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ABSTRACT

We present Proteus, a novel network-aware approach for optimiz-

ing web browsing on heterogeneous multi-core mobile systems.

It employs machine learning techniques to predict which of the

heterogeneous cores to use to render a given webpage and the oper-

ating frequencies of the processors. It achieves this by first learning

offline a set of predictive models for a range of typical networking

environments. A learnt model is then chosen at runtime to predict

the optimal processor configuration, based on the web content, the

network status and the optimization goal. We evaluate Proteus

by implementing it into the open-source Chromium browser and

testing it on two representative ARM big.LITTLE mobile multi-core

platforms. We apply Proteus to the top 1,000 popular websites

across seven typical network environments. Proteus achieves over

80% of best available performance. It obtains, on average, over 17%

(up to 63%), 31% (up to 88%), and 30% (up to 91%) improvement

respectively for load time, energy consumption and the energy

delay product, when compared to two state-of-the-art approaches.

CCS CONCEPTS
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Computing methodologies → Parallel computing method-

ologies;

KEYWORDS

Web browsing, Energy optimization, Heterogeneous multi-cores

ACM Reference Format:

Jie Ren, XiaomingWang, Jianbin Fang, Yansong Feng, Dongxiao Zhu, Zhunchen

Luo, Jie Zheng, and ZhengWang. 2018. Proteus: Network-awareWeb Brows-

ing on Heterogeneous Mobile Systems. In CoNEXT ’18: International Con-

ference on emerging Networking EXperiments and Technologies, December

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281422

4–7, 2018, Heraklion, Greece. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3281411.3281422

1 INTRODUCTION

Web is a major information portal on mobile systems [34]. How-

ever, web browsing is poorly optimized and consumes a significant

portion of battery power on mobile devices [15, 19, 58]. Hetero-

geneous multi-cores, as representative by the ARM big.LITTLE

architecture [1], have become the de facto hardware design for mo-

bile platforms [49]. Such architectures integrate multiple processor

cores, where each processor is tuned for a certain class of workloads

to meet a variety of user requirements. To unlock the potential of

heterogeneous multi-cores requires knowing which processor core

to use and at what frequency the core should operate.

Current web browsers rely on the operating system to exploit

the heterogeneous cores. Since the operating system (OS) has little

knowledge of the web workload and how does the network affect

web rendering, the decision made by the OS is often sub-optimal.

This leads to poor energy efficiency [74], draining the battery faster

than necessary and irritating mobile users. In this work, we ask the

research question: “What advantages can a scheduler take when it

knows the web workload and the impact of the networking envi-

ronment?". In answer, we develop Proteus, a novel web browser

task scheduler to exploit knowledge of the computing environment

and web workloads to make better use of the underlying hardware.

The goal of Proteus is to choose the best processor (CPU and

GPU) configuration for a given web workload for a specific network

environment. We focus on processor scheduling because proces-

sors are the major energy consumer on mobile devices and their

power consumption has continuously increased on recent proces-

sor generations [29]. Rather than relying on the OS to make all the

scheduling decisions by passively observing the system’s load, Pro-

teus enables the browser to actively participate in decision making.

Specifically, it enables the browser to decide which heterogeneous

CPU core and the optimal CPU/GPU frequencies to use to run the

rendering and painting processes. We show that the decision must

be based on the web content, the optimization goal, and knowledge

of how the network affects the rendering performance.

Instead of developing a hand-crafted approach that requires

expert insight into a specific computing and networking environ-

ment, we put portability and adaptation at the core of Proteus. We
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Figure 1: The processing procedure of Chromium.

achieve this by employing machine learning to automatically build

predictors based on empirical observations gathered from a set of

training web pages. The trained models are then used at runtime by

the web browser to predict the optimal processor configuration for

any unseen webpage. Such an approach avoids the pitfalls of using

a hard-wired heuristics that require human modification every time

the computing environment or hardware changes.

We implemented Proteus in the open-source Chromium web

browser [6] and released it under an open-source license1.We evalu-

ate Proteus by applying it to the top 1,000 popular websites ranked

by alexa.com [4], including Facebook, Amazon, CNN, etc. We test

Proteus under seven typical cellular and WiFi network settings

and compare it against two state-of-the-art web browser sched-

ulers [51, 75] on two distinct heterogeneous big.LITTLE mobile

platforms: Odroid XU3 and Jetson TX2. We consider three metrics:

load time, energy consumption and the energy delay product. Ex-

perimental results show that Proteus consistently outperforms

prior methods across evaluation metrics and platforms.

The key contribution of this paper is a novel machine learning

based web rendering scheduler that can leverage knowledge of

the network and webpages to optimize mobile web browsing. Our

results show that significant energy efficiency for heterogeneous

mobile web browsing can be achieved if the scheduler is aware of the

networking environment and the webworkload. Our techniques are

generally applicable, as they are useful for not only web browsers

but also a large number of mobile apps that are underpinned by

web rendering techniques [16].

2 BACKGROUND

2.1 Web Processing

Figure 1 illustrates how Chromium handles a webpage. The web

contents, e.g., HTML pages, CSS styles, Javascripts and multimedia

contents, are fetched by a network process. The downloaded content

is processed by the rendering engine process. The rendering results

are passed to the painting process to generate visualization data in

the GPU buffer to display to the user. This pipeline of rendering and

screen painting is called content painting. To render the web content,

the rendering engine constructs a Document Object Model (DOM)
tree where each node of the tree represents an individual HTML

tag like <body> or <p>. CSS style rules that describe how the web

contents should be presented are also parsed by the rendering

engine to build the style rules. After parsing, styling information

and the DOM tree are combined to build a render tree which is then

used to compute the layout of each visible element. To display the

rendered content, the painting process outputs the rendered data

as pixels to the GPU buffer.

1Code is available at: https://github.com/Jiesourcecode/AMBER/.

