the
number of data samples is low, there is no practical need of intro-
ducing a moving window. The radii parameter-£ 0.375) re-
mains a user-defined value that controls the generalization prop-
erty and, respectively, the number of rules present in the model.
The number of rules generated is also affected by the order of the
new data and the data history. This is due to the relative nature of
the thresholds, which depends on the specific data available at
Fig. 3. Rule-base evolution for a two-dimensional case. certain moment. Therefore, the results generated over the same

training data set, but separated on initial and evolved parts are

In this way, the rule-base structure gsadually changed different.

(one rule is replaced or a new one is added), while ensuringTo generate comparable results to those already published,
theinheritanceof the vast majority of the rules (all except onghe first 500 data points were used to generate a model using
are preserved till the next change). Effectively, this change #fe new approach. Part of the data was used to establish
the rule-base structure is equivalent to a gradual innovationtBg initial model and the eR algorithm was left to run over
the data space partitioning. Constant updates and checkdhéf remaining data. Fig. 4 shows the model training for one
the potentia| of the new data Samp|eS, (12)_(17),r‘a¢ersive’ of the trials, USing 200 initial Samples and 300 in eVOIVing
noniterativeand, hence, very inexpensive computationally. mode. The top plot shows the target series and details the

The new rule base is better suited to the changed data Mple-wise appearance of the rules and rule changes. The
tern, because it has both an up-dated structure (data-space pa@ffits highlighted with a circle show the initial model rule
tioning) and parameters, while it inherits significant part of theenters. The points marked with a square show new rules. The
old structure. It can be seen from Fig. 3 that in this illustrati@0ints marked by an asterisk show the rule base changes and
example, the new model (bold dash—dotted line) represents fig numbers represent the sample number of the rule that has
changed data pattern better then the old model (solid line), wHiEEN Superceded by the new rule. The bottom plot gives an
preserving the character of the model. The replacement of rifidication of the intensity of the rule base innovation over the
R by R, could be, for example, due to a saturationy6f), training period. This rule-base innovation process has been

which could be difficult to be registered by the data availabfé”ven byrecursivelycalculated and updated potentials of the
initially (data samples denoted by 'x) new data (samples from 318 to 617 from the Mackey—Glass

series) illustrated in Fig. 5.
Atthe end of the training process, the resultant model was ap-
plied to the validation data set, which was the second set of 500
The new algorithm has been tested on the Mackey—-Glagsseen data (corresponding to the time series sample numbers
chaotic time series prediction and the results compared to thégsn 618 to 1117). The NDEI was calculated for the model pre-
generated by existing techniques, published in [5], [16], afictions of the validation data and the results given in Table I.
[20]. A further component modeling example is demonstratethe results show that the new approach can yield a better model
using data from air-conditioning equipment installed to servetgan the techniques which consideadstructure, improving
real building. the validation data model prediction NDEI significantly. The
same procedure has been applied to trials with only 50 and
10 data initial samples and the rest (450 and 490, respectively)
The chaotic time series is generated from the Mackey—Glasslving mode. The initially generated model using subtractive

R,

A 4

X1

IV. EXPERIMENTAL RESULTS

A. Mackey—Glass Chaotic Time Series Prediction

differential delay equation defined by [16], [20] clustering [16] based on 500 data samples was also used to pre-
0.22(t — 7) dict the validation data set. The higher NDEI compared to that
z(t) = '? —0.1(t). after theincrementallearning is evidence of the improvement
1+219(t —7) of the model in terms of the identification and description of the

The problem is to use past valuesiofo predict some future Process. _ _
value ofz. The same example as published in [5], [16], and [20] The techniques listed in Table | use the 500 sample and the
has been adopted here to allow a comparison with the publistigiuition to all of them require iteration, with the exception of
results. Accordinglyz(0) = 1.2, 7 = 17 and the value of the Subtractive clustering [16] and the linear prediction algorithm
signal six steps aheat(t + 6) is predicted based on the valued20]- It is obvious by inspection of the time-series curve shown

of the signal at the current moment, six, 12 and 18 steps back the top plot of Fig. 4, that the character of the data is quite
well defined from 500 data samples, but much less so with just

Output=[z(t + 6)] 10 or 50 data samples. This illustrates the ability of the pro-
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Initially Gengyated Rules | Rule Base Evolution ' ' ' TABLE |
12 Cyeaf COMPARISONWITH PUBLISHED RESULTS
1
- Method used Iterative? Training Data (TD) | NDEI in validation
~ 0.8
eR model (this paper) No 500 (Ini=200+300) 0.004
0.6
¢ Y : - No 500 (Ini=50+450) 0.011
04 [Target Signal - s i . . N . i
0 50 100 150 200 250 300 350 400 450 500 - No 500 (Ini=10+490) 0.012
Sample Number (-
ample Number (-) Subtractive clustering [16] No 500 0,014
i I I Initial Mode) ' Rule base Evolution R ANFIS (5] Yes 500 0.007
30 . ~" e
251 R ! [REEAE J Back-propagation [20] Yes 500 0.020
: Lo ’
- 20pNumber of Rules in Model ST e 7 Cascaded-correlation neural Yes 500 0.060
~ 15k : R - network [20}
1 0 L R o i
: Auto-regression [5] Yes 500 0.190
Number of Rule Base | i
e e RS T , . , , , - 6" order polynomial [20] Yes 500 0.040
0 50 100 150 200 250 300 350 400 450 500
Sample Number (-) Linear predictive {20} No 2000 0.550

