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Abstract

In oncology trials, different clinical endpoints can be measured. For the

survival analysis of patients, the most traditional primary endpoint is overall

survival (OS), which is defined as the time from study entry to death from any

cause. Besides, progression-free related measurements such as progression-free

survival (PFS) might be also considered. For assessing the performance of ther-

apies, OS is the most reliable endpoint. However, utilizing earlier endpoints

such as information from disease progression might lead to a gain in efficiency.

However, the gain in efficiency might depend on the relationship between those

two endpoints.

This thesis explores various statistical models for capturing the associa-

tion between PFS and OS. The research is partitioned into three topics. At first,

it considers methods for quantifying the association between PFS and OS in on-

cology trials, in terms of Kendall’s τ rank correlation rather than Pearson cor-

relation. Copula-based, non-parametric, and illness-death model–based meth-

ods are reviewed. In addition, the approach based on an underlying illness-

death model is generalized to allow general parametric models. The simulations

suggest that the illness-death model–based method provides good estimates of

Kendall’s τ across several scenarios. In some situations, copula-based methods

perform well but their performance is sensitive to the choice of copula. The Clay-

ton copula is most appropriate in scenarios which might realistically reflect an

oncology trial, but the use of copula models in practice is questionable. In the

second and third topic, the estimation of the group difference faces the issue of

non-proportionality for treatments effects. Instead of the standard hazard ra-

tio we use the average hazard ratio for estimating the group difference as it is

able to cope with non-proportional hazards well as it considers group differ-

ence depending on time. Subsequently, it compares methods for jointly mod-
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elling time-to-progression and time-to-death within a Bayesian framework. By

incorporating treatment effects, we investigate an illness-death model-based ap-

proach and also copula-based approaches. According to the simulations results

the Gaussian copula-based model performed the best overall, but the illness-

death model-based approach showed a good performance as well. However,

in contrast to the good performance of the Clayton copula-based approach in

the first topic, the Clayton copula model did not perform well regarding the es-

timation of AHR. The third topic explores various semi-parametric multi-state

model-based methods for gaining efficiency in testing for, and estimating the

treatment effects in terms on, overall survival in oncology trials compared to

standard methods based on directly applying Cox regression or the log-rank

test. The semi-parametric multi-state model-based method fits a Cox model to

(a subset of) transition intensities in an illness-death model assuming either a

Markov or semi-Markov model and uses AHR to measure treatment effect. In

most of the situations, the semi-parametric multi-state model-based methods

perform better than the Cox-based approach. The performance of the methods

in each topic is investigated by simulations and also illustrated using data from

a clinical trial of treatments for advanced ovarian cancer in topic 2 and for colon

cancer in topics 1 and 3.
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CHAPTER 1

Introduction

1



The topic of this thesis relates to research within the area of survival analy-

sis in oncology trials. In general, developing new therapies in cancer trials might

require a comprehensive analysis of the survival history of patients. In assessing

the performance of therapies in cancer trials, different clinical endpoints can be

considered. The most reliable and commonly used primary endpoint is overall

survival (OS), which is defined as the time from study entry to death from any

cause. However, for analyzing overall survival of the patients, the occurrence of

progression, different clinical intermediate outcome variables such as surrogate

endpoints or auxiliary variables for the overall analysis might potentially be rel-

evant. The occurrence of progression, defined as the growth or spread of cancer,

can also be considered as a possible endpoint. Progression-free survival (PFS)

is defined as the time from study entry until progression or death, depending

on what occurs first.

The thesis discusses approaches to quantifying the association between

PFS and OS. Furthermore, joint models of progression-free related measure-

ments and overall survival within a Bayesian framework and the incorporation

of treatment effects on the survival process are explored. Moreover, a review

of methods for gaining efficiency by using information on time-to-progression

to estimate the treatment effect on overall survival will be a further focus in the

thesis.

The research topic in this thesis is motivated by the generally growing in-

terest in designing more efficient trials both by reducing the number of patients

required and the required follow-up time. Due to the relevance of the develop-

ment of new cancer therapies, efficient and improved design in cancer trials are

needed. Within this context, the use of the information on PFS has been of inter-

est for the design and analysis of a randomized clinical trials over the last several

decades. In particular, use of a surrogate marker as a replacement for the true

primary endpoint have been a research-related issue in such trials. The benefit of
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using PFS as the primary surrogate for analyzing survival times in a cancer trial

might be potentially cost-effective and time-efficient, as long follow-up periods

after progression of the disease can be avoided.

In 1989, Prentice61 proposed requirements for the validation of surrogates

in randomized clinical trials, such that the treatment comparison based on a sur-

rogate response variable reflects the true endpoint treatment comparison well.

The criterion considers the surrogate endpoint as a response variable for which a

test of the null hypothesis of no association between treatment and true endpoint

is valid. In other words, the surrogate should be able to capture any dependence

of true response on treatment and not to provide some quantitative information

on the comparison of true endpoint rates among treatments. The definition and

operational criteria in the paper of Prentice61 have resulted in further discussion

and extensions, amongst others by Freenman, Graubard and Schaztkin,31 Buyse

and Molenberghs.13 However, all those operational criteria were restricted to

the validation of a surrogate endpoint of interest on the basis of one random-

ized clinical trial. Therefore, approaches to allow a potentially more powerful

validation of a surrogate endpoint based on one more than a single randomized

clinical trial were proposed by Buyse et al,14 Gail et al,33 Daniel et al22 and Alonso

et al.1 Those approaches within a meta-analytic framework induced a modified

validity of a surrogate endpoint depending on the association between the sur-

rogate and true endpoint based on both the trial level and individual level.

