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Abstract Land cover (LC) and land use (LU) have commonly been classified separately from 9 

remotely sensed imagery, without considering the intrinsically hierarchical and nested 10 

relationships between them. In this paper, for the first time, a highly novel joint deep learning 11 

framework is proposed and demonstrated for LC and LU classification. The proposed Joint 12 

Deep Learning (JDL) model incorporates a multilayer perceptron (MLP) and convolutional 13 

neural network (CNN), and is implemented via a Markov process involving iterative 14 

updating. In the JDL, LU classification conducted by the CNN is made conditional upon the 15 

LC probabilities predicted by the MLP. In turn, those LU probabilities together with the 16 

original imagery are re-used as inputs to the MLP to strengthen the spatial and spectral feature 17 

representations. This process of updating the MLP and CNN forms a joint distribution, where 18 

both LC and LU are classified simultaneously through iteration. The proposed JDL method 19 

provides a general framework within which the pixel-based MLP and the patch-based CNN 20 

provide mutually complementary information to each other, such that both are refined in the 21 

classification process through iteration. Given the well-known complexities associated with 22 

the classification of very fine spatial resolution (VFSR) imagery, the effectiveness of the 23 

proposed JDL was tested on aerial photography of two large urban and suburban areas in 24 

Great Britain (Southampton and Manchester). The JDL consistently demonstrated greatly 25 

increased accuracies with increasing iteration, not only for the LU classification, but for both 26 
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the LC and LU classifications, achieving by far the greatest accuracies for each at around 10 27 

iterations. The average overall classification accuracies were 90.18% for LC and 87.92% for 28 

LU for the two study sites, far higher than the initial accuracies and consistently 29 

outperforming benchmark comparators (three each for LC and LU classification). This 30 

research, thus, represents the first attempt to unify the remote sensing classification of LC 31 

(state; what is there?) and LU (function; what is going on there?), where previously each had 32 

been considered separately only. It, thus, has the potential to transform the way that LC and 33 

LU classification is undertaken in future. Moreover, it paves the way to address effectively 34 

the complex tasks of classifying LC and LU from VFSR remotely sensed imagery via joint 35 

reinforcement, and in an automatic manner. 36 

Keywords: multilayer perceptron; convolutional neural network; land cover and land use 37 

classification; VFSR remotely sensed imagery; object-based CNN 38 

 39 

1. Introduction 40 

Land cover and land use (LULC) information is essential for a variety of geospatial 41 

applications, such as urban planning, regional administration, and environmental management 42 

(Liu et al., 2017). It also serves as the basis for understanding the constant changes on the 43 

surface of the Earth and associated socio-ecological interactions (Cassidy et al., 2010; Patino 44 

and Duque, 2013). Commensurate with the rapid development in sensor technologies, a huge 45 

amount of very fine spatial resolution (VFSR) remotely sensed imagery is now commercially 46 

available, opening new opportunities for LULC information extraction at a very detailed level 47 

(Pesaresi et al., 2013; Zhao et al., 2016). However, classifying land cover (LC) from VFSR 48 

images remains a difficult task, due to the spectral and spatial complexity of the imagery. Land 49 

use (LU) classification is even more challenging due to the indirect relationship between LU 50 

patterns and the spectral responses recorded in images. This is further complicated by the 51 
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heterogeneity presented in urban and suburban landscapes as patterns of high-level semantic 52 

functions, in which some identical low-level ground features or LC classes are frequently 53 

shared amongst different LU categories (C. Zhang et al., 2018c). This complexity and diversity 54 

in LU characteristics cause huge gaps between identifiable low-level features and the desired 55 

high-level functional representations with semantic meaning. 56 

Over the past decade, tremendous effort has been made in developing automatic LU and LC 57 

classification methods using VFSR remotely sensed imagery. For LC, traditional classification 58 

approaches can broadly be divided into pixel-based and object-based methods depending on 59 

the basic processing units, either per-pixel or per-object (Salehi et al., 2012). Pixel-based 60 

methods are used widely to classify individual pixels into particular LC categories based purely 61 

on spectral reflectance, without considering neighbouring pixels (Verburg et al., 2011). These 62 

methods often have limited classification accuracy due to speckle noise and increased inter-63 

class variance compared with coarse or medium resolution remotely sensed imagery. To 64 

overcome the weakness of pixel-based approaches, some post-classification approaches have 65 

been introduced (e.g. Hester et al., 2008; McRoberts, 2013). However, these techniques may 66 

eliminate small objects of a few pixels such as houses or small areas of vegetation. Object-67 

based methods, under the framework of object-based image analysis (OBIA), have dominated 68 

in LC classification using VFSR imagery over the last decade (Blaschke et al., 2014). These 69 

OBIA approaches are built upon relatively homogeneous objects that are composed of similar 70 

pixel values across the image, for the identification of LCs through physical properties (such 71 

as spectra, texture, and shape) of ground components. The major challenges in applying these 72 

object-based approaches are the selection of segmentation scales to obtain objects that 73 

correspond to specific LC types, in which over- and under-segmentation commonly exist in the 74 

same image (Ming et al., 2015). To date, no effective solution has been proposed for LC 75 

classification using VFSR remotely sensed imagery. 76 
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Similar to LC classification, traditional LU classification methods using VFSR data can 77 

generally be categorised into three types; pixel-based, moving window-based, and object-based. 78 

The pixel-level approaches that rely purely upon spectral characteristics are able to classify LC, 79 

but are insufficient to distinguish LUs that are typically composed of multiple LCs, and this 80 

limitation is particularly significant in urban settings (Zhao et al., 2016). Spatial texture 81 

information (Herold et al., 2003; Myint, 2001) or spatial context (Wu et al., 2009) have been 82 

incorporated to analyse LU patterns through moving windows or kernels (Niemeyer et al., 83 

2014). However, it could be argued that both pixel-based and moving window-based methods 84 

are based on arbitrary image structures, whereas actual objects and regions might be irregularly 85 

shaped in the real world (Herold et al., 2003). Therefore, the OBIA framework has been used 86 

to characterise LU based on spatial context. Typically, two kinds of information within a spatial 87 

partition are utilised, namely, within-object information (e.g. spectra, texture, shape) and 88 

between-object information (e.g. connectivity, contiguity, distances, and direction amongst 89 

adjacent objects). Many studies applied OBIA for LU classification using within-object 90 

information with a set of low-level features (such as spectra, texture, shape) of the land features 91 

(e.g. Blaschke, 2010; Blaschke et al., 2014; Hu and Wang, 2013). These OBIA methods, 92 

however, might overlook semantic functions or spatial configurations due to the inability to 93 

use low-level features in semantic feature representation. In this context, researchers have 94 

developed a two-step pipeline, where object-based LCs were initially extracted, followed by 95 

aggregating the objects using spatial contextual descriptive indicators on well-defined LU units, 96 

such as cadastral fields or street blocks. Those descriptive indicators are commonly derived by 97 

means of spatial metrics to quantify their morphological properties (Yoshida and Omae, 2005) 98 

or graph-based methods that model the spatial relationships (Barr and Barnsley, 1997; Walde 99 

et al., 2014). Yet, the ancillary geographic data for specifying the LU units might not be 100 

available at some regions, and the spatial contexts are often hard to be described and 101 
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characterised as a set of “rules”, even though the complex structures or patterns might be 102 

recognisable and distinguishable by human experts (Oliva-Santos et al., 2014; C. Zhang et al., 103 

2018c). 104 

The major issue of the above-mentioned methods is the adoption of shallow structured 105 

classification models with hand-crafted features that are domain-specific and require a huge 106 

amount of effort in feature engineering. Recent advances in pattern recognition and machine 107 

learning have demonstrated a resurgence in the use of multi-layer neural networks to model 108 

higher-level feature representations without human-designed features or rules. This is largely 109 

driven by the wave of excitement in deep learning, where the most representative and 110 

discriminative features are learnt end-to-end, and hierarchically (Arel et al., 2010). Deep 111 

learning methods have achieved huge success not only in classical computer vision tasks, such 112 

as target detection, visual recognition and robotics, but also in many other practical applications 113 

(Hu et al., 2015; Nogueira et al., 2017). Convolutional neural networks (CNNs), as a well-114 

established and popular deep learning method, have made considerable improvements beyond 115 

the state-of-the-art records in image analysis, and have attracted great interest in both academia 116 

and industrial communities (Krizhevsky et al., 2012). Owing to its superiority in higher-level 117 

feature representation, the CNN has demonstrated great potential in many remotely sensed 118 

tasks such as vehicle detection (Chen et al., 2014; Dong et al., 2015), road network extraction 119 

(Cheng et al., 2017), remotely sensed scene classification (Othman et al., 2016), and semantic 120 

segmentation (Zhao et al., 2017).  121 

Translational invariance is a major advantage introduced by CNNs through a patch-wise 122 

procedure, in which a higher-level object within an image patch can be recognised even if the 123 

objects are shifted a few and/or geometrically distorted. Such translational invariance can help 124 

detect objects with higher order features, such as LU or functional sites. However, this 125 

characteristic becomes a major weakness in LC and LU classification for pixel-level 126 
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differentiation, which introduces artefacts on the border of the classified patches and often 127 

produces blurred boundaries between ground surface objects (Zhang et al., 2018a, 2018b), thus, 128 

introducing uncertainty into the LC/LU classification. Previous research has, therefore, 129 

developed improved techniques for adapting CNN models to the LU/LC classification task. 130 

