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Abstract

Grassland management can modify soil microbial @arfC) and nitrogen (N) cycling,
affecting the resistance to extreme weather evamktsch are predicted to increase in
frequency and magnitude in the near future. HowesHects of grassland management on
microbial C and N cycling and their responses tvesme weather events, such as droughts
and heatwaves, have rarely been tested in a cothlaipperoach. We therefore investigated
whether grassland management affects microbialdCNaycling responses to drought and
temperature manipulation. We collected soils frionsitu drought experiments conducted in
an extensively managed and an abandoned mountassignd and incubated them at two
temperature levels. We measured microbial respimaind substrate incorporation, as well as
gross rates of organic and inorganic N cyclingstnegate microbial C and N use efficiencies
(CUE and NUE). The managed grassland was charaateby lower microbial biomass,
lower fungi to bacteria ratio, and higher microb@GlE, but only slightly different microbial
NUE. At both sites drought induced a shift in mlmed community composition driven by an
increase in Gram-positive bacterial abundance. @hbsignificantly reduced C substrate
respiration and incorporation by microbes at batkss while microbial CUE remained
constant. In contrast, drought increased gross @t&l mineralization at both sites, whereas
gross amino acid uptake rates only marginally ckdnijVe observed a significant direct, as
well as interactive effect between land managenmsrd drought on microbial NUE.
Increased temperatures significantly stimulatedrohi@al respiration and reduced microbial
CUE independent of drought or land management.oifgh microbial N processing rates
showed no clear response, microbial NUE signifigadécreased at higher temperatures. In
summary in our study, microbial CUE, in particulaspiration, is more responsive to
temperature changes. Although N processing rates steonger responding to drought than

to temperature microbial NUE was affected by bathudht and temperature increase. We
2



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

conclude that direct effects of drought and heaesasan induce different responses in soil

microbial C and N cycling similarly in the studikthd management systems.

1. Introduction

Socioeconomic changes in mountain regions haveedltgrassland management and
increasing proportions of previously agriculturallmanaged grasslands have become
abandoned (Tappeiner et al., 2008). Land manageomamige is affecting plant community
composition and associated plant traits (Fontanal.et2017; Grigulis et al., 2013), net
ecosystem gas exchange (Harris et al., 2018; Scbktral., 2010), soil microbial community
composition (Fuchslueger et al., 2014b; Griguliglet2013; Legay et al., 2016), as well as
soil C sequestration, soil structure, soil orgamigtter stocks (Meyer et al., 2012), and soill
microbial N turnover and related functional genle=sgay et al., 2016; Szukics et al., 2019).
Microbial C and N cycling in soil are tightly cowal and, amongst other factors, regulated by
environmental conditions (Allison et al., 2010; @meer et al., 2015; Frey et al.,, 2013;
Hagerty et al., 2014; Keiblinger et al.,, 2010; Mamz et al., 2012; Six et al., 2006;
Zechmeister-Boltenstern et al., 2015). Land manageroan strongly modify soil microbial
C and N cycling and influence the resistance asdieace to extreme weather events (De
Vries et al., 2012; Fuchslueger et al., 2014b; isulyr et al., 2017; Karlowsky et al., 2018),
which are projected to occur at higher intensitg &equency in mountain regions in the near
future (IPCC, 2012). An improved mechanistic untierding of soil microbial C and N
cycling (Wieder et al., 2015), as well as its iat#ron with land management is urgently
needed to accurately represent soil microbial faekid in ecosystem models to improve

predictions of grassland responses to projectataté change scenarios.
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Substrate stoichiometry and availability, as waedl raicrobial nutrient demand affect the
efficiency with which microbes convert availablebstrates into biomass, as opposed to the
release of C or N as enzymes, exudates, or aso€@organic N, i.e. the microbial C or N
use efficiency (CUE or NUE, respectively). High noloial CUE denotes a greater potential
for soil organic C storage, and lower losses of aaganic C through microbial respiration
per unit of C processed (Manzoni et al., 2012; Maosmer et al., 2014; Sinsabaugh et al.,
2016) , and has been found to decrease with Nidebig (Keiblinger et al., 2010; Spohn et
al., 2016). Likewise, high microbial NUE indicatefficient incorporation of N into microbial
biomass, and concomitant low mineralization (iede@se of inorganic N as NHand NQ)
into the environment (Mooshammer et al., 2014)adidition, microbes can take up small
organic N forms, such as amino acids; although freiduction and breakdown is considered
a key step in soil N cycling in many systems, thale for soil N dynamics is often
overlooked (Schimel and Bennett, 2004; Wild et2013).

Soil C and N cycling is sensitive to changes inl smisture (Moyano et al., 2013). Low
water and osmotic potential and reduced substrdfesidn during drought can reduce
microbial growth, increase microbial mortality, uwe microbial dormancy and shifts in
active microbial community composition (Blagodatgkand Kuzyakov, 2013; Lennon and
Jones, 2011; Moyano et al., 2013; Schimel et @072 Simultaneously, drought reduces
microbial activity indicated for example by reduaedpiration (Moyano et al., 2013). Effects
of drought on microbial N cycling are less clearowght can reduce extracellular enzyme
activity involved in protein depolymerization (Saflah et al., 2011). However, drought
effects on gross amino acid uptake and productjomicrobes have rarely been determined.
While drought can favor microbial strategies to semre N, such as production of N-
containing osmolyte compounds (Moyano et al., 2@&jimel et al., 2007), drought effects

on N mineralization, and nitrification seem to sty depend on ecosystem type and land
4
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management (Auyeung et al., 2013; Fuchslueger .et28l4b; Hartmann et al., 2013;
Homyak et al., 2017; Larsen et al., 2011).

