A State-based Programming Model and System for Wireless Sensor Networks

Urs Bischoff, Gerd Kortuem
Computing Department
Lancaster University
{u.bischoff, kortuem} @comp.lancs.ac.uk

Abstract

Sensor networks are one important building block to-
wards the realisation of context-aware applications. Suit-
able communication protocols and middleware solutions
are necessary to facilitate the development of sensor net-
work applications. Additionally, the vast number of nodes
in sensor networks necessitates a new programming model
for application developers. Commonly used programming
abstractions force the programmer to express the global be-
haviour of a network in terms of local actions taken at indi-
vidual nodes. We argue that global programming abstrac-
tions are needed to express global behaviour of a network.
We present RuleCaster, a novel state-based programming
framework for sensor network applications. RuleCaster
provides a high-level language for application definition, a
compiler that splits the high-level specification into individ-
ual tasks and assigns them to the nodes, and a service-based
middleware that provides the interface for collaborative ex-
ecution of these tasks.

1. Introduction

Context-awareness is an important concept in pervasive
computing. Sensed information from our environment can
be used to adapt the behaviour of an application. Sensor
networks are one building block towards the realisation of
pervasive computing applications [13]. Research into sen-
sor networks has made impressive progress in several areas,
including small low-powered hardware design (e.g. [9, 3]),
wireless networking (e.g. [19, 15]) and software services
(e.g. [14, 12]). These advancements allow us to move be-
yond centralised processing of aggregated sensor data to
distributed processing. The execution of application logic
can be “pushed” into the actual network, closer to where
sensor data is collected. The idea of ubiquitous sensor sys-
tems raises one key research question: how can we write,
deploy and maintain an application for thousands or tens of
thousands of sensor nodes efficiently? It is no longer practi-

cal to program and re-program each node individually. This
would be too time consuming, costly and error prone, espe-
cially in a dynamic environment with constantly changing
application configurations.

Macroprogramming [11] has emerged as one promising
approach. It describes a method for specifying the global
behaviour of an application by providing network level pro-
gramming abstractions. Instead of focusing on each individ-
ual node independently, the network is programmed as one
unit. We see a state-based programming model as a useful
abstraction for macroprogramming. Liu et al. argue that the
notion of states of physical phenomena and models of their
evolution over space and time are deeply rooted in typical
wireless sensor network applications [5]. They describe a
system for managing state variables in a distributed sensor
network. We use the notion of states and state transitions in
a macroprogramming language abstraction. Observations
at nodes determine the state of the network. Rules are used
to define network state transitions. The advantage of this
high-level approach is that distribution aspects and the de-
cision where states are stored and manipulated are hidden
from the application developer, who can therefore focus on
the implementation of the actual application logic.

In this paper, we introduce the design and implementa-
tion of RuleCaster, a novel macroprogramming framework
for wireless sensor networks. Applications are defined for
the network as a whole. A compiler then splits the applica-
tion definition into individual tasks that form the executable
application code. The novelty of our approach is that the
developer specifies the application logic without having to
decide where tasks are executed in the network and how
nodes communicate. This decision is left to the compiler
that generates the tasks based on a chosen distribution strat-
egy so that applications can exhibit specific properties in
terms of robustness and efficiency.

The remainder of the paper is as follows. Section 2 intro-
duces the state model that builds the basis of our system. In
Section 3 we describe the system. It is based on a high-level
language, a compiler and a middleware that provides the in-
terface to execute the compiled code. Section 4 shows how

the compiler has the freedom to decide where state vari-
ables are stored and manipulated inside the network based
on specific application requirements. Advantages and prob-
lems of our approach are addressed in Section 5. Section 6
compares our approach to related work and Section 7 con-
cludes this short paper.