For example, Zhang et al. (2018a) fused deep CNN networks with the pixel-based multilayer 131 

perceptron (MLP) method to solve LC classification with spatial feature representation and 132 

pixel-level differentiation; Zhang et al. (2018b) proposed a regional fusion decision strategy 133 

based on rough set theory to model the uncertainties in LC classification of the CNN, and 134 

further guide data integration with other algorithms for targeted adjustment; Pan and Zhao, 135 

(2017) developed a central-point-enhanced CNN network to enhance the weight of the central 136 

pixels within image patches to strengthen the LC classification with precise land-cover 137 

boundaries. Besides, a range of research has explored the pixel-level Fully Convolutional 138 

Networks (FCN) and its extensions for remotely sensed semantic segmentations (e.g. Maggiori 139 

et al., 2017; Paisitkriangkrai et al., 2016; Volpi and Tuia, 2017), in which low-level LC classes, 140 

such as buildings, grassland, and cars, are classified with relatively high accuracy, although 141 

boundary distortions still exist due to the insufficient contextual information at up-sampling 142 

layers (Fu et al., 2017).  With respect to LU classification, Zhang et al., (2018c) recently 143 

proposed a novel object-based CNN (OCNN) model that combines the OBIA and CNN 144 

techniques to learn LU objects through within-object and between-object information, where 145 

the semantic functions were characterised with precise boundary delineations. However, these 146 

pioneering efforts in CNN classification can only classify the image at a single, specific level, 147 

either LC or LU, whereas the landscape can be interpreted at different semantic levels 148 

simultaneously in a landscape hierarchy. At its most basic level this hierarchy simultaneously 149 

comprises LC at a lower, state level (what is there?) and LU at a higher, functional level (what 150 

is going on there?). Thus, both LC and LU cover the same geographical space, and are nested 151 
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with each other hierarchically. The LUs often consist of multiple LC classes, and different 152 

spatial configurations of LC could lead to different LU classes. These two classification 153 

hierarchies are, thus, intrinsically correlated and are realised at different semantic levels.  154 

The fundamental conceptual contribution of this paper is the realisation that the spatial and 155 

hierarchical relationships between LC (defined as a low-order state) and LU (defined as a 156 

higher-order semantic representation capturing function) might be learnt by characterising both 157 

representations at different levels with a joint distribution. In this paper, the first joint deep 158 

learning framework is proposed and demonstrated for LC and LU classification. Specifically, 159 

an MLP and Object-based CNN were applied iteratively and conditionally dependently to 160 

classify LC and LU simultaneously. The effectiveness of the proposed method was tested on 161 

two complex urban and suburban scenes in Great Britain. 162 

The remainder of this paper is organised as: Section 2 introduces the key components of the 163 

proposed methods. Section 3 specifies the study area and data sources. The results are presented 164 

in section 4, followed by a discussion in section 5. The conclusions are drawn in the last section. 165 

 166 

2. Method 167 

2.1 multilayer perceptron (MLP) 168 

A multilayer perceptron (MLP) is a network that maps from input data to output representations 169 

through a feedforward manner (Atkinson and Tatnall, 1997). The fundamental component of a 170 

MLP involves a set of computational nodes with weights and biases at multiple layers (input, 171 

hidden, and output layers) that are fully connected (Del Frate et al., 2007). The weights and 172 

biases within the network are learned through backpropagation to approximate the complex 173 

relationship between the input features and the output characteristics. The learning objective is 174 
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to minimise the difference between the predictions and the desired outputs by using a specific 175 

cost function. 176 

2.2 Convolutional Neural Networks (CNN) 177 

As one of the most representative deep neural networks, convolutional neural network (CNN) 178 

is designed to process and analyse large scale sensory data or images in consideration of their 179 

stationary characteristics at local and global scales (LeCun et al., 2015). Within the CNN 180 

network, convolutional layers and pooling layers are connected alternatively to generalise the 181 

features towards deep and abstract representations. Typically, the convolutional layers are 182 

composed of weights and biases that are learnt through a set of image patches across the image 183 

(Romero et al., 2016). Those weights are shared by different feature maps, in which multiple 184 

features are learnt with a reduced amount of parameters, and an activation function (e.g. 185 

rectified linear units) is followed to strengthen the non-linearity of the convolutional operations 186 

(Strigl et al., 2010). The pooling layer involves max-pooling or average-pooling, where the 187 

summary statistics of local regions are derived to further enhance the generalisation capability. 188 

2.3 Object-based Convolutional Neural Networks (OCNN) 189 

An object-based CNN (OCNN) was proposed recently for the urban LU classification using 190 

remotely sensed imagery (Zhang et al., 2018c). The OCNN is trained as for the standard CNN 191 

model with labelled image patches, whereas the model prediction labels each segmented object 192 

derived from image segmentation. For each image object (polygon), a minimum moment 193 

bounding box was constructed by anisotropy with major and minor axes (Zhang and Atkinson, 194 

2016). The centre point intersected with the polygon and the bisector of the major axis was 195 

used to approximate the central location of each image patch, where the convolutional process 196 

is implemented once per object. Interested readers are referred to a theoretical description on 197 

convolutional position analysis for targeted sampling on the centre point of image objects (C. 198 

Zhang et al., 2018c). The size of the image patch was tuned empirically to be sufficiently large, 199 



9 
 

so that the object and spatial context were captured jointly by the CNN network. The OCNN 200 

was trained on the LU classes, in which the semantic information of LU was learnt through the 201 

deep network, while the boundaries of the objects were retained through the process of 202 

segmentation. The CNN model prediction was recorded as the predicted label of the image 203 

object to formulate a LU thematic map. Here, the predictions of each object are assigned to all 204 

of its pixels.  205 

2.4 LC-LU Joint Deep Learning Model 206 

The assumption of the LC – LU joint deep learning (LC-LU JDL) model is that both LC and 207 

LU are manifested over same geographical space and are nested with each other in a 208 

hierarchical manner. The LC and LU representations are considered as two random variables, 209 

where the probabilistic relationship between them can be modelled through a joint probability 210 

distribution. In this way, the conditional dependencies between these two random variables are 211 

captured via an undirected graph through iteration (i.e. formulating a Markov process). The 212 

joint distribution is, thus, factorised as a product of the individual density functions, conditional 213 

upon their parent variables as 214 

                                                       ( )

1

( ) ( | )
k

v pa v

v

p x p x x


                                                       (1) 215 

where xv represents a specific random variable, that is, either LC or LU class, and the xpa(v) 216 

denotes the parent variable of xv. For example, xv represents the LC class, and the xpa(v) in this 217 

case corresponds to the LU class.  218 

Specifically, let CLC = {CLC1, CLC2, …, CLCi …, CLCm} ( ],1[ mi ), where CLCi denotes  the set 219 

of LC samples of the ith class, and m represents the number of LC classes; CLU = { CLU1, 220 

CLU2, …, CLUj …, CLCn}( [1, ]j n ), where CLUj denotes the set of LU samples of the jth class 221 

and n indicates the number of LU classes. Both LC and LU classifications rely on a set of 222 



10 
 

feature vectors F to represent their input evidence, and the predicted LC/LU categories are 223 

assigned based on the maximum a posteriori (MAP) criterion. Thus, the classification output 224 

of m LC classes or n LU classes can be derived as  225 

                                                     )|(maxarg* FCpC i
Ci

                                                    (2) 226 

where i corresponds to the specific LC/LU class during iteration. 227 

Through the Bayes’ theorem 228 
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The classification result C* is obtained as 230 

                                                  )|()(maxarg* ii
C
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                                                     (4) 231 

In which p(F) is the same at all states of Ci. 232 

The p(Ci) describes the prior probability distribution of each LC/LU class. In this research, we 233 

do not specify any priors for the classification, meaning that the joint distribution is equivalent 234 

to the modelled conditional distribution. The conditional probability p(F | Ci) for the LC is 235 

initially estimated by the probabilistic MLP at the pixel level representing the membership 236 

association. Those LC conditional probabilities are then fed into the OCNN model to learn and 237 

classify each LU category. The estimated LU probabilities together with the original images 238 

are then re-used as input layers for LC classification using MLP in the next iteration. This 239 

iterative process can obtain both LC and LU classification results simultaneously at each 240 

iteration. Figure 1 illustrates the general workflow of the proposed LC and LU joint deep 241 

learning (LC-LU JDL) model, with key components including the JDL inputs, the Markov 242 

Process to learn the joint distribution, and the classification outputs of LC and LU at each 243 

iteration. Detailed explanation is given as follows. 244 
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 245 

 246 

Figure 1 The general workflow of the land cover (LC) and land use (LU) joint deep learning (JDL). 247 

JDL input involves LC samples with pixel locations and the corresponding land cover labels, 248 

LU samples with image patches representing specific land use categories, together with the 249 

remotely sensed imagery, and the object-based segmentation results with unique identity for 250 

each segment. These four elements were used to infer the hierarchical relationships between 251 