In some cancer therapies, PFS has been accepted as a suitable surrogate

endpoint to replace OS, especially in earlier phases of the drug development.24,72

For instance, within a meta-analytic framework PFS has been approved to be a

suitable surrogate endpoint for survival in patients with advanced colorectal

cancer.12 Furthermore, a meta-analysis has also determined the usefulness of

progression-free survival in recurrent gastric cancer trial.60 However, the suc-

cess of establishing PFS as a surrogate for OS in oncology trials seems to depend
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on the type of cancer aside the formal validation studies.67 For instance, PFS has

not been approved to be a surrogate endpoint for overall survival in metastatic

breast cancer.9,11, 67 One reason might be that progression in some specific cancer

is difficult to detect and identify.

However, instead of using a surrogate endpoint with the intention to re-

place the true outcome of interest, auxiliary variables such as the information

about the time-to-progression can be used for an improved efficiency in ana-

lyzing overall survival. In general, methods including auxiliary information in

order to establish more efficient ways of estimating the treatment effects on sur-

vival time in clinical trials have already been investigated by Lagakos,46 Kosorok

and Fleming,45 Finkelstein and Schoenfeld27 and Fleming et al.29 Cook and Law-

less20 showed that under a parametric three-stage model for modelling an in-

termediate variable and the true endpoint of interest some gain in efficiency is

possible if there is a close association between the two endpoints. Broglio and

Berry8 divided the time-to-death into two parts, progression-free survival and

survival given progression and studied the advantage of considering the treat-

ment effect on each of the endpoints separately. Faucett et al.25 focused on an

approach utilizing the progression times as auxiliary outcomes in order to com-

pensate the observed censored cases in survival analysis by the use of a joint

model and multiple imputation method for the survival times of the censored

objects. Conlon et al19 explored ways of utilizing times to progression as auxil-

iary information for the analysis of overall survival in order to gain efficiency. A

parametric multi-state model with an incorporated cured fraction for progres-

sion was used to jointly model the time-to-progression and time-to-death. In

addition, a multiple imputation method which involves imputing death times

for censored subjects was applied due to the motivation to increase the potential

to shorten the length of a trial and reduce sample sizes.

An efficient design in oncology trials is essential. The aim of the thesis is
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to explore to what extent information on time-to-progression can be used to an-

alyze overall survival. Therefore, statistical methods capturing the relationship

of PFS and OS will be studied. In particular, the intention of the thesis is to find

ways to improve the efficiency in estimation of the treatment effect on overall

survival based on time-to-progression.

The remainder of the thesis is structured as follows. Chapter 2 contains a

brief summary of concepts in survival analysis that are relevant for the subse-

quent chapters. Chapter 3 is about quantifying the association between progress-

ion-free survival and overall survival in oncology trials using Kendall’s τ . This

chapter considers methods for estimating the association between progression-

free and overall survival in oncology trials. In Chapter 4, joint models of PFS and

OS in a Bayesian framework will be investigated. Methods for joint modelling

time-to-progression and death in oncology trials to impose testing for the group

difference in terms of the average hazard ratio will be investigated. Chapter 5

explores various methods for gaining efficiency in testing for, and estimating the

treatment effects on, overall survival in oncology trials compared to the standard

methods based on Cox regression or the log-rank test. Chapter 6 concludes with

a discussion and suggests potential work for the future.



CHAPTER 2

Preliminary Methods

6



The intention of this chapter is to provide an overview of the basic con-

cepts within the time-to-event analysis which are relevant for the thesis. These

concepts cover multi-state models, modelling bivariate event times and the eval-

uation of treatment effects.

2.1 Multi-state model framework

A common framework for modelling the event history of patients in a clini-

cal trial is a multi-state model (Anderson et al,3 Machado et al53 and Putter et al62).

The survival experience of a patient may contain information on several events

observed during the trial. This individual process may include the movements

between several disease states which could be described through a continuous

time stochastic process. A common way to describe such a process is via a multi-

state model in which the number of states are finite. The states may refer to stage

of the illness and the movement between two states is termed a transition. Two

cases of states can be distinguished. Transient state are states that can be revis-

ited. States are terminal (or absorbing), if it can’t be revisited. For example,

death is terminal, as there no transitions can emerge from that state.

The simplest version of a multi state model is the case with only two states

such as ”dead” and ”alive” and consequently one transition. In more complex

multi-state models for survival analysis, the ”alive” state may be divided into

two or more intermediate transient states each of them referring to a particu-

lar stage of the illness. The most commonly used such model is the three-state

illness-death model where there is a single intermediate state representing ”ill-

ness”. The survival process in patients with cancer can be expressed in terms

of such a multi-state model where the states correspond to pre-progression (as-

sumed to apply at the time of study entry and death), progression of the dis-

ease, and death. Time-to-progression (TTP) corresponds to the time of entry

into the progression state, whereas PFS corresponds to the time of exit from the
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pre-progressions state. OS corresponds to the time of entry into the death state.

This particular example of the illness-death model is depicted in Figure 2.1.

