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Abstract. Sensors are rapidly following computing devices in popularity and 
widespread use; and as a result, protocols to interface, record and process 
sensor data have cropped up anywhere. This position paper lists some of the 
‘lessons learned’ in the creation and application of sets of embedded sensor 
data, specifically used as tools in building context aware services where sensor 
values get classified into context descriptions. 

1   Introduction 

Recorded sensor data is one of the most common tools in machine learning, and 

the majority of research uses it to get an idea on which algorithms might be suitable 

for building a system that processes and classifies the sensor data. The recordings 

help to get a feel on how the application’s sensor signals are likely to look, and what 

effect a certain event has on the data (and how this can be exploited by the 

classification algorithms that translate this data into high-level descriptions). 

Acquiring a collection of datasets under characteristic circumstances is typically the 

first task to be undertaken after the hardware system has been built, and prior to the 

design of the classification algorithms. 

A second typical use for recorded datasets is the evaluation afterwards: to prove 

that a system works, experiments need to be reproducible; to prove that algorithm A is 
superior to algorithm B in some respect, the first requirement is that a common 

‘benchmark’ dataset must be used. Such evaluation datasets exist for a variety of 

applications and sensors, although the majority of them cover data that have been 

sampled at a high rate and focuses on one source, such as audio, video, ECG and EEG 

monitoring systems. Signals from a large and mixed variety of sensors are harder to 

find. 

This paper will concentrate on these two uses for recorded sensor data, with a 

special interest in those of systems with many sensors, individually having a relatively 

low update rate. With this in mind, the following section will discuss some issues in 

the use of stored sensor data while section three will focus on a proposed toolkit that 

handles communication visualization, and processing of sensor data with a strong 

emphasis on the use of datasets. 



2   The Limitations of a Dataset 

      This section will focus on the usage of recorded low-level sensor data for the 

design of classification systems only, although many of the observations that will be 

made in this section most likely apply for a wider range of dataset usage. Unlike 

traditional work on the correct, rigorous use of datasets for classification [3], it also 

intends to offer newer insights. 

2.1 Recording Annotations 

When information from sensors gets stored on disk, annotations or meta-data that 

is valuable for classification needs to be included to make these recorded files usable 

in the future. It is a common misconception to expect that the data from any sensor 

will afterwards ‘speak for itself’ and that adding tags to the data straight away is not 

necessary. This becomes more prominent in approaches that employ many sensors 

that individually give only a very limited view on what is happening. 

2.2 Recording the Same Data 

After having chosen a set of sensors to work with, datasets get often recorded in 

the initial process to study how well the sensors perform as a sanity check for the 

sensor hardware. Similar datasets are often recorded a second time, with a scenario or 

a fixed set of events or contexts in mind that provide the target classes. Finally, 

usually to provide a benchmark to the community, another dataset is recorded that has 
the right annotations embedded so that third parties can test their algorithms on the 

same datasets and compare performances. This might point to a need for generic 

utilities to (1) check the behaviour of sensors under certain events and (2) consistently 

generate datasets. 

2.3 Bias Toward Offline Train-Test Algorithms 

The process of recording a dataset, analyzing it, and possibly repeating these two 

steps ad infinitum, aligns easily with the classic approaches of training and testing a 

model in machine learning. This does often result, however, in the implementation of 

algorithms that first get trained on offline datasets, and then are tested in real-time 

afterwards. 

For this reason, incremental machine learning algorithms tend to be neglected as 

their development is not that compatible with recorded datasets. This is unfortunate, 

since it forces the user to play a minor role (or take the user out of the loop 

completely) when the classification algorithm is trained. Incremental algorithms 

gradually adjust their internal models until their classification is found adequate by 

the user, who also can intervene for particular classes; this very close interaction 

between the system and the user in the training process is often very efficient: only 



poorly classified data is re-trained, and training stops when the user finds the 

algorithm’s performance to be accurate enough. 

One way to correct this bias could be the integration of user-annotations in the 

dataset, which cue the system to train for that specific data. This still requires 

‘universal’ annotations that can be used to evaluate the classifier’s performance 

afterwards for all of the data (when no user-annotation is present). These two layers of 

annotations would complicate a dataset’s format a bit more.  