Table 1: The best-performing existing governor

Load time Energy EDP
CPU GPU CPU GPU CPU GPU

Regular 3G Perf. Default powersave Static powersave Booster
Regular 4G Perf. Default conservative Static Inter. Booster
WiFi Inter. Default ondemand Booster Inter. Booster

2.2 Problem Scope

Our work focuses on scheduling the time-consuming rendering and

painting processes on heterogeneous mobile multi-cores. The goal

is to develop a portable approach to automatically determine, for a

given webpage in a network environment, the optimal processor

configuration. A processor configuration consists of three param-

eters: (1) which heterogeneous CPU to use to run the rendering

process, (2) what are the clock frequencies for the heterogeneous

CPUs, and (3) the GPU frequency for running the painting process.

3 MOTIVATION EXAMPLE

Consider a scenario for browsing three BBC news pages, starting

from the home page of news.bbc.co.uk. In the example, we as-

sume that the user is an average reader who reads 280 words per

minute [36] and would click to the next page after finishing reading

the current one2. Our evaluation device in this experiment is Odroid

XU3 (see Section 6.1), an ARM big.LITTLE mobile platform with

a Cortex-A15 (big) and a Cortex-A7 (little) CPUs, and a Mali-T628

GPU.

Networking Environments. We consider three typical network-

ing environments (see Section 5.1 for more details): Regular 3G,

Regular 4G and WiFi. To ensure reproducible results, web requests

and responses are deterministically replayed by the client and a web

server respectively. The web server simulates the download speed

and latency of a network setting, and we record and determinis-

tically replay the user interaction trace for each testing scenario.

More details of our experimental setup can be found at Section 6.1.

Oracle Performance.We schedule the Chromium rendering en-

gine (i.e., CrRendererMain) to run on either the big or the little

CPU core under different clock frequencies. We also run the GPU

painting process (i.e., Chrome_InProcGpuThread) under different
GPU frequencies. We record the best processor configuration per

test case per optimization target. We refer this best-found configu-

ration as the oracle because it is the best performance we can get

via processor frequency scaling and task mapping.

Scheduling Strategies. For rendering, we use the interactive
CPU frequency governor as the baseline, which is the default fre-

quency governor on many mobile devices [53]. We use the An-

droid’s default settings of interactive, i.e., it samples the CPU

load every 80 ms, and raises the frequency if the CPU utilization is

above 85%; after that, it waits for at least 20 ms before re-sampling

the CPU to decide whether to lower or raise the frequency. We

also compare to other four Linux-based CPU frequency governors:

performance, conservative, ondemand and powersave. The GPU
frequency is controlled by a GPU-architecture-dependent frequency

2Note that the user’s “think time" does not affect our approach as rendering will not
start until the user has entered the website URL.
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Figure 2: The total load time (a), energy consumption (b) and energy delay product (EDP) (c) when a user was browsing three

news pages from news.bbc.co.uk. We show the results for oracle, the best-performing existing CPU and GPU frequency

governors, and interactive (CPU) + Default (GPU) in three typical networking environments.

Table 2: Optimal configurations for BBC pages. The color box highlights which CPU the rendering process should run on while

each color code represents a specific CPU frequency.

Regular 3G Regular 4G WiFi
A15 (GHz) A7 (GHz) GPU (GHz) A15 (GHz) A7 (GHz) GPU (GHz) A15 (GHz) A7 (GHz) GPU (GHz)

Load time 1.7 0.4 0.543 1.8 0.4 0.600 1.8 0.4 0.600

Energy 0.4 0.8 0.400 0.4 0.8 0.400 0.8 0.4 0.543Landing page
EDP 0.8 0.4 0.420 0.8 0.4 0.420 0.8 0.8 0.543

news page 1
Load time 1.6 0.4 0.543 1.6 0.4 0.600 1.7 0.4 0.600

Energy consumption 0.8 0.4 0.420 0.8 0.4 0.420 0.8 0.4 0.420

EDP 0.8 0.4 0.420 0.8 0.8 0.420 0.8 0.8 0.420

news page 2
Load time 1.6 0.4 0.543 1.7 0.4 0.600 1.8 0.4 0.600

Energy consumption 0.4 0.4 0.350 0.4 0.8 0.400 0.8 0.8 0.420

EDP 0.4 0.4 0.350 0.4 0.8 0.400 0.8 0.4 0.420

governor [28]. Here we consider all the three mainstream GPU fre-

quency governors available on Odroid XU3: Default, Static and

Booster; and we use Default as the baseline GPU frequency gover-

nor. We call the best-performing CPU and GPU frequency governor

the best-performing existing governor thereafter.

EvaluationMetrics. In this work, we consider three lower is better

metrics: load time, energy consumption and energy delay product

(EDP) – calculated as energy × load runtime – a commonly used

metric for quantifying the balance between energy consumption

and load time [7, 24].

Motivation Results. Table 1 lists the best-performing existing

governor for rendering and painting, and Figure 2 summarizes

the performance of each strategy for each optimization metric.

While interactive gives the best EDP compared to other exist-

ing governors in a Regular 4G and a WiFi environments, it fails

to deliver the best-available performance for load time and en-

ergy consumption. For painting, Default gives the best load time,

Static saves the most energy, and Booster delivers the best EDP–
the best GPU governor varies depending on which metric to be

optimized. Furthermore, there is significant room for improvement

for the best-performing combination of CPU and GPU governors

when compared to the oracle. On average, the oracle outper-

forms the best-performing existing-governor combination by 34.2%,

53.1%, and 63.6% respectively for load time, energy consumption and

EDP across networking environments. Table 2 presents the optimal

configuration found by exhaustively trying all possible processor

configurations. The core used for running the rendering process

is highlighted using a color box, where each color code represents

a specific CPU frequency. We note that the optimal frequency for

features values

Browser Extension

processor config.

Network Monitor

delay&bandwidth

scheduling

web contents

Predictive 
Model

<html> 
...

</html>

a b

Figure 3: Overview of Proteus. The network monitor eval-

uates the network bandwidth and delay to choose a model

to predict the optimal processor configuration.

the little core (A7) also vary even when it is not used for render-

ing. This is because the A7 core may be used to run other browser

processes such as I/O threads. As can be seen from the table, the

optimal processor configuration varies across web pages, network-

ing environments and evaluation metrics – no single configuration

consistently delivers the best-available performance.

