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Highlights 

 Spatial random effects on the relative risk of human H7N9 infection in 

four seasons 

 Different covariates had a significant influence in different seasons  

 Parameter settings in the Bayesian hierarchical model had an influence  

Abstract 

The outbreak of H7N9 epidemic in human has seasonal changes. However, up to 

now there is no research on the spatial-temporal variation characteristics of the 

relative risk of human H7N9 infection, and the covariate combination that has a 

greater impact on the relative risk of human H7N9 infection in different seasons. This 

study used China as the study area to predict the seasonal relative risk of human H7N9 

infection through a Bayesian hierarchical conditional autoregressive model (BHCAR), 

which including five covariates (population density, number of live poultry markets, 

average precipitation, average temperature, and average relative humidity), seasonal 

random effects, and spatial random effects. Moreover, the sensitivity of the Bayesian 

hierarchical model (BH) to predict the seasonal relative risk of human H7N9 infection 

by changing the parameter settings of the BH prior distribution was analyzed. It was 

found that the relative risk of human H7N9 infection in spring and winter had spatial 

random effects, but not in summer and autumn. In spring, autumn and winter, the 

combination of population density and the number of live poultry markets had a 

significant influence on the relative risk of human H7N9 infection. In summer, however, 

the relative risk of human H7N9 infection was largely affected by population density, 
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the number of live poultry markets, average precipitation and average temperature. 

Further, the standard deviation of the normal distribution to which the covariate 

coefficient in the BH was subject seemed to have an influence on the prediction and 

fitting effect of the seasonal relative risk of human infection with H7N9. 

Keywords: BHCAR; Human infection with H7N9; Spatial-temporal risk variation; 

Sensitivity analysis 

1. Introduction 

Since February 19, 2013, when the first patient infected with the novel influenza A 

H7N9 virus from an avian source showed symptoms, 1567 laboratory-confirmed 

human infections have been reported to the World Health Organization (WHO) in 

China as of 2 March 2018, including at least 615 deaths (WHO, 2018). The outbreaks 

of influenza A H7N9 infection in humans normally has taken on a seasonal trend with 

five major epidemic waves so far (WHO, 2018). The H7N9 virus is a low pathogenic 

avian influenza A virus, it can cause an asymptomatic infection in birds (Chen et al., 

2013; Liu et al., 2013), but it can normally cause severe respiratory illness in humans 

(Tang and Chen, 2013). Another immediately notable feature of H7N9 is the rapid 

accumulation of laboratory-confirmed cases of infection in human beings, even 

though phylogenetic and epidemiological evidence suggests that transmission is 

mainly zoonotic (Cowling et al., 2013).  

So far there is no evidence of efficient or sustained human-to-human H7N9 virus 

transmission (Fang et al., 2013), but the H7N9 virus can occasionally transmit from 

person to person (Qi et al., 2013; Poovorawan, 2014). In particular, three factors of 

avian influenza A H7N9 make it possible to be the next pandemic strain of influenza, 

which including the virus has the ability to cause disease in humans; there is little 

immunity to the virus within the population; the virus has the capacity for sustained 

human-to-human transmission (Tanner et al., 2015). If H7N9 becomes transmissible in 

wild migratory birds like H5N1, it will likely spread to many countries. Therefore, the 

spatial transmission pattern of novel H7N9 poses an epidemic threat for China, and 

the globe, especially for human beings (Zhang et al., 2015). Thus, the avian influenza 
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A H7N9 is an unusually dangerous for humans. 

Some methods have been applied to map the spatial risk distribution of human 

infections with avian influenza A H7N9 in China, such as boosted regression tree 

models (BRT) (Fang et al., 2013; Gilbert et al., 2014; Li et al., 2015), ecological and case-

control methods (Ge et al., 2017), ecological niche modeling (ENM) (Xu et al., 2016), 

Logistic regression model (Fuller et al., 2014; Dong et al., 2015), species distribution 

models (SDMs) (Bui et al., 2017), Bayesian model (Hu et al., 2015). Among these, most 

of which were spatially predictive of human infection with avian influenza A H7N9 

(Fang et al., 2013; Fuller et al., 2014; Gilbert et al., 2014; Dong et al., 2015; Li et al., 

2015; Xu et al., 2016; Bui et al., 2017; Ge et al., 2017), very few research work explored 

the spatio-temporal variability of the risk of human infection with avian influenza A 

H7N9 (Hu et al., 2015). So it is still unclear how the probabilities of occurrence of 

human infection with avian influenza A H7N9 varying spatially and temporally in China 

and which underlying risk factors are involved.  