Fig. 4. Learning with 206 300 training data.
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) L 1 s L 1
200 250 300 350 400 450 500
Sample Number (-)
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Modet Evolution from Sample 318 from the Mackey-Glass series (=)

Fig. 6. Comparison of the Mackey—Glass time series training and validation

) . . data (samples 118 to 1117).
Fig. 5. Potential values in respect to the thresholds.

posed approach to evolve the model starting form a very limit& Air-Conditioning Heat Exchanger Modeling

number of training data samples; a property extremely impor-Air-conditioning systems generate comfortable indoor envi-
tant in robotics and the design of autonomous systems. ronments through the control of temperature and humidity. An
One comment on the Mackey—Glass time-series as a benichportant system component in the control of these properties
mark problem is that it has a distinctive periodic characteristiis the cooling coil, a water-to-air heat exchanger. Fig. 7 shows a
demonstrated by the top plot of Fig. 6. This shows the targigpical configuration. Air at various temperatures and humidi-
series used in training (samples 118 to 617) overlaid with tlies is drawn over the coil. A desired air condition at the outlet
target series used in validation (samples 618 to 1117). Tisespecified and the mass flow rate of chilled water, at a nomi-
bottom plot of the same figure shows the difference betweeally fixed temperature, is varied to achieve this condition. The
them. It is unlikely that a model having low error on trainingperating point of the coil is largely dependent on the ambient
data will perform poorly on validation data that are almost th@veather) conditions.
same. The problem is a well-known benchmark used in [5], Fault detection and diagnosis in air-conditioning systems,
[16], and [20], therefore, the new approach has been testedomoling coils in particular, has been an area of great interest
it in order to compare performance with published approach&s.recent years [25]. Most schemes rely on some model of the
The advantages of the eR modeling, however, become mommponent or system. The problem is to generate a model that
obvious when the character of the data changes. This has beam precisely predict the current system operating condition
shown when the initial model has been built using only from the measured system inputs, while being robust at han-
small number of training data. This characteristic is furtheling unmeasured disturbances. In fact, one of the challenges in
demonstrated by the following example. the modeling of real air-conditioning systems is how to handle
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Cooling Coil

Control Signal
Chilled Water Temperature
it at a Partical . .
?u a; ,: : :eu::dar Air at Required Cooling Coil Temperature
enp! it . R and Control |———— > Difference
Humidity onto the Condition Volumetric Flow Rate of Air .
. Valve Model Across Coil
Coil Direction of Air Flow
Moisture Content of Air

Variable Water Mass Flow

Y A Rateinto Coil at a Nominally
Constant Temperature
Control Signal  —>0 < Fig. 8. The cooling coils model input and output relationship.
Water at a Fixed Mass Flow
Rate
Control Valve )\
o 0T T — T ; —
To and from Chilled Water Source 5 = Training Data, : Summer Data : Spring Data
£2 10f f
ag

L : I .
0 200 400 600 800 1000 1200 1400
T T T T - T T T

Fig. 7. Typical configuration of air-conditioning cooling coils.

Flow Rate
(m%s)

the lack of experimental control that exists in typical measure o 200 wo w0 0 o0 1000 1400
data and the unexpected relationships between system corr |
nents [26]. FRB models are a promising candidate for modelit
these types of complex relationships.

=)

isture Content Temperature  Control Signal
(°c)
2 ;
I

1000 12‘00 1400

Air-conditioning systems operating conditions are primaril ' ' '
dependent on seasonal variation in the ambient conditiot

This means that it is often impractical to gather a set ¢ 5 200 %0 00 200 o0 20 1400

fully representative data to train a globally applicable fuzz
model. Using data from one season only results in a moc
that is severely limited in its applicability. Such an approac 2 o 200 200 800 30 1000 1200 1400
would require repeated regeneration of the whole model wh_ .. Samples () '

the data pattern changes. The evolving rule-based modeling _ . o
approach is demonstrated here to be able preserving the ddve® The experimental data from a system serving a real building.
rules to autonomously restructure the model rule base so that

the model can describe the new regions in the input data spacehe initial model was generated using data from different sea-
and hence, generate precise predictions. sons. This was then used to predict the summer and spring op-

1) The Problem:The task is to model the characteristic temeration. The eR model generates predictions at each new data
perature difference across a cooling coil based on the followiggimple learning the information in the new data. The rule base
measurements, depicted in Fig. 8: was up-dated and the parameters re-estimated, as and when new
information was detected in the data.

2) Results: Fig. 10 compares the performance of the initial
model with the eR model, based on the data shown in Fig. 9.