State 0
Randomization

State 1 
Progression

State 2
Death

π01(t)

π02(t) π12(s)

Figure 2.1: The three-state illness-death model for cancer survival

In consideration of the mathematical framework,3,53 a multi-state model

represents a stochastic process (X(t), t ∈ T ) with values in a finite space S =

{1, . . . , N}, whereS represents the states. In other words, the multi-state-process

X(t) ∈ S describes the state occupied at time t ∈ T , where T is a finite time inter-

val here. The history or filtration Ft refers to the observed process that captures

information, e.g. on times of previous transitions and on states already occu-

pied, up to time t. A multi-state process can be defined in terms of the transition

probabilities between states:

Pkl(s, t;Fs) = P(X(t) = l|X(s) = k;Fs),

where s, t ∈ T with s ≤ t.

Alternatively, it is common to characterize a multi-state model by the tran-

sition intensities, derivatives of the transition probabilities, from state k ∈ S to

state l ∈ S as follows

πkl(t;Ft) = lim
∆t→0

Pkl(t, t+ ∆t;Ft)
∆t

= lim
∆t→0

P(X(t+ ∆t) = l|X(t) = k;Ft)
∆t

.

(2.1)

Transition intensities describe the instantaneous risk or hazard of a movement

to state l at time t, conditionally on the present state k and the history Ft.
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When modelling a multi-state model for the survival course of patients,

various assumptions can be made to specify the multi-state model regarding

dependence on time. For example, the case to assume the transition intensities

(2.1) to be constant over time defines a time-homogeneous multi-state model.15

Furthermore, a Markov, semi-Markov or non-Markov multi-state models can be

chosen. The Markov property, described in detail in Cox and Miller (p.76),21 is

a characteristic of a stochastic process, where the imminent future of a stochas-

tic process does not depend on the past, only on the present. In the context of

a Markov illness-death model, the hazard of death after progression only de-

pends on the current state and not how long the patient has spent in the pre-

progression state. A Markov multi-state model means mathematically in terms

of the transition intensity as follows:

πkl(t;Ft) = πkl(t), (2.2)

where k, l ∈ S and Ft is the history of the process up to time t.

Throughout the thesis, the most common assumption for the illness-death

model is the semi-Markov assumption. The details of semi-Markov processes

are explained in Cox and Miller (p.352).21 In this context, a semi-Markov illness-

death model implies a clock reset to zero, when the patient enters the state of

progression yielding the following expression for the transition intensity:

πkl(t;Ft) = πkl(t− tk), (2.3)

where tk is defined as the time of entry into current state k. In the case of us-

ing a semi-Markov model, we assume a homogeneous semi-Markov model where

the hazard of death after progression depends on time since progression rather

than time since randomization. It may be seen as a special case of the general

semi-Markov model4 which allows the transition intensity to depend both on the

duration in the progression state and the time since randomization. A semi-

Markov assumption is more often assumed in the oncology context, but Markov
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is more straightforward to deal with.

The transition probabilities can be derived from the transition intensities.

For the illness-death model Pkl(t1, t2) from time t1 to t2, where k, l describes the

state with k ∈ {0, 1, 2} and l ∈ {0, 1, 2}, the expression of the transition proba-

bilities are given by53

P00(t1, t2) = S0(t2 − t1) = exp(−Π01(t2 − t1)− Π02(t2 − t1)), (2.4)

P11(t1, t2) = S1(t2 − t1) = exp(−Π12(t2 − t1)), (2.5)

P12(t1, t2) = S1(t2 − t1) =

∫ t2

t1

P11(t1, u)π12(u;Fu)P22(u, t2)du, (2.6)

where Πkl(t1, t2) =
∫ t2
t1
πkl(t,Ft)dt is the cumulative transition intensity between

states k and l, where k ≤ l. The transition probabilities P11(t1, t2) and P12(t1, t2)

refer to a Markov illness-death model, if the transition intensity π12(t;Ft) has

the expression as in (2.2). In a semi-Markov illness-death model, P11(t1, t2) and

P12(t1, t2) use the expression of the transition intensity π12(t;Ft) defined as in

(2.3).

2.1.1 Semi-competing risks framework

In this section, a variation of the competing risks framework will be briefly

discussed. In clinical trials, distinct events of failures may occur when observing

the patients. When the follow-up time stops after the occurrence of first event

of failure apart from censoring, such data are called competing risks data. A

situation in a clinical trial, where a terminal event such as death censors a non-

terminal event such as progression of the disease may be often observed. Fine

et al26 defined that particular situation allowing multivariate events in a trial as

semi-competing risk data. Such data are usually modelled by assuming a joining

survival function of two event times over the positive quadrant whereas the ob-

servation is restricted to the upper wedge. Those approaches generally contain

assumptions of latent failure times and imply therefore non-realistic assump-
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tions on the marginal distribution of the non-terminal event. This modelling

problem also occurs in the competing risks framework. In order to avoid the la-

tent failure times in modelling semi-competing risks data, Xu and Kalbfleisch74

proposed a restricted version of the illness-death model to model that data. In

general, semi competing risks data can also be described within the multi-state

model without referring to any latent failure times. According to Kalbfleisch

and Xu, an illness-death model with shared frailty and some assumptions on

the hazard functions imposes a model for modelling semi-competing risks data.

Implicitly, modelling semi-competing risks data may be seen as a special case of

multi-state model framework.