LC and LU, and to obtain LC and LU classification results through iteration. 252 

Markov Process models the joint probability distribution between LC and LU through 253 

iteration, in which the joint distributions of the ith iteration are conditional upon the probability 254 

distribution of LC and LU derived from the previous iteration (i-1): 255 

            )LandUse,LandCover|LandUse,LandCover()LandUse,LandCover( 11  iiiiii PP              (5) 256 

where the LandCoveri and LandUsei at each iteration update each other to approximate a 257 

complex hierarchical relationship between LC and LU. 258 

Assume the complex relationship formulates a function f, equation (5) can be expressed as: 259 

    1 1(LandCover ,LandUse ) (LandCover ,LandUse , Image,SegmentImage, , )i i i i

LC LUP f C C      (6) 260 

where the LandCoveri-1 and LandUsei-1 are the LC and LU classification outputs at the previous 261 

iteration (i-1). The LandUse0 is an empty image with null value. Image here represents the 262 
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original remotely sensed imagery, and SegmentImage is the label image derived from object-263 

based segmentations with the same ID for each pixel within a segmented object. The CLC and 264 

CLU are LC and LU samples that record the locations in the image with corresponding class 265 

categories. All these six elements form the input parameters of the f function. Whereas the 266 

predictions of the f function are the joint distribution of LandCoveri and LandUsei as the 267 

classification results of the ith iteration. 268 

Within each iteration, the MLP and OCNN are used to derive the conditional probabilities of 269 

LC and LU, respectively. The input evidence for the LC classification using MLP is the original 270 

image together with the LU conditional probabilities derived from the previous iteration, 271 

whereas the LU classification using OCNN only takes the LC conditional probabilities as input 272 

variables to learn the complex relationship between LC and LU. The LC and LU conditional 273 

probabilities and classification results are elaborated as follows. 274 

Land cover (LC) conditional probabilities are derived as: 275 

                                1(LandCover ) (LandCover | LandUse )i i iP P                                          (7) 276 

where the MLP model is trained to solve equation (7) as: 277 

                          1( (LandUse ,Image), )i i
LCMLPModel TrainMLP concat C                                 (8) 278 

The function concat here integrates LU conditional probabilities and the original images, and 279 

the LC samples CLC are used to train the MLP model. The LC classification results are predicted 280 

by the MAP likelihood as: 281 

                    1.  ( (LandUse ,Image)i i iLandCover MLPModel predict concat                              (9) 282 

Land use (LU) conditional probabilities are deduced as: 283 

                               )LandCover|LandUse()LandUse( iii PP                                               (10) 284 
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where the OCNN model is built to solve equation (10) as: 285 

                            (LandCover , )i i
LUOCNNModel TrainCNN C                                              (11) 286 

The OCNN model is based on the LC conditional probabilities derived from MLP as its input 287 

evidence. The CLU is used as the training sample sites of LU, where each sample site is used as 288 

the centre point to crop an image patch as the input feature map for training the CNN model. 289 

The trained CNN can then be used to predict the LU membership association of each object as: 290 

               . (cast(LandCover ,SegmentImage)i i iLandUse CNNModel predict                          (12) 291 

where the function cast denotes the cropped image patch with LC probabilities derived from 292 

LandCoveri, and the predicted LU category for each object was recorded in SegmentImage, in 293 

which the same label was assigned for all pixels of an object. 294 

Essentially, the Joint Deep Learning (JDL) model has four key advantages: 295 

1. The JDL is designed for joint land cover and land use classification in an automatic 296 

fashion, whereas previous methods can only classify a single, specific level of 297 

representation. 298 

2. The JDL jointly increases the accuracy of both the land cover and land use 299 

classifications through mutual complementarity and reinforcement.  300 

3. The JDL accounts explicitly for the spatial and hierarchical relationships between land 301 

cover and land use that are manifested over the same geographical space at different 302 

levels.  303 

4. The JDL increases model robustness and generalisation capability, which supports 304 

incorporation of deep learning models (e.g. CNNs) with a small training sample size. 305 

3. Experimental Results and Analysis 306 
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3.1 Study area and data sources 307 

In this research, two study areas in the UK were selected, namely Southampton (S1) and 308 

Manchester (S2) and their surrounding regions, lying on the Southern coast and in North West 309 

England, respectively (Figure 2). Both study areas involve urban and suburban areas that are 310 

highly heterogeneous and distinctive from each other in both LC and LU characteristics and 311 

are, therefore, suitable for testing the generalisation capability of the joint deep learning 312 

approach. 313 

 314 

Figure 2 The two study areas: S1 (Southampton) and S2 (Manchester) with highlighted regions 315 

representing the majority of land use categories. 316 

Aerial photos of S1 and S2 were captured using Vexcel UltraCam Xp digital aerial cameras on 317 

22/07/2012 and 20/04/2016, respectively. The images have four multispectral bands (Red, 318 

Green, Blue and Near Infrared) with a spatial resolution of 50 cm. The study sites were subset 319 

into the city centres and their surrounding regions with spatial extents of 23250×17500 pixels 320 

for S1 and 19620×15450 pixels for S2, respectively. Besides, digital surface model (DSM) data 321 

of S1 and S2 with the same spatial resolution as the imagery were also acquired, and used for 322 

image segmentation only. 10 dominant LC classes were identified in both S1 and S2, 323 
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comprising clay roof, concrete roof, metal roof, asphalt, rail, bare soil, woodland, grassland, 324 

crops, and water (Table 1). These LCs represent the physical properties of the ground surface 325 

recorded by the spectral reflectance of the aerial images. On the contrary, the LU categories 326 

within the study areas were characterised based on human-induced functional utilisations. 11 327 

dominant LU classes were recognised in S1, including high-density residential, commercial, 328 

industrial, medium-density residential, highway, railway, park and recreational area, 329 

agricultural area, parking lot, redeveloped area, and harbour and sea water. In S2, 10 LU 330 

categories were found, including residential, commercial, industrial, highway, railway, park 331 

and recreational area, agricultural areas, parking lot, redeveloped area, and canal (Table 1). 332 

The majority of LU types for both study sites are highlighted and exemplified in Figure 2. 333 

These LC and LU classes were defined based on the Urban Atlas and CORINE land cover 334 

products coordinated by the European Environment Agency (https://land.copernicus.eu/), as 335 

well as the official land use classification system designed by the Ministry of Housing, 336 

Communities and Local Government (MHCLG) of the UK government. Detailed descriptions 337 

for LU and the corresponding sub-classes together with the major LC components in both study 338 

sites are summarised in Table 1. 339 

Table 1. The land use (LU) classes with their sub-class descriptions, and the associated major land cover (LC) 340 

components across the two study sites (S1 and S2). 341 

LU Study site Sub-class descriptions Major LC 

(High-density) residential S1, S2 Residential houses, terraces, green space Buildings, Grassland, Woodland 

Medium-density residential S1 Residential flats, green space, parking lots Buildings, Grassland, Asphalt 

Commercial S1, S2 Shopping centre, retail parks, commercial services Buildings, Asphalt 

Industrial S1, S2 Marine transportation, car factories, gas industry Buildings, Asphalt 

Highway S1, S2 Asphalt road, lane, cars Asphalt 

Railway S1, S2 Rail tracks, gravel, sometimes covered by trains Rail, Bare soil, Woodland 

Parking lot S1, S2 Asphalt road, parking line, cars Asphalt 

Park and recreational area S1, S2 Green space and vegetation, bare soil, lake Grassland, Woodland 

Agricultural area S1, S2 Pastures, arable land, and permanent crops  Crops, Grassland 

Redeveloped area S1, S2 Bare soil, scattered vegetation, reconstructions Bare soil, Grassland 

Harbour and sea water S1 Sea shore, harbour, estuaries, sea water Water, Asphalt, Bare soil  
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Canal S2 Water drainage channels, canal water Water, Asphalt 

 342 

The ground reference data for both LC and LU are polygons collected by local surveyors and 343 

digitised manually by photogrammetrists in the UK, covering the majority of the study areas 344 

(over 80%). These reference polygons with well-defined labelling protocols are specified in 345 

Table 1. The polygons were split randomly into a 50% subset for training and calibration and 346 

the other 50% subset for validation, to avoid spatial correlation in the sample distributions. 347 

Unbiased sample sets were generated for each class, proportional to the total area of the 348 

reference polygons corresponding to a specific class, through a stratified random sampling 349 

scheme. The sample sizes for specific classes with sparse spatial coverage (e.g. railways) were 350 

increased so as to obtain a sample distribution that was comparable in size. The training sample 351 

size for LCs was approximately 600 per class to allow the MLP to learn the spectral 352 

characteristics over the relatively large sample size. The LU classes consist of over 1000 353 

training sample sites per class, in which deep CNN networks could sufficiently distinguish the 354 

patterns through data representations. These LU and LC sample sets were checked and cross 355 

referenced with the MasterMap Topographic Layer produced by Ordnance Survey (Regnauld 356 

and Mackaness, 2006), and Open Street Maps, together with field survey to ensure the precision 357 

and validity of the sample sets. The sampling probability distribution was further incorporated 358 

into the accuracy assessment statistics (e.g. overall accuracy) to ensure statistically unbiased 359 

validation (Olofsson et al., 2014). 360 

3.2 Model structure and parameter settings 361 

The model structures and parameters were optimised in S1 through cross validation and directly 362 

generalised into S2 to test the robustness and the transferability of the proposed methods in 363 

different experimental environments. Within the Joint Deep Learning approach, both MLP and 364 
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OCNN require a set of predefined parameters to optimise the accuracy and generalisation 365 

capability. Detailed model structures and parameters were clarified as below.  366 