Since drought periods often coincide with heat savan understanding of water and
temperature interactions on soil C and N cyclingrigcial (Auyeung et al., 2013; Bloor et al.,
2010). Temperature generally increases microbitiigc (growth), but also maintenance
costs and microbial energy demand (Allison et 2010; Frey et al., 2013). If more C is
allocated to respiration as opposed to microbiaimaiss growth, microbial CUE is reduced
(Dijkstra et al., 2015; Manzoni et al., 2012), whican result in overall losses of soil C
(Davidson and Janssens, 2006; Melillo et al.,, 201Higher temperatures allow a
thermodynamically faster extracellular enzymatieakdown of proteins into organic N
forms suitable for microbial uptake and therebynstate microbial growth (Wallenstein et
al., 2011), though they might also accelerate emzymactivation (Alvarez et al., 2018).
Microbial N mineralization and nitrification haveeén found to more strongly increase with
temperature than inorganic N uptake causing anoeease of inorganic N in soils (Larsen et
al., 2011; Niboyet et al., 2011; Shaw and Harte)120/erburg et al., 1999). Overall, the
temperature response of microbial N cycling andsegaently of microbial NUE remains
unclear.

Both microbial CUE and NUE are metrics attemptilngintegrate and characterize the
physiological potential of an established microlsalmmunity. Microbial CUE, which is
better studied than microbial NUE, can vary amoogsgstems, land management systems
(Bolscher et al., 2016; Lee and Schmidt, 2014; ghetnal., 2019), with climatic conditions
and incubation temperatures (Devévre and Horwd&02Steinweg et al., 2008). However,
responses of microbial C and N cycling and CUE HE to extreme weather events have
to our knowledge never been tested in a combingulioaph. The aim of this study was

therefore to evaluate the responses of soil miatdbiand N cycling to drought and to short
5
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term temperature increases in two differently madamountain grasslands. We assessed
microbial C cycling by measuring the partitioning) '8C-labelled substrate into microbial
biomass and respired G@nd soil microbial N cycling by’N pool dilution approaches, in a
managed and an abandoned mountain grassland that peet of anin situ drought
experiment. We collected soil samples from contratsl drought treated plots at peak
drought and tested the temperature response ofCsanid N cycling rates under controlled
laboratory conditions. We hypothesized that (i)udjtat reduces microbial C and N uptake as
well as mineralization rates, and that microbial EEdnd NUE consequently remain
unchanged. We further expected that (ii) short-tel@mperature increases stimulate
mineralization processes stronger than microbiagin, and thereby reduce microbial CUE
and NUE. As drought would reduce the temperatunsigeity of mineralization processes
(Suseela et al., 2012), we expected to find lesaqamnced temperature effects on CUE and
NUE in drought treated soil. Since the resistarfceod C and N cycling to extreme weather
events should decrease with increasing grasslanthgeaent intensity (De Vries et al.,
2012; Karlowsky et al., 2018), we hypothesized) (that the drought and temperature

response of microbial C and N cycling will differ managed and abandoned grassland.

2. Material and Methods

2.1 Site description and soil sampling

Soil samples were collected from two grasslands wifferent land management histories
located in the Austrian Central Alps near Neus#ftibai Valley (47°07’N, 11°19’E). Both
grasslands are characterized by a temperate, s¢asool, humid climate (mean annual
temperature of 3°C; mean annual precipitation d®710nm); the predominant growing
(snow-free) season is from March/April to Septemi$amples were taken from a grassland

(referred to as ‘managed grassland’; 1850 m a),swhere total aboveground plant biomass
6
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is cut and harvested once a year (Bahn et al.,)2@86 from an abandoned grassland, where
all management activities were terminated in 1988 which has since then undergone the
initial states of natural succession (referred $o‘abandoned grassland’, 1900 m a.s.l,,
Schmittet al., 2010; Ingrisclet al., 2017).

The grasslands differed in the amount of cumulatixganic matter input. At the managed
grassland aboveground biomass is regularly cur@amdved, and average soil organic matter
(SOM) content in the upper 10 cm of soil was 13.31%.8% SE), while at the abandoned
grassland SOM was higher with 22.5 % (£1.5% SEdefuined by loss on ignition at 550°C
(Fuchslueger et al., 2014b)). The plant commundgngosition is described as Trisetetum
flavescentis at the managed, and as Seslerio-@&nacat the abandoned grassland (Grigulis
et al., 2013; Schmitt et al., 2010). At both sites soil has been characterized as Dystric
Cambisol (FAO classification) with a pH of 5.5 ihet uppermost 10 cm (determined in
CaCl).

The two sites were part of a multi-year droughtezkpent in the CARBO-Extreme network.
Drought was simulated by excluding precipitatiomggain-out shelters equipped with light-
and UV-B-permeable plastic foil (UV B Window; Fad GmbH, Westerburg, Germany;
light permeability ca. 95%; UV-B permeability >70%ach shelter covered an area of 3 m x
3.5 m. Shelters had been installed over a periogrofveeks during the growing season in
2011, as well as for four weeks before sample codle in June 2012. In both grasslands,
soil moisture significantly decreased by at le@$%3Juring drought simulations (Table 1; for
a detailed experimental description see Fuchsluegalk., (2014b)). Soil samples were taken
from the center of each of the drought plots (chlidgrought’ hereafter), as well as from
control plots close to each rain-out shelter exgaseambient weather conditions (called
‘control’ hereafter, n=4 respectively). Per samphgy soil cores (5 cm x 7 cm) to a depth of

10 cm were pooled, sieved to 2 mm, and fine roasewnanually removed. Samples were
7
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stored cool and transferred to the lab on the sdaye One set of soil aliquots was
immediately processed to determine soil C and Nlgpand microbial community
composition. The remaining soil was split into ab¢s for incubations at two temperature
levels to test the temperature responses of migk@and N cycling: 15°C was chosen as it
is close to field temperature conditions (rangiegween 7.3 and 17.1°C in the week before
sampling), and 25°C was chosen to simulate a sttwegjwave. All samples were pre-
incubated at the two temperature levels for 24 forbethey were used for C and N cycling

measurements.

