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ABSTRACT

Developing applications for sensor networks is a challeng-
ing task. Most programming systems narrowly focus on
programming issues while ignoring that programming rep-
resents only a tiny fraction of the typical life cycle of an
application. Furthermore, application developers face the
prospect of investing a lot of time in writing code that has
“nothing” to do with the actual application logic. A lot
of this code is related to different life cycle concerns such
as distributed programming issues or runtime services (e.g.
group communication or time synchronisation). In this pa-
per we introduce an engineering method that simplifies the
development of sensor network applications by providing
comprehensive life cycle support for programming as well
as ongoing evolutionary modification of embedded applica-
tions throughout the application life cycle. The proposed
engineering method is realised in form of a concrete system
called RuleCaster. To verify the utility of the engineering
method and RuleCaster we use a scenario-based evaluation
method.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms
Design

Keywords

Assessment, middleware, sensor networks, separation of con-
cerns, software engineering

1. INTRODUCTION

Wireless sensor networks are one important building block
towards the realisation of context-aware and intelligent envi-
ronments. They bridge the gap between the physical world
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and the computing system. These networks present the chal-
lenge of building large-scale distributed applications tightly-
integrated with the physical world.

Research has focused on functionality and operational as-
pects such as making hardware energy-efficient, developing
suitable MAC-protocols and providing generic services such
as data aggregation or localisation. Despite impressive re-
search progress it is still very hard to build applications.
There are several reasons for this problem.

Programming distributed applications for large-scale net-
works is difficult. Distributed application code expresses
the application logic in terms of a set of distributed tasks
for individual nodes. Hence, the application logic has to be
decomposed into these tasks. Traditionally, this is done by
the application developer. However, manually decomposing
an application for thousands or tens of thousands of sensor
nodes is not feasible anymore.

Dealing with changing application requirements and a dy-
namic infrastructure is hard. The application developer is
forced to address issues that can be attributed to differ-
ent life cycles when implementing applications. First, the
application logic has to be analysed and separated into a
set of distributed tasks for the underlying network. Then,
the tasks have to be implemented for the specific hardware
which poses a range of runtime problems: common software
services and data structures for data aggregation, group
communication, time synchronisation, application monitor-
ing etc. have to be coded. Apart from these development
time issues, we have to keep in mind the other life cycles of
an application such as future changes to the infrastructure
and the application requirements.

Middleware approaches provide basic solutions to some of
the operational aspects of sensor network applications such
as data aggregation or code updates. We argue that these
middleware solutions are a good starting point. However,
a more comprehensive engineering method is needed that
integrates the middleware but also supports the development
of large-scale sensor network applications.

The main contribution of this paper is the introduction of
a novel engineering method that separates the development
of an application into concerns that can be addressed indi-
vidually. Accordingly, the RuleCaster system — a concrete
instance of this process — allows the application program-
mer to express global application behaviour with global lan-
guage abstractions. A mapping process analyses the applica-
tion definition and automatically generates the distributed
application code which can be executed by the middleware
of the given network infrastructure. The main benefits of



this approach are:

e RuleCaster moves away from a node-centric program-
ming model to a network-centric model. Applications
are developed for the network as a whole, rather than
for each individual node.

e RuleCaster supports different development phases (ini-
tial implementation, deployment and maintenance) in
a unified way.

This paper is organised as follows. In the following sec-
tion we propose an engineering method based on separation
of concerns. In Section 3 we discuss some related work on
programming of wireless sensor networks. Section 4 presents
RuleCaster, a system that implements the proposed engi-
neering process. Section 5 addresses the role of the middle-
ware in the proposed engineering method. In Section 6 we
first introduce a scenario-based evaluation method and then
evaluate RuleCaster and the underlying engineering process.
Section 7 concludes this paper.

2. ENGINEERING AN APPLICATION
2.1 Problem Analysis

We envision sensor networks to be an important part of
the environment we live and work in. As emphasised by
Rodden and Benford [17], living and work environments are
subject to continuous transformation: they are modified by
the people who inhabit them in a variety of ways, for a va-
riety of purposes and with different frequencies. This obser-
vation also has an effect on the requirements of a computing
infrastructure. As such, it is subject to the same dynamics
as the rest of our living and work environments. As users we
want to change or extend the application logic from time to
time. With better technology becoming available the net-
work or parts of it should be exchanged without greatly
affecting the running applications. Or by adding nodes and
replicating tasks we want to make the application more re-
liable.