2. State Model

Our state-based programming system was inspired by re-
search into multiagent systems and distributed AI [16]. A
network consists of nodes which have sensors to observe
and actuators to affect the environment. It is partitioned
into several spatial regions. Each region is in one or sev-
eral discrete states. The union of all these states at time ¢
defines the network state at time ¢. Rules are used to spec-
ify the conditions for a state transition. More formally we
can denote a basic state of region r at time ¢ as s;, € 5,
where S is a discrete set of possible states. The union of all
basic states of region 7 at time ¢ describes the region state
St,r. The network state S; at time ¢ is the union of all region
states Sy, at time t. Changes in the environment can cause
the network to change state: S; — S¢y1. These transitions
are specified as a set of rules. A rule describes the transition
of a basic state:

St.r! — St4+1,r (D
r and 7’ can be the same or different spatial regions. A rule
is a boolean function consisting of disjunctions and conjun-
tions of boolean conditions ¢; 4, ., where 7 is the ID of the
condition, ¢; the time when the condition evaluates to true
(or false) and r the region where the condition evaluates to
true (or false). The outcome of a condition evaluation at
time t depends on an observation o, at time ¢ (e.g. a sensor
reading). Time is essential because the outcome of a condi-
tion evaluation is time-dependent. Therefore the successful
evaluation of a specific rule is restricted to a pre-defined
time interval At, where ty,ta,...,t, € [t — At,t].

(1) shows the transition from one basic state to another
basic state. A rule can also describe the more general case of
an n-to-1 transition, the transition from a set of basic states
Si 1 C Sy to one basic state sy1,.. If S7 ., = {}, the
transition rule specifies the generation of a new basic state.

States are generally partially observable. This means that
nodes have to collaborate to determine the state, which is
done through collaborative evaluation of transition rules.

An action a1, is triggered by a valid state s; ,». An
action can indirectly change the network state through af-
fecting the environment.

3. The State-Based Programming System

Based on the model introduced in Section 2 we devel-
oped the RuleCaster system. A high-level language allows

|Application Definition|

(in RCAL)
Network
e
Model
Task Task Task
fornode 1| | for node 2 for node n

\—If
ffffffff e

Compiler

mD\smbuhoﬂ
Strateg

Figure 1. The architecture of the RuleCaster
system. The application, which is specified
in RCAL is split by the compiler into indi-
vidual tasks and distributed over the network
of sensor nodes. Distribution strategies can
vary based on the application requirement,
such as minimum energy consumption, or
the level of robustness.

the implementation of state-based applications; rules are
used to specify state transitions. A service-based middle-
ware provides the interface to execute the compiled applica-
tion code. RuleCaster treats the network as one distributed
computer. The advantage of this approach is that the pro-
grammer does not have to specify where states are stored
or manipulated. This decision is made by a compiler that
generates the executable application code. Figure 1 gives
an overview of the architecture.

In RuleCaster, applications are defined in RCAL
(RuleCaster Application Language). Before the application
can be executed by the network, the compiler decides where
states are stored and manipulated and accordingly splits the
application into several tasks. Each task is individually as-
signed to a selected node, with a specified role in the execu-
tion of the whole application. They define where network
states are stored and how transition rules are evaluated. Fi-
nally, a service-based middleware provides the interface and
runtime environment to execute these tasks.

In order to generate and assign the individual tasks, the
compiler has to have a view of the network. To achieve this,
RuleCaster uses a dynamic network model which provides
the compiler with a list of properties (e.g. location, hard-
ware specification etc.) and available services. Services
give access to sensors and actuators.

We now describe in further detail, the four parts of Rule-
Caster: (1) the high-level language, RCAL, (2) the com-
piler, (3) the network model and (4) the middleware.

3.1. Application Language

RCAL is a high-level language for specifying state tran-
sitions. Applications are defined through a set of state tran-
sitions and actions. However, RCAL applications do not
specify where and how states are manipulated and stored in
the network. An RCAL application definition consists of
several ruleblocks. Each ruleblock specifies a state transi-
tion or an action.

4
@ @2

kitchen

il
®
°

door

I |

Figure 2. The layout of a simple sensor net-
work.