2.2 Soil parameters and soil C and N pools, microbial community composition

Soil samples were analyzed as described in Fuapsiwet al., (2014b). Soil water content
(SWC) was determined gravimetrically by weighing 6f fresh soil and drying at 60°C for
48 h. Dried soil samples were ground and analyaetbtal C and total N using an EA-IRMS
(EA 1110, CE Instruments, ltaly, coupled to a Fyam MAT Delta Plus IRMS; Thermo
Fisher Scientific, MA, USA). Microbial biomass CdmMN (Cyic, Nmic) was determined in
fresh soils using the chloroform fumigation extraet method (Vance et al., 1987).
Fumigated and non-fumigated soils (2 g respectjvelgre extracted with 20 ml of 0.5 M
K>SO, and analyzed for extractable organic C (EOC) amal extractable N on a TOC/TN
Analyzer (TOC-V CPH E200V/TNM-122V; Shimadzu, Ausgjf no correction factor was
applied to values on { and N reported (Table 1). Total free amino acid con@itns
(TFAA) were analyzed in aliquots of,RO, extracts fluorimetrically as described by Jodes
al. (2002), modified by Prommet al. (2014). Similarly, NH" concentrations were analyzed
photometrically in KSO, extract aliquots using a modified indophenol resctmethod
(Kandeler and Gerber, 1988). Nitrate (NOconcentrations were determined in water

extracts (2 g of soil with 20 ml of MilliQ water)ybchemically suppressed ion-
8
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chromatography (DX500, Dionex, Austria) on a Dior&R11 column. Extractable organic
nitrogen (EON) was calculated by subtracting inaigaN (NH;* and NQ) from total
extractable N.

Microbial community composition was determined gsphospholipid fatty acids according
to the method described by Frostegadal. (1991) with modifications described by
(Fuchslueger et al., 2014a). Briefly, total lipmsre extracted with a mixture of chloroform,
methanol and 0.15 M citric acid buffer from frozsoils. Neutral lipids and phospholipids
were separated on silica columns (Supelco, LC-SE,SBellefonte, PE, USA) using
chloroform, acetone and methanol as eluents. Aftielition of methyl-nonadecanoate (19:0)
as an internal standard and the conversion of bospgholipids to fatty-acid methyl esters
(FAMEs) by alkaline methanolysis, samples were dliaéad re-dissolved in isooctane and
analyzed on a GC-FID (Trace GC Ultra, Thermo) usirigB23 column (Agilent 60 m x 0.25
mm x 0.25 um). Bacterial and fungal FAME mixturdmdterial acid methyl ester mix,
Supelco, and 37 Comp. FAME Mix, Supelco) were usedualitative standards. The internal
standard 19:0 was used to calculate the concemirafi FAMES. As indicators for Gram-
positive bacteria we used the i14:0, i15:0, a186;0, al6:0, i17:0 and al7:0 fatty acids,
while the markers 16¢17, 18:1v7, cyl7:0, and cy19:0 were used as indicators fi@anG
negative bacteria. The sum of Gram-positive andhfamagative markers together with 15:0,
17:0, 10Mel8:0, 17d7, and 18:®5 was used as a measure for total bacteria. The
biomarkers 16:@5, 18:206,9, 18:1v9 and 18:83,6,9 were used to assess the fungal

contribution to the microbial community (Kaiseragt 2010; Olsson, 2006; Zelles, 1997).

2.3 Microbial C cycling potential and microbial CUE
The microbial C cycling potential was estimatedrigubating soil aliquots with a mixture of

3C-labelled substrates (sugars, amino sugars, argaids and amino acids with a C:N ratio
9
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of 20, enriched at 10.4 atom%, for a detaileddfstompounds see Takriti et al., (2018)). For
the assay, 2 g of soil pre-incubated at 15°C oC2b®re placed into 250 ml glass bottles.
Each subsample received dissolved C-substrate isquéd pg of C and the bottles were
sealed with butyl rubber plugs. Immediately afti® label addition 12 ml gas samples were
collected using a syringe and transferred to peceated Exetainer vials. The air removed
from the bottles was replaced with air with know®,Goncentration an’C composition.
The samples were then again incubated for 24 B°@ and 25°C, respectively. At the end of
the incubation further gas samples were taken ssrided above, and aliquots of soils were
used to determine microbial biomass Cuy( by chloroform fumigation extraction as
described in section 2.2. I8y extracts of both fumigated and non-fumigated i€ of
EOC was determined by direct injection on an ICtays(DX 3000, Dionex Corporation,
Sunnyvale, CA, USA) without column and connectedodlgh a Finnigan LC IsoLink
Interface (Thermo Fisher Scientific, Waltham, MASA) to a Finnigan Delta V Advantage
Mass Spectrometer (Thermo Fisher, Bremen, Germ&arpon substrate incorporation into
microbial biomass was calculated as the differebeaveen’>C in EOC of chloroform-
fumigated and non-fumigated samples. Gas samplese vemalyzed for their CO
concentrations andl*C signatures by a headspace gas sampler (GasBeifitieimo Fisher,
Bremen, Germany) coupled to an isotope ratio masstometer (Delta V Advantage,
Thermo Fisher, Bremen, Germany). Cumulative respimgtotal microbial soil respiration)
was calculated correcting for the air replacechatdtart of the incubation. Substrate derived
13C in CQ and EOC was corrected for mean natural abundaiseiloby calculating atom

percent excess. Microbial CUE was estimated asisi

CUE=C substrate incorporation/(C substrate ipomtion + C substrate respiration)