2.2 Copula models for bivariate survival data

Copulas are used for modelling dependence between variables in many

applications. It is a common tool in the area of multivariate analysis, where

the dependence of the variables is subject of research in order to reflect the

correlation of those variables. The use of copulas is suitable for cases of two

or more responses, where each follows a distribution on different parametric

families. There are also situations where the responses don’t have an obvious

parametric distribution. Modelling their dependence based on copulas is still

possible, as a non-parametric estimator such as Kaplan-Meier (in the case of

right-censored data) or empirical CDF more generally, can be then applied to

reflect their marginal behaviour. A comprehensive description of copula theory,

the comparison of copula families and modelling different types of dependence

with copulas are given in Joe.41

In detail, copula functions are continuous multivariate distributions where

each of its variables follows a uniform marginal distribution over (0,1). Accord-

ing to Sklar’s theorem,71 any arbitrary multivariate joint distribution can be ex-

pressed through its marginal distribution and a copula function separately. The
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copula function includes all the information of the dependence between the end-

points independently from their marginal distribution.

In the thesis, we focus on specific application to bivariate survival data.

Approaches for joint modelling of two events are often based on copulas, as they

imply the dependence structure between those endpoints. In the subsequent

chapters, we consider the bivariate copula function C : [0, 1]2 −→ [0, 1] of the

failure endpoints (S, T ), where S := PFS and T := OS, can be expressed by joint

survivor function as follows

S(s, t) = P (S ≥ s, T ≥ t) = C(SS(s),ST (t)), s, t ≥ 0, (2.7)

where SS and ST are the marginal survivor functions of S and T , respectively.

The exact specification of the copula function depends on the type of copula. In

Chapters 3 and 4, the details of each copula used in the thesis will be described

in the corresponding chapter.

2.3 Tests for and estimation of group difference

In many situations in clinical trials, time-to-event data is considered to be

the endpoint of interest. In general, the analysis of time-to-event data, in order

to reflect the treatment effect on the endpoint of interest, is then based on the

assumption of proportional hazards. Proportional hazards correspond to a sit-

uation where the hazard ratio between the two treatments groups is constant

over time. Given the assumption of proportional hazards, the standard tools to

analyze the group difference are the log-rank test and the Cox model. While the

log-rank test assesses whether there is a statistically significant group difference,

the hazard ratio based on the Cox model determines the size of such a treatment

effect. However, the log-rank test is most powerful under proportional hazards

of overall survival between treatment groups. In the case of non-proportional

hazards, i.e. when the hazard ratio between treatments is a function of time, a

loss of power of the log-rank test is expected and the hazard ratio estimate from



13

the Cox model will not be strictly meaningful. However, the assumption of pro-

portional hazards is restrictive and clinical time-to-event data seen in practice of-

ten violates a proportional hazards assumption. According to Royston and Par-

mar,66 the observation of non-proportional hazards in clinical trials might arise

due to more complex trials with longer follow-up periods for a better assessment

of the group difference. Kancho et al39 reviewed whether non-proportional haz-

ards and non-constant hazard rates are taken into account in current practice

when designing and analyzing randomized clinical trials. They concluded that

proportional hazards and constant rates are mostly assumed in the design and

analysis of a clinical trial. Furthermore, a preprint by Lin et al49 studied alterna-

tive methods such as weighted log-rank tests, Kaplan-Meier curve-based tests

and combination tests in order to analyze time-to-event endpoint under non-

proportional hazards. Based on their simulation research, they showed that the

performance of the considered alternative methods depends on the scenario.

Kalbfleisch and Prentice43 proposed a generalization of the hazard ratio,

appropriate even under non-proportional hazards. This approach is referred to

as the average hazard ratio and is based on a flexible weighting function to in-

corporate the impact of time on the treatment effect. Rauch et al63 investigated

whether that average hazard ratio for the time-to event outcomes performs well,

even under the assumption of proportional hazards. Overall, they concluded

that the average hazard ratio seems to provide a meaningful interpretation of

the treatment effect. Due to that benefit, they recommended the use of that al-

ternative approach more in practice rather than the commonly applied hazard

ratio in clinical trials, in particular when the proportional hazards assumption

is not valid.

A natural approach to incorporating a treatment effect for an illness-death

model is to assume treatment effects with respect to each individual transition.

The transitions are modelled directly within that framework, hence proportional
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hazards within each transition intensity can be assumed. However, since the

overall survivor distribution is not directly modelled within that framework and

is a complicated function of all the transition intensities, a non-proportional haz-

ard is induced with respect to overall survival.

As OS times can be derived from the modelled times within an illness-

death model, a general expression of the survival function for OS at any time t

is

SOS(t) = P00(0, t) + P01(0, t)

= P00(0, t) +

∫ t

0

P00(0, u)π01(u)P11(u, t)du,
(2.8)

where π01(u) is the transition intensity from state 0 to state 1. P00(0, t) corre-

sponds to the survival probability to stay in state 0 within the time interval [0, t]

and P11(u, t) corresponds to the survival probability to stay in state 1 within the

time interval [u, t] (see Section 2.1, in particular formulas in (2.4) and (2.5), for

more details).

According to the composition of the survival function as in (2.8), mod-

elling data from the illness-death model framework induces a non-proportional

hazards assumption for overall survival between the treatment groups.

Due to that situation, the average hazard ratio rather than the hazard ratio

will be applied in the thesis in order have a more reliable and powerful compar-

ison of the hazard rates between treatment groups.