Upgrading and modifying embedded software is difficult
because of the tight coupling between hardware and soft-
ware. These application changes take place during three life
cycle phases, namely development, deployment and mainte-
nance (cf. Figure 1). Not only do we have to address these
change scenarios after the initial deployment, but we also
have to consider them when initially developing the applica-
tion. For example, the application developer has to decide if
it is better to implement a centralised or a highly-distributed
solution. Or she has to keep future changes to the infras-
tructure (e.g. addition of nodes) in mind when implementing
networking protocols. The former issue can be attributed to
the deployment of an application, while the latter one is a
maintenance challenge.

2.2 Approach

We argue that these dynamics should be addressed by
a suitable engineering method that integrates the different
life cycle concerns into a unified system. We have identi-
fied three major concerns the above-mentioned application
changes can be attributed to, namely logical structure of an
application, physical structure of an application and infras-
tructure (cf. Figure 2).
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Figure 1: The different life cycle phases of wireless
sensor network applications
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Figure 2: Development concerns
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By separating the problem of developing an application for
such an environment into these three concerns we can deal
with them individually. The logical structure describes how
functional elements and application states are connected for
describing the application logic. Changes to the application
logic refer to changes in the observable behaviour of an ap-
plication. For example, while an application might initially
be defined to open the window when the room is too hot,
a new application logic might turn on the air conditioning
instead.

The physical structure describes where computational el-
ements are executed and where application states are stored
in the network infrastructure. Changes to the physical struc-
ture of an application refer to changes in the distribution of
computing tasks to individual nodes. For example, a task
initially performed by a central node is distributed over sev-
eral nodes in order to improve reliability and decrease energy
consumption.

The infrastructure is the actual sensor network that stores
and computes the application states. It is concerned with
the runtime of the application whereas the logical structure
and the physical structure address development time con-
cerns. Changes to the infrastructure refer to changes in the
underlying hardware and runtime system (e.g. network sys-
tem or middleware). For example, a system might need to
be updated when a new generation of hardware devices be-
comes available with different cpu, memory and radio. An-
other example is modifying a system by adding or removing
nodes.

3. RELATED WORK

One main issue that makes application development for
large-scale networks difficult is the decomposition problem.
The programmer is faced with distributed programming prob-
lems; he has to decide how to express the global behaviour
of an application in terms of distributed tasks. This global
to local mapping is a delicate problem. Two broad classes
of approaches have emerged in the literature to address this
problem. The first one focuses on providing high-level ab-
stractions and middleware that make the communication be-



tween modules residing on different nodes easier (e.g [19, 15,
18, 14, 8]). The second one consists of a number of macropro-
gramming systems (e.g. [7, 12, 16]). These systems provide
abstractions that allow the implementation of an applica-
tion for the network as a whole, rather than the individual
nodes. The middleware approaches focus on infrastructure
(cf. Section 2) issues whereas the macroprogramming ap-
proaches mainly address the logical structure of an applica-
tion. Each of these two classes focus on a different concern
of our engineering method. We argue that a successful sys-
tem has to address all three concerns. In Section 4 we briefly
describe a concrete system that implements this engineering
method. This system is related to these macroprogramming
approaches in terms of a language abstraction to describe
the logical structure. We integrated it into our engineering
method in order to also address the dynamics of the physical
structure and the infrastructure.

The need for considering different life cycles in a program-
ming system is addressed in work on distributed software
architectures [13]. The main principle is that the config-
uration language used for structural description should be
separate from the programming language used for basic pro-
gramming. It allows the physical distribution to be specified
completely orthogonal to logical structure. This simplifies
future changes to components and their distributed struc-
ture. Our separation is similar to this. However, we explic-
itly address dynamic large-scale sensor networks instead of
general distributed systems. This allows us to use a high-
level language for implementing the application logic for the
network as a whole. The physical structure can be automat-
ically derived from this global application definition. This
simplifies the development as the physical structure does not
have to be explicitly described by the application developer.