1)
10
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where C substrate incorporation is & labelled substrate incorporated into biomassGnd
substrate respiratiois the CQ respired from labelled substrates during the intaba
Microbial C turnover was calculated by dividing ttegal microbial biomass pool by the C

substrate incorporation rate:

C substrate turnover (days)=totalAC substrate incorporation 2)

2.4 Microbial N cycling rates and microbial NUE

2.4.1 Micraobial gross protein depolymerization and gross amino acid uptake

Gross rates of protein depolymerization and mi@bbmino acid uptake (Afwke were
determined following Waneét al. (2010), with the modifications for soil samplesdebed

by Wild et al. (2013). Briefly, 500 pl of a8°N-labelled amino acid mixture (20 amino acids,
0.25 ug pift, >98 atm%"™N, Spectra and Cambridge Isotope Laboratories) \added to
duplicates of 2 g fresh, but pre-incubated soimflas were then further incubated at either
15°C or 25°C; one of the duplicates was extractest 40 min, the second after 30 min of
incubation with 20 ml 10 mM CaSOcontaining 3.7% formaldehyde. Extracts were
centrifuged, filtered, and loaded on pre-cleandiboaexchange cartridges (OnGuard Il H
lcc cartridges, Dionex). Amino acids were eluteahiithe cartridges using 10 ml 3 M hH
amended with an internal standard (1 pg nor-valiner-leucine and para-chloro-
phenylalanine each, Sigma-Aldrich), dried under hé-dissolved in 20% ethanol and dried
again in a SpeedVac. Blanks and amino acid stasdaate processed with the samples
throughout the procedure. After derivatization wathyl-chloroformate (Wanek et al., 2010),
samples were analyzed with gas chromatography-rspsstrometry (Thermo Trace GC

Ultra and ISQ mass spectrometer, Agilent DB-5 calufTV injection in splitless mode at
11



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

270°C, 1 ml mift helium as carrier, temperature program: 60°C f6rriin, first ramp 5°C

mint to 200°C, second ramp 15°C niirto 300°C, 300°C for 4 min). We calculated
concentrations of alanine, glycine, isoleucineciee, phenylalanine, proline, serine, valine,
asparagine & aspartate, and glutamine & glutamgtgnat external standards that were
measured interspersed with the samples,*@dsotopic compositions of these amino acids
from the peak areas of fragments contairlifjor °N as described by Wanekal. (2010).

We finally calculated gross rates of amino acidstonption and protein depolymerization
based on the equations in Kirkham & Bartholomewb@)9a detailed description is reported

in Wild et al., (2018)

2.4.2 Gross N mineralization and NH4" uptake, NOs™ production and NO5™ uptake

Gross rates of microbial N mineralizationn{j and NH" uptake (NH"pakd and of NQ
production (NQprod) and uptake (NQypakd Were determined usingN pool dilution assays
(Kirkham and Bartholomew, 1954). For each assayimrebated aliquots of soil samples
received in duplicates 500 pl (MHSO, (0.125 mM; 10 atm%°N) or 500 pl KNQ (0.25
mM, 10 atm%"N). After °N-label additions samples were again incubated3E br 25°C.
From each assay one of the aliquots was extraftedd4ah, and the other after 24 h with 20
ml 2 M KCI. The extracts were stored frozen untitthier analyses. Gross,Nand NH yptake
rates were determined by microdiffusion of Ntfom KCl-extracts using acid traps, which
were analyzed for total N concentrations and atencgnt excess dfN by EA-IRMS (EA
1110, CE Instruments, Italy coupled to a FinnigaATVDelta Plus IRMS, Thermo Fisher
Scientific, MA, USA). For analyzing gross NOproduction and uptake rates, Bkas
removed from the extracts by adding MgO before eoivg NG to NH; by adding

Devarda’s Alloy, trapping Nkl by microdiffusion and analysis as described bef@moss

12
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rates of Nyn and NH'ypake @s Well as of N© production and uptake were calculated as

described by Kirkham & Bartholomew (1954).

Microbial NUE

Microbial NUE was calculated based on Wild et @Q13)

NUE=Abptake Nmin)/ (AA uptakd 3)

where NUE is the ratio of the sum of N taken uprbgrobes as amino acids (ke Minus

N mineralized (Nin» as NH") over the sum of N taken up by microbes. SincesgNQ
production was occurring in the same range as gibsS uptake we could not separate the
two processes and therefore did not consider imicg&dl process rates for estimating
microbial NUE. The turnover times of N pools (TFANH," and NQ) were calculated as

follows:

N pool turnover (hours)=N pool/((M&droductiont N-POOLptakd/2) 4)

2.5 Data analysis and statistics

Effects of land management and drought treatmersbdrparameters were assessed by linear
mixed effect models with land management and drotrglatment as fixed factors and plot
identity nested within land management as randoctofausing the ‘nlme’ package in R
(Pinheiro et al., 2019). The influence of land ngeraent and drought treatment on microbial
community composition using relative PLFA abundanas a proxy was displayed as a non-
metric multidimensional scaling plot based on ayBtartis similarity matrix; significant

effects were evaluated by permutation ANOVA using vegan’-package in R (Oksanen et
13
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342

al., 2013). Effects of land management, drouglatinent and incubation temperature as well
as their interactions on microbial CUE and NUE, amdthe respective C- and N process
rates were also assessed applying linear mixedteff@dels with plot identity nested as
random factor within land management. Variablesewsted for normal distribution of
residuals. Since many variables showed unequamnvees between the two land management
systems we used the weights function to fix vamanweights. For all process rateg @alues

were calculated as follows:

108(Ro5/Ry5) 125 19) 5)

where Rs and Rsare the rates measured in soil incubated at 25UC1&AC, respectively,
and the drought and temperature were assessed twitway ANOVA in each site

individually.