3.2.1 MLP Model structure and parameters 367 

The initial input of the MLP classifier is the four multi-spectral bands at the pixel level, where 368 

the prediction is the LC class that each pixel belongs to. Followed by the suggestions of Mas 369 

and Flores (2008) and Zhang et al., (2018a), one, two and three hidden layers of MLPs were 370 

tested, with different numbers of nodes {4, 8, 12, 16, 20, and 24} in each layer. The learning 371 

rate was optimised as 0.2 and the momentum was optimally chosen as 0.7. The number of 372 

epochs for the MLP network was tuned as 800 to converge at a stable stage. The optimal 373 

parameters for the MLP were chosen by cross validating among different numbers of nodes 374 

and hidden layers, in which the best accuracy was reported with two hidden layers and 16 nodes 375 

at each layer.  376 

3.2.2 Object-based Segmentation parameter settings 377 

The Object-based Convolutional Neural Network (OCNN) requires the input image to be pre-378 

processing into segmented objects through object-based segmentation. A hierarchical step-wise 379 

region growing segmentation algorithm was implemented through the Object Analyst Module 380 

in PCI Geomatics 2017. A series of image segmentations was performed by varying the scale 381 

parameter from 10 to 100, while other parameters (shape and compactness) were fixed as 382 

default. Through cross validation with trial-and-error, the scale parameter was optimised as 40 383 

to produce a small amount of over-segmentation and, thereby, mitigate salt and pepper effects 384 

simultaneously. A total of 61,922 and 58,408 objects were obtained from segmentation for S1 385 

and S2, respectively. All these segmented objects were stored as both vector polygons in an 386 

ArcGIS Geodatabase and raster datasets with the same ID for all pixels in each object. 387 
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3.2.3 OCNN model structure and parameters 388 

For each segmented object, the centre point of the object was taken as the centre of the input 389 

image patch, where a standard CNN was trained to classify the object into a specific LU 390 

category. In other words, a targeted sampling was conducted once per object, which is different 391 

from the standard pixel-wise CNNs that apply the convolutional filters at locations evenly 392 

spaced across the image. The model structure of the OCNN was designed similar to the 393 

AlexNet (Krizhevsky et al., 2012) with eight hidden layers (Figure 3) using a large input 394 

window size (96×96), but with small convolutional filters (3×3) for the majority of layers 395 

except for the first one (which was 5×5). The input window size was determined through cross 396 

validation on a range of window sizes, including {32×32, 48×48, 64×64, 80×80, 96×96, 397 

112×112, 128×128, 144×144} to sufficiently cover the contextual information of objects 398 

relevant to their LU semantics. The filter number was tuned as 64 to extract deep convolutional 399 

features effectively at each level. The CNN network involved alternating convolutional (conv) 400 

and pooling layers (pool) as shown in Figure 3, where the maximum pooling within a 2×2 401 

window was used to generalise the feature and keep the parameters tractable.  402 

 403 

Figure 3 Model architectures and structures of the CNN with 96×96 input window size and eight-layer 404 

depth. 405 

All the other parameters were optimised empirically on the basis of standard practice in deep 406 

network modelling. For example, the number of neurons for the fully connected layers was set 407 

as 24, and the output labels were predicted through softmax estimation with the same number 408 
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of LU categories. The learning rate and the epoch were set as 0.01 and 600 to learn the deep 409 

features through backpropagation. 410 

3.2.4 Benchmark approaches and parameter settings 411 

To validate the classification performance of the proposed Joint Deep Learning for LC and LU 412 

classification, three existing methods (i.e. multilayer perceptron (MLP), support vector 413 

machine (SVM), and Markov Random Field (MRF)) were used as benchmarks for LC 414 

classification, and three methods, MRF, object-based image analysis with support vector 415 

machine (OBIA-SVM), and the pixel-wise CNN (CNN), were used for benchmark evaluation 416 

of the LU classification. Detailed descriptions and parameters are provided as follows:  417 

MLP: The model structures and parameters for the multilayer perceptron were kept the same 418 

as the MLP model within the proposed Joint Deep Learning, with two hidden layers and 16 419 

nodes for each layer. Such consistency in parameter setting makes the baseline results 420 

comparable. 421 

SVM: A penalty value C and a kernel width σ within the SVM model are required to be 422 

parameterised. As suggested by Zhang et al., (2015), a wide parameter space (C and σ within 423 

[2-10, 210]) was used to exhaustively search the parameters through a grid-search with 5-fold 424 

cross validation. Such settings of parameters should result in high accuracies with support 425 

vectors formulating optimal hyperplanes among different classes. 426 

MRF: The Markov Random Field, a spatial contextual classifier, was taken as a benchmark 427 

comparator for both the LC and LU classifications. The MRF was constructed by the 428 

conditional probability formulated by a support vector machine (SVM) at the pixel level, which 429 

was parameterised through grid search with a 5-fold cross validation. Spatial context was 430 

incorporated by a neighbourhood window (7×7), and a smoothness level γ was set as 0.7. The 431 
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simulated annealing was employed to optimise the posterior probability distribution with 432 

iteration.  433 

OBIA-SVM: Multi-resolution segmentation was implemented initially to segment objects 434 

through the image. A range of features were further extracted from these objects, including 435 

spectral features (mean and standard deviation), texture (grey-level co-occurrence matrix) and 436 

geometry (e.g. perimeter-area ratio, shape index). In addition, the contextual pairwise similarity 437 

that measures the similarity degree between an image object and its neighbouring objects was 438 

deduced to account for the spatial context. All these hand-coded features were fed into a 439 

parameterised SVM for object-based classification.  440 

Pixel-wise CNN: The standard pixel-wise CNN was trained to predict each pixel across the 441 

entire image using densely overlapping image patches. The most crucial parameters that 442 

influence directly the performance of the pixel-wise CNN are the input patch size and the 443 

network depth (i.e. number of layers). As discussed by Längkvist et al., (2016), the input patch 444 

size was chosen from {28×28, 32×32, 36×36, 40×40, 44×44, 48×48, 52×52 and 56×56} to test 445 

the influence of contextual area on classification results. The optimal input image patch size 446 

for the pixel-wise CNN was found to be 48×48 to leverage the training sample size and the 447 

computational resources (e.g. GPU memory). The depth configuration of the CNN network is 448 

essential in classification accuracy since the quality of the learnt features is influenced by the 449 

levels of representations and abstractions. Followed by the suggestions from Chen et al. (2016), 450 

the number of layers for CNN network was set as six with three convolutional layers and three 451 

pooling layers to balance the complexity and the robustness of the network. Other CNN 452 

parameters were empirically tuned through cross validation. For example, the filter size was 453 

set to 3×3 of the convolutional layer with one stride, and the number of convolutional filters 454 

was set to 24. The learning rate was chosen as 0.01, and the number of epochs was set as 600 455 

to learn the features fully with backpropagation.  456 
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3.3 Classification results and analysis  457 

The classification performance of the proposed Joint Deep Learning using the above-458 

mentioned parameters was investigated in both S1 (experiment 1) and S2 (experiment 2). The 459 

LC classification results (JDL-LC) were compared with benchmarks, including the multilayer 460 

perceptron (MLP), support vector machine (SVM) and Markov Random Field (MRF); whereas, 461 

the LU classification results (JDL-LU), were benchmarked with MRF, Object-based image 462 

analysis with SVM (OBIA-SVM), and standard pixel-wise CNN. Visual inspection and 463 

quantitative accuracy assessment, with overall accuracy (OA) and the per-class mapping 464 

accuracy, were adopted to evaluate the classification results. In addition, two recently proposed 465 

indices, including quantity disagreement and allocation disagreement, instead of the Kappa 466 

coefficient, were used to summarise comprehensively the confusion matrix of the classification 467 

results (Pontius and Millones, 2011).  468 

3.3.1 LC-LU JDL Classification Iteration 469 

 470 

Figure 4 The overall accuracy curves for the Joint Deep Learning iteration of land cover (LC) and 471 

land use (LU) classification results in S1 and S2. The red dash line indicates the optimal accuracy for 472 

the LC and LU classification at iteration 10  473 

The proposed LC-LU JDL was implemented through iteration. For each iteration, the LC and 474 

LU classifications were implemented 10 times with 50% training and 50% testing sample sets 475 

split randomly using the Monte Carlo method, in which the testing samples of each run did not 476 
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involve the pixels that have been used during the training process. The average overall accuracy 477 

(OA) of each iteration (each repeated 10 times) was reported to demonstrate how the accuracy 478 

evolves during the iterative process. Figure 4 demonstrates the average OA of both S1 and S2 479 

through accuracy curves from iteration 1 to 15. It can be seen that the accuracies of LC 480 

classified by MLP in both S1 and S2 start from around 81%, and gradually increase along the 481 

process until iteration 10 with a tendency of being closer to each other, and reach the highest 482 