As to the mathematical definition of AHR, let f(t) be the pooled marginal

density and h(t) be the pooled marginal hazard. The survival function for both

the treatment group and the control group as well as the hazard function for both

the treatment group and the control group are donated by Str(t), Sc(t), htr(t)

and hc(t), respectively. According to the definition by Kalbfleisch and Prentice

(2012),43 the average hazard ratio is given by

AHR =

∫∞
0

htr(t)
hc(t)+htr(t)

w(t)f(t)dt∫∞
0

hc(t)
hc(t)+htr(t)

w(t)f(t)dt
, (2.9)
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where w(t) is a weight function characterizing the influence of time on the haz-

ard ratio. Schemper et al68 showed that the average hazard ratio with the weight

function w(t) = Sc(t)ftr(t)+Str(t)fc(t)
fc(t)+ftr(t)

simplifies to the concordance odds definition

of the AHR as follows

AHR =
P[Ttr < Tc]

1− P[Ttr < Tc]
, (2.10)

where P[Ttr < Tc] is the concordance probability with randomly chosen survival

times Ttr and Tc from the treatment group and the control group, respectively.

To summarize, Section 2.1 which is about the framework of multi-state

models is of relevance for all subsequent chapters. In addition, Chapters 3 and

4 use copula models described briefly in Section 2.2. The AHR summarized in

Section 2.3 will be an object of interest in Chapters 4 and 5, as the framework

in those chapters will be based on illness-death models incorporating treatment

groups.
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Quantifying the association between progression-free survival and overall
survival in oncology trials using Kendall’s τ
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3.1 Introduction

Quantifying the association between progression-free survival (PFS) and

overall survival (OS) in cancer trials can provide an indication of the extent to

which PFS may be an effective surrogate for OS. Estimating the correlation be-

tween PFS and OS may be a potential step for validating PFS as a surrogate end-

point for OS, usually accompanied by meta-regression to also establish correla-

tion between treatment effects across multiple studies.12,60 Existing approaches

to quantifying the correlation between PFS and OS include parametric and semi-

parametric copula models10,69 as well as non-parametric methods based on in-

verse probability of censoring weights.47 Recently, there has also been a focus on

illness-death model-based methods for quantifying the correlation between PFS

and OS. Specifically, Fleischer et al28 proposed a parametric method describing

the correlation based on the strong assumption of constant hazards of progres-

sion and death before and after progression. Li and Zhang48 extended this sta-

tistical model to allow increasing or decreasing hazards through Weibull hazard

functions. However, the model is still relatively restrictive since a common shape

parameter is used for the Weibull hazards for time-to-progression, time-to-death

without progression and time from progression until death. In this chapter, we

generalize these illness-death model-based methods to a much wider class of

models and also use them to quantify the Kendall’s τ correlation rather than the

Pearson correlation. The performance of these methods is compared to existing

methods both through simulation and by application to a colon cancer data set.

The remainder of this chapter is structured as follows. In Section 3.2, we

describe the existing approaches to estimating the correlation. After illustrating

the semi-parametric and parametric copula models, the non-parametric inverse

of probability of censoring method is detailed. Subsequently, for the illness-

death model-based approach we propose a generalized approach applicable to
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any parametric model. Section 3.3 shows the results of simulation studies, where

the performance of the methods, in terms of bias and efficiency are investigated

and compared through several simulation scenarios. In Section 3.4, the meth-

ods are illustrated on the colon cancer data set. The chapter concludes with a

discussion.

3.2 Different approaches to estimating the correla-

tion between progression-free survival and over-

all survival

3.2.1 General setting

In this section, existing approaches to quantifying the association between

PFS and OS are presented. Throughout it is assumed that the desired measure-

ment of the association between PFS and OS is the Kendall’s τ rank correlation.

Let (S1, T1) and (S2, T2) be random variables representing the PFS and OS times

for two independent patients 1 and 2. Kendall’s τ is defined as

τ = P{(S1 − S2)(T1 − T2) > 0} − P{(S1 − S2)(T1 − T2) < 0}, (3.1)

where the first term refers to the probability of concordance and the second to

the probability of discordance.

3.2.2 Copula models for bivariate survival data

An existing approach for the measurement of the dependence structure be-

tween failure times PFS and OS is through the use of copula models. Burzykows-

ki et al10 proposed a parametric copula method for quantifying the correlation

between PFS and OS. A semi-parametric approach is also possible using the

methods developed by Shih and Louis69 for semi-parametric bivariate survival
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copulas. Generally, the idea of these models is to estimate the marginal distribu-

tions for PFS and OS and to impose a particular dependence structure between

these two endpoints.

The joint survival function of the failure endpoints (S, T ), where S := PFS

and T := OS, can be expressed by

S(s, t) = P (S ≥ s, T ≥ t) = C(SS(s),ST (t)), s, t ≥ 0, (3.2)

where SS and ST are the marginal survivor functions of S and T , respectively,

and C : [0, 1]2 −→ [0, 1] is a bivariate copula function. There are a wide range

of copula families allowing different patterns of dependency. In this chapter,

we consider the Clayton, Hougaard and Frank copula functions, all of which

belong to the class of Archimedean copulas. This class is often used as it allows

the dependence between the two variables to be defined by a single parameter,

δ. In general, a bivariate distribution in terms of the Archimedean copula family

is given by

C(u, v) = φδ[φ
−1
δ (u) + φ−1

δ (v)], 0 ≤ u, v ≤ 1, (3.3)

where φδ is some generator function satisfying 0 ≤ φδ ≤ 1, φδ(0) = 1, φ′δ <

0 and φ′′δ > 0. If φδ is a Laplace transform of some distribution then the corre-

sponding Archimedean copula is equivalent to a proportional frailty model.58

Three special cases of the proportional frailty model are of interest here. First,