3. Results

3.1 Are drought responses of soil microbial C and N cycling depending on land
management?

The managed grassland was characterized by a isantlyy lower total soil C and N
concentrations, lower soil C:N ratio, as well asgmificantly lower G, content compared to
the abandoned grassland. At both sites the drotrgatment significantly reduced soil
moisture content and increased microbial C:N ratioen by a significant decrease igiN
(Table 1). The managed grassland showed a sigmnifyclower fungi:bacteria PLFA ratio,
and a significantly higher Gram-positive:Gram-negatbacteria PLFA ratio than the

abandoned grassland. In both sites the droughtntezs changed microbial community
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composition driven by a significant increase of iB+positive:Gram-negative bacteria (Fig.
1, Table 1).

Total soil microbial respiration (per g dry masd)seas not significantly different between
the two sites, but specific respiration (i.e., resppn normalized to i) was significantly
higher in the managed compared to the abandonedignal (Fig 2, Fig. S1,Table 2, Table
S1). Neither microbial C substrate incorporationr © substrate respiration differed
significantly between the two sites; yet the sndffierences resulted in significantly higher
microbial CUE of 0.61 (+0.03) in the managed, coredao 0.51 (x0.04) in the abandoned
grassland (Fig. 2, Table 2). Microbial C turnovecwred almost three times faster in the
managed (11.2 days) than in the abandoned gras@8ntldays; Table 3). Drought did not
affect total microbial respiration rates in eitlgeassland, neither on a dry mass soil basis, nor
when rates were normalized te,&(Fig. 2, Table 2, Fig. S1, Table S1). However, gidu
significantly reduced both microbial C substrateoporation and C substrate respiration,
which slowed down microbial C turnover, while mibral CUE remained constant (Fig. 2,
Tables 2 and 3).

The analyzed microbial gross N cycling rates did significantly differ between the two
sites and also microbial NUE was similar in the aged (0.66 +0.06, mean +SE) and
abandoned grassland (0.69+0.03, mean £SE) (Fibalde 2). Normalized to &, also most
microbial gross N-processing rates were comparaflely NO; pool turnover was
significantly higher in the managed compared todb@ndoned grassland (Table 3).

The drought treatment differently affected micrdiNacycling rates mostly independent of
land management. Drought significantly increasemkgmprotein depolymerization, gross N
mineralization and gross NHuptake and significantly reduced gross N@roduction rates
at both sites, while gross AA uptake only showedlschanges in either site (Fig. 3, Table

2,). The response of N cycling rates normalize@4@ were less pronounced (Fig. S2, Table
15
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S1). Nonetheless, the drought response of microWii#E depended significantly with land
management and was reduced in the managed, baagsxdt in the abandoned grassland (Fig.

3, Table 2).

3.2 Does drought affect the temperature response of microbial C and N cycling?

The temperature increase significantly stimulatetaltmicrobial soil respiration (@ 1.8-
2.2), and C substrate derived respirationp(Q.3-1.4), regardless of land management and
drought treatment (Fig. 2, Fig. 4, Table 2). MiagedbC substrate incorporation was not
significantly affected by temperature, but its temgture response showed a trend to vary
with land managementF£3.6, p=0.075. Increased temperatures caused a reduction of
microbial CUE (Fig. 2, 4, Table 2), which also seento tended to interactively depend on
land managemenfF€3.9, p=0.064) and drought treatmenE£3.7, p=0.070, Fig. 2, Fig. 4,
Table 2).

Although increased temperatures did not signifigaclhange the measured gross N cycling
rates, neither per dry mass nor normalized pge (Qable 2, Table S1, Fig. 3, Fig. S2),
microbial NUE was significantly reduced. Moreovénge temperature response of gross
protein depolymerization rates depended on thegihtotreatment and rates decreased in

control and increased in drought treated plots i@ abFig. 3).

4. Discussion

Our study provides experimental evidence that dnbagd temperature pulses can induce
different responses of microbial C and N cyclinggmassland soils, and in contrast to our
hypothesis independent of land management. Abaneonhnof agricultural grassland
management is known to introduce ecosystem widaggs from reducing gross primary

production, ecosystem respiration and changingativeet ecosystem GQexchange (Harris
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et al., 2018; Schmitt et al., 2010) to alteringnplétter inputs to the soil, reducing litter
quality (wider C/N ratio, increased lignin and lawe content) and labile C inputs into the
rhizosphere (Ingrisch et al.,, 2017; Karlowsky et @018). In line with earlier findings
(Karlowsky et al., 2018; Legay et al., 2016), weirfd that land abandonment increased
microbial biomass C and induced a shift in microb@nmmunity composition, characterized
by an increase in the abundance of fungal PLFAspeoed to the managed grassland and
shifted gram positive and gram negative PLFA contjors

Despite the difference in microbial community comigion, total microbial respiration, C
substrate respiration and C substrate incorporateies were comparable in the two
grasslands per dry soil (Table 2, Fig. 2). Howevermalized to microbial biomass all C
cycling rates were higher, and C turnover occufaster in the managed grassland indicating
a more active microbial community, or a higher mmdjon of active microbes compared to
the abandoned site (Table S1, Fig. S1). MicrobidEGvas however significantly higher in
the managed compared grassland with lower fungebacratio compared to the abandoned
grassland (Fig. 2, Table 2). Bacterial growth édcy has been shown to increase from
forest to cropland soils with management intengitge and Schmidt, 2014), and in
grasslands microbial CUE has been shown to incnedkenutrient availability (Spohn et al.,
2016). In contrast, Boélscher et al., (2016) rempbedigher CUE of microbial communities in
forest soils with higher fungal abundances and rg@tehigher CUE of saprotrophic fungi
compared to microbial communities in arable land grasslands.