Lessons Learned. This example shows that the current main-

stream CPU frequency governors are ill-suited for mobile web

browsing and the best processor configuration depends on the net-

work and the optimization goal. Later in Section 7.1, we will show

that similar results are also observed for other webpages. Clearly,

there is a need for a better scheduler that can adapt to the webpage

workload, the network environment and the optimization goal. In

the remainder of this paper, we describe such an approach based

on machine learning.
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Table 3: Network environment settings

Uplink bandwidth Downlink bandwidth Delay

Regular 2G 50kbps 100kbps 1000ms

Good 2G 150kbps 250kbps 300ms

Regular 3G 300kbps 550kbps 500ms

Good 3G 1.5Mbps 5.0Mbps 100ms

Regular 4G 1.0Mbps 2.0Mbps 80ms

Good 4G 8.0Mbps 15.0Mbps 50ms

WiFi 15Mbps 30Mbps 5ms

4 OVERVIEW OF PROTEUS

As illustrated in Figure 3, Proteus consists of two components:

(i) a network monitor running as an operating system service and

(ii) a web browser extension. The network monitor measures the

end to end delay and network bandwidths when downloading the

webpage. The web browser extension determines the best processor

configuration depending on the network environment and the web

contents. We let the operating system to schedule other browser

threads such as the input/output processes.

At the heart of our web browser extension is a set of off-line

learned predictive models, each targets a specific networking en-

vironment and a user specified optimization goal. The network

status reported by the network monitor is used to choose a pre-

dictor. After training, the learnt models can then be used for any

unseenwebpage. The predictor takes in a set of numerical values, or

features values, which describes the essential characteristics of the

webpage. It predicts what processor configuration to use to run the

rendering and painting processes on the the heterogeneous multi-

core platform. The set of features used to describe the webpage

is extracted from the web contents. This is detailed in Section 5.3.

In Section 7.3.6, we show that a simple model like a decision tree

or linear regression would fail to capture the non-linear behaviors

among webpage features and the optimizations, and hence, a more

sophisticated predictive model is required.

5 PREDICTIVE MODELING

Our goal for choosing which of a set of processor configurations

to use can be naturally modeled as a classification problem. Our

predictive models are a set of Support Vector Machines (SVMs) [61].
We use the Radial basis kernel because it can model both linear and

non-linear classification problems. We use the same methodology

to learn all predictors for target network environment and optimiza-

tion goal (i.e., load time, energy consumption, or EDP) per hardware
platform. We choose SVMs because they deliver better performance

than alternative modeling techniques (see Section 7.3.6).

Building and using a predictive model follows the well-known

4-step process for supervised learning: (1) modeling the problem

domain, (2) generating training data (3) learning a predictive model

and (4) using the predictor. These steps are described as follows.

5.1 Network Monitoring and Characterization

The communication network has a significant impact on the web

rendering and painting strategy. Intuitively, if a user has access to

a fast network, he/she would typically expect quick response time

for webpage rendering; on the other hand, if the network is slow,

operating the processor at a high frequency would be unnecessarily
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Figure 4:Webpage rendering and painting timew.r.t. content

download time when using the interactive (CPU) and the

Default (GPU) governors on Odroid XU3.

because the content downloading would dominate the turnaround

time and in this scenario the bottleneck is the I/O not the CPU.

Table 3 lists the network environments considered in this work.

The settings and categorizations are based on the measurements

given by an independent study [3]. Figure 4 shows the webpage

rendering time with respect to the download time in each envi-

ronment when using the interactive governor. The download

time dominates the end to end turnaround time for a 2G and a

Regular 3G environments; and by contrast, the rendering time ac-

counts for most of the turnaround time for a Good 4G and a WiFi

environments when the delay is small.

In this work, we learn a predictor per optimization goal for each

of the seven networking environments. Our framework allows new

predictors to be added to target different environments and no

retraining is required for existing predictors. Because the process of

model training and data collection can be performed automatically,

our approach can be easily ported to a new hardware platform or

network environment.

To determine which network environment the user is currently

in, we develop a lightweight network monitor to measure the net-

work bandwidths and delay between the web server and the device.

The network monitor utilizes the communication link statistics

that are readily available on commodity smartphones. Measured

data are averaged over the measurement window, i.e., between the

browser establishes the connection and making a prediction. The

measurements are then used to map the user’s network environ-

ment to one of the pre-defined settings in Table 3, by finding which

of the settings is closest to the measured values. The closeness or

distance, d , is calculated using the following formula:

d = α |dbm − db | + β |ubm − ub | + γ |dm − d | (1)

where dbm , ubm , and dm are the measured downlink bandwidth,

upload bandwidth and delay respectively, db, ub, and d are the

downlink bandwidth, upload bandwidth and delay of a network

category, and α , β , γ are weights. The weights are automatically

learned from the training data, with an averaged value of 0.3, 0.1

and 0.6 respectively for α , β , and γ .

5.2 Training the Predictor

Figure 5 depicts the process of using training webpages to build a

SVM classifier for an optimization target under a network environ-

ment. Training involves finding the best processor configuration

and extracting feature values for each training webpage, and learn

a model from the training data.
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Figure 5: Learning predictive models using training data col-

lected from a target network environment.

Generate Training Data. In this work, we used around 900 web-

pages to train a SVM predictor; we then evaluate the learnt model

on the other 100 unseen webpages. These training webpages are

selected from the landing page of the top 1000 hottest websites

ranked by www.alexa.com (see Section 6.2). We use Netem [30],

a Linux-based network emulator, to emulate various networking

environments to generate the training data (see also Section 6.1).

We exhaustively execute the rendering engine and painting process

under different processor settings and record the optimal configu-

ration for each optimization goal and each network environment.

We then assign each optimal configuration a unique label. For each

webpage, we also extract values of a set of selected features and

store the values in a fixed vector (see Section 5.3).