Through the numerous statistical techniques that are now available and increased 

acceptance of statistical methodology (Unkel et al., 2012), statistical models have 

become increasingly popular in public health. Among these, BH are especially popular 

in the analysis of spatial and spatio-temporal infectious diseases (Marínez-Beneito et 

al., 2008; Banks et al., 2012; Zou et al., 2012; Zhang et al., 2014; Zou et al., 2014). BH 

allow for multiple sources of data, decomposing complex problems into a subset of 

simpler problems governed by simple rules of probability, and accounting for 

parameter uncertainty; specifically, they have the ability to consider scientifically 

meaningful structures and a priori knowledge regarding the model parameters (Arab 

et al., 2008; Zhang et al., 2014). Although some work was done to illustrate the spatio-

temporal distribution of the risk of H7N9 infection in China with a BHCAR (Hu et al., 

2015), this was done for only one city. This paper had two objectives. One was to apply 

a BHCAR to identify the spatial-temporal variation in relative risk of human H7N9 

incidence by season at the county level for China, and to find the optimal combination 

of relative variables (influence factors) fitting the relative risk of human infections in 

H7N9. The other one was to conduct the sensitivity analysis of the parameters of the 
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BH to see how different parameter settings affect the results of the relative risk of 

human H7N9 infection.  

2. Methods 

2.1. Data sources  

Data on laboratory-confirmed avian influenza A H7N9 human cases reported in 

China from 19 February 2013 to 16 February 2015 were provided by the World Health 

Organization (WHO, 2018), social media and Zhang et al. (2015). Basic geographic data 

were provided by the Data Sharing Infrastructure of Earth System Science (2015). 

Population data at the county level were provided by Demographic Statistics of the 

County in China of 2000 and 2010 (Public Security Bureau, 2000, 2010). Monthly 

average precipitation and temperature data were obtained from the WorldClim-Global 

Climate Data (2011), which were provided at a 30 second resolution and in grid format. 

Monthly average relative humidity data were provided by National Meteorological 

Information Center (2018), which was a text format of the climatological annual data 

set of meteorological stations in China. The locations of live poultry markets in 2012 in 

mainland China were obtained from Baidu Map (2016), which provides a Chinese 

location-based network digital map search service. 

2.2. Data analysis & data processing 

The seasonplot() function in R (Hyndman and Athanasopoulos, 2018) was used 

here to plot the number of H7N9 human cases that have been reported in China 

between February 2013 and December 2014. The horizontal axis of Fig. 1 was the 

month, and the vertical axis was the number of cases of human H7N9 infection in each 

month. It clearly showed the potential seasonal patterns of changes in the number of 

H7N9 human cases in China in the year of 2013 and 2014 (Fig. 1). The seasonal 

patterns differed in winter and spring, while summer and autumn showed similar 

trends (Fig. 1). There was a sharp fall in the winter of 2014, while a sharp rise in that 

of 2013. By contrast, there was a sharp rise followed by a sharp decline in the spring 

of 2013, while a slow rise followed by a slow decline in that of 2014 (Fig. 1). In the 
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summer and autumn of 2013 and 2014, however, the number of human cases of H7N9 

was relatively small, showing neither increasing nor decreasing trend (Fig. 1).  

Further, most human infections occurred in spring and winter, and less cases 

occurred in summer and autumn (Fig. 2). This may confirm the seasonal characteristics 

of human infection with H7N9 influenza virus, and winter and spring were the peak 

seasons for human infection with H7N9. Besides, most of the H7N9 human cases were 

clustered in the east and southeast regions of China, and the remaining cases occurred 

in the neighboring regions of those. The spatial distribution of H7N9 human cases had 

a tendency to spread from east and southeast to the adjacent and other areas (Fig. 2).  

For the monthly average precipatation and temperature data, they were extracted 

within the China boundary first, and then converted from radian unit into length unit, 

resampled to a 100 m cell size. Finally, monthly average precipitation and temperature 

at the county scale were obtained through the zonal statistics tool in ArcGIS using the 

county as the defined the zones. For the monthly average relative humidity data, semi-

variance analysis was carried out on the meteorological stations and then the monthly 

average relative humidity surfaces in China at the resolution of 100m grid were 

obtained by Kriging. Using the tool of Zonal Statistics as Table in ArcGIS as well, the 

monthly average relative humidity at the county scale were obtained. Based on the 

population statistics of each county in 2000 and 2011, the population statistics of each 

county in China in 2013 and 2014 were deduced, and then combined with the area of 

each county, the population density of each county in China in 2013 and 2014 were 

calculated. In this study, four seasons were divided by astronomical means: spring 

from March to May, summer from June to August, autumn from September to 

November, and winter from December to February. The seasonal average temperature, 

precipitation, relative humidity and population density were obtained by adding the 

monthly average temperature, precipitation, relative humidity and population density 

of the corresponding months, and then taking the average. .  