Changes in land management can also strongly mfrig@lant and soil N cycling, and the
gene abundance of microbial N cyclers and N cyctetgs (Hartmann and Niklaus, 2012;
Legay et al., 2016; Szukics et al., 2019). Desgpitsignificant lower gross N production
rates at the managed compared to the abandoneslagidsall other measured gross N

cycling rates, both per dry weight and normalized rbicrobial biomass, as well as N
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turnover times and microbial NUE were similar a tivo sites (Table 2, Fig. 3g). Microbial
NUE was within the range of values reported for enéth soils (Mooshammer et al., 2014),
but lower than in temperate heathland soils (Wildlg 2018).

We hypothesized that drought reduces microbial €ofiporation and respiration) and N
cycling (N uptake and mineralization), and that noisal CUE and NUE consequently
remain unchanged. Since earlier studies found gnassland management intensity can
modify the resistance of soil C and N cycling tdreme weather events (De Vries et al.,
2012; Karlowsky et al., 2018), we expected thatdtaight response differs in the managed
and abandoned grassland. However, independent ffdregices in soil properties and
microbial community composition, and in contrasbto hypothesis, the drought response of
microbes was similar at the two sites. The simdladeought induced shifts in microbial
community composition, characterized by an incraastungal and Gram-positive PLFA
markers in line with earlier findings (Karlowsky &t, 2018). Microbial biomass C remained
stable, but our data indicated that the active @rogn of the soil microbial community
incorporating and mineralizing C substrates, wasiced by drought (Fig. S1). One strategy
of microbes to cope with drought is to promote #teumulation of osmolytes within the
microbial biomass, which would increase microbi&Ein the short term (Manzoni et al.,
2012). However, microbial CUE was unaffected, iatlimgy that microbes may have rather
switched to dormancy (Schimel, 2018), and that gindulid not uncouple respiration from
growth independent of observed differences indumgeldnd management.

We also show that the responses of microbial Nimgcprocesses to drought were more
diverse than C cycling responses. Similarly asdfought effects on C cycling, the direction
of drought effects on inorganic microbial N cycliigthis experiment was independent of
land management, which is in contrast to earlwdists (Fuchslueger et al., 2014b; Hartmann

et al., 2013). Drought reduced N concentrationsmicrobial biomass and increased microbial
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C:N ratios in both grasslands. This response Isweawith previous observations (Jensen et
al., 2003; Zeglin et al.,, 2013), and indicates tHedught may have stronger effects on
microbial N than C cycling. Independent of land g@ment, drought significantly
increased protein depolymerization rates, an eelitdar process catalyzed by proteases
(Wanek et al., 2014), which is in contrast to dym@observed in temperate heathland,
where protein depolymerization rates were unaftebte drought (Wild et al., 2018). During
drought organic compounds can concentrate in timaireng soil solution and may increase
substrate availability for enzymatic depolymeriaati(Fuchslueger et al., 2014b; Tiemann
and Billings, 2012). Moreover, extracellular enzgnmay be longer active during dry
conditions than microbial cells (Steinweg et 2D,13). Drought reduced NOproduction
and increased NH uptake. The reduction in N mineralization led toaverall reduction of
microbial NUE. The effects of drought on NUE depemhdn land management (Table 2),
mostly caused by small, but differential changegrimss amino acid uptake rates at the two
sites.

Drought periods are often accompanied by heat wavlesre soil temperatures can quickly
rise above the normal range. In line with our hipests and earlier findings, microbial CUE
decreased with increased temperature (Allison, 2@ixdscher et al.,, 2017; Devévre and
Horwath, 2000; Frey et al., 2013; Li et al., 20B84einweg et al., 2008; Walker et al., 2018),
with C substrate respiration increasing strongant@ incorporation (Table 2, Fig. 2). Higher
temperatures stimulate intracellular metabolic psses (e.g. several steps in glycolysis and
the Krebs cycle (Dijkstrat al., 2011)) and stimulate microbial turnover compaedrowth
efficiency (Hagerty et al., 2014). Moreover, casoaktimulate extracellular enzyme rates
increasing SOM and substrate turnover (Steinwexd, ,€2013). On ecosystem scale the strong
temperature dependency of heterotrophic soil ragpir can account for large C losses

(Walker et al, 2018; Mayeret al., 2017). However, previous field experiments havewn
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that total soil respiration (which includes autginec plant root respiration) exhibits lower
temperature-sensitivity under drier conditions (lbaen & Janssens, 2006; Suseetal.,
2012). In contrary to our expectation, we foundt tie temperature response of CUE was
only marginally interactively affected by land mgeanent(p=0.064) or drought =0.070),
respectively (Table 2). This suggests that the edkfices in microbial community
composition between the two sites and induced byght may not have been strong enough
(yet) to change the responses to increased tempesatn contrast, the temperature response
of C turnover times were significantly interactiyedffected by both land management and
drought driven by only slightly different tempereguesponses in C substrate incorporation
(Fig. 2c). However, microbes can adapt over longes to higher temperatures (Bradford et
al., 2008; Rousk et al., 2012), thus the obsereedperature sensitivity of microbial CUE
could represent a short-term stress response. ©@wottter hand, some long term warming
studies showed that even after several years ofmimgr microbes exhibited a high
temperature sensitivity (Frey et al., 2013; Sctbadher et al., 2015; Walker et al., 2018).

