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Abstract 

Wilson’s poroacoustic model has been shown to be an accurate predictor of sound absorption 

in porous metals with bottleneck type structures.  When used to optimise pore structures, using 

porosity and permeability as variables, the most broadband absorption is predicted for the 

highest porosity achievable (approximately 70%) and for a permeability of the order 10-10 m2.  

Although performance close to that for glass wool is not possible, with these porosities, specific 

strength and stiffness exceeding those for many polymers is obtained, making these materials 

viable for load bearing components with credible soundproofing. 
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Noise reduction is of importance for both safety and comfort, across a wide range of industries 

and is often tackled by using porous in-fill layers of materials, such as foams or wadding, to 

dissipate sound energy.  Open celled metal foams (or more correctly, porous metals) are 

capable of absorbing sound, but also offer multi-functional performance (e.g. high specific 

stiffness, good energy absorption and fire resistance) in a self-supporting 3-dimensional form. 

This uniqueness makes porous metals suitable for a wide range of applications for noise 

control, where they are candidates to replace complex multi-component structures. 

 

Figure 1 compares the normal incidence absorption coefficient (the fraction of energy from the 

sound wave that is absorbed when it is incident normal to the surface of a material) for 



bottleneck [1] and sponge-type [2] porous metals and compares this with non-structural glass 

wool (GWF [3]) and sintered metal fibre (SMF [4]) materials.  Although this property is 

dependent upon thickness, and the samples presented range in thickness from roughly 17-25 

mm, the figure shows that sound absorption in porous metal structures does not compare 

favourably with those for established soundproofing materials.  Of those presented, absorption 

is best in porous metals with medium levels of porosity (60-65%) that have so-called 

“bottleneck” structures, where pores are connected to their neighbours via narrow pore 

openings or “windows” [1].  The typical structure of such a porous material (also from [1]) is 

shown in Figure 1.  These materials, made by the creation of porosity through pressure-assisted 

infiltration of a packed bed of a sacrificial “space holder” or “porogen” such as salt, have well-

documented relationships between pore and window size and the number of windows per pore 

[5].  Good sound absorption in these types of structures is attributed to effective energy 

dissipation via friction with the pore surface, as the air increases in velocity when it travels 

from the large pores through the much smaller pore openings [6]. With lower porosities than 

typical porous metals, these porous materials have credible structural performance, particularly 

if “hard-backed” with an Al sheet on the external surface. 

 

     

Figure 1 Plots (left) of normal incidence absorption coefficient (Ac) against frequency for 

hard-backed porous materials [1-4] and (right) an example of porous Al with a bottleneck 

type structure [1]. 

 

The potential to narrow the performance gap between current soundproofing materials and 

novel, self-supporting sound absorbing structures can be determined through optimisation of 

the structure of the porous body and its geometry.  With numerous combinations of porosity, 

pore size, window size and absorber thickness being possible, a simulation-based approach 
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provides the most convenient route to determining the capacity for these materials to absorb 

sound. 

 

Whilst modelling of sound absorption in more traditional porous structures, and even porous 

metals, is commonplace, there has been rather limited effort to model sound absorption in 

bottleneck type structures.  It is generally considered, though seldom demonstrated, that 

established models, such as those by Delaney–Bazley [7], Johnson, Champoux and Allard [8] 

and Wilson [9] are inappropriate for these types of structures, since these models mostly deal 

with porous materials where the pores do not abruptly change in cross section.  In response to 

this, Lu et al [10], developed an analytical model to describe sound absorption in semi-open 

cellular (bottleneck) structures, finding (as did [6,11,12] who compared this model to their 

experimental measurements for sound absorption in porous metals with bottleneck structures) 

reasonably good agreement between predictions and experimental measurements, especially at 

lower frequencies.  This model was then used to study the individual effects of porosity, pore 

size and window size, finding absorption behaviour improving initially as the pore size and 

window size were decreased (with little influence of porosity), but that with further decreases, 

the foam became a poorer absorber [10]. 