2.4 Conclusion 

In summary, most of these observations point out a need for: 

• a set of tools that facilitate the recording, communication, and visualisation 

of real-time sensor signals in a consistent way, without requiring extra effort 

in the design process of the system 

• a standard format (or a set of standard formats) for sensor datasets, so that 

logged experiments can easily be replicated on other sites, and so that 
identical data can be used to compare approaches 

The next section will introduce work in progress to respond in part to these 

needs. As it essentially is a toolkit developed as an open source platform between 

researchers, it might serve as a mutual record for sensor processing related 

algorithms. 

3   The CommonSense ToolKit 

The CommonSense ToolKit [1] was developed out of a need for modular software 

components that assist in the communication, abstraction and visualisation of sensor 

data. CSTK's main qualities are its real-time facilities and embedded systems-friendly 

implementation, providing ready-to-use modules for the prototyping and construction 

of sensor-based applications.  

 

It is being developed within the CommonSense [2] project, which aims to 

investigate the integration of multiple diverse sensors for user-level context 
acquisition in wearable and ubiquitous computing. The context acquisition method 

can be thought of as an abstract sensor for detecting context within a set of user 

situations for which the sensor is configured and trained. 

 

CSTK can be used for offline analysis (i.e., using recorded data files), but is 

envisioned as a tool that can be applied in an online fashion (i.e., using the live data 

that comes streaming in). Various sensor hardware platforms are supported, including 

most serial protocols and embedded sensors (such as the iPAQ's internal sensors). 

 



CSTK has three layers in which users can start using CSTK and make 

modifications, depending on their needs in performance, integration and complexity: 

 

• The core source code of CSTK is written in C++ and with small low-

power embedded architectures in mind (such as the iPAQ’s arm 

processors).  

 

• A collection of command line driven utilities that visualize, cluster and 
classify sensor data form a second layer. They allow real-time processing 

such as extracting basic features, calculating statistics and signal peak 

descriptors, or building topographic maps of the sensor data.  

 

• An integrated graphical environment is planned to merge the different 

tools, which launches the modules, and tweaks the parameters. This is 

intended as the easiest and quickest way to get a grip on sensor data, but 

might be somewhat limited for specific applications. 

 

CSTK runs on most operating systems that support X11 or XFree86™; this mainly 

includes UNIX® and UNIX-like operating systems such as Linux, BSD, Sun Solaris 
x86, Mac OS X™ (via Darwin), but also other platforms like OS/2 and MS 

Windows™ (using Cygwin), and especially distributions for handheld platforms such 

as Familiar [4]. It is also a GPL-licensed open source project that is freely available 

for download.  

 

Figure 1 shows some examples of visualisation (updated in real-time) of streaming 

sensor data, and how the tools’ numerous parameter values can be managed in one 

xml settings document. The tools are meant to be able to run on environments that 

have a restricted amount of resources. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

 
 

  

 

 

  

Fig. 1. Some CSTK screenshots of some of the visual tools (left), and the layout of 

an XML Settings Document with its corresponding tool (right).  

Acknowledgements 

This toolkit is built as part of the CommonSense project at the University of 

Lancaster (UK), and sponsored by the Engineering and Physical Sciences Research 
Council (EPSRC). We thank both institutions for their support, as well as 

SourceForge for providing additional web and code / documentation versioning 

support, and the other developers for extending the toolkit. 

References 

1. The CommonSense ToolKit (CSTK) online manual: 
http://ubicomp.lancs.ac.uk/cstk/manual/  or http://cstk.sourceforge.net/manual/  

2. CommonSense: http://ubicomp.lancs.ac.uk/commonsense (verified 02/04/2004) 

3. Steven L. Salzberg “On Comparing Classifiers: Pitfalls to Avoid and a Recommended 
Approach”. In Data Mining and Knowledge Discovery, 1, 317-327 (1997), Kluwer, 
Boston.  

4. Familiar Linux Distribution, Handhelds.org: http://familiar.handhelds.org/  (verified 
02/04/2004) 