2.3. Monthly incidence rate 

The incidence rate is the number of new cases per population at risk in a given 
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time period (Rothman et al., 2008). In epidemiology, incidence rate can be replaced by 

the attack rate, which is the biostatistical measure of frequency of morbidity, or speed 

of spread, in an at risk population. It is used in hypothetical predictions and during 

actual outbreaks of disease. Population at risk is defined as one that has no immunity 

to the attacking pathogen which can be either a novel pathogen or an established 

pathogen. It is used to project the number of cases to expect during an epidemic. Here, 

monthly incidence rate is to be used, calculated as follows:  

 

 
m

C
mI K

P
                                (1) 

 

where, I  represents the monthly incidence rate, m stands for a certain month, mC

represents the number of new H7N9 cases in the month, mP is the average population 

number at risk for the month, and K could be 100%, 1,000 ‰, 10,000/10,000, 

100,000/100,000 and so on. Here K is assigned with 100,000/100,000. mP in Equation 

(1) for the average population number for the month can be calculated through the 

following two equations. 

 

                        1 0

0 1
(1 )

t t

t a tP x P


                              (2)  

                            
1 1

12

1(1 )t b tP x P                                 (3) 

                         

where, 
0t

P represents the average population number for the start year, 
1t

P is the 

average population number for the terminal year, ax and bx  denotes the annual 

population growth rate and the monthly population growth rate, respectively, 0t and 

1t represents the start year and the terminal year, respectively. 

2.4. Bayesian hierarchical modeling 

It was assumed that there was a true (unobserved) process underlying the 

observed epidemic of H7N9 infection in human cases, which we incorporate into the 
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framework of a BH. BH modelling is a flexible approach, which can accommodate both 

spatial effects and temporal dynamics in a unified framework, as well as incorporate 

situation-specific characteristics such as covariate information for certain populations 

or for H7N9 infection in humans (Zou et al., 2012). It was also assumed that the spatial 

component of the model is required due to dependence among adjacent counties and 

the temporal aspect is a direct result of a plausible Markov structure. Typically, BH 

consist of three components: the data model (i.e. the conditional distribution of the 

data given hidden processes and parameters); the process model (i.e. the conditional 

distribution of the hidden processes given the parameters); and the parameter model 

(i.e., the prior distribution of the parameters) (Zhuang and Cressie, 2014).    

Data model 

Here, the data model relates the number of H7N9 cases in each county and month 

to the probability of occurrence. The observed number of H7N9 cases at the county 

level is assumed to occur independently and follow a Poisson distribution. 

 

                            ~ ( )i j i j i jy P o i s s o n e                           (4)     

 

where, 
ijy  is the observed number of H7N9 cases in county j for month i ; 

ije is 

the expected incidence rate of H7N9 infection in humans in county j for month i ; 

ij is the relative risk of H7N9 infection in humans in county j for month i . 

Process model 

The process component of the model relates the probability of observing a given 

number of H7N9 cases ijy  to the linear trend in time and three random effect terms 

that capture the non-spatial, spatial, and spatio-temporal patterns in the H7N9 case 

data. To model the Poisson distributed outbreak probability, a standard log-linear 

transform is used. Thus, the probability of observing a given number of H7N9 cases in 

each county and in each month is modelled similarly to Fransworth et al. (2009). This 

can be written as follows:  
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Model 1:  0 1 2 21
log( )           ij ij i j ij i j ij ij                                

Model 2:  0 1 2 2 3 31
log( )            ij ij i j ij i j ij ij ij                           

Model 3:  0 1 2 2 3 3 4 41
log( )               ij ij i j ij i j ij ij ij i j ij                   

Model 4:  0 1 2 2 3 3 4 4 5 51
log( )                  ij ij i j ij i j ij ij ij i j ij ij ij           