To clarify RCAL we use an example of a home appli-
cation with 6 sensor nodes. The goal of the application
is to activate the alarm when the sensor nodes detect that
the kitchen stove is switched on, nobody is monitoring the
stove, and someone is leaving the building. Figure 2 shows
the layout of the example sensor network. The nodes are
grouped into two spaces: kifchen and door. Nodes 1 to 4
detect whether the stove is switched on. Node 6 is a pres-
sure mat on the floor that can detect the presence of an ob-
ject on top of it. Node 5 is connected to two break-beams;
it can determine whether someone is entering or leaving the
house.

Example 1 shows three ruleblocks. The first two specify
state transitions, the last one an action. In the first ruleblock,
SPACE(kitchen) defines the spatial region r. TIME(Is)
sets the time interval /AA¢ to 1s; this means that all condi-
tions have to be satisfied within an interval of 1 second.
The actual rule is specified inside the ruleblock. STATE
stoveOnHazard is the target state S;41 kitchen Of the tran-
sition. There is no source state s; ,+. Thus, the rule spec-
ifies the generation of a new state. stoveOn() and not-
Monitored() are the conditions ¢1 ¢, kitchen a0d C2 ¢, kitchen
that have to be satisfied in order for the transition to take
place, or in this case to create a new state stoveOnHazard.
STATE(kitchen:stoveOnHazard) in ruleblock 2 defines the
source state s+ = S¢ gitchen = StoveOnHazard at time
t of the transition rule. If the condition leaving() is satis-
fied, there is a transition to STATE hazard (= S¢y1 ,, Where
r = door is defined by SPACE(door)). Ruleblock 3 de-
fines an action: if the state hazard € S 4o0r, then the action

alarm(10) should be triggered in the spatial region door at
t+ 1.

/* Ruleblock 1x/
SPACE (kitchen), TIME (1s) {
STATE stoveOnHazard :- stoveOn{(),
notMonitored() .

notMonitored () :- pressure(X), X<50.

/* Ruleblock 2%/
SPACE (door) , STATE (kitchen:stoveOnHazard) {
STATE hazard :- leaving(). }

/* Ruleblock 3%/
SPACE (door) , STATE (door:hazard) {
ACTION alarm(10). }

Example 1: An example of an application definition. The
objective of this application is to actuate the alarm, when
someone is leaving the house (leaving()), the stove is
switched on (stoveOn()), and the pressure on the floor mat
is less than 50. (notMonitored()).

3.2. Network Model

The network model is used by the compiler (cf. Sec-
tion 3.3) to make decisions where network states are man-
aged within the network. Based on the individual proper-
ties of nodes described in the network model, the compiler
generates the tasks and assigns them to the corresponding
nodes.

The network model is the interface of the network. It
specifies available services, node properties (location infor-
mation, hardware specification etc) and network properties
(connectivity, communication protocols etc). The services
are used to evaluate the transition conditions. We assume
that the network model is generated by a self-monitoring
network infrastructure. Each node in the network provides
a description of its properties and services. Other sources
of information are used to complete the network model,;
known location of a node is an example of an alternative
source. Changing parts (e.g. energy level of nodes) of this
model are dynamically updated while static parts (e.g. hard-
ware specification) are kept the same during the lifetime of
the network.

3.3. Compiler

The RuleCaster compiler translates an RCAL applica-
tion definition into code to be executed by the nodes in the

Interpreter

Local Service

Remote Query

Interface ‘ Remote Service

Configurator

Communication

Figure 3. The architecture of the runtime sys-
tem.

network (i.e. executable application code). Executable ap-
plication code is represented as a set of tasks; a task is gen-
erated for an individual node. A task specifies how a tran-
sition rule is evaluated and where states are stored. As seen
from Example 1, the application programmer does not have
to specify where a network state is manipulated and stored.
The spatial region r only defines where the conditions and
states are valid; however, rule evaluation does not have to
be done in the region itself. Therefore, it is possible to de-
velop several task distribution strategies, based on the appli-
cation requirements. An example of a requirement is mini-
mal energy consumption. Our goal is to allow the compiler
to dynamically assign tasks based on the requirements of
the application. This separation of different concerns makes
RuleCaster more flexible with respect to changing appli-
cation requirements compared to more traditional ways of
writing software where the distribution of state variables is
inherently contained in the application definition. If the re-
quirement is energy efficiency, the compiler finds a solution
that minimises the energy consumption of the running ap-
plication. This is a non-trivial job for the compiler, as there
are several dependencies for producing the required result;
the type of network (e.g. broadcast vs. unicast protocols),
processing cost, communication cost, the different levels of
energy in existing nodes, etc. Trade-offs also need to be
considered, such as whether to reduce robustness because
redundant processing increases energy consumption.