OA up to around 90% for both sites. After iteration 10 (i.e. from iteration 10 to 15), the OA 483 

tends to be stable (i.e. around 90%). A similar trend is found in LU classifications in the 484 

iterative process, with a lower accuracy than the LC classification at each iteration. Specifically, 485 

the OAs in S1 and S2 start from around 77.5% and 78.1% at iteration 1, and keep increasing 486 

and getting closer at each iteration, until reaching the highest (around 87%) accuracy at 487 

iteration 10 for both study sites, and demonstrate convergence at later iterations (i.e. being 488 

stable from iteration 10 to 15). Therefore, iteration 10 was found to provide the optimal solution 489 

for the joint deep learning model between LC and LU. 490 

3.3.2 JDL Land cover (JDL-LC) classification iteration 491 

LC classification results in S1 and S2, obtained by the JDL-Land cover (JDL-LC) through 492 

iteration, are demonstrated in Figures 5 and 6, respectively, with the optimal classification 493 

outcome (at iteration 10) marked by blue boxes. In Figure 5, four subsets of S1 at different 494 

iterations (1, 2, 4, 6, 8, and 10) are presented to provide better visualisation, with yellow and 495 

red circles highlighting correct and incorrect classification, respectively. The classification in 496 

iteration 1 was affected by the shadow cast in the images. For example, the shadows of the 497 

woodland on top of grassland demonstrated in Figure 5(a) (the red circle on the right side) were 498 

misclassified as Rail due to the influence of illumination conditions and shadow 499 

contaminations in the imagery. Also, misclassification between bare soil and asphalt appeared 500 

in the result of iteration 1, caused by within-class variation in the spectral reflectance of bare 501 
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land (red circles in Figure 5(a) and 5(c)). Further, salt and pepper effects were found in iteration 502 

1 with obvious confusion between different roof tiles and asphalt, particularly the 503 

misclassification between Concrete roof and Asphalt (red circles in Figure 5(b)), due to the 504 

huge spectral similarity between different physical materials and characteristics. Besides, the 505 

noisy effects were also witnessed in rural areas, such as the severe confusion between 506 

Woodland and Grassland, and the misclassifications between Crops and Grassland in 507 

agricultural areas (Figure 5(d)). These problems were gradually solved by the introduction of 508 

spatial information at iteration 2 and thereafter, where the relationship between LC and LU was 509 

modelled using a joint probability distribution which helped to introduce spatial context, and 510 

the misclassification was reduced through iteration. Clearly, the shadow (red circles in Figure 511 

5(a)) was successively modified and reduced throughout the process (iteration 2 – 8) with the 512 

incorporation of contextual information, and was completely eliminated in iteration 10 (yellow 513 

circle in Figure 5(a)). At the same time, the classifications demonstrated obvious salt-and-514 

pepper effects in the early iterations (red circles in iteration 2 – 8 of Figure 5(b)), but the final 515 

result appeared to be reasonably smooth with accurate characterisation of asphalt road and clay 516 

roof (yellow circles in Figure 5(b) of iteration 10). In addition, confusion between metal roof 517 

and concrete roof (iteration 1 – 8 with red circles in Figure 5(c)) was rectified step-by-step 518 

through iteration, with the entire building successfully classified as metal roof at iteration 10 519 

(yellow circle in Figure 5(c)). Moreover, the crops within Figure 5(d) was smoothed gradually 520 

from severe salt-and-pepper effects in iteration 1 (red circles in Figure 5(d)) to sufficiently 521 

smoothed representations in iteration 10 (yellow circle in Figure 5(d)). In short, a desirable 522 

result was achieved at iteration 10, where the LC classification was not only free from the 523 

influence of shadows and illuminations, but also demonstrated smoothness while keeping key 524 

land features well maintained (yellow circles in Figure 5(a-d)). For example, the small path 525 
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within the park was retained and classified as Asphalt at iteration 10, and the Grassland and 526 

Woodland were distinguished with high accuracy (yellow circle in Figure 5(d)). 527 

 528 

Figure 5 Four subset land cover classification results in S1 using Joint Deep Learning – Land cover (JDL-LC), 529 

the best results at iteration 10 were highlighted with blue box. The circles in yellow and red represent the correct 530 

and incorrect classification, respectively.  531 

 532 

In S2, the LC classification results demonstrated a similar trend as for S1, where iteration 10 533 

achieved the classification outputs with highest overall accuracy (Figure 4) and best visual 534 

appeal (Figure 6). The lowest classification accuracy was achieved in iteration 1, with obvious 535 

misclassification caused by the highly mixed spectral reflectance and the scattering of 536 

peripheral ground objects, together with salt-and-pepper effects throughout the classification 537 

results (Figure 6(c)). Such problems were tackled with increasing iteration (Figure 6(d-h)), 538 

where spatial context was gradually incorporated into the LC classification. The greatest 539 

improvement demonstrated with increasing iteration was the removal of misclassified shadows 540 
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within the classified maps. For example, the shadows of the buildings were falsely identified 541 

as water due to the similar dark spectral reflectance (Figure 6(c)). Such shadow effects were 542 

gradually reduced in Figure 6(d-g) and completely eliminated in Figure 6(h) at iteration 10, 543 

which was highlighted by blue box as the best classification result in JDL-LC (Figure 6(h)). 544 

Other improvements included the clear identification of Rail and Asphalt through iteration and 545 

the reduced noisy effects, for example, the misclassified scatter (asphalt) in the central region 546 

of bare soil was successfully removed in iteration 10. 547 

 548 

Figure 6 The land cover classification results in S2 using Joint Deep Learning – Land cover (JDL-LC), the best 549 

results at (h) iteration 10 were highlighted with blue box. 550 

 551 

3.3.3 JDL-Land use (JDL-LU) classification Iteration 552 

LU classifications from the JDL-Land use (JDL-LU) are demonstrated in Figures 7 and 8 for 553 

S1 (four subsets) and S2 (one subset), respectively, for iterations 1, 2, 4, 6, 8, and 10. Overall, 554 

the LU classifications in iteration 10 for both S1 and S2 are the optimal results with precise 555 

and accurate LU objects characterised through the joint distributions (in blue boxes), and the 556 

iterations illustrate a continuous increase in overall accuracy until reaching the optimum as 557 

shown by the dashed red line in Figure 4. 558 
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Specifically, in S1, several remarkable improvements have been achieved with increasing 559 

iteration, as marked by the yellow circles in iteration 10. The most obvious performance 560 

improvement is the differentiation between parking lot and highway. For example, a highway 561 

was misclassified as parking lot in iterations 1 to 4 (red circles in Figure 7(a)), and was 562 

gradually refined through the joint distribution modelling process with the incorporation of 563 

more accurate LC information (yellow circles in iteration 6 – 10). Such improvements can also 564 

be seen in Figure 7(c), where the misclassified parking lot was allocated to highway in 565 

iterations 1 to 8 (red circles), and was surprisingly rectified in iteration 10 (yellow circle). 566 

Another significant modification gained from the iteration process is the differentiation 567 

between agricultural areas and redeveloped areas, particularly for the fallow or harvested areas 568 

without pasture or crops. Figure 7(d) demonstrates the misclassified redeveloped area within 569 

the agricultural area from iterations 1 to 8 (highlighted by red circles), which was completely 570 

rectified as a smoothed agricultural field in iteration 10. In addition, the adjacent high-density 571 

residential areas and highway were differentiated throughout the iterative process. For example, 572 

the misclassifications of residential and highway shown in iteration 1 – 6 (red circles in Figure 573 

7(b)) were mostly rectified in iteration 8 and were completely distinguished in iteration 10 with 574 

high accuracy ((yellow circles in Figure 7(b)). Besides, the mixtures between complex objects, 575 

such as commercial and industrial, were modified throughout the classification process. For 576 

example, confusion between commercial and industrial in iterations 1 to 8 (red circles in Figure 577 

7(a)) were rectified in iteration 10 (yellow circle in Figure 7(a)), with precise LU semantics 578 

being captured through object identification and classification. Moreover, some small objects 579 

falsely identified as park and recreational areas at iterations 1 to 6, such as the high-density 580 

residential or railway within the park (red circles in Figure 7(a) and 7(c)), were accurately 581 

removed either at iteration 8 (yellow circle in Figure 7(a)) or at iteration 10 (yellow circle in 582 

Figure 7(c)). 583 



27 
 

 584 

Figure 7 Four subset land use classification results in S1 using Joint Deep Learning – Land use (JDL-LU), the 585 

best results at iteration 10 were highlighted with blue box. The circles in yellow and red represent the correct 586 

and incorrect classification, respectively.  587 

 588 

In S2, the iterative process also exhibits similar improvements with iteration. For example, the 589 

mixture of commercial areas and industrial areas in S2 (Figure 8(c)) was gradually reduced 590 

through the process (Figure 8(d-g)), and was surprisingly resolved at iteration 10 (Figure 8(h)), 591 

with the precise boundaries of commercial buildings and industrial buildings as well as the 592 

surrounding configurations identified accurately. Besides, the misclassification of parking lot 593 

as highway or redeveloped area was rectified through iteration. As illustrated in Figure 8(c-g), 594 

parts of the highway and redeveloped area were falsely identified as parking lot, but were 595 

accurately distinguished at iteration 10 (Figure 8(h)). Moreover, a narrow highway that was 596 

spatially adjacent to the railway, that was not identified at iteration 1 (Figure 8(c)), was 597 
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identified at iteration 10 (Figure 8(h)), demonstrating the ability of the proposed JDL method 598 

to differentiate small linear features.  599 

 600 

Figure 8 The land use classification results in S2 using Joint Deep Learning – Land use (JDL-LU), the best 601 

results at (h) iteration 10 were highlighted with blue box. 602 

3.3.4 Benchmark comparison for LC and LU classification  603 

To further evaluate the LC and LU classification performance of the proposed JDL method 604 

with the best results at iteration 10, a range of benchmark comparisons were presented. For the 605 