Clayton’s model16 can be represented as

Cδ(u, v) = (u(1−δ) + v(1−δ) − 1)1/(1−δ), δ > 1, (3.4)

where φδ(x) = (1 + x)1/(1−δ) is the Laplace transform of a gamma distribution

with rate parameter 1 and shape parameter 1/(δ − 1). S and T are positively

associated when δ > 1 and become independent as δ → 1. The second example

is Hougaard’s model,38 where the function is given by

Cδ(u, v) = exp(−[− log(u)(1/δ) − log(v)(1/δ)])δ, 0 < δ < 1, (3.5)
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where φδ(x) = exp(−xδ) is the Laplace transform of the positive stable distribu-

tion with density38

− 1

πx

∞∑
k=1

Γ(kδ + 1)

k!
(−x−δ)k sin(δkπ), x > 0. (3.6)

S and T are positively associated when δ is small and become independent when

δ → 1.

The copula function of Frank’s model30 can be expressed as

Cδ(u, v) = logδ

[
1 +

(δu − 1)(δv − 1)

δ − 1

]
, δ > 0, (3.7)

where φδ(x) = logδ(1− (1−δ) exp(−x)) is the Laplace transform of a logarithmic

series distribution for 0 < δ < 1 and logδ represents the logarithm to the base δ.

S and T are positively associated for the case δ < 1, negatively associated for the

case δ > 1, and become independent when δ → 1.

Burzykowski et al10 presented a fully parametric copula model. The marginal

distributions are assumed to have a particular parametric form, for instance they

may be assumed to each have separate Weibull distributions. Combining the

marginal distributions for survival with a copula function, a corresponding bi-

variate joint survival copula function based on Weibull distributions can be con-

structed. As shown in the work of Burzykowski et al,10 a likelihood function can

be derived by taking all potential censoring cases in the datasets into account.

The scale and shape parameters in the two hazard functions as well as the copula

dependence parameter δ can be jointly estimated by using maximum likelihood

estimation.

Shih and Louis69 proposed a semi-parametric model in which a paramet-

ric copula is assumed for the dependence, but the marginal distributions are left

unspecified. A two-stage approach is taken for estimation. The idea is to esti-

mate the marginal survivor functions (u, v) by the non-parametric Kaplan-Meier

estimator in the first stage. After deriving the likelihood function incorporating

the different cases of censoring,69 maximum likelihood can be used to estimate



21

the unknown copula association parameter δ conditional on the values of the

survival functions of PFS and OS.

A particularly useful aspect of Archimedean copula methods is that Kendall’s

τ can be expressed directly as a function of φ−1
δ (x) as follows (see the work of

Genest and MacKey36):

τ = 1 + 4

∫ 1

0

φ−1
δ (v)

∂φ−1
δ (v)/∂v

dv. (3.8)

As a direct relationship exists between the Kendall rank correlation τ and δ, an

estimate of τ can be derived from the maximum likelihood estimator of δ. Ap-

plication of (3.8) for the respective generator functions leads to Kendall’s τ for

Clayton’s copula of τ = δ−1
δ+1

, for Hougaard’s copula of τ = 1− δ and for Frank’s

copula of τ = 1−4D1(− log(δ))−1
log(δ)

, whereD1 represents the Debye function of order

1.50

While copula methods are very convenient for modelling bivariate survival

data, their specific use for modelling PFS and OS is potentially questionable. By

definition the PFS time must be less than or equal to the OS time. However, the

copula model does not restrict the ordering of PFS and OS. Moreover, if PFS and

OS are assumed to have continuous marginal distributions, the copula model as-

sumes the values of PFS and OS coincide with probability 0, whereas in fact they

will coincide whenever a patient dies before progression. As a consequence the

copula model is guaranteed to be somewhat misspecified, even if the marginal

distributions are correctly specified. There is therefore potential that estimates

of dependency from the copula model will be biased. Dejardin et al23 performed

a limited simulation study to investigate the possible bias of applying a bivariate

shared Gamma frailty model (equivalent to the Clayton copula model) to data

on PFS and OS in which a three-state unidirectional model was assumed for the

generation process. They identified a small bias in the estimate of Kendall’s τ ,

with the magnitude of bias being greater for the scenario with lower τ .
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3.2.3 Non-parametric methods based on Inverse Probability of

Censoring Weight (IPCW)

Non-parametric estimation of Kendall’s τ for censored data is possible thro-

ugh the use of inverse probability of censoring weighting (IPCW).47 The meth-

ods are applicable to general bivariate survival data, including PFS and OS times

as a special case where some of the calculations are simplified if it is assumed

that a common censoring time will apply to both the PFS and OS times for a

given patient. Let (Si, Ti) for every i = (1, . . . , n) be independent replications

of the failure endpoint times (S, T ). A pair of two replications can be seen as

the survival experience from two individuals. The concordance or discordance

status of the pairs is required for the empirical calculation of Kendall’s τ . The

concordance status for subjects i and j given by

Cij =


1 if (Si − Sj)(Ti − Tj) > 0

−1 if (Si − Sj)(Ti − Tj) < 0.

In the case of no censoring, the concordance status can be determined for all
(
n
2

)
possible pairs. Hence, Kendall’s τ can be estimated by its sample version

τ =

(
n

2

)−1∑
i<j

Cij, (3.9)

where summing over i < j avoids taking a pair into account twice.