3.4. Middleware

The middleware provides the interface to the service-
based architecture of the system. It consists of collaborat-
ing runtime systems being executed on the nodes. Tasks are
sent to the nodes in a binary representation. The runtime
system receives the assigned tasks and starts the execution.
Furthermore, the middleware is responsible for describing
the nodes’ properties and services, which can be used to
generate the network model.

Figure 3 illustrates the modular architecture of the run-
time system that is executed on the nodes. The core compo-
nent is the Interpreter module. It is responsible for the inter-

pretation of the tasks. It uses the Local Service if a condition
of a transition rule has to be evaluated locally. The Remote
Service module queries services running on other nodes if
the tasks specifies that a transition condition has to be evalu-
ated by another node. The runtime system also accepts ser-
vice requests from other nodes through the RemoteQuery
module. The Remote Query module collaborates with the
Local Service module for this purpose. New tasks gener-
ated by the compiler are sent to the Configurator module.
It decodes the tasks and forwards them to the Interpreter
module. Finally, the Interface module announces proper-
ties and available services to the discovery mechanism used
to generate the network model.

4. Distribution Strategies

In Section 3.3 we explained that the RuleCaster compiler
can generate different executable application codes from the
same RCAL application definition. The application pro-
grammer can choose a specific compiler plug-in that influ-
ences this distribution. We introduce two distribution strate-
gies to illustrate how different executable application codes
can be formed from a single application definition. These
are (1) Centralised Distribution Strategy, and (2) Decen-
tralised Distribution Strategy. The first strategy uses service
availability as a factor to generate the executable applica-
tion code. The second strategy also considers location as
a parameter. The centralised distribution strategy creates
an overlay network with a star-topology: one central node
is responsible for all rule processing while the other nodes
only provide their services to the central node for condition
evaluation. The decentralised distribution strategy gener-
ates an overlay network consisting of several sub-networks.
Processing is distributed over several nodes that are respon-
sible for their own spatial region.

The Centralised Distribution Strategy increases commu-
nication cost, but reduces overall processing cost. On the
other hand, the Decentralised Distribution Strategy reduces
communication cost, but has redundant processing. Dis-
tributed evaluation of rules in the area where relevant data
is gathered can be seen as aggregation of high-level seman-
tic data. In-network aggregation of data has been shown to
improve the robustness of an application [6].

As mentioned earlier, energy is an important efficiency
criterion in wireless sensor networks. In the current version
of our RuleCaster compiler, we do not use an explicit energy
cost model to produce the optimal solution. However by us-
ing the location parameter, we can produce a useful heuris-
tic to decrease energy consumption. Ahn et al [1] show that
processing events (such as evaluation of rules) where they
occur in the network outperforms a centralised solution in
terms of energy.

5. Discussion

A high-level programming language like RCAL can sim-
plify programming of applications. However, there is a
tradeoff between the level of abstraction and the expressive-
ness of a language. A higher degree of abstractions gener-
ally means less influence of the programmer on the actual
executable application code. We believe that a state-based
abstraction addresses a broad class of wireless sensor net-
work applications. Rules have been shown to be intuitive;
Dey et al. even argue that people are naturally inclined to
use rules when asked to describe the behaviour of a smart
space [2].

The advantage of a declarative language like RCAL is
that the programmer does not have to specify how the appli-
cation is executed. The implementation specifies the over-
all goal of the application, or what has to be executed by
the network. An argument against the use of declarative
languages is the lack of good debugging tools or exception
handling mechanisms.