LC classification, a multilayer perceptron (MLP), support vector machine (SVM) and Markov 606 

Random Field (MRF) were benchmarked for both S1 and S2; whereas the LU classification 607 

took the Markov Random Field (MRF), Object-based image analysis with SVM classifier 608 

(OBIA-SVM) and a standard pixel-wise convolutional neural network (CNN) as benchmark 609 

comparators. The benchmark comparison results for overall accuracies (OA) of LC and LU 610 

classifications were demonstrated in Figure 9(a) and Figure 9(b), respectively. As shown by 611 

Figure 9(a), the JDL-LC achieved the largest OA of up to 89.64% and 90.72% for the S1 and 612 

S2, larger than the MRF of 84.78% and 84.54%, the SVM of 82.38% and 82.26%, and the 613 

MLP of 81.29% and 82.22%, respectively. For the LU classification in Figure 9(b), the 614 

proposed JDL-LU achieved 87.58% and 88.26% for S1 and S2, higher than those of CNN 615 
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(84.08% and 83.32%), OBIA-SVM (80.26% and 80.42%), and MRF (79.38% and 79.26%) 616 

respectively.  617 

In addition to the OA, the proposed JDL method achieved consistently the smallest values for 618 

both Quantity and Allocation Disagreement, respectively. From Table 2 and 3, the JDL-LC has 619 

the smallest disagreement in terms of LC classification, with an average of 6.93% and 6.73% 620 

for S1 and S2 accordingly, which is far smaller than for any of the three benchmarks. Similar 621 

patterns were found in LU classification (Table 4 and 5), where the JDL-LU acquired the 622 

smallest average disagreement in S1 and S2 (9.98% and 9.16%), much smaller than for the 623 

MRF (20.32% and 19.11%), OBIA-SVM (18.59% and 16.82%), and CNN (14.23% and 624 

13.99%).  625 

 626 

Figure 9 Overall accuracy comparisons among the MLP, SVM, MRF, and the proposed JDL-LC for land cover 627 

classification, and the MRF, OBIA-SVM, CNN, and the proposed JDL-LU for land use classification. 628 

Per-class mapping accuracies of the two study sites (S1 and S2) were listed to provide detailed 629 

comparison of each LC (Table 2 and Table 3) and LU (Table 4 and Table 5) category. Both the 630 

proposed JDL-LC and the JDL-LU constantly report the most accurate results in terms of class-631 

wise classification accuracy highlighted in bold font within the four tables.  632 

For the LC classification (Table 2 and Table 3), the mapping accuracies of Clay roof, Metal 633 

roof, Grassland, Asphalt and Water are higher than 90%, with the greatest accuracy obtained 634 

by water in S1 (98.52%) and S2 (98.33%), respectively. The most remarkable increase in 635 
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accuracy can be seen in Grassland with an accuracy of up to 90.05% and 90.63%, respectively, 636 

much higher than for the other three benchmarks, including the MRF (75.53% and 75.45%), 637 

the SVM (73.06% and 73.56%), and the MLP (70.63% and 72.22%). Another significant 638 

increase in accuracy was found in Woodland through JDL-LC with the mapping accuracy of 639 

88.52% (S1) and 88.23% (S2), dramatically higher than for the MRF of 76.28% and 75.32%, 640 

SVM of 70.52% and 70.22%, and MLP of 69.02% and 69.59%, respectively. Likewise, the 641 

Concrete roof also demonstrated an obvious increase in accuracy from just 69.46% and 70.58% 642 

classified by the MLP to 79.47% and 79.27% in S1 and S2, respectively, even though the 643 

mapping accuracy of the Concrete roof is still relatively low (less than 80%). In addition, 644 

moderate accuracy increases have been achieved for the classes of Rail and Bare soil with an 645 

average increase of 5.28% and 5.51%, respectively. Other LC classes such as Clay roof, Metal 646 

roof, and Water, demonstrate only slight increases using the JDL-LC method in comparison 647 

with other benchmark approaches, with an average of 1% to 3% accuracy increases among 648 

them. 649 

Table 2. Per-class and overall land cover accuracy comparison between MRF, OBIA-SVM, Pixel-wise 650 

CNN, and the proposed JDL-LC method for S1. The quantity disagreement and allocation disagreement 651 

are also shown. The largest classification accuracy and the smallest disagreement are highlighted in 652 

bold font.  653 

Land Cover Class (S1) MLP SVM MRF JDL-LC 

Clay roof 89.58% 89.33% 89.18% 92.38% 

Concrete roof 69.46% 69.79% 73.23% 79.47% 

Metal roof 89.35% 90.74% 90.16% 91.58% 

Woodland 69.02% 70.52% 76.28% 88.52% 

Grassland 70.63% 73.06% 75.53% 90.05% 

Asphalt 88.42% 88.29% 89.42% 91.22% 

Rail 82.05% 82.42% 83.56% 87.26% 

Bare soil 80.12% 80.23% 82.44% 85.72% 



31 
 

Crops 84.14% 84.64% 86.59% 89.64% 

Water 97.18% 97.45% 98.36% 98.52% 

Overall Accuracy (OA) 81.29% 82.38% 84.78% 89.64% 

Quantity Disagreement 17.18% 16.94% 11.28% 7.63% 

Allocation Disagreement 16.26% 16.41% 13.47% 6.23% 

Table 3. Per-class and overall land cover accuracy comparison between MRF, OBIA-SVM, Pixel-wise 654 

CNN, and the proposed JDL-LC method for S2. The quantity disagreement and allocation disagreement 655 

are also shown. The largest classification accuracy and the smallest disagreement are highlighted in 656 

bold font. 657 

Land Cover Class (S2) MLP SVM MRF JDL-LC 

Clay roof 90.06% 90.24% 89.55% 92.85% 

Concrete roof 70.58% 70.42% 74.21% 79.27% 

Metal roof 90.12% 90.85% 90.09% 91.32% 

Woodland 69.59% 70.22% 75.32% 88.23% 

Grassland 72.22% 73.56% 75.45% 90.63% 

Asphalt 89.46% 89.53% 89.42% 91.64% 

Rail 83.18% 83.14% 84.36% 88.52% 

Bare soil 80.21% 80.36% 82.25% 85.63% 

Crops 85.01% 85.28% 87.84% 90.79% 

Water 97.54% 97.25% 98.02% 98.33% 

Overall Accuracy (OA) 82.22% 82.26% 84.54% 90.72% 

Quantity Disagreement 16.31% 16.41% 11.32% 7.24% 

Allocation Disagreement 15.79% 15.93% 12.15% 6.22% 

Table 4. Per-class and overall land use accuracy comparison between MRF, OBIA-SVM, Pixel-wise 658 

CNN, and the proposed JDL-LU method for S1. The quantity disagreement and allocation disagreement 659 

are also shown. The largest classification accuracy and the smallest disagreement are highlighted in 660 

bold font. 661 

Land Use Class (S1) MRF OBIA-SVM CNN JDL-LU 

Commercial 70.06% 72.84% 73.24% 82.42% 

Highway 77.24% 78.06% 76.15% 79.65% 

Industrial 67.25% 69.03% 71.21% 84.73% 
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High-density residential 81.56% 80.38% 80.02% 86.45% 

Medium-density residential 82.71% 84.37% 85.24% 88.57% 

Park and recreational area 91.02% 93.12% 92.33% 97.06% 

Agricultural area 85.08% 88.55% 87.43% 90.94% 

Parking lot 78.04% 80.12% 83.75% 91.86% 

Railway 88.05% 90.63% 86.53% 91.89% 

Redeveloped area 89.08% 90.07% 89.24% 90.62% 

Harbour and sea water 97.32% 98.38% 98.51% 98.44% 

Overall Accuracy (OA) 79.38% 80.26% 84.08% 87.58% 

Quantity Disagreement 20.66% 18.35% 14.37% 10.28% 

Allocation Disagreement 19.97% 18.82% 14.08% 9.67% 

Table 5 Per-class and overall land use accuracy comparison between MRF, OBIA-SVM, Pixel-wise 662 