In contrast to our hypothesis microbial N cyclifgpwed a different, and less pronounced
temperature sensitivity than microbial C cyclingdependent of land management. In our
experiment gross rates of protein depolymerizatdmineralization and N© production
remained unchanged at higher temperatures. Howexedetected an interactive effect of
drought and temperature only on gross protein gepalization rates, but not on inorganic N
cycling and N turnover rates which is in contraatier studies (Auyeung et al., 2013; Wild
et al.,, 2018). Microbial NUE did not change at l@ghemperatures (Table 2, Fig. 3).
Although effects of higher temperatures on N tuaromight be delayed in their response,
several long term warming experiments also founckfiect on soil N turnover (Niboyet et

al., 2011; Schindlbacher et al., 2015). Our datests that soil microbial N turnover is less
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sensitive to short-term temperature changes thayc{ing, similar as shown by Kodt al.,
(2007).

Overall, we conclude that microbial C and N cyclprgcesses respond differently to changes
in environmental conditions. Microbial C cycling sveore sensitive to temperature changes,
whereas N cycling was more strongly controlled gter availability. Our results suggest
that alterations on soil N cycling induced by landnagement could modulate in particular

soil NUE in under future scenarios.
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798 Tablesand Figures:
799 Table 1: a) Soil parameters and soil microbial characteris{@s0 cm) of control and drought treated plotstted managed and abandoned
800 mountain grasslands (means, +8E4). SWC, gravimetric soil water content in % of fiesoil; Total C, total soil C; Total N, total sd\; Soll
801 C:N, mass based soil C:N ratio; EOC,;S, extractable organic C; EON,,80, extractable organic N; TFAA, total free amino agidyc,
802 microbial biomass C; N, microbial biomass N; Microbial C:N,mass basedrobél biomass ratiop) Effects of land management and drought
803 treatment and their interactive effects on soil amdrobial parameters were assessed by linear neffedt models with plot identity as nested
804 random factor within land management. Significaffecences are shown in bold.
805
a) Managed meadow Abandoned meadow b) Land man Drought Land man x
Drought
Control Drought Control Drought 806
Mean +SE Mean +SE Mean  +SE Mean  +SE F p F p F p
SWC (% fresh soil) 378 0.8 251  #4.7 429 +1.6 1.33 5.2 3.8 0.147 177 0006 0.1  0.853
Total C (%) 6.8 0.6 6.6 0.6  10.5 +1.9 115 +1.8 100 0049 0.0 0925 0.2 gp$s3
Total N (%) 07 0.1 07 0.1 0.9 +0.2 1.0 +0.2 55 0037 02 0680 0.2 0.659
Soil C:N 9.9 0.2 9.7 0.1 116 +0.5 116 +0.7 131 0036 39 0097 0.0 0.853
EOC (ug C ¢ dw) 323.8 +42.1 3042 +18.7 4423 551 3716 .299 20 0250 05 0489 02 gQ672
EON (ug N ¢ dw) 423 +44 460 +25 606 +6.4 499 156 18307 06 0482 07 445
TFAA (ug N g* dw) 36 0.8 37 205 5.2 +1.1 3.9 +1.3 0.7 (046 0.0 0.852 0.6 0.461
Ammonium (ug N ¢ dw) 112  +1.1 157 1.7 186 +2.3 205 +9.6 18.314 50 0068 0.1 0.806
Nitrate (ug N ¢ dw) 39 17 34  #15 0.7 +0.2 0.7 +0.4 53 ®10 0.0 0.944 0.1 0.819
Cmic(mg C g" dw) 1.0 0.1 08 0.1 1.9 +0.5 1.9 +0.5 76 0017 01 0738 0.1 0.794
Nimic (Mg N g* dw) 0.2 +0.02 0.1 #0.02 0.3 +0.1 0.2 +0.1 6.7082 154 0008 0.1 0.795
Microbial C:N 57 0.2 9.1 07 6.6 +0.7 8.6 +0.5 0.1 0821 247 0003 13 0.297
Fungi:bacteria ratio 0.34 +0.01 034 0.02 037 .020 0.39 $0.01 99 0008 10 0335 3.8 0.076
Gram-pos:Gram-neg ratio 046 =0.02 049 =+0.03 0.32:0.02 0.50 +0.02 145 0003 198 0.004 221 0.003
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809 Table 2: Effects of land management, drought treatment,iaodbation temperature on microbial CUE (unitless)al and C substrate derived

810  microbial respiration and C substrate incorporabigrmicrobes (given in pg C'gdw soil %), as well as on microbial NUE (unitless) and griss

811  processing rates, such as protein depolymerizagionno acid (AA) uptake, N (nitrogen) mineralizatiblH;~ uptake, N@ production and N@

812 uptake, and on C substrate turnover (days) and &l fponover (hours) were assessed by linear mixXéstts models using land management

813  system, drought treatment and incubation temperasrfixed factor and accounting for paired cordirad drought plots as nested random effect

814  within land managemerfh=4). Missing data for N@ production does not allow to test for drought @nolught interactions is marked as na (not
815 available).