Model 5:  0 1 2 21
log( )         ij ij i j ij i j ij                                    

Model 6:  0 1 2 2 3 31
log( )            ij ij i j ij i j ij ij ij                          

Model 7:  0 1 2 2 3 3 4 41
log( )               ij ij i j ij i j ij ij ij i j ij                  

Model 8:  0 1 2 2 3 3 4 4 5 51
log( )                  ij ij i j ij i j ij ij ij i j ij ij ij        

 

where, 
ij is an independent random effect term associated with season i  in county 

j ; 
ij is the spatial random effect term for season i  in county j ; 0 is the intercept; 

1 2 3 4, , ,    and 5  represent the coefficients for the five covariates (seasonal 

average precipitation, seasonal average temperature, seasonal average relative 

humidity, population density and number of live poultry markets) for the season i  in 

the county j , respectively; 1 2 3 4, , ,     and 5  represent the five covariates 

respectively.  

Parameter model 

All parameters within BH are stochastic and are assigned appropriate probability 

distributions (Lawson, 2013). Hence, a single parameter value is simply one possible 

realization of the possible set of values for the parameter, the probability of which, 

before integration, is defined by the prior distribution (Lawson, 2013). Note that one 

interpretation of prior distributions is that they provide additional ‘data’ for a problem 

and so they can be used to improve estimation or identification of parameters.  

Here, the prior distributions for all model parameters in the hierarchy have also 

been specified since our model is fully Bayesian. The independent random effect ij , 
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corresponds to a latent process operating independently in each county and year.  

 

               
2~ (0, )ij N I  , for 1,2,3i n , and 1,2,3j k              (5) 

where, I is an 
i jn n indicator matrix, n is the total number of county in China, i is 

the season, j is the county.  

This component models the overall unstructured heterogeneity in the data by 

assuming no relationship among neighboring counties or years, but with a variance 

that is common to all counties and years. The spatial component, modeled by 
ij

describes the unobserved transmission process among counties in each year 

contributing to the observed spatial structure of outbreaks each year. Here 
ij is an 

intrinsic Gaussian CAR model. For each season i and county j , the CAR model states 

that 
ij  is related to the  terms for the neighboring counties, and each 

neighbouring county is independent of all other counties outside the local 

neighborhood. Specifically, let the set of neighbors of county j be denoted by j  . 

Then, for each season i in county j , the conditional relationship can be written as 

follows: 

 

                        
2

1
~ ( , )i j i

i i n jj j

N
n n


 

 

                      (6) 

where, jn  is the number of neighbors of county j and 2

 is the variance common to 

all counties. Thus, the conditional mean of ij is simply the average value of its 

neighbors ij  , with conditional variance 
2

jn





inversely proportional to the number of 

neighbors. In the conditional mean in equation (6), the neighboring counties are 

equally weighted so that all neighbors of county j influence it equally.   

Spatial variation in our model is limited to counties sharing a border. The spatial 

unit of this study adopts the vector format of China's counties. The county as an 
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administrative unit does vary in size, but it is consistent with the real space shape and 

size of each county. Using the county as a spatial unit to study the spatial random 

effects, the research results are more realistic. 

However, there are no a prior restrictions on specifying the neighborhood 

structure or county weights.  The linear trend in time,
it , is the rate ratio between 

two consecutive years and provides the estimate of the rate at which the number of 

H7N9 cases changes between years. Let ~ (0,10000)N  be the prior distribution for 

the time trend parameter. Finally, the space-time interaction random effect 
ij it  

models the interaction between space and time during the course of the epidemic. 

All models and Markov chain Monte Carlo (MCMC) procedure for each model were 

run using the OpenBUGS 3.2.3 software downloaded from the OpenBugs website 

(http://www.openbugs.net/). The MCMC procedure for each model was run for 

10,000 iterations after a burn-in period of 10,000 iterations to ensure convergence of 

all model parameters. In this study, convergence diagnostics, autocorrelation statistics 

were done in OpenBugs. By observing the iterative history graphs and Gibbs dynamic 

sampling trace graphs of related variables in OpenBugs after updating the BHCAR, it 

was found that the iterative history curves and Gibbs dynamic sampling trace curves 

tended to be stable, indicating that the convergence was good. In the autocorrelation 

function graphs of related variables, the results of autocorrelation function of related 

variables were soon close to 0, indicating that Monte Carlo chain had tended to 

converge. Part of the iterative history graphs, Gibbs dynamic sampling trace graphs, 

and the autocorrelation analysis graphs were included in the appendix of this paper.  