4. THE RULECASTER SYSTEM

In this section we briefly describe RuleCaster, an exem-
plary system that implements the engineering method in-
troduced in Section 2. For more information the reader is
referred to [3, 1]. Figure 3 depicts the architecture of this
system. The structure of the engineering method is reflected
in this architecture.

The RuleCaster Application Language (RCAL) provides
language abstractions that address the network as one dis-
tributed unit. This allows the application developer to ex-
press application logic for the network as a whole instead of
the single nodes. Basically the application developer only
has to deal with the logical structure of an application.
RCAL is based on a state-based programming model [2].
Rules are used to define conditions for transitions from one
state to another state. Previous work showed that people
are naturally inclined to use rules when asked to describe the
behaviour of a smart space [4]. Furthermore, state models
are naturally used for describing physical systems [11]. A
rule consists of a goal and one or several conditions. Condi-
tions build the elementary building blocks of an application;
rules are used to combine these conditions into the logical
structure of the application.

As mentioned in Section 2 the logical structure is orthog-
onal to the physical structure of an application. The log-
ical structure describes global application behaviour. This
logical structure can then be transformed into the physi-
cal one. Basically we have to decide where in the network
application states are computed and stored. Although this
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Figure 3: The architecture of the RuleCaster sys-
tem. The application, which is specified in RCAL
is split by the compiler into individual tasks and
distributed over the network of sensor nodes. The
distribution strategy is a compiler plug-in that influ-
ences the distribution process based on some quality
model such as energy consumption or robustness.

transformation does not affect the functionality of an appli-
cation (given the correct implementation), it does affect the
quality (or non-functional) aspects of the application such
as energy-consumption, reliability, security etc.

This transformation can be done in different ways. The
functional elements can be manually assigned to nodes in
the network, or an automatic process can find a solution
based on a given cost model. We implemented a primar-
ily automatic process influenced by some manually adjusted
parameters. This translation is done by the RuleCaster com-
piler; it transforms the logical structure into a set of tasks.
In order to generate and assign the individual tasks, the
compiler has to have a view of the network. To achieve this,
RuleCaster uses a dynamic network model which provides
the compiler with a list of properties (e.g. location, hard-
ware specification etc.) and available services. Services give
access to sensors and actuators.

The infrastructure consists of the actual sensor-actuator
node hardware running a middleware that executes the ap-
plication. This middleware is based around a service-based
architecture. Services give access to the interface between
the network and the physical world (i.e. sensors and actua-
tors).

The method introduced in Section 2.2 is directly reflected
in the RuleCaster system. The core of RuleCaster is a high-
level compiler system that takes three models as input to
generate a distributed software system. Figure 4 depicts
these three models. Changes to any of these three models
can be directly propagated to the running application by
re-compilation and re-deployment.

S. THE ROLE OF MIDDLEWARE

Traditionally middleware is seen as a run-time construct
designed to support requirements of distributed applications
such as reliable communication, security etc. Because mid-
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Figure 4: Changes to one of the three models can
be directly propagated by re-compilation.

dleware is supposed to support as large as possible set of
applications it is often difficult to clearly judge and com-
pare the utility of specific middleware platforms. Different
middleware platforms may support different styles of appli-
cations and rarely do two middleware platforms target the
same application space. The problem of evaluating middle-
ware platforms was highlighted in [6] in the context of in-
frastructures for interactive applications. The authors argue
for the value and use of lightweight application prototypes
as a means to more systematically evaluate the utility of
middleware platforms.

In the context of RuleCaster, we view middleware from
a software engineering perspective, namely as a part of the
developers toolset. As such middleware must be designed to
support key engineering tasks and integrate with other de-
velopment tools (in addition to supporting run-time require-
ments). This provides us with a concrete set of requirements
for the middleware and allows us to compare and evaluate
individual middleware platforms.

Having a well-defined engineering system in place allows
us to clearly specify the set of functions the middleware has
to support. Developers using RuleCaster do not program
the middleware directly, but they use high-level compiler
tools to define applications that are then broken down into
individual tasks to be executed by the middleware.