In the presence of censored data, the concordance or discordance status

can only be determined for orderable pairs. Let Rij be an indicator of whether

the pair (i, j) is orderable. Defining the respective censoring times Ci and Cj for

subjects i and j, then Rij is given by57

Rij = I
(
S̃ij < C̃ij, T̃ij < C̃ij

)
=


1 if pair orderable

0 otherwise,
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where S̃ij = min(Si, Sj), T̃ij = min(Ti, Tj) and C̃ij = min(Ci, Cj).

Oakes57 extended the estimator in (3.9) to an estimator for τ by taking the

sum over the orderable pairs only. The IPCW technique can also be applied to

the Oakes estimator in order to correct the bias caused by the presence of missing

data. The contribution of each orderable pair to the Kendall’s τ is weighted by

the inverse probability of being orderable. Then the estimator can be represented

as follows.47

τ =

∑
i<j RijCijWij∑
i<j RijWij

∈ [−1, 1],

whereWij = 1
p̂ij

are the weights defined by the inverse estimated selection prob-

abilities for orderable pairs pij as follows:

pij = P(Rij = 1|S̃ij, T̃ij)

= P(S̃ij < C̃ij, T̃ij < C̃ij|S̃ij, T̃ij)

= G{max(S̃ij, T̃ij)}2,

where G(·) is the survival function of censoring which can be estimated, under

an assumption of random censoring, via a Kaplan-Meier estimate obtained by

reversing the censoring indicator. While in the above we assume a common cen-

soring time for PFS and OS, in many oncology trials the progression time is ef-

fectively censored at the last screening time. The methods in Lakhal et al47 allow

for different but dependent censoring times for the two event times. However,

note that censoring for time-to-progression is not the same as PFS since patients

who die after their last screening time will not be treated as censored. Hence the

case of differential censoring times is not easily accommodated.

The IPCW approach to estimating the association between PFS and OS

is potentially quite attractive as it requires no assumptions to be made about

either the dependence structure or the marginal distributions of the times to

PFS and OS. However, for consistency the IPCW method requires that P(Rij =
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1|S̃ij, T̃ij) > 0 for all potential S̃ij, T̃ij . Effectively this means that there must be

some chance of a pair of observations being orderable regardless of the times un-

til progression or death. For this to be the case the support of the distributions

of PFS and OS must be contained within the support of the censoring distri-

bution. Such an assumption is very unlikely to be plausible in most oncology

trials, where at the time of analysis the maximum follow-up time will typically

be shorter than the longest possible survival time. The bias in the estimate of

τ for data with limited follow-up will depend on how much of the upper tails

of the PFS and OS distributions are not observable and how representative the

dependence in the body of the distribution is to that of the tails. It is of interest

to investigate the extent of bias in estimation of τ when follow-up is limited and

how the bias depends on the type of the censored data. This behaviour could

be investigated through simulation by generating data in a greater range of cen-

soring scenarios to understand how shorter follow-up times affect the estimate

of τ .

3.2.4 Model-based methods

Fleischer et al28 presented a parametric multi-state model describing the

Pearson correlation between survival outcomes PFS and OS under the assump-

tion that the transition intensities between the states in the underlying multi-

state model are constant. More recently, Li and Zhang48 extended the method

by using Weibull hazard functions to describe the transition intensities therefore

allowing them to either be monotonically increasing or decreasing with time.

Their model corresponds to a homogeneous semi-Markov model where the hazard

of death after progression depends on time since progression rather than time

since randomization (see Section 2.1 in the Preliminary Methods for more de-

tails). The model has four parameters, λ01, λ02, λ12 and α, with the model in the

work of Fleischer et al28 arising as a special case where α = 1. Li and Zhang
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expressed the model in terms of the distributions of latent event times: time-to-

progression, survival before progression and time from progression to death.

However, expressing the model in terms of the transition intensities is more de-

sirable since it avoids making untestable assumptions about the independence

between time-to-progression and survival before progression.2

The three-state model is already shown in Figure 2.1 in the Preliminary

Methods, but depicted in Figure 3.1 below for an improved illustration. Con-

sidering the expression of the transition intensities in the three-state model of

Li and Zhang, we use a slightly different parametrization for the scale parame-

ter throughout the thesis for reasons. The hazard functions of the Weibull dis-

tributed transitions with scale parameters λ01, λ02, λ12 and one shape parameter

α are given by

π01(t) = α
( 1

λ01

)α
tα−1,

π02(t) = α
( 1

λ02

)α
tα−1,

π12(s) = α
( 1

λ12

)α
sα−1,

where t and s refer to time since randomization and to time since progression,

respectively.

State 0
Randomization

State 1 
Progression

State 2
Death

π01(t)

π02(t) π12(s)

Figure 3.1: The three-state illness-death model for cancer survival

Estimation of the correlation between PFS and OS involves first estimating

the parameters of the multi-state model via maximum likelihood. Li and Zhang

derived a closed-form expression for the Pearson correlation between PFS and
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OS for given parameters, into which the maximum likelihood estimates can be

substituted.

In order to ensure the existence of a closed-form expression for the Pearson

correlation, Li and Zhang assumed the same shape parameter α for the three

Weibull functions. However, the necessity for analytical tractability leads to a

somewhat restrictive model. For instance, in real data examples the hazard of

progression may increase with time whereas the hazard of death before pro-

gression may be close to constant. Furthermore, PFS and OS as time-to-event

outcomes will typically be highly positively skewed and as a consequence a

non-linear dependence between PFS and OS would be expected, meaning the

Pearson coefficient is unlikely to be an appropriate measure of association.