2.5. Deviance Information Criterion (DIC) 

The deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002) is 

used as a method of model comparison for complex hierarchical models fitted within 

a Bayesian framework, which is a Bayesian generalization of the Akaike information 

criterion (AIC) (Fung et al., 2014). Using DIC aims to identify models that best explain 

the observed data, but with the expectation that they are likely to minimize 

http://www.openbugs.net/
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uncertainty about observations generated in the same way (Spiegelhalter et al., 2002). 

In brief, a measure of model fit is used in conjunction with a measure of model 

complexity to form the criteria upon which model comparisons can be made (Deeth 

et al., 2015) 

Adapting the notation of Spiegelhalter et al. (2002), model fit is estimated by the 

posterior mean deviance,  D  , where    2ln ( )D f D   is the deviance. 

Models that are more complex are likely to have a lower deviance and, therefore, a 

better (i.e. lower) measure of model fit. To account for this, a penalty term for the level 

of model complexity is used in the calculation of the DIC (Deeth et al., 2015). The 

model complexity is measured by estimating the effective number of parameter,
Dp , 

which is given as: 

 

                           
   

 

D

D

p D D

D I C D p

 



 

 
                       (7) 

where  D  is the deviance calculated at  , a point estimate of  . Often the 

posterior mean of the model parameters is used for . Then the DIC is calculated as a 

sum of model fit and model complexity. 

Smaller values of DIC indicate a better-fitting model. However, note that the DIC is 

not intended for identification of the ‘correct’ model, but rather merely as a method 

of comparing a collection of alternative formulations (all of which may be incorrect), 

as with other model choice criteria (Zhu and Carlin, 2000). Here, the values of DIC were 

calculated in the OpenBUGS software. 

3. Results 

3.1. Seasonal spatio-temporal risk variability of human H7N9 infection 

Because the cases number of human infected with H7N9 was relatively small in 

summer and autumn (Fig. 2) and its incidence rate was relatively low, the BHCAR 

cannot be operated in summer and autumn. However, in spring and winter, the cases 

number of human infected with H7N9 was relatively high (Fig. 2) and its incidence rate 
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was relatively high, so the BHCAR can be operated normally in spring and winter (Fig. 

3). Under the influence of spatial random effect, the relatively high risk areas of the 

human infection with H7N9 were scattered in the central and eastern regions in spring, 

but showed different spatial distribution patterns in winter (concentrated in the south 

and southeast, or scattered throughout the country, or scattered in the south of the 

Yangtze river) (Fig. 3). 

In the absence of spatial random effect, the relatively high risk areas of human 

H7N9 infection were scattered in the spring, and the high risk areas might be in the 

northeast, north and northwest of China (Fig. 4). The relative risk of human H7N9 

infection in summer was very low, with only an occasional high risk area near Shanghai 

(Fig. 5). Although the relative risk of human H7N9 infection in autumn was relatively 

low, it was higher than that in summer. The high-risk areas only appeared sporadically 

in the west, central and south, while the eastern part of Taiwan island and the 

southern part of Hainan island were relatively at greater risk (Fig. 6). The relative risk 

of human H7N9 infection in winter varied from high to low, with high risk areas 

appearing sporadically in central and western China, or in patches in the west and 

north (Fig. 7).  

3.2. Effects of covariates on the spatio-temporal risk variability of 

human H7N9 infection 

If the spatial random effect was taken into account, the DIC value in the model 

fitting of the relative risk of human H7N9 infection in model 1 with two covariates in 

spring and winter were the minimum (141.4 and 165.0, respectively) (Table 1), 

indicating that the population density and the number of live poultry markets had the 

largest impact on the relative risk of human H7N9 infection in spring and winter. If the 

spatial random effect was not taken into account, the DIC value of model 7 with four 

covariates in the model fitting of the relative risk of human H7N9 infection in summer 

was the minimum (25.07) (Table 1), indicating that the population density and the 

number of live poultry markets, the average temperature and precipitation had the 

largest impact on the relative risk of human H7N9 infection in summer.  
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Similarly, the DIC value in the fitting of the assessment of the relative risk of human 

H7N9 infection in model 5 with two covariates in autumn was the minimum (21.85) 

(Table 1), indicating that the population density and the number of live poultry market 

had the largest impact on the relative risk of human H7N9 infection in autumn. In 

addition, the results of this study also found that the model fitting effect with spatial 

random effect was not as good as the model without spatial random effect (Table 1), 

which may imply that the relative risk of human infection with H7N9 was not strongly 

spatially random. 