Adaptation of our middleware is rather limited to a few
reactive mechanisms like choosing the next collaboration
peer if the first one is not available. These alternatives are
determined at compile time. Improved adaptation would be
beneficial for the stability of the system. Adaptation of our
tasks is a complex problem that goes beyond changing the
routing path or the set of actively sensing nodes. The es-
sential problem is that we have to give the nodes enough
knowledge so that they can decide how much they are al-
lowed to change the tasks without changing the overall goal
of the application. The advantage of RuleCaster is that ma-
jor changes of the infrastructure can be accomodated by re-
compilation of the RCAL application without changing the
actual application definition.

We showed that the RuleCaster compiler can generate
different executable application codes from the same ap-
plication definition based on application requirements. We
used two factors to influence the compilation process: ser-
vice availability and location. We are investigating the use
of additional factors to influence the generation of the exe-
cutable application code. The question remains how we can
measure the quality of a solution with respect to require-
ments of an application.

6. Related Work

Related work can be subdivided into two main classes:
programming support and runtime support. The former
class is concerned with providing the programmer with
programming abstractions of the nodes and the network.
The latter class is focused on providing runtime tools that
simplify the deployment and the execution of applications.
Both of these classes are interrelated. Middleware solutions

traditionally focus on problems of the latter class. There
are several middleware solutions that provide services for
sharing data within a group of nodes [18, 10, 17]. Tiny-
Cubus implements methods for runtime adaptaption of ap-
plications [8]. Furthermore, it provides tools for efficient
code dissemination in a large sensor network. MiLAN is
another middleware example, which proactively adapts the
execution roles of nodes to the changing environment [4].
These middleware solution provide useful methods for data
sharing and efficient execution of applications. However,
they do not absolve the programmer from making deci-
sions where and how the application is executed in the net-
work. The programmer has to decide at implementation
time where state variables are manipulated and stored. With
a large number of nodes and different roles it makes it hard
to update or change an application. Suitable programming
support is needed to overcome these shortcomings.

An examplary approach that combines concerns of both
classes is TinyDB [7], an SQL-like language abstraction.
The sensor network is seen as a distributed database. SQL-
like query statements can be used to collect sensor data
from the network. While this system provides useful tools
for collecting sensor readings, it does not focus on general
purpose application execution in the network. Similar to
TinyDB, RuleCaster also addresses programming support
as well as runtime support. On the one hand, the service
based architecture of the middleware implements tools for
rule evaluation and code dissemination. On the other hand,
RCAL and the RuleCaster compiler provide methods for
implementing applications and the generation of efficient
executable application code. Additionally, RuleCaster sup-
ports sensing, evaluation as well as actuation inside the net-
work.

In terms of the declarative nature of the language, Rule-
Caster is similar to Regiment [11]. Regiment is based on
a functional language. Similar to RuleCaster, Regiment
allows the programmer to define the application logic for
the network as one unit. The authors argue that func-
tional languages are intrinsically more compatible with dis-
tributed implementation over volatile networks than imper-
ative languages. Regiment provides node-dependent opera-
tions, which makes it less flexible compared to RuleCaster
for distributing tasks in the network. Furthermore, the pro-
grammer is required to define operations on raw sensor data
in order to interpret their meaning. This makes it difficult
to quickly change these operations. Our service-based ap-
proach absolves the programmer from making these low-
level decisions when implementing an application; the pro-
grammer deals with data on a semantic level. Nodes could
even provide the same service using two different low-level
methods. This gives the RuleCaster compiler more freedom
in assigning tasks to nodes.

7. Conclusion

Commonly used programming support abstractions
force the programmer to express the global behaviour of a
network in terms of local actions taken at individual nodes.
This method is cumbersome because the programmer has
to deal with many issues related to distributed program-
ming which make application development difficult and
error-prone. Furthermore, the lack of standard program-
ming abstractions require the programmer to have an inti-
mate knowledge of the specific hardware platform. To sim-
plify application development for sensor networks, Rule-
Caster does not focus on individual nodes; instead, the net-
work is programmed as a single unit.