Building TheModel. The feature values together with the labeled

processor configuration are supplied to a supervised learning al-

gorithm [35]. The learning algorithm tries to find a correlation

from the feature values to the optimal configuration and produces

a SVM model per network environment per optimization goal. Be-

cause we target three optimization metrics and seven networking

environments, we have constructed 21 SVM models in total for a

given platform. An alternative is to have a single model for all

optimization metrics and networking environments. However, this

strategy requires retraining the model when targeting a new metric

or environment and thus incurs extra training overheads.

Training Cost. The training time of our approach is dominated

by generating the training data. In this work, it takes less than a

week to collect all the training data. In comparison processing the

raw data, and building the models took a negligible amount of time,

less than an hour for learning all individual models on a PC. Since

training is only performed once at the factory, it is a one-off cost.

5.3 Web Features

One of the key aspects in building a successful predictor is finding

the right features to characterize the input workload. In this work,
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Figure 6: The percentage of principal components (PCs) to
the overall feature variance (a), and contributions of the

seven most important raw features in the PCA space (b).

we consider a set of features extracted from the web contents. These

features are collected by our feature extraction pass. To gather the

feature values, the feature extractor first obtains a reference for each

DOM element by traversing the DOM tree and then uses the Chromium

API, document.getElementsByID, to collect node information.

We started from 214 raw features, including the number of DOM
nodes, HTML tags and attributes of different types, and the depth

of the DOM tree, etc. All these features can be collected at the parsing

time from the browser. The types of the raw features are given in

Table 4. Some of these features are selected based on our intuition

which may be important for our problem, while others are chosen

based on prior work [9, 43, 51]. The collected feature values are

encoded to a vector of real values. One of the advantages of our

web features is that the feature values are obtained at the very

beginning of the loading process, which gives enough time for

runtime optimization.

It is important to note that our chosen features are independent

of the underlying web browser and hardware platform. This is

essential for making sure our approach are portable across plat-

forms. While we do not use hardware- or browser-specific features,

the platform characteristics, such as the processing capability and

input/output latency, are implicitly captured from the training data.

Feature Reduction. The time spent in making a prediction is negli-

gible in comparison to the overhead of feature extraction, therefore

by reducing our feature count we can decrease the overhead of our

predictive models. Moreover, by reducing the number of features

we are also improving the generalization ability of our models, i.e.,

reducing the likelihood of over-fitting on our training data. Feature

reduction is automatically performed through applying Principal

Component Analysis (PCA) [20] to the raw feature space. PCA trans-
forms the original inputs into a set of principal components (PCs)
that are linear combinations of the inputs. After applying PCA to the
214 raw features, we choose the top 18 principal components (PCs)
which account for around 95% of the variance of the original feature

space. We record the PCA transformation matrix and use it to trans-

form the raw features of the new webpage to PCs during runtime

deployment. Figure 6a illustrates how much feature variance that

each component accounts for. This figure shows that predictions

can accurately draw upon a subset of aggregated feature values.

Feature Normalization. Before passing our features to a machine

learning model we need to scale each of the features to a common

range (between 0 and 1) in order to prevent the range of any single
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Table 4: Raw web feature categories

DOM Tree
#DOM nodes depth of tree

#each HTML tag #each HTML attr.
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Figure 7: Runtime deployment of Proteus.

feature being a factor in its importance. Scaling features does not af-

fect the distribution or variance of their values. To scale the features

of a new webpage during deployment we record the minimum and

maximum values of each feature in the training dataset, and use

these to scale the corresponding features. We also simply truncate

a feature value to 0 or 1 if it is respectively smaller or greater than

the minimum or maximum values seen in the training dataset.

Feature Analysis. To understand the usefulness of each raw fea-

ture, we apply the Varimax rotation [40] to the PCA space. This

technique quantifies the contribution of each feature to each PC.
Figure 6b shows the top 7 dominant features based on their contri-

butions to the PCs. Features like the webpage size and the number

of DOM nodes are most important, because they strongly correlate

with the download time and the complexity of the webpage. Other

features like the depth of the DOM tree, and the numbers of different

attributes and tags, are also useful, because they determine how

the webpage should be presented and how do they correlate to

the rendering cost. The advantage of our feature selection process

is that it automatically determines what features are useful when

targeting a new hardware platform where the relative cost of page

rendering and the importance of features may change.

5.4 Runtime Deployment

Once we have built the predictive models described above, we can

use them for any new, unseenwebpage. Figure 7 illustrates the steps

of runtime prediction and task scheduling. The network monitor

reports the network bandwidths and delay, which are used to deter-

mine the runtime status. The web browser then selects a predictor

to use based on the network status and the optimization goal. Dur-

ing the parsing stage, which takes less than 1% of the total rendering

time [41], the feature extractor firstly extracts and normalizes the

feature values. Next, the selected predictive model predicts the opti-

mal processor frequency based on the feature values. The prediction

is then passed to the runtime scheduler to perform task scheduling

and hardware configuration. The overhead of network monitoring,

extracting features, prediction and configuring frequency is small.

It is less than 1% of the turnaround time (see also Section 7.3.3),

which is included in all our experimental results.

As the DOM tree is constructed incrementally by the parser, it

can change throughout the duration of rendering. To make sure

that our approach can adapt to the change of available information,

re-prediction and rescheduling will be triggered if the DOM tree is
significantly different from the one used for the last prediction.

The difference is calculated by counting the number of DOM nodes

Table 5: None-zero feature values for Google search (p1), the
result page (p2) and the target website (p3).

Feature Raw value Normalized value

p1 p2 p3 p1 p2 p3

#DOM nodes 397 1292 4798 0.049 0.163 0.611

depth of tree 13 21 23 0.416 0.750 0.833

#img 3 5 169 0.004 0.007 0.256

#li 19 76 799 0.011 0.046 0.490

#link 2 8 3 0.026 0.106 0.04

#script 13 79 54 0.099 0.603 0.412

#href 46 155 2044 0.022 0.075 0.99

#src 3 21 84 0.006 0.043 0.167

#content 2 23 11 0.039 0.450 0.215

between the previous and the current DOM trees. If the difference is

greater than 30%, we will make a new prediction using feature val-

ues extracted from the current DOM tree. We note that this threshold

is empirically determined from training data. We have observed

that our initial prediction often remains unchanged, so rescheduling

and reconfiguration rarely happened in our experiments.