3.3. Sensitivity analysis based on different prior distributions 

Based on the prior distribution of different parameters, the sensitivity analysis of 

the prediction results of the relative risk of human H7N9 infection by the BH was 

conducted in this study. In this sensitivity analysis, the standard deviation of the 

covariate coefficients in the BH were changed to conform to the normal distribution, 

and the covariate coefficients were subject to the normal distribution of different 

shapes, so as to see the change in the relative risk of human infection with H7N9. Here, 

three different standard deviations were used, so that the normal distribution curves 

had three different shapes. The first standard deviation was 0.0005 (Table 1) based on 

Lawson's study (Lawson, 2013). Based on the first standard deviation, the other two 

different standard deviations were set as well, one larger than the first standard 

deviation (1), and the other smaller than the first standard deviation (1.0E-8) (Table 2), 

so that the normal distribution curve was one flat, and one thin and tall.   

The standard deviation of the normal distribution to which the covariate 

coefficient was subject seemed to have an influence on the prediction and fitting effect 

of the relative risk of human infection with H7N9. When the standard deviation set to 

1, the DIC value of the relative risk of human infection with H7N9 in spring was the 

lowest (133.0); when the standard deviation set to 0.0005, the DIC value of the relative 

risk of human infection with H7N9 in summer was the lowest (25.07);and when the 

standard deviation was set 1.0E-8, the DIC value of relative risk of human infection 

with H7N9 in autumn and in winter were the minimum (21.74 and 163.3, respectively) 
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(Table 2). But how about the size of the standard deviation affects the BH fitting effect, 

this had not yet been determined in this study. 

4. Discussion 

   Here, a BH with five covariates was used to predict the relative risk of human H7N9 

infection in the four seasons. The results showed that the combination of two 

covariates (population density and the number of live poultry markets) had a great 

influence on the relative risk of human H7N9 infection in spring, autumn and winter. 

In summer, the combination of four covariates (population density, number of live 

poultry markets, average precipitation and average temperature) had a greater impact 

on the relative risk of human H7N9 infection. This is inconsistent with previous studies 

(Fang et al., 2013; Fuller et al., 2014), so it is debatable which covariates have a truly 

statistically significant relationship to the relative risk of human H7N9 infection. 

However, another result was obtained in this study, that is, the combination of 

covariates that had an impact on the relative risk of human H7N9 infection was 

different in different seasons, and the combination of covariates that had an impact 

on the relative risk of human H7N9 infection throughout the year was determined, 

which was not found by previous studies. This result may vary with the number of 

model covariates. In future research, other covariates should be explored in the 

Bayesian model framework.  

Besides, the CAR allows disease risk to spread smoothly within a cluster with a 

disjoint multiplicative jump between clusters. Removing the CAR component of the 

model would assume a constant disease risk within a cluster, which is unlikely to be 

true in general (Anderson et al., 2014). BHCAR can only be running when human H7N9 

cases number was more and its incidence rate was higher like in spring and winter time 

here, it showed that the spatial distribution of the relative risk of human H7N9 

infection in spring and winter had spatial random effects. But when human H7N9 

infection cases number was less and its incidence rate was lower in summer and 

autumn, the BHCAR cannot be running, it illustrated the spatial distribution of the 

relative risk of human H7N9 infection in summer and autumn had no spatial random 
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effects. This study could reveal something in spatial correlation for the seasonal 

relative risk of human H7N9, but not all. As far as the method of this study is concerned, 

it cannot be compared with field data. Further, it was also found that the operation of 

the BHCAR was greatly affected by the parameter setting. It can only run under the 

setting of some parameters, rather than under the setting of any parameters. For 

example, it only worked when the standard deviation of the normal distribution of the 

covariate coefficients was 0.0005, but when the standard deviation was set to 1 or 

1.0E-8, the BHCAR cannot run at all.  

The BHCAR used here indicates that environmental factors, seasonal random 

effects and spatial random effects together affect the spatio-temporal dynamic 

changes of diseases. But for how the environmental factors (including human 

population densities et al) would "quantitatively" determine spatial-temporal 

dynamics of disease in-depth analysis, it can be considered that environmental factors 

may interact with the time and place of disease onset and change with the change of 

time and space. It may be done in future research. All the environmental factor 

coefficients in eight models of this study are assumed to follow the normal distribution. 

By changing the standard deviation of the normal distribution, the model fitting results 

of the seasonal relative risk of human H7N9 infection can be obtained, thus influencing 

the spatio-temporal dynamic change of the relative risk of human H7N9 infection. 