In this paper, we present RuleCaster, a rule-based
programming framework for sensor network applications.
RuleCaster (1) abstracts the network as a single distributed
entity, (2) separates application logic and distribution logic,
and (3) easily accommodates changes to an existing appli-
cation through automatic propagation of changes made to
one global application definition. RuleCaster allows the
application to be programmed for the network, instead of
individual nodes. Therefore the programmer is absolved
from making decisions on distributed programming issues
(such as data synchronisation, data consistency, etc). The
RuleCaster compiler takes an application definition written
in RCAL, splits it into individual tasks, and delivers them
to the nodes in the network. Tasks are generated by using
a specific distribution strategy. A distribution strategy de-
scribes an algorithm to find an optimal distribution of tasks
based on specific input parameters (such as location). As a
result, our method leads to a separation of concerns; ap-
plication logic and distribution logic can be changed in-
dependently of each other. Therefore, RuleCaster easily
propagates changes in the application definition to the ex-
ecutable application code through recompilation. Similarly
if requirements change, a distribution strategy that caters
for the new requirements can be chosen. We believe that
RuleCaster is a step towards simplifying the design, devel-
opment and maintenance of sensor network applications.

References

[1] S. Ahn and D. Kim. Proactive context-aware sensor net-
works. In Proceedings of EWSN’06, 2006.

[2] A. D. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP: In-
teractive prototyping of context-aware applications. In Pro-
ceedings of PERVASIVE’06, 2006.

[3] ETH Zurich. Btnodes - a distributed environment for pro-
totyping ad hoc networks. http://btnode.ethz.ch, September
2005.

[4] W.B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A.
Perillo. Middleware to support sensor network applications.
IEEE Network Magazine Special Issue, 18:6—14, 2004.

(5]

(6]

(71

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric
programming for sensor-actuator network systems. Perva-
sive computing, pages 50-62, 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Wong.
TAG: a Tiny AGregation Service for Ad-Hoc Sensor Net-
works. In Proceedings of OSDI’02, 2002.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing sys-
tem for sensor networks. ACM Trans. Database Syst.,
30(1):122-173, 2005.

P. J. Marrén, A. Lachenmann, D. Minder, J. Hihner,
R. Sauter, and K. Rothermel. TinyCubus: A flexible and
adaptive framework for sensor networks. In Proceedings of
EWSN’05, 2005.

moteiv. tmote sky. http://www.moteiv.com, September
2005.

L. Mottola and G. P. Picco. Logical neighboorhoods: A
programming abstraction for wireless sensor networks. In
Proceedings of DCOSS’06, 2006.

R. Newton and M. Welsh. Region streams: functional
macroprogramming for sensor networks. In Proceedings of
DMSN’04, pages 78-87, New York, NY, USA, 2004. ACM
Press.

K. Romer. Time synchronization in ad hoc networks. In Pro-
ceedings of MobiHoc’01, pages 173-182, New York, NY,
USA, 2001. ACM Press.

G. Roussos and M. Zoumboulakis. Ubiquitous computing
and databases: Critical issues and challenges. Encyclopae-
dia of Databases, 2004.

Y. Shang and W. Ruml. Improved MDS-based localization.
In Proceedings of INFOCOM 04, March 2004.

T. van Dam and K. Langendoen. An adaptive energy-
efficient mac protocol for wireless sensor networks. In
Proceedings of SenSys’03, pages 171-180, New York, NY,
USA, 2003. ACM Press.

N. Vlassis. A concise introduction to multiagent systems
and distributed ai. Technical report, Intelligent Autonomous
Systems, Informatics Institute, University of Amsterdam,
2003.

M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In Proceedings of NSDI’04, 2004.
K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a
neighborhood abstraction for sensor networks. In Proceed-
ings of MobiSys’04, pages 99-110, New York, NY, USA,
2004. ACM Press.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
mac protocol for wireless sensor networks. In Proceedings
of INFOCOM’02, 2002.