5.5 Working Example

As an example, we now consider a scenario where a user conducts

a search on Google to look for an online service. There are three

webpages to be rendered in this process: the Google search page,

the search result page, and the target website, which are denoted as

p1, p2 and p3 respectively. Here we assume the user uses a Regular

3G network and wants to retrieve the information with minimum

energy usage by informing the system via e.g., choosing the battery

saver mode on Android.

For this example, an energy-tuned predictor for a Regular 3G

network is chosen. The feature extractor gathers the raw feature

values from the DOM tree after the browser starts parsing the web
content. The feature values are normalized and projected into the

PCA space as described in Section 5.3. Table 5 lists some of the non-

zero raw feature values for the three webpages, before and after

normalization. These processed feature values will be fed into the

selected SVMmodel. The model outputs a label (<A15 - 0.4, 0.4, GPU

- 0.355> for Google search), indicating the optimal configuration is

to run the rendering process on the big core and the clock frequency

of the little and big cores should be set to 400 MHz, and the painting

proocess on the GPU with 355 MHz. This prediction is indeed the

ideal processor configuration. Finally, the processor configuration is

communicated to the runtime scheduler to configure the hardware

platform. For the other two webpages, our model also gives the

optimal configuration, <A15 - 0.8, 0.8, GPU - 0.42>.

Figure 8a compares the powersave CPU frequency governor

with Proteus. This strategy runs all cores at the lowest frequency,

200MHz, aiming to minimize the system’s power consumption.

However, running the processors at this frequency prolongs the

page load time, which leads to over 1.59x (up to 4.12x) more energy

consumption than Proteus.

In contrast to the fixed strategy used by powersave, the widely
used interactive governor dynamically adjusts the processor fre-

quency according to the user activities. From Figure 8b, we see that

interactive raises the big core frequency as soon as the browser

starts fetching p1. After that all cores stay on the highest frequency
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Figure 8: The selected processor and CPU frequencies when rendering Google search (p1), the search result page (p2), and the

target website (p3). We compare Proteus against powersave (a) and interactive (b) in a regular 3G environment.

Table 6: Hardware platforms

Odroid XU3 Jetson TX2

big CPU 32bit quad-core Cortex-A15 @ 2GHz 64bit quad-core Cortex-A57 @ 2.0 GHz
LITTLE CPU 32bit quad-core Cortex-A7 @ 1.4GHz 64bit dual-core Denver2 @ 2 GHz
GPU 8-core Mali-T628 @ 600MHz 256-core NVIDIA Pascal @ 1.3GHz

until a few seconds after the third webpage has been completely

rendered. While interactive can choose CPU frequencies from

the entire spectrum, it mostly focuses on the highest and the lowest

frequencies. By contrast, Proteus dynamically adjusts the proces-

sor frequency according to the web content and browsing activities.

It chooses to operate the processors at 400MHz for the relatively

simple p1 page that has the smallest number of DOM nodes, and then
raises the frequency up to 800MHz for the next two more complex

pages. As a result, Proteus reduces the energy consumption by 87%

at the cost of 22% slower when compared with interactive. Con-
sidering the goal is to minimize the energy consumption, Proteus

outperforms interactive on this task.

6 EXPERIMENTAL SETUP

6.1 Hardware and Software Platforms

Evaluation Platform. To demonstrate the performance portabil-

ity of Proteus, we evaluate it on two distinct mobile platforms,

Odroid XU3 and Jetson TX2. Table 6 gives detailed information of

both platforms. We chose these platforms as they are a representa-

tive big.LITTLE embedded architecture and has on-board energy

sensors for power measurement. Both systems run Ubuntu 16.04

with the big.LITTLE enabled scheduler3. We used the on board en-

ergy sensors and external power monitor to measure the energy of

the entire system. These sensors have been checked against external

power measurement instruments and proven to be accurate in prior

work [33]. We implemented our approach in Google Chromium

(ver. 64.0) which is compiled using the gcc compiler (ver. 7.2).

Networking Environments. For reproducibility, we evaluate all

schemes in a controlled environment. Specifically, we use a Linux

server to record and replay the server responses through the Web

Page Replay tool [2]. Our mobile test board and the web server

communicate through WiFi, but we use Netem [30] to control the

network delay and server bandwidth to simulate the seven net-

working environments defined in Table 3. We add 30% of variances

3Because Chromium for Android does not support extensions, we implemented Pro-
teus on the Linux version that shares the same code base as the Android Chromium.
We stress that our techniques can be built into the Chromium browser itself and is
thus applicable to Android systems.

(which follow a normal distribution) to the bandwidths, delay and

packet loss to simulate a dynamic network environment. Note that

we ensure that the network variances are the same during the replay

of a test page. We also measure the difference of power between the

WiFi and the cellular interfaces, and use this to calibrate the energy

consumption in cellular environments. Finally, unless stated other-

wise, we disabled the browser’s cache to provide a fair comparison

across different methods (see also Section 7.2).

Workloads. We used the landing page of the top 1,000 hottest

websites from www.alexa.com. We include both the mobile and

the desktop versions of the websites, because many mobile users

still prefer the desktop-version for their richer content and experi-

ence [13]. Figure 9 shows the CDF of the number of DOM nodes, web
content sizes and load time when using the interactive governor
in aWiFi environment. The DOM node and webpage sizes range from
small (4 DOM nodes and 40 KB) to large (over 8,000 DOM nodes and
6 MB), and the load time is between 0.13 second and 15.4 seconds,

suggesting that our test data cover a diverse set of web contents.

6.2 Evaluation Methodology

Model Evaluation.We use 10-fold cross-validation to evaluate our

machine learning models. Specifically, we partition the webpages

into 10 sets where each set contains 100 webpages. We retain one

set as the validation data for testing our model, and the remain-

ing 9 sets are used as training data to train the model. We repeat

this process 10 times (folds), with each of the 10 sets used exactly

once as the validation data. We then report the averaged accuracy

achieved across the 10 validation sets. This is a standard evaluation

methodology, providing an estimate of the generalization ability of

a machine-learning model in predicting unseen data.