5. Conclusion 

In this study, a BHCAR was applied to explore the seasonal and spatial variation of 

the relative risk of human H7N9 infection, and the influence of different covariance 

combinations in different seasons on the relative risk of human H7N9 infection. From 

the perspective of ecology, this study obtained the seasonal variation characteristics 

of relative risk of human H7N9 infection, that is, the relative risk of human H7N9 

infection in spring and winter has a spatial random effect, while the relative risk of 

human H7N9 infection in summer and autumn does not have a spatial random effect. 

In summer, population density, the number of live poultry markets, average 

precipitation and average temperature have a significant impact on the relative risk of 
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human H7N9 infection, while in spring, autumn and winter, only population density 

and the number of live poultry markets have a significant impact. These results 

provide a reasonable theoretical basis for the effective seasonal prevention and 

control of human H7N9 infection and the maintenance of normal health level of the 

human population. 

By setting different parameters in the prior distribution of the BH, the sensitivity 

analysis was also conducted here to explore the changes in predicting the relative risk 

of human H7N9 infection with the BH. It was found that the standard deviation of the 

normal distribution to which the covariate coefficient was subject seemed to have an 

influence on the prediction and fitting effect of the relative risk of human infection 

with H7N9. Therefore, the setting of prior distribution parameters of the BH has an 

impact on the prediction and fitting results of the relative risk of human H7N9 infection. 

In order to achieve the optimal prediction and fitting, it is necessary to find the right 

parameters as far as possible. 
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Fig. 1. Seasonal plot of monthly cases number of human infection with H7N9 influenza 

virus in China during the period of Feb 2013- Dec 2014. 
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Fig. 2. Seasonal spatial distribution of the cases number of human infection with H7N9 

influenza virus in China during the period of 1 Jan 2013 – 31 Dec 2014. (a) Spring; (b) 

Summer; (c) Autumn; (d) Winter.  
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Fig. 3. Relative risk distribution of human infection with H7N9 influenza virus at county 

scale in China with Bayesian hierarchical CAR model. (a) Result of model 1 in spring 

with DIC being 141.4; (b) Result of model 1 in winter with DIC being 165.0; (c) Result 

of model 2 in spring with DIC being 146.6; (d) Result of model 2 in winter with DIC 

being 169.6; (e) Result of model 3 in spring with DIC being 147.4; (f) Result of model 3 

in winter with DIC being 165.6. 
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Fig. 4. Relative risk distribution of human infection with H7N9 influenza virus at county 

scale in China in spring with Bayesian hierarchical model. (a) Result of model 5 with 

DIC being 133.0; (b) Result of model 6 with DIC being 137.4; (c) Result of model 7 with 

DIC being 138.2; (d) Result of model 8 with DIC being 135.9. 
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Fig. 5. Relative risk distribution of human infection with H7N9 influenza virus at county 

scale in China in summer with Bayesian hierarchical model. (a) Result of model 5 with 

DIC being 25.66; (b) Result of model 6 with DIC being 26.05; (c) Result of model 7 with 

DIC being 25.07; (d) Result of model 8 with DIC being 25.1. 
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Fig. 6. Relative risk distribution of human infection with H7N9 influenza virus at county 

scale in China in autumn with Bayesian hierarchical model. (a) Result of model 5 with 

DIC being 21.74; (b) Result of model 6 with DIC being 23.48; (c) Result of model 7 with 

DIC being 22.94; (d) Result of model 8 with DIC being 25.13. 



Jo
ur

na
l P

re
-p

ro
of

26 
 

 

Relative Risk 

Low 

High 

Boundary 

 

Fig. 7. Relative risk distribution of human infection with H7N9 influenza virus at county 

scale in China in winter with Bayesian hierarchical model. (a) Result of model 5 with 

DIC being 163.3; (b) Result of model 6 with DIC being 168.4; (c) Result of model 7 with 

DIC being 172.9; (d) Result of model 8 with DIC being 166.2. 
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Fig. A.1. History plot for the parameter of the relative risk of human infection with 

H7N9 for the first 15 iterations. 

 

Fig. A.2. Trace plot for the parameter of the relative risk of human infection with H7N9 
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for the first 47 iterations. 

 

Fig. A.3. Autocorrelation plot for the parameter of the relative risk of human infection 

with H7N9 for the first 40 iterations. 
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Table 1. The DIC, covariates and prior distribution of eight models. 