CNN, and the proposed JDL-LU method for S2. The quantity disagreement and allocation disagreement 663 

are also shown. The largest classification accuracy and the smallest disagreement are highlighted in 664 

bold font. 665 

Land Use Class (S2) MRF OBIA-SVM CNN JDL-LU 

Commercial 71.06% 72.43% 74.13% 82.67% 

Highway 81.41% 79.22% 80.57% 84.25% 

Industrial 72.53% 72.08% 74.85% 83.22% 

Residential 78.37% 80.42% 80.52% 84.91% 

Parking lot 79.64% 82.05% 84.36% 92.07% 

Railway 85.91% 88.17% 88.31% 91.49% 

Park and recreational area 88.45% 89.52% 90.78% 94.57% 

Agricultural area 84.62% 87.12% 86.54% 91.43% 

Redeveloped area 82.54% 84.14% 87.09% 93.74% 

Canal 90.62% 92.27% 94.16% 98.72% 

Overall Accuracy (OA) 79.26% 80.42% 83.32% 88.26% 

Quantity Disagreement 19.45% 17.08% 14.29% 9.84% 

Allocation Disagreement 18.76% 16.55% 13.68% 8.48% 

 666 
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With respect to the LU classification, the proposed JDL-LU achieved excellent classification 667 

accuracy for the majority of LU classes at both S1 (Table 4) and S2 (Table 5). Five LU classes, 668 

including Park and recreational area, Parking lot, Railway, Redeveloped area in both study 669 

sites, as well as Harbour and sea water in S1 and Canal in S2, achieved very high accuracy 670 

using the proposed JDL-LU method (larger than 90% mapping accuracy), with up to 98.44% 671 

for Harbour and sea water, 98.72% for Canal, and an average of 95.82% for the Park and 672 

recreational area. In comparison with other benchmarks, significant increases were achieved 673 

for complex LU classes using the proposed JDL-LU method, with an increase in accuracy of 674 

12.36% and 11.61% for the commercial areas, 17.48% and 10.69% for industrial areas, and 675 

13.82% and 12.43% for the parking lot in S1 and S2, respectively. Besides, a moderate increase 676 

in accuracy was obtained for the class of park and recreational areas and the residential areas 677 

(either high-density or medium-density), with around 6% increase in accuracy for both S1 and 678 

S2. Other LU classes with relatively simple structures, including highway, railway, and 679 

redeveloped area, demonstrate no significant increase with the proposed JDL-LU method, with 680 

less than 3% accuracy increase relative to other benchmark comparators.  681 

3.3.5 Model Robustness with Respect to Sample Size  682 

To further assess the model robustness and generalisation capability, the overall accuracies for 683 

both LC and LU classifications at S1 and S2 were tested using reduced per-class training set 684 

sample sizes of 10%, 30%, and 50% (Figure 10), with the boxplots showing the mean 685 

classification accuracy with a 95% confidence internal. The average overall accuracy (i.e. the 686 

mean value of the boxplot) for each training set was reported through a repetition of 10 different 687 

training samples, to demonstrate statistical robustness. Similar patterns in overall accuracy as 688 

a function of sample size reduction were observed for S1 and S2. From Figure 10, it is clear 689 

that JDL-LC and JDL-LU are the least sensitive methods to reduced sample size, with no 690 

significant decrease in terms of overall accuracies while 50% of the training samples were used. 691 
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Thus, the proposed JDL method demonstrates the greatest model robustness and the least 692 

sample size requirement in comparison with other benchmark approaches (Figure 10). 693 

 694 

Figure 10 The effect of reducing sample size (50%, 30%, and 10% of the original training sample size 695 

per class) on the accuracy of (a) land cover classification (JDL-LC) and (b) land use classification 696 

(JDL-LU), and their respective benchmark comparators at study sites S1 and S2. The boxplot here 697 

represents the mean classification accuracy with a 95% confidence interval. 698 

For the LC classification (Figure 10(a)), the accuracy distributions of the MLP and SVM were 699 

similar, although the SVM was slightly less sensitive to sample size reduction than the MLP, 700 

with about 1% higher OA for the 50% sample size reduction. The MRF was the most sensitive 701 

method to LC sample reduction, with less than 60% in OA for both S1 and S2 in terms of 50% 702 

sample size. The JDL-LC was the least sensitive to the reduction of training sample size, with 703 

an average around 88%, 80%, and 73% in the two study areas for the 10%, 30%, and 50% of 704 

sample size reduction, respectively, far outperforming the benchmarks in terms of model 705 

robustness (Figure 10(a)).  706 
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In terms of the LU classification (Figure 10(b)), the CNN was most sensitive to sample size 707 

reduction, with the lowest OA (53% and 56%) when 50% samples were used in S1 and S2, 708 

respectively. MRF and OBIA-SVM were less sensitive to sample size reduction than the CNN, 709 

with an OA close to 60% in average while reducing the sample size to 50%. The JDL-LU, 710 

however, demonstrated the most stable performance with respect to sample size reduction, 711 

achieving a high overall accuracy in average at study sites S1 and S2, with about 85.5%, 80%, 712 

and 73% for the sample size reduction of 10%, 30%, and 50%, respectively.  713 

4. Discussion 714 

This paper proposed a Joint Deep Learning (JDL) model to characterise the spatial and 715 

hierarchical relationship between LC and LU. The complex, nonlinear relationship between 716 

two classification schemes was fitted through a joint probability distribution such that the 717 

predictions were used to update each other iteratively to approximate the optimal solutions, in 718 

which both LC and LU classification results were obtained with the highest classification 719 

accuracies (iteration 10 in our experiments) for the two study sites. This JDL method provides 720 

a general framework to jointly classify LC and LU from remotely sensed imagery in an 721 

automatic fashion without formulating any ‘expert rules’ or domain knowledge.  722 

4.1 Joint deep learning model 723 

The joint deep learning was designed to model the joint distributions between LC and LU, in 724 

which different feature representations were bridged to characterise the same reality. Figure 725 

11(a) illustrates the distributions of LC (in red) and LU (in blue) classifications, with the 726 

conditional dependency captured through joint distribution modelling (in green) to infer the 727 

underlying causal relationships. The probability distribution of the LC within the JDL 728 

framework was derived by a pixel-based MLP classifier as P(CLC|LU-Result, Image); that is, 729 

the LC classification was conditional upon the LU results together with the original remotely 730 

sensed images. In contrast, the distribution of LU deduced by the CNN model (object-based 731 
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CNN) was represented as a conditional probability, P(CLU|LC-Result), associated with the LU 732 

classification and the conditional probabilities of the LC result. The JDL method was 733 

developed based on Bayesian statistics and inference to model the spatial dependency over 734 

geographical space. We do not consider any prior knowledge relative to the joint probability 735 

distribution, and the conditional probabilities were deduced by MLP and CNN for joint model 736 

predictions and decision-making. Increasing trends were demonstrated for the classification 737 

accuracy of both LC and LU in the two distinctive study sites at each iteration (Figure 4), 738 

demonstrating the statistical fine-tuning process of the proposed JDL. To the best of our 739 

knowledge, the joint deep learning between LC and LU developed in this research is 740 

completely novel in the remote sensing community and is a profound contribution that has 741 

implications for the way that LU-LC classification should be performed in remote sensing and 742 

potentially in other fields. Previously in remote sensing only a single classification hierarchy 743 

(either LC or LU) was modelled and predicted, such as via the Markov Random Field with 744 

Gibbs joint distribution for LC characterisation (e.g. Schindler, 2012; Zheng and Wang, 2015; 745 

Hedhli et al., 2016). They are essentially designed to fit a model that can link the land cover 746 

labels x to the observations y (e.g. satellite data) by considering the spatial contextual 747 

information (through a local neighbourhood) (Hedhli et al., 2016). Our model follows the same 748 

principle of Markov theory, but aims to capture the latent relationships between LC 749 

classification (y1) and LU classification (y2) through their joint distribution. The JDL model 750 

was applied at the pixel level and classification map level to connect effectively the ontological 751 

knowledge at the different levels (e.g. LC and LU in this case). Essentially, the deep learning 752 

method (CNN) plays a fundamental role within the JDL framework formulated as part of an 753 

iterative Markov process, where the spatial patterns are characterised through hierarchical 754 

feature representations. Some previous work has recognised that an iterative classification 755 

process could potentially lead to high accuracy, for example, the multi-process classification 756 
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using spatial context (road structure, morphology) (Mountrakis and Luo, 2011), and the 757 

iterative OBIA (spectra, texture and shape) by integrating bottom-up classification and top-758 

down feedback (Zhang et al., 2018). Their methods are, however, based on traditional human-759 

designed features or rules that are subject to user knowledge and expertise, whereas this JDL 760 

model incorporates deep learning to automatically extract spatial and hierarchical features, and 761 

to model the classification hierarchies through the joint distribution. The proposed 762 

methodology offers a new outlook and an important contribution to the remote sensing 763 

community by integrating the deep learning method (CNN), as the most appropriate approach 764 

to higher-order land use classification, into the iterative joint modelling framework. 765 