Existing Frequency Governors. We compare Proteus against

existing CPU and GPU frequency governors. Specifically, we con-

sider five widely used CPU governors: interactive, powersave,
performance, conservative, and ondemand. For GPUs, we con-

sider three purpose-built governors for the ARM Mali GPU (Odroid

Xu3): Default, Static and Booster, and three others for theNVIDIA
Pascal GPU (Jetson TX2): nvhost_podgov, simple_ondemand and

userspace. We use interactive as the baseline CPU governor,

and Default and nvhost_podgov as the baseline GPU governor

on Odroid XU3 and Jetson TX2, respectively.

Competitive Approaches. We compare Proteus with two state-

of-the-art works: a web-aware scheduling mechanism (termed as
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Figure 9: The CDF of #DOM nodes (a), webpage size (b), and load time when using interactive in a WiFi network (c).

WS) [75] and a machine learning based web browser scheduling

scheme (termed as S-ML) [51]. WS uses a regression model to esti-

mate webpage load time and energy consumption under different

processor configurations. The model is then used as a cost function

to find the best configuration by enumerating all possible configu-

rations. S-ML also develops a machine learning classifier to predict

the optimal processor configuration, but it assumes that all the

webpages have been pre-downloaded and ignores the impact of the

dynamic network environments. We train WS and S-ML using the
same training dataset as the one we used to train our models in a

WiFi environment (which is the networking environment used by

both methods for collecting training data)

Performance Report. We report the geometric mean across eval-

uation scenarios. Compared to the arithmetic mean, it can bet-

ter minimize the impact of performance outliers – which could

make our results look better than they are [22]. To collect run-time

and energy consumption, we run each model on each input re-

peatedly until the 95% confidence bound per model per input is

smaller than 5%. For load time, we instrumented Chromium to mea-

sure the wall clock time between the Navigation_Start and the

Load_Event_End events. We excluded the time spent on browser

bootstrap and shut down. To measure the energy consumption, we

developed a lightweight runtime to take readings from the on-board

energy sensors at a frequency of 100 samples per second. We then

matched the energy readings against the time stamps of webpage

rendering to calculate the energy consumption.

7 EXPERIMENTAL RESULTS

Highlights of our evaluation are as follows:

• Proteus consistently outperforms the existing Linux-based

governors across networking environments, optimization

goals, and hardware platforms. See Section 7.1;

• Proteus gives better andmore stable performance compared

to state-of-the-art web-aware schedulers (Section 7.2);

• We thoroughly evaluate Proteus and provide detailed anal-

ysis on its working mechanisms (Section 7.3).

7.1 Overall Results

The box-plot in Figure 10 depicts the improvements of Proteus

over the best-performing Linux-based governor. The min-max bars

show the range of improvements achieved across webpages.

Load Time. Figure 10a and Figure 10d show the improvement of

load time on Odroid XU3 and Jetson TX2, respectively. For this

metric, the performance governor is the best-performing Linux

governor for most of the test cases. Proteus delivers significantly

better performance in slow networking environments like a 2G or a

3G network on both of two platforms, offering at least 11% quicker

turnaround time. A slow network prolongs the webpage download

time; and as a result, running the CPU and GPU at the highest

frequency is not beneficial as the CPU sits idle for most of the time

waiting for I/O, and the GPU waits to paint the rendered graphic

data from CPU. Such a strategy would trigger frequent CPU [5] or

GPU throttling [48], i.e. the hardware thermal manager would drop

the clock frequency from 2GHz to 1.5GHz (or a lower frequency) to

prevent the chip from overheating. Proteus learns from empirical

observations that it is better to run the CPU and GPU at a slightly

lower frequency, e.g., 1.8 GHz instead of 2 GHz, so that the CPU

can operate on, on average, a higher frequency over the rendering

period because of the less frequent CPU throttling. There is less

improvement in a fast network like a WiFi environment. In such

an environment, the download speed is no longer a bottleneck and

running the CPU at a high frequency is often beneficial. Nonethe-

less, Proteus outperforms the best-performing Linux governor

by 1.20x (2.5 seconds) on average (up to 1.87x, 6.2 seconds) across

network environments and never gives worse performance.

EnergyConsumption. Figures 10b and 10e compare our approach

against other frequency governors in scenarios where low battery

consumption is the first priority. In this case, powersave is the

best-performing Linux governor in 2G and a Regular 3G environ-

ments, while conservative and ondemand are the best-performing

Linux policies in a faster environment (Good 3G onwards). On aver-

age, Proteus outperforms the best-performing Linux governor by

using less than 31% to 55% (up to 88%, 19 joules) energy consump-

tion across networking environments. It is worth mentioning that

Proteus never consumes more energy compared to other Linux

governors, because it correctly selects the optimal (or near optimal)

frequency and the best core to run the rendering process.

EDP. Figure 10c shows the results for EDP. A low EDP value means

that energy consumption is reduced at the cost of little impact on

the response time. Proteus successfully cuts down the EDP across

networking environments. We observe significant improvement is

available in a 3G and a Regular 4G environments, where Proteus

gives over 60% (212 J*s) and 30% (182 J*s) reduction on EDP for

Odroid XU3 and Jetson TX2, respectively. Proteus also reduces the

EDP by over 30% in other networking environments. Once again,

Proteus outperforms the best-performing Linux governor for all

the test cases.
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Figure 10: Improvement achieved by Proteus over the best-performing Linux CPU governor for load time, energy reduction

and EDP on Odroid XU3 and Jetson TX2. The min-max bars show the range of performance improvement across webpages.

7.2 Compare to Competitive Approaches

The violin plots in Figure 11 show the performance distributions

achieved by Proteus, S-ML and WS across network environments

and webpages. The baseline is the best-performing Linux CPU/GPU

governor found for each webpage. The width of each violin corre-

sponds to the proportions of webpages with a certain improvement.

The white dot denotes the median value, while the thick black line

shows where 50% of the data lies.