It should be noted that the scale of theaxis of the top plot
is 40 times that of the bottom plot. The initial model was gen-

The control signal positions the valve and controls the maggated using subtractive clustering on the initial 437 samples.
flow rate of chilled water through the coil. The signal can bghe eR model uses the same parameter as in the above example
Used to infel’ the water mass ﬂOW rate in the m0de|. In faCt, US|r(|&d”, values of thresholds. As the different Operating seasons
control signal as an input variable results in a model that charage presented to the initial model, the predictions are very poor,
tel’izes the C0i| and COI’]tI’Ol VaIVe. A” measurements and S|gnﬁ|@h“ght|ng the Weakness techniques V\mk'ed structure have
are time continuous and contain transients. The transients gf@rms of extrapolation. One way this could be resolved is by
not considered significant in the context of this paper, so the¥generating the whole model after data has been collected from
have been neglected to simplify the example. the new operating regions.

The data is from a full-scale air-conditioning test facility. The lower plot of Fig. 10 demonstrates that the model pre-
Data from three months (May, July, and August) over two sediction errors using the eR approach are reduced significantly.
sons (summer and spring) is shown in Fig. 9. The top plot showke relatively large errors apparent in the training data samples
the output data and the lower plots, the input data. The initiate because the transients present in the real data have been ne-
section of data was used to train the initial model. The data wglected in the models. At sample number 438 the error is due to
generated for a July day by exciting the valve control signpbor extrapolation which is rectified with the introduction of a
over the whole range of operation. The data from the sumnmew rule at sample number 496. This rule is labeled “43” in
and spring days were collected with the system operating undiég. 11, which details the rule base innovation with respect to
normal conditions on days in August and May, respectively. the system output. The numbers adjacent each asterisk in the

(kakg,,)
(=3
=4

- flow rate of the air entering the coil;

* moisture content of the air entering the coil;
 temperature of the chilled water;

« control signal to the valve.
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Fig.11. Prediction errors. The top and bottom plots show the initial model aiu
the evolving model performance, respectively. . . . .
Fig. 13. Regions of data input space and rule center location of the eR model.

top plot refers the sample number whose coordinates formed FQ jons. Fig. 13 shows the same plot after the structure evolu-
rule that has been superseded by the coordinates of the cur, = t

) o .tion. The rules have been changed clearly in favor of the new
data point. The bottom plot shows the sample-wise mformatupggions resulting in significantly better prediction.
about the rule base innovation. !

- . The results illustrates that in modeling of real objects val-
The example demonstrates that it is likely that there will bI 9 )

dditional h b h . ldation on a limited range of data is not sufficient to guar-
o e ot v oo upiee dlobal apolcabilty because behavior of he ot o
sSfficientdata tofroma néw rule are observed. Slowly changi { env_ironment could change significa_ntly. Unseep regions of
model environments are much less likely to c;':luse the same erating space that force extrapolation, resuit in unreliable
. odel predictions. The new eR method has been demonstrated
fe_cts. The approa_ch, however, is demonstrated to be able to CRP&vercome this significant problem.
with such dramatic changes.

The ability of the eR model to move into the new data regions
is exemplified in Figs. 12 and 13. Fig. 12 depicts the regions
of the input data space by plotting each one as function of theldentification of evolving fuzzy rule-based models is studied
system output value. The three seasons are highlighted in dif-the paper. It is computationally effective, as it does not
ferent shades of gray and the centers of the rules are in blaquire retraining of the whole model. It is based onnbaeit-
labeled with the rule number. The plot shows the rule descrigrativeinnovation of the rule base by unsupervisecremental
tion of the training data. It also illustrategythe initial model learning. The rule-based modelolveshy replacement or up-
is incapable of predicting the system performance in new dageade of rules.

V. CONCLUSION
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The adaptive nature of this eR model in addition to the highly [6] C. K. Chiang, H.-Y. Chung, and J. J. Lin, “A self-learning fuzzy logic
transparent and compact form of fuzzy rules makes them a

promising candidate for modeling and control of complex pro- 7

cesses competitive to neural networks. This concept has been
applied to the well-known benchmark problem (Mackey-Glass

time series prediction) and it's performance compared to other

published algorithms. The ability of the approachinaovate
the rule base to account for new regions of the system operating

space as they are encountered has been demonstrated using

air-conditioning problem based on real data.
The approach has been demonstrated to give improved model

based on the same number of data due to the different way
forming the model. The main advantages of the approach are

follows.

(8]

%

(11]

« |t can develop/evolve an existing model when the data pat-

tern changes, while inheriting the rule base.

(12]

* It can start to learn a process from a very low number of

Itis noniterativeand hence computationally very effective

initial data samples and improve the performance of the
initial model.

(13]

(the time necessary for calculation is a fraction of a secon?1 4]
in Matlab environment running on a 550-MHz PC for each
new data sample).

(15]

The proposed concept has wide implications for many fields,
including nonlinear adaptive control, fault detection and diag{16]
nostics, performance analysis of dynamical systems, time-series

and forecasting, knowledge extraction, intelligent agents, inteI[—

ligent buildings, behavior, and customized comfort modelingj1g]
The results illustrate the viability, efficiency and the potential
of the approach when used with limited amount of initial 19
information, especially important in autonomous systems and

robotics.
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