 

Software such as Comsol Multiphysics 5.2TM, enables the extension of simple sound absorption 

modelling to complex 3D structures and non-incident sound wave scenarios, yielding accurate 

absorption predictions for conventional soundproofing materials.  The empirical poroacoustic 

models of Delany-Bazley-Mikki (DBM), Johnson-Champoux-Allard (JCA) and Wilson (W) 

are embedded within this software.  Despite their questioned applicability for bottleneck 

structures, they are convenient to use.  In addition to inputs for the properties of the fluid, values 

for parameters such as the permeability, tortuosity, thermal and viscous length are required, 

which can be determined from directly measurable structural parameters such as the porosity, 

pore size and window size (for greater detail of the context of these parameters refer to [13]). 

 

Figure 2 plots simulations for sound absorption coefficient against frequency, using a model 

of a 20 mm thick, hard-backed porous structure within a two-dimensional representation of a 

standing wave tube (the 2D solution varying insignificantly from the 3D) for key poroacoustic 

models within Comsol Multiphysics 5.2 TM software.  Simulations were performed using only 

the data given in [1,6,10] for porosity, pore size and window size, in combination with well-

established expressions for permeability in the Darcy regime [14,15], tortuosity [16], (given in 



equations 1 and 2) and thermal and viscous length [17] for porous materials with bottleneck 

type structures.  The permeability for bottleneck structures was developed from models in [14, 

15] by expanding the coordination number, Nc, in terms of key structural parameters (shown 

in equation 2).  This was performed by fitting Nc to measurements and modelling in [5], and 

fitting the permeability through correlation with CFD simulations presented in [18], for the 

case where the ratio of the window to pore size is in the range of 0.15 to 0.4.  The viscous and 

thermal lengths were approximated to half the window diameter and half the pore diameter 

respectively [17]. 
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It can be seen that both the DBM (best suited to fibre structures such as glass wool) and the 

JCA model fail to describe the sound absorption accurately over any portion of the frequency 

range for the data in [1].  Despite the reported shortcomings, the Wilson model predicts the 

sound absorption response very accurately for both this sample, those in [1,6] for different pore 

and window sizes and for samples with different morphologies in [10] (also shown in Figure 

2), matching more closely than the model presented therein.  The reason for this close fitting 

is not discussed in detail in this brief paper, but similarities in the model developed and the 

Wilson model are noted in [10] for structures and frequencies explored in this study. 
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Figure 2. Plots of measured and modelled normal incidence absorption coefficient against 

frequency for hard-backed 20 mm thick structures (left) for [1] compared with several models 

and (right) for [10] compared with the Wilson model [9]. 

 

With confidence in the Wilson model, optimisation of the acoustic response, to achieve 

performance more like glass wool, was performed, within the realistic constraints of the 

materials being modelled and the applicability of the structural models being used.  Simulation 

using the Wilson model only requires specification of the porosity and the permeability to 

determine the structural parameters needed.  Since these porous structures (and the models to 

describe the permeability) are derived from packed beds of spherical beads, realistic lower and 

upper limits to the porosity are 0.55 and 0.68 [5].  The realistic permeability range (considering 

the range in porosity, pore and window size) is much broader, from approximately 10-12 to 10-

7
 m

2. 

 

Figure 3 shows results for 30+ simulations, plotting the noise reduction coefficient (NRC, the 

arithmetic mean of the sound absorption coefficient at frequencies of 250, 500, 1000 and 2000 

Hz) and the peak absorption coefficient (Ac max) for a comprehensive array of combinations 

of permeability, for 20 mm thick samples, across the whole interval of porosities.  Ac max and 