On average, all approaches improve the baseline and the highest

improvement is given by Proteus. This confirms our hypothesis

that knowing the characteristics of the web content can improve

scheduling decisions. If we look at the bottom of each violin, we see

that WS and S-ML can lead to poor performance in some cases. For

example, WS gives worse performance for 40% of the webpages, with

up to 30% slowdown for load time, 25% more energy and 30% worse

for EDP on Odroid XU3. S-ML delivers better performance when

compared with WS, due to the more advanced modeling technique

that it employs. However, S-ML also gives worse performance for

18% and 17% of the webpages for loadtime and energy respectively,

and can consume up to 20% more energy than the baseline. The

unstable performance of WS and S-ML is because they are unaware

of the network status, and thus lead to poor performance in certain

environments. By contrast, our approach never gives worse per-

formance across networking environments and webpages. Finally,

consider now the improvement distribution. There are more data

points at the top of the diagram under our scheme. This means

Proteus delivers faster load time and greater reduction on energy

and EDP when compared with WS and S-ML. Overall, Proteus out-
performs the competitive approaches on two representative mobile

platforms, Odroid XU3 and Jetson TX2, with an average improve-

ment of 27.2% and 14.4% for load time, reduces the total energy

consumption by 55.9% and 23.7% and improves the 56.4%, 38.1%

for EDP, respectively. Overall, Proteus consistently outperforms

WS and S-ML on both platforms and all metrics, and never delivers

worse performance when compared with the baseline.

7.3 Model Analysis

7.3.1 Optimal configurations. Figure 12 shows the distribution

for the most-frequently used optimal processor configurations

found through exhaustive search. Here, we use the notation <CPU

render core - bigfreq, littlefreq, GPU-freq> to denote a proces-

sor configuration. For example, <A15 - 1.6, 0.4, GPU-1.1> means

that the rendering process running on the A15 core (big core) at

1.6GHz and the A7 core (little core) runs at 400MHz, and the paint-

ing process running on the GPU at 1.1GHz.

As can be seen from Figures 12a and 12d, when optimizing for

load time, the rendering engine should run on the big core (A15 or

A57) to provide high performance. However, the optimal frequency

varies across networking environments and we see the change of

distribution in frequencies when moving from a slow network to a

fast one. For instance, on Odroid XU3, while it is unprofitable to

run the A15 core at 1.9GHz and GPU at 0.6GHz in a slow network,

it is the desired frequency for 68% of the webpages in a WiFi envi-

ronment. When optimizing for energy consumption (Figures 12b

and 12e) and EDP (Figures 12c and 12f), it can be beneficial to run

the rendering process on the energy-tuned core (A7 or D2). For

example, in a 2G environment, running the rendering process on

the A7 core with a frequency of 400MHz or 800MHz benefits up to

46% of webpages on Odroid XU3, although the distribution changes

across networks and optimization metrics. If we compare the dis-

tributions across networks and metrics, we find that the best core

for running the rendering process and the frequency varies across
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Figure 11: Violin plots showing the distribution for Proteus, S-ML and WS in different network environments for three evalu-

ation metrics on Odroid XU3 and Jetson TX2. The baseline is the best-performing Linux-based CPU/GPU governor. The thick

line shows where 50% of the data lies. The white dot is the position of the median. Proteus delivers the best and most stable

performance across testing scenarios.

networking environments, webpages and optimization goals. The

results reinforce our claim that the scheduling policy must be aware

of the network, web contents and optimization target.

7.3.2 Feature Importance. Figure 13 shows a Hinton diagram

that illustrates some of the most important features that have an

impact on the energy consumption models. Here the larger the

box, the more significantly a particular feature contributes to the

prediction accuracy. The x-axis denotes the features and the y-

axis denotes the models for the seven networking environments.

The importance is calculated through the information gain ratio.

It can be observed that HTML tags and attributes (e.g. webpage

size, #DOM nodes , DOM tree depth) and style rules are important

when determining the processor configurations for all networking

environments.We can also see such features play anmore important

role for 2G and regular 3G than others. Other features are extremely

important for some networks (such as the number HTML tags of

<Tag.script> and <Tag.li>) are important for WiFi, 4G and good

3G, but less important for others. This diagram illustrates the need

for a distinct model for each optimization goal and how important

it is to have an automatic technique to construct such models.

7.3.3 Overhead breakdown . Figure 14 shows the overhead of

Proteus (which is already included in our experimental results).

Proteus introduces little overhead to the end to end turnaround

time and energy consumption, less than 1% and 3% respectively. The

majority of the time and energy are spent on network monitoring

for measuring the network delay and bandwidths. The overhead in-

curred by the browser extension and the runtime scheduler, which

includes task migration, feature extraction, making prediction and

setting processor frequencies, is less than 0.3%, with task migra-

tion (around 10ms) accounts for most of the overhead. As can be

seen from the better aforementioned results, the overhead of our

approach can be amortized by the improved performance.

7.3.4 Oracle performance. Figure 15 compares Proteus with

the oracle predictor, showing how close our approach is to the

theoretically perfect solution. Our approach achieves 82%, 92% and

90% of the oracle performance for load time, energy consumption,

and EDP respectively. Overall, the performance of Proteus is not

far from the oracle.

7.3.5 Prediction accuracy. Proteus gives correct predictions for

85.1%, 90.1% and 91.2% of the webpages for load time, energy con-

sumption and EDP respectively. For those webpages that Proteus
does not give the best configuration, the resultant performance is

not far from the optimal. We believe the accuracy of our approach

can be improved by using more training examples, which in turn

also permits to use a richer set of features.

7.3.6 Alternative modeling techniques. Figure 16 shows the per-

formance achieved by our SVM-based approach and five widely

used classification techniques with respect to the oracle perfor-

mance. The alternative classifiers are: Multi-layer Perceptron (MLP),
K-Nearest Neighbours (KNN), Artificial Neural Networks (ANN), Lo-
gistic Regression (LR), and Naïve Bayes (NB). Each of the alternative

modeling techniques were trained and evaluated by using the same

method and training data as our model. Proteus outperforms all

other alternative techniques for every optimization metric. It is
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Figure 12: Distributions of major optimal process configurations for load time, energy consumption and EDP. The distribution
of optimal configuration changes across environments, showing the need of an adaptive scheme.