In concrete terms, middleware for the RuleCaster system
must support the following functions:

Code distribution. In order to support the automatic de-
ployment of new tasks, the middleware must provide
a mechanism for code distribution. RuleCaster’s com-
piler generates individual code for every node. Hence,
existing code distribution systems (e.g. Deluge [9])
cannot be used as they send the same code image to
every single node. Furthermore, we need mechanisms
to upgrade the network with new services; e.g. a high-
level audio sensor service, that detects specific noise
patterns. Such code should be uploaded to only those
nodes that have the required audio sensor and are able
to execute the code.

Execution. RuleCaster’s compiler generates high-level ap-
plication code that has to be executed by the middle-
ware. Units of RuleCaster code are called operators.
A node has to be able to execute several of these op-
erators (which can belong to the same or different ap-
plications) in parallel.

Communication. RuleCaster depends on two high-level

communication patterns: querying and informing. The
former one is communication initiated by the sender of
information, while the latter one is initiated by the re-
ceiver (i.e. query-reply communication). These two
forms of communication require peer-to-peer multi-
hop networking.

Control access to sensors and actuators. The middle-
ware must provide access to sensors and actuators.
The middleware has to transform raw sensor readings
into high-level sensor data that can be accessed by the
RuleCaster tasks.

Group assignment. A fundamental concept of RuleCaster
are groups of nodes (called RuleCaster spaces). Appli-
cation logic is defined for specific spaces. Nodes are
either statically assigned to spaces or the middleware
has to dynamically assign nodes to spaces based on
some descriptive rules such as ‘all nodes in building A
that are near a window belong to space XY’.

Monitoring and service discovery. The RuleCaster com-
piler requires a network model that describes the ca-
pabilities and properties of the network. Some of this
information is static while other information has to be
extracted from the network at runtime. The middle-
ware has to provide a description of services of indi-
vidual nodes.

Distributed temporal reasoning. A typical sensor net-
work application does some reasoning based on sensor
input from several distributed sources. Time intervals
are used in RuleCaster to describe relevant relations of
distributed sensor events. For example, an application
assumes that two detections of a bang by two differ-
ent nodes are caused by the same source if they are
detected within a common interval of 1s.

In order to facilitate an optimal interplay between runtime,
development and maintenance aspects of the system we are
using our own RuleCaster middleware that implements these
very specific functions. It is built on top of the Contiki OS
[5]. The core part is a stack-based virtual machine that
executes RuleCaster operators.

6. SCENARIO-BASED EVALUATION

In Section 2 we argue that we need an engineering method
that addresses the different life cycle concerns. Specific en-
gineering tasks can be attributed to each of these concerns.
An evaluation has to focus on how well these tasks are
supported. In this section we first describe the evaluation
method. It is inspired by work on scenario-based analysis of
software architectures [10]. Using this method we then eval-
uate the utility of our approach by showing how a number of
scenarios are supported by RuleCaster and the underlying
engineering method.

The fundamental problem is that the quality of a solu-
tion is not easily quantifiable. The quality attributes we
are interested in are ease of use, long-term maintenance etc.
These qualities are very vague and do not provide a clear
procedural method to evaluate the engineering process in
general and RuleCaster in particular. Furthermore, these
quality attributes are context-dependent, meaningful only
in the presence of specific circumstances in the life cycle of
an application.



Having benchmarks or more universal expressions of qual-
ity attributes would be beneficial for an evaluation. Until we
reach this understanding we must consider these attributes
in the specific contexts the system is used in. To repre-
sent contexts, we use scenarios focusing on engineering tasks.
Scenarios allow us to express particular instances of a quality
attribute important to specific life cycles of an application.
The following four steps describe the evaluation method:

1. Describe scenarios. A scenario addresses a specific qual-
ity attribute that should be evaluated; e.g. a new sen-
sor node is added to the network.

2. Structure the scenarios. We determine which concerns
each scenario addresses; e.g. the specific scenario ad-
dresses the infrastructure of the application.

3. Perform scenario evaluation. We show how well the
given engineering method and system support the given
scenario.

In the following we use the evaluation method to evaluate
the utility of our engineering method and system. The fol-
lowing scenarios are taken from a smart home environment.
Wireless sensor technology allows us to implement applica-
tions such as security, safety or intelligent climate control.
To make this discussion more concrete we use the following
simple application: the windows of the building should be
opened as soon as the temperature is more than 30 degree
Centigrade.