NRC values derived from experimental data from [1,6] are also plotted (as triangles) which 

overlie the simulation data.  Whilst not all the data fall on single curves for each property, there 

are clear maxima, indicating improved sound absorption in the permeability range of 

approximately 10-10 to 10-9
 m

2.  It is interesting to note that the experimental data from [1, 6] 

lie close to the maxima and the best performing samples in [1] and [10] have permeabilities (as 

calculated using Eq 2) of 5.1 x10-10 and 4.1 x10-10
 m

2
 respectively. Maxima occur since if the 

permeability is too high, the velocity of air flow will change little when passing through the 

pores and the resulting energy dissipation from friction will be low.  If the permeability is too 

low, most of the sound waves will be reflected from the specimen surface, also leading to poor 

sound absorption [6].  Figure 3 also presents a more focussed study of the effect of the sample 

thickness on Ac max, for samples with the same pore fraction (0.68).  As might be expected, 

decreasing the sample thickness shifts the maxima to slightly lower permeability.  For 

permeability in the range of approximately 7 to 9 x10-10 m2, Ac max is close to unity over the 

entire thickness range (10 - 40 mm).  For higher permeability, peak absorptions increase as the 



thickness increases, the reverse is true for lower permeability.  This insight helps clarify the 

variable dependence upon thickness observed in the literature, in particular in [19]. 

 

  
Figure 3. Plots of sound absorption behaviour against permeability for (left) 20 mm thick 

samples with a range of porosities and (right) for samples with different thickness and a 

constant porosity (0.68). 

 

Neither the NRC nor Ac max values describe the absorption response across the whole range 

of frequencies of interest.  More complete optimisation requires minimising the characteristic 

dip in absorption in the mid-range of frequencies, as was evident for the bottleneck structure 

in Figure 1.  Figure 4 plots the effect of pore fraction, for a 20 mm thick sample with the highest 

NRC value (with a permeability of 4 x10-10 m2), showing that the highest porosity gives the 

highest peak, shifting it to slightly higher frequency, and the lowest dip (an effect which is 

similar to that observed in [6], but more pronounced than in the model in [10]).  For this 

maximum pore fraction (0.68), a wide range of permeability is plotted, showing that despite it 

being possible to increase the peak absorption by increasing the permeability from 4 x10-10 m2 

to 7 x10-10 m2 (as was evident in Figure 3), this comes with the penalty of a greatly increased 

dip in absorption at frequencies close to 4000 Hz.  Specific applications will drive the balance 

between the need for maximum or more broadband absorption behaviour and the final choice 

that is made, but the maxima in Ac max and NRC appear to bound the optimum search area. 

 

To achieve the target permeability, for a given pore size and fraction, equation 2 can be 

rearranged to define the target window size, which can be achieved by varying the pressure 

difference used to affect infiltration [5].  Unlike as suggested by [10], this process suggests 

there is not a unique optimum pore opening size or optimum ratio of pore to opening diameter.  
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In the context of other studies with pore diameters in the range of 0.5 - 2.0 mm, the target ratio 

varies from roughly 0.3 to 0.1, consistent with suggested “optimum” pore openings of the order 

of 0.1 mm [10,20]. 

 

  

Figure 4  Plots of modelled normal incidence absorption coefficient against frequency for 20 

mm thick structures (a) as a function of pore fraction and constant permeability (4x10-10 m2) 

and (b) as a function of permeability and constant pore fraction (0.68). 

 

The Wilson model has been seen to be reliable for simulating sound absorption in porous metals 

with bottleneck structures and can be used as a tool to optimise porous structures using their 

porosity and permeability as variables.  Optimisation predicts that it is possible to increase peak 

absorption and reduce the dip, compared with the performance of the bottleneck type porous 

metal presented in [1] in Figure 1, by decreasing the permeability.  Optimum permeability is, 

however a (weak) function of sample thickness.  Despite modelling indicating higher porosity 

is favourable (and indeed that further improved broadband absorption would be realised if the 

porosity could be increased further), achieving soundproofing performance close to that for 

glass wool is not possible.  However, with porosities of 68%, strengths and densities similar to 

those for many polymers is achieved in these materials [21] with a stiffness which (even 

without a backing material) is at least twice that for most polymers, making these materials 

viable for load bearing components with credible soundproofing. 
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