Figure 13: A Hinton diagram shows the importance of the

selected web feature to the prediction accuracy under differ-

ent networks. The larger the box, the more likely a feature

affects the prediction accuracy of the respective model.

worth noting that the performance of these competitive modeling

techniques may improve if there are more training examples to

support the use of a larger set of features. However, we found that

SVMs perform well on the training data we have.

8 DISCUSSIONS

Naturally there is room for further work and improvements. We

discuss a few points here.

Multi-tasking workloads. Our evaluation assumes one single

webpage is being downloaded and rendered at a time. Our ap-

proach can be extended to a multi-tasking environment of multiple

workloads (including web and non-web programs) by focusing on
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Figure 15: Performance

of Proteus w.r.t. oracle.
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Figure 16: The performance w.r.t oracle achieved by our SVM
based approach and other classification techniques.

optimizing the web content that is presented on the current screen

view. This can be achieved by e.g., moving the background tasks

to the little processor cores, or adapting a “selfish" optimization
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strategy similar to [21, 26, 69]. We expect that knowledge of the

web content and network status is still essential for achieving good

performance in such an environment.

Changing network conditions. To ensure reproducibility, during

evaluation we deterministically replayed the network conditions.

In real-world deployment, the network status may change drasti-

cally throughout web rendering. To adapt to the changing network

conditions, Proteus will need to sample the network status and

trigger re-prediction if the network status has changed significantly.

Re-prediction should also take into consideration how much web

content has been downloaded. Extending Proteus to a dynamic

network environment is our future work.

Targeting unseen networks. Proteus is evaluated in seven typi-

cal network environments where we train a classification model

for each environment and optimization goal (Section 5.2). Proteus

can be extended to target unseen network environments. To do

so, one can combine classification- and regression-based models.

For example, a regression model can be learned to estimate the

load time or energy consumption by taking as input the web fea-

tures and a given processor frequency. In this way, if the current

network is significantly different from the one the classification

models are tuned for, the regression models can be used to search

for an optimal processor configuration. The combination offers a

generalisable solution for any network environment.

Different applicationworkloads. Proteus is evaluated on static

web contents primarily consist of HTMLs and images. To target

dynamic contents such as JavaScript dominated webpages or video

streaming, we will need new features to capture the workloads and

a mechanism for constant monitoring and frequency adjustment.

Given the dynamic nature of the problem, it would be interesting

to see whether reinforcement [55] rather than supervised learning

is a better way for modeling the problem.

9 RELATEDWORK

Our work builds upon the following techniques, while qualitatively

differing from each.

Web Browsing Optimization. Numerous techniques have been

proposed to optimize web browsing, through e.g. prefetching [64]

and caching [46] web contents, scheduling network requests [47],

or re-constructing the browser workflow [39, 73] or the TCP pro-

tocol [70]. Most of the prior work target homogeneous systems

and do not optimize across networking environments. The work

presented by Zhu et al. [75] and prior work [51] were among the

first attempts to optimize web browsing on heterogeneous mobile

systems. Both approaches use statistical learning to estimate the

optimal configuration for a given web page. However, they do not

consider the impact of the networking environment, thus miss mas-

sive optimization opportunities. Bui et al. [14] proposed several

web page rendering techniques to reduce energy consumption for

mobile web browsing. Their approach uses analytical models to

determine which processor core (big or little) to use to run the

rendering process. The drawback of using an analytical model is

that the model needs to be manually re-tuned for each individ-

ual platform to achieve the best performance. Proteus avoids the

pitfall by developing an approach to automatically learn how to

best schedule rendering process. As this work focuses on rendering

process mapping, other optimization techniques proposed in [14],

such as dynamic buffering, are complementary to our work.

Task Scheduling. There is an extensive body of work on task

scheduling on homogeneous and heterogeneous multi-core systems

[10, 23, 42, 54, 72]. Most of the prior work in the area use heuristics

or analytical models to determine which processor to use to run an

application task, by exploiting the code or runtime information of

the program. Proteus targets a different domain by using the web

workload characteristics to optimize mobile web browsing across

networking environments and optimization objectives.

Energy Optimization. Techniques have been proposed to opti-

mize web browsing via application-level optimization, including

aggregating data traffic [12, 32, 60] or requests [11, 37], and parallel

downloading [8, 31]. Our approach targets a lower level, by exploit-

ing the heterogeneous hardware architecture to perform energy

optimization. There is also an intensive body of research on web

workload characterization [9, 15, 19]. The insights found from these

studies can help us to better extract useful web features.

Predictive Modeling. Machine learning techniques have been

employed for various optimization tasks [65], including estimating

mobile traffic [52], parallelism mapping [57], code optimization [17,

18, 27, 38, 44, 45, 59, 62, 63, 66–68, 71], task scheduling [21, 25,

26, 50], processor resource allocation [69], model selection [56],

etc. Proteus is the first work to use machine learning to predict

the optimal processor configuration for mobile web browsing by

exploiting the knowledge of the communication network.

10 CONCLUSION

This paper has presented Proteus, an automatic approach to opti-

mize web rendering on heterogeneous mobile platforms, providing

significant improvement over existing web-content-aware sched-

ulers. We show that it is crucial to exploit the knowledge of the

communication network and the web contents to make effective

scheduling decisions. We address the problem by using machine

learning to develop predictive models to predict which processor

core with what frequency to use to run the web rendering process

and the optimal GPU frequency for running the painting process. As

a departure from prior work, our approach consider of the network

status, web workloads and the optimization goals. Our techniques

are implemented as an extension in the Chromiumweb browser and

evaluated on two representative heterogeneous mobile multi-cores

mobile platforms using the top 1,000 hottest websites. Experimental

results show that our approach achieves over 80% of the oracle
performance, and delivers portable performance by consistently

outperforming the state-of-the-art works for load time, energy con-

sumption and EDP across evaluation platforms.
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