4.2 Mutual Benefit of MLP and CNN Classification  766 

The pixel-based multilayer perceptron (MLP) has the capacity to identify pixel-level LC class 767 

purely from spectral characteristics, in which the boundary information can be precisely 768 

delineated with spectral differentiation. However, such a pixel-based method cannot guarantee 769 

high classification accuracy, particularly with fine spatial resolution, where single pixels 770 

quickly lose their thematic meaning and discriminative capability to separate different LC 771 

classes (Xia et al., 2017). Spatial information from a contextual neighbourhood is essential to 772 

boost classification performance. Deep convolutional neural networks (CNN), as a contextual-773 

based classifier, integrate image patches as input feature maps, with high-level spatial 774 

characteristics derived through hierarchical feature representations, which are directly 775 

associated with LU with complex spatial structures and patterns. However, CNN models are 776 

essentially patch-wise models applied across the entire image and are dependent upon the 777 

specific scale of representation, in which boundaries and small linear features may be either 778 

blurred or completely omitted throughout the convolutional processes. Therefore, both the 779 

pixel-based MLP and patch-based CNN exhibit pros and cons in LC and LU classification.  780 
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 781 

Figure 11 Joint deep learning with joint distribution modelling (a) through iterative process for pixel-782 

level land cover (LC) and patch-based land use (LU) extraction and decision-making (b). 783 

The major breakthrough of the proposed JDL framework is the interaction between the pixel-784 

based LC and patch-based LU classifications, realised by borrowing information from each 785 

other in the iterative updating process. Within the JDL, the pixel-based MLP was used for 786 

spectral differentiation amongst distinctive LCs, and the CNN model was used to identify 787 

different LU objects through spatial feature representations. Their complementary information 788 

was captured and shared through joint distribution modelling to refine each prediction through 789 

iteration, ultimately to increase classification accuracy at both levels. This iterative process is 790 

illustrated in Figure 11(b) as a cyclic graph between pixel-level LC and patch-based LU 791 

extractions and decision-making. The method starts with pixel-based classification using MLP 792 

applied to the original image to obtain the pixel-level characteristics (LC). Then this 793 

information (LC conditional probabilities) was fed into the LU classification using the CNN 794 

model as part of modelling the joint distributions between LC and LU, and to infer LU 795 

categories through patch-based contextual neighbourhoods. Those LU conditional probabilities 796 

learnt by the CNN and the original image were re-used for LC classification through the MLP 797 

classifier with spectral and spatial representations. Such refinement processes are mutually 798 

beneficial for both classification levels. For the LU classes predicted by the CNN model, the 799 

JDL is a bottom-up procedure respecting certain hierarchical relationships which allows 800 

gradual generalisation towards more abstract feature representations within the image patches. 801 
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This leads to strong invariance in terms of semantic content, with the increasing capability to 802 

represent complex LU patterns. For example, the parking lot was differentiated from the 803 

highway step-by-step with increasing iteration, and the commercial and industrial LUs with 804 

complex structures were distinguished through the process. However, such deep feature 805 

representations are often at the cost of pixel-level characteristics, which give rise to 806 

uncertainties along the boundaries of objects and small linear features, such as small paths. The 807 

pixel-based MLP classifier was used here to offer the pixel-level information for the LC 808 

classification within the neighbourhood to reduce such uncertainties. The MLP within the JDL 809 

incorporated both spectral (original image) and the contextual information (learnt from the LU 810 

hierarchy) through iteration to strengthen the spatial-spectral LC classification and produce a 811 

very high accuracy. For example, the misclassified shadows in the image were gradually 812 

removed with increasing iteration via contextual information, and the huge spectral confusion 813 

amongst different LCs, such as between concrete roof and asphalt, was successively reduced 814 

through the JDL. Meanwhile, an increasingly accurate LC classification via increasing iteration 815 

was (re)introduced into the CNN model, which re-focused the starting point of the CNN within 816 

the Joint Deep Learning back to the pixel level before convolving with small convolutional 817 

filters (3×3). As a consequence, ground features with diverse scales of representations were 818 

characterised, in which small features and boundary information were preserved in the LU 819 

classification. For example, the canal (a linear feature) was clearly identified in S2 (Figure 8). 820 

From an artificial intelligence perspective, the JDL mimics the human visual interpretation, 821 

combining information from different levels to increase semantic meaning via joint and 822 

automatic reinforcement. Such joint reinforcement through iteration has demonstrated reduced 823 

sample size requirement and enhanced model robustness compared with standard CNN models 824 

(Figure 10), which has great generalisation capability and practical utility. There are some other 825 

techniques such as Generative Adversarial Networks (GANs) that are developed for continuous 826 
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adversarial learning to enhance the capability of deep learning models, but in a competitive 827 

fashion. Therefore, the joint reinforcement in JDL has great potential to influence the future 828 

development of AI and machine learning, and the further application in machine vision. 829 

5. Conclusions 830 

Land cover (LC) and land use (LU) are intrinsically hierarchical representing different 831 

semantic levels and different scales, but covering the same continuous geographical space. In 832 

this paper, a novel joint deep learning (JDL) framework, that involves both the MLP and CNN 833 

classification models, was proposed for joint LC and LU classification. In the implementation 834 

of this JDL, the spatial and hierarchical relationships between LC and LU were modelled via a 835 

Markov process using iteration. The proposed JDL framework represents a new paradigm in 836 

remote sensing classification in which the previously separate goals of LC (state; what is there?) 837 

and LU (function; what is going on there?) are brought together in a single unifying framework. 838 

In this JDL, the pixel-based MLP low-order representation and the patch-based CNN higher-839 

order representation interact and update each other iteratively, allowing the refinement of both 840 

the LC and LU classifications with mutual complementarity and joint improvement.  841 

The classification of LC and LU from VFSR remotely sensed imagery remains a challenging 842 

task due to high spectral and spatial complexity of both. Experimental results in two distinctive 843 

urban and suburban environments, Southampton and Manchester, demonstrated that the JDL 844 

achieved by far the most accurate classifications for both LC and LU, and consistently 845 

outperformed the benchmark comparators, which is a striking result. In particular, complex LC 846 

classes covered by shadows that were extremely difficult to characterise were distinguished 847 

precisely, and complex LU patterns (e.g. parking lots) were recognised accurately. Therefore, 848 

this research effectively addresses the complex LC and LU classification task using VFSR 849 

remotely sensed imagery in a joint and automatic manner. 850 
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The MLP- and CNN-based JDL provides a general framework to jointly learn hierarchical 851 

representations at a range of levels and scales, not just at the two levels associated with LC and 852 

LU. For example, it is well known that LC can be defined at multiple levels as a set of states 853 

nested within each other (e.g. woodland can be split into deciduous and coniferous woodland). 854 

Likewise, and perhaps more interestingly, LU can be defined at multiple levels nested within 855 

each other to some degree. For example, a golf course is a higher-order and larger area 856 

representation than a golf shop and golf club house, both of which are LUs but nest within the 857 

golf course. The JDL proposed here should be readily generalisable to these more complex 858 

ontologies. In the future, we also aim to expand the JDL framework to other data sources (e.g. 859 

Hyperspectral, SAR, and LiDAR data) and to further test the generalisation capability and 860 

model transferability to other regions. The corresponding accuracy assessment framework 861 

would be consolidated by designing and implementing a fully generalisable approach. It is also 862 

of interest to place the JDL framework in a time-series setting for LC and LU change detection 863 

and simulation. These topics will be the subject of future research.  864 
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Figure Captions 1047 

Figure 1 The general workflow of the land cover (LC) and land use (LU) joint deep learning (JDL). 1048 

Figure 2 The two study areas: S1 (Southampton) and S2 (Manchester) with highlighted regions 1049 

representing the majority of land use categories. 1050 

Figure 3 Model architectures and structures of the CNN with 96×96 input window size and eight-layer 1051 

depth. 1052 

Figure 4 The overall accuracy curves for the Joint Deep Learning iteration of land cover (LC) and land 1053 

use (LU) classification results in S1 and S2. The red dash line indicates the optimal accuracy for the LC 1054 

and LU classification at iteration 10. 1055 

Figure 5 Four subset land cover classification results in S1 using Joint Deep Learning – Land cover 1056 

(JDL-LC), the best results at iteration 10 were highlighted with blue box. The circles in yellow and red 1057 

represent the correct and incorrect classification, respectively. 1058 
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Figure 6 The land cover classification results in S2 using Joint Deep Learning – Land cover (JDL-LC), 1059 

the best results at (h) iteration 10 were highlighted with blue box. 1060 

Figure 7 Four subset land use classification results in S1 using Joint Deep Learning – Land use (JDL-1061 

LU), the best results at iteration 10 were highlighted with blue box. The circles in yellow and red 1062 

represent the correct and incorrect classification, respectively.  1063 

Figure 8 The land use classification results in S2 using Joint Deep Learning – Land use (JDL-LU), the 1064 

best results at (h) iteration 10 were highlighted with blue box. 1065 

Figure 9 Overall accuracy comparisons among the MLP, SVM, MRF, and the proposed JDL-LC for 1066 

land cover classification, and the MRF, OBIA-SVM, CNN, and the proposed JDL-LU for land use 1067 

classification. 1068 

Figure 10 The effect of reducing sample size (50%, 30%, and 10% of the original training sample size 1069 

per class) on the accuracy of (a) land cover classification (JDL-LC) and (b) land use classification (JDL-1070 

LU), and their respective benchmark comparators at study sites S1 and S2. The boxplot here represents 1071 

the mean classification accuracy with a 95% confidence interval.  1072 

Figure 11 Joint deep learning with joint distribution modelling (a) through iterative process for pixel-1073 

level land cover (LC) and patch-based land use (LU) extraction and decision-making (b). 1074 