Land man Drought Temp Land man Land man Drought Land man
x Drought X Temp x Temp x Drought
x Temp
Processes F p F p F p F p F p F p F p
CUE 99 0050 0.7 0.427 223 <0001 16 0.222 39 0.064 3.7 0.070 0.2 0.631
Total microbial respiration 46 0.121 2.8 0.116 439 <0001 0.1 0.732 0.8 0.388 0.6 0439 0.1 0.832
C substrate respiration 5.00.111 51.7 <0001 731 <0001 09 0.369 04 0516 20 0.175 0.1 0.876
C substrate incorporation 2.20.236 46 0.046 0.2 0647 1.7 0.209 3.6 0.075 29 0.105 0.1 0.904
C substrate turnover (d) 208 0020 200 <0.001 0.6 0.452 1.7 0.209 48 0043 60 0024 15 0.230
NUE 7.7 0.070 6.0 0.027 50 0041 49 004 00 0904 1.7 0.218 0.0 0.973
Gross protein depoly 5.6 0.099 296 <0.001 0.0 0.888 1.0 0.334 0.0 0.988 153 0.001 0.2 0.673
Gross AA uptake 7.0 0.078 2.7 0.115 0.1 0.747 27 012 00 0.881 0.8 0.388 0.6 0.446
Gross N mineralization 4.6 0.123 121 0.003 05 0474 00 0.826 05 0485 0.1 0.764 0.0 0.942
Gross NH" uptake 3.1 0.123 53 0034 0.9 0.367 0.2 0.638 0.2 0.655 0.2 0.699 0.0 0.891
Gross N@ production 140 0033 74 0.014 0.1 0.721 0.2 0.668 0.2 0.653 3.9 0.064 0.1 0.778
Gross N@ uptake 0.7 0.457 na 15 0.236 na 1.3 0.275 na
TFAA turnover (h) 1.7 0.287 0.3 0582 00 0998 12 0283 0.1 0815 04 0535 24 0.139
NH," turnover (h) 0.8 0.450 45 0.048 0.0 0839 32 0.092 01 0726 34 0.080 3.7 0.070
NO; turnover (h) 0.7 0.402 0.5 0482 0.0 0974 31 0.092 0.1 0.729 67 0016 3.6 0.070
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816 Table 3: Turnover times of labile C substrate, organic NFAR), ammonium (NH") and
817 nitrate (NQ') by the microbial biomass given in days (d) andirko(h), respectively, in
818 ambient controls, as well as in response to droaigdatment and to temperature increase
819 (means +SEn=4). Microbial C substrate turnover time was calcedbas the i divided by
820 microbial C substrate incorporation, the turnoviemes of TFAA, NH' and NQ were
821 calculated by dividing the N pools by the averafjghe respective microbial production and
822  uptake rates. Due to analytical problemszNiOrnover times in the managed grassland during

823  drought were not available (na).

Managed grassland Abandoned grassland
15°C 25°C 15°C 25°C
Control Drought Control Drought Control Drought | Drought

C substrate turnover (d) 119+14 178+0.3 132+ 17.1+0.7 30436 457+6.6 302452 32.3B+6

TFAA turnover (h) 2105 2.1+0.2 2.1+0.3 2140 2712 0.7+£0.3 2.3+0.9 1.4 0.7

NH," turnover (h) 20.3+3.0 20.3+3.9 8.8+2.4 9.1+359.4+34 18165 204122 246114

NOs turnover (h) 6.2 £3.5 na 145487 17484 (OB3+ 1.8+0.6 1.4 +0.5 1.1+0.4
824
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Figure captions:

Figure 1: Effects of drought treatment on microbial commumibmposition under ambient
temperature conditions displayed as non-metric idioensional scaling (nmds) plot based
on a Bray-Curtis similarity matrix of relative PLF&bundances in control (light green) and
drought (dark green) treated soil of a managealésd) and abandoned grassland (squares).
Differences between sites and drought-precondiigpnivere computed by permutational
ANOVA; (mean, +SEn=4)

Figure 2: (a) Total microbial respiration, (b) C substrate dedivespiration, (c) C substrate
incorporation into microbial biomass, and (d) miied CUE in control (open bars) and
drought treated (hatched bars) soils of a managedadandoned grassland incubated at
ambient temperatures (green bars) and 25°C (red);bémeans, error bars=SHB=4).

Statistical details are given in Table 2.

Figure 3. Gross rates of microbial N cycling and microbial KUuh differently managed
grasslands in response to drought and increasquetaimre; a) Protein deploy refers to gross
protein depolymerization, b) AA uptake refers togg amino acid uptake, ¢) N mineralization
refers to gross N mineralization, d) NHuptake refers to gross NHuptake, €) N@
production shows gross NOproduction, and f) N© uptake shows gross NQuptake, as
well as g) microbial NUE in control (open bars) airdught treated (hatched bars) soils of a
managed and abandoned grassland incubated at anjipiean bars) and 25°C (red bars);
(means, error bars=SHi=4; na: data not available). Results from a detaséatistical

analysis are shown in Table 2.

Figure 4. Temperature response y(pof microbial C and N cycling rates and of micrbi
CUE and NUE in control (light green) and drougtgated soils (dark green) of tle
managed and) abandoned grassland. Values higher than 1 indi@aténcrease, values
smaller than 1 indicate a decrease in responsed®adsed temperature. Letters indicate
significant temperature responses (T), droughtcedf€D), or interactive temperature and
drought effects (TxD) (two-way ANOVA, level of mmium significance p<0.05=4).
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ACCEPTED MANUSCRIPT
854  Figurel:
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860 Figure4:
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Highlights:

* Microbial CUE, but not NUE, was higher in managed compared to abandoned grasslands

* Drought reduced microbia C metabolism at constant CUE

» Drought increased gross N mineralization, but affected NUE interactively with land
management

* Higher temperatures reduced CUE and NUE.

*  Only minimal interactive effects of drought and temperature were observed.