 

Model Covariates CAR Prior distribution  DIC 

Model 

1 

Population density, live 

poultry market 

With 
1

 , 
2

 ～  N (0, 

0.0005) 

141.4 (Spring); 

165.0 (Winter) 

Model 

2 

Population density, live 

poultry market, 

precipitation 

With 
1

 , 
2

 , 
3

 ～ N (0, 

0.0005) 

146.6 (Spring); 

169.6 (Winter) 

Model 

3 

Population density, live 

poultry market, 

precipitation, 

temperature 

With 
1

 , 
2

 , 
3

 , 
4

 ～ 

N (0, 0.0005) 

147.4 (Spring); 

165.6 (Winter) 

 

Model 

4 

Population density, live 

poultry market, 

precipitation, 

temperature, relative 

humidity 

With 
1

 , 
2

 , 
3

 , 
4

 , 

5
 ～ N (0, 0.0005) 

145.9 (Spring); 

164.3 (Winter) 

 

Model 

5  

Population density, live 

poultry market 

Without 
1

 , 
2

 ～  N (0, 

0.0005) 

133.1 (Spring); 

25.66 (Summer); 

21.85 (Autumn); 

163.4 (Winter) 

Model 

6  

Population density, live 

poultry market, 

precipitation 

Without 
1

 , 
2

 , 
3

 ～ N (0, 

0.0005) 

137.4 (Spring); 

26.31 (Summer); 

23.87 (Autumn); 

168.4 (Winter) 

Model 

7  

Population density, live 

poultry market, 

precipitation, 

temperature 

Without 
1

 , 
2

 , 
3

 , 
4

 ～ 

N (0, 0.0005) 

138.4 (Spring); 

25.07 (Summer); 

24.1 (Autumn); 

173.8 (Winter) 

Model 

8 

Population density, live 

poultry market, 

precipitation, 

temperature, relative 

humidity 

Without 
1

 , 
2

 , 
3

 , 
4

 , 

5
 ～ N (0, 0.0005) 

136.2 (Spring); 25.1 

(Summer);  

25.81 (Autumn); 

167.0 (Winter) 

 

Table 2. The DIC and covariates of four Bayesian hierarchical models without CAR with two different 

prior distribution 

 

Model Covariates CAR Prior distribution  DIC 

Model 

5 

Population density, live 

poultry market 

Without 
1

 , 
2

 ～ N (0, 1) 
133.0 (Spring); 25.8 

(Summer);  

23.03 (Autumn); 
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163.6 (Winter) 

Model 

5 

Population density, live 

poultry market 

Without 
1

 , 
2

 ～ N (0, 1.0E-

8) 

133.1 (Spring); 

25.79 (Summer); 

21.74 (Autumn); 

163.3 (Winter) 

Model 

6 

Population density, live 

poultry market, 

precipitation 

Without 
1

 , 
2

 , 
3

 ～ N (0, 

1) 

137.3 (Spring); 

26.05 (Summer); 

24.52 (Autumn); 

168.6 (Winter) 

Model 

6 

Population density, live 

poultry market, 

precipitation 

Without 
1

 , 
2

 , 
3

 ～ N (0, 

1.0E-8) 

137.4 (Spring); 

29.73 (Summer); 

23.48 (Autumn); 

168.4 (Winter) 

Model 

7  

Population density, live 

poultry market, 

precipitation, 

temperature 

Without 
1

 , 
2

 , 
3

 , 
4

 ～ 

N (0, 1) 

138.2 (Spring); 

26.35 (Summer); 

25.38 (Autumn); 

172.9 (Winter) 

Model 

7  

Population density, live 

poultry market, 

precipitation, 

temperature 

Without 
1

 , 
2

 , 
3

 , 
4

 ～ 

N (0, 1.0E-8) 

138.4 (Spring); 

26.56 (Summer); 

22.94 (Autumn); 

174.1 (Winter) 

Model 

8  

Population density, live 

poultry market, 

precipitation, 

temperature, relative 

humidity 

Without 
1

 , 
2

 , 
3

 , 
4

 , 

5
 ～ N (0, 1) 

136.5 (Spring); 

26.78 (Summer); 

25.22 (Autumn); 

166.2 (Winter) 

Model 

8 

Population density, live 

poultry market, 

precipitation, 

temperature, relative 

humidity 

Without 
1

 , 
2

 , 
3

 , 
4

 , 

5
 ～ N (0, 1.0E-8) 

135.9 (Spring); 

29.06 (Summer); 

25.13 (Autumn); 

167.5 (Winter) 

 

 