In this scenario-based evaluation we address the two above-
mentioned problems: (1) implementing distributed applica-
tions for large networks, and (2) dealing with changing ap-
plication requirements and infrastructure. We can assume
that the infrastructure is installed and the initial application
deployed. This allows us to focus on the more interesting
change scenarios. Table 1 lists the chosen scenarios and the
main concern each of them addresses.

The following list discusses how each individual scenario is
supported by our engineering method and RuleCaster. We
address each scenario from an application developer point of
view:

1. Under the assumption that the outside temperature is
available in the network we have to add an additional
rule to the application definition in scenario 1. Then,
the changed code is recompiled and automatically de-
ployed in the network. We only have to make changes
to the logical structure of the application.

2. We do not have to change the application code. The
network model reflects the infrastructure changes to
the compiler, which can find a better task assignment
to the nodes. The changes only affect the physical
structure of the application.

3. After having added the new nodes configured with the
RuleCaster middleware, we recompile the application
and re-deploy it. We do not have to change the ap-
plication logic because the changes do not affect the
logical structure of the application.

4. This scenario requires to change the application logic.
The old rules are replaced by the new rules. Then the
application is compiled and automatically deployed in
the existing infrastructure that supports the execution
of the new application logic.

5. The neighbours’ network infrastructure is set up dif-
ferently. They have fewer sensor nodes. Because the
application logic stays the same, the application devel-
oper only has to re-compile it to generate the adapted
physical structure of the application before it is re-
deployed.

6. The old sensor nodes are replaced with the new ones.
These new nodes are configured with RuleCaster’s service-
based middleware. Then the application logic is rede-
ployed. The logical and physical structure have not
changed. Only the infrastructure is affected by these
changes.

7. CONCLUSION

The presented engineering method addresses the initially
mentioned problems that make the development of wireless
sensor network applications difficult. RuleCaster is a spe-
cific system that implements this engineering method. The
proposed approach provides comprehensive life cycle sup-
port and reduces development efforts through a number of
measures:

e By separating the engineering process into well-defined
concerns, we can assign specific functions to the indi-
vidual parts of the system. The middleware in par-
ticular has to support a set of functions. This clear
separation allows us to deal with the middleware inde-
pendently of the other parts; i.e. we can also address
non-functional aspects such as performance or reliabil-
ity without affecting the functionality of the applica-
tions.

e By separating the logical structure from the physical
structure we can implement the application logic with-
out being directly faced with distributed programming
problems. RuleCaster’s high-level language RCAL hides
the application definition from specifics related to the
infrastructure. These two parts can be implemented
independently. Hence, the application developer can
focus on the actual application logic, which simplifies
application development.

e RuleCaster provides network-level language abstrac-
tions. This allows the programmer to directly imple-
ment global application logic without being forced to
express it in terms of distributed tasks.

e RuleCaster automates the deployment process: changes
to any of the three models (logical structure, phys-
ical structure, infrastructure) can be directly propa-
gated to the running application by re-compilation and
re-deployment. This simplifies ongoing evolutionary
modification of applications throughout the applica-
tion life cycles.

Research into wireless sensor networks has made impres-
sive progress in terms of functionality. There are several
middleware solutions that provide support for runtime is-
sues such as data aggregation, localisation etc. We also have
to address programmability and maintainability if we want
to make this technology successful. The proposed solution
integrates these aspects into one unified engineering method.



Table 1: Change scenarios.

| Change scenario | Example

| Concern

1. | Extend application. Only open windows if outside temperature is less. Logical structure
2. | Change the distribution | Some nodes have been connected to a permanent power supply. | Physical structure
of the application. They should therefore contribute more computational power to
the execution of the application.
3. | Add new nodes to the in- | New temperature sensor nodes are added to have finer-grained | Infrastructure
frastructure. temperature measurements.
4. | Exchange application. The new inhabitants of the house do not like the application. | Logical structure
They only want to use the available humidity sensors to decide
when to turn on a dehumidifier.
5. | Move application. The neighbours are interested in running the same application | Physical structure
on their wireless sensor network infrastructure.
6. | Exchange parts of the | New energy-efficient humidity sensor nodes are available. The | Infrastructure
network. old humidity sensor nodes should be exchanged with the new
ones.
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