Due to these aspects, we extend the method to allow estimation of the

Kendall rank correlation coefficient for general parametric illness-death models.

3.2.5 Generalized model-based methods

In this section, we generalize the illness-death model-based approach of Li

and Zhang48 to achieve more flexibility and to allow estimation of Kendall’s τ

rather than the Pearson correlation coefficient.

The modified approach continues to use a multi-state illness-death model,

but allows any parametric formulation for the transition intensities between states.

In particular, we can allow post-progression survival to depend on both time-

to-progression, denoted by t0, and time since progression, denoted by s. We

assume π01(t), π02(t) and π12(s; t0) are parametrized by a vector of parameters

θ which can be consistently estimated from data with a finite follow-up period

through maximum likelihood estimation.

From the definition of Kendall’s τ in (3.1) and under an assumption that

the bivariate lifetime random variables (Sn,Tn)n∈N representing the PFS and OS

times of the n patients are independent and identically distributed, for the gen-
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eral illness-death model the Kendall’s τ implied by the model is as follows:

τmod = 4

∫ ∞
0

π02(s) exp{−2Π0(s)}ds

+4

∫ ∞
0

∫ s1

0

∫ ∞
0

π01(s1)π01(s2) exp{−Π0(s1)− Π0(s2)}π12(s3; s1)

× exp{−Π12(s3; s1)}[1− exp{−Π12(s1 + s3 − s2; s2)}]ds3ds2ds1

+4

∫ ∞
0

∫ s1

0

π02(s1)π01(s2) exp{−Π0(s1)− Π0(s2)}

× (1− exp {−Π12(s1 − s2; s2)})ds2ds1 − 1,

(3.10)

where Π0(t) =
∫ t

0
π01(u) + π02(u)du and Π12(s; v) =

∫ s
0
π12(u; v)du. The first term

in (3.10) refers to the case where one patient dies before progression, before the

other has died or progressed. The second term refers to the case where patients 1

and 2 progress at times s1 and s2, respectively, where s1 > s2 and subsequently

patient 1 survives an additional s3 whereas patient 2 dies within s1 − s3 + s2

of progression. The third term refers to the case where patient 1 progresses

and dies before patient 2, despite patient 2 dying without progression. A full

derivation of (3.10) is given in Appendix A.1.

In the model of Fleischer et al,28 where exponential distributed transitions

are considered, the expression in 3.10 can be simplified. By substituting π01(t) =

1
λ01
, π02(t) = 1

λ02
and π12(t; t0) = 1

λ12
into (3.10) and directly integrating, after

some algebraic manipulation we obtain

τmod =
(λ02λ12)2 + 2(λ01λ03λ

2
12 + λ01λ

2
02λ12 + λ01λ

2
12 + λ2

01λ02λ12)

(λ02λ12 + λ01λ12)(λ02λ12 + λ01λ12 + λ01λ02)
− 1.

Rather than the exponential rate parameter as in Fleischer et al we use the scale

parameter, inverse of the rate parameter, denoted by λ01, λ02 and λ02 in order to

be consistent with the definition for the scale parameter for the Weibull hazards

in the thesis.

However, the integrals in (3.10) are analytically intractable for the model of

Li and Zhang. Nevertheless, the lack of a closed form expression is not a major
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hindrance since τmod can be obtained quite easily and with arbitrary accuracy via

numerical or Monte-Carlo methods. Moreover, making the underlying model

more complex, for instance by allowing separate Weibull shape parameters for

each transition intensity, has little or no bearing on the computational difficulty

of calculating τmod.

Monte-Carlo methods provide a particularly convenient way of evaluating

the model-based Kendall’s τ . We can use the fact that for a model where S and

T are continuous,

τ = 2P (S1 > S2, T1 > T2)− 2P (S1 < S2, T1 > T2)

= 2P (S1 > S2, T1 > T2)− {1− 2P (S1 > S2, T1 > T2)}

= 4P (S1 > S2, T1 > T2)− 1. (3.11)

It is therefore only necessary to evaluate P (S1 > S2, T1 > T2) which can be

achieved by simulating 2M pairs of (Si, Ti) and then taking

P̂ (S1 > S2, T1 > T2) = M−1

M∑
i=1

I(Si > Si+M , Ti > Ti+M). (3.12)

Simulation for general illness-death models can be achieved using the meth-

ods in Beyersmann et al.7 The Monte-Carlo standard error associated with the

approximation is at most 1/2
√
M. Typically, M = 1 × 106 or 1 × 107 samples

can be generated using very little computation time, meaning the Monte-Carlo

standard error is negligible. A point estimate for τmod can be obtained by simu-

lating 2M independent pairs of PFS and OS times from the illness-death model

with parameter estimates θ̂ := (λ̂01, λ̂02, λ̂12, α̂01, α̂02, α̂12). The parameters of the

parametric illness-death model are estimated as in Li and Zhang48 via maximum

likelihood (see Appendix A.4 for more details). The only difference is that we

used distinct shape parameters α01, α02 and α12 corresponding to each transition

intensity instead of a common shape parameter α for all transitions.

A simulation-based approach may also be used to obtain confidence inter-

vals for τmod using a variant of the simulation delta method.51 This involves firstly



29

generating B samples

θ∗1, . . . ,θ
∗
B ∼ N(θ̂, I(θ̂)−1),

where I(θ̂) is the observed Fisher information of the log-likelihood. For each

of the B samples, a pair of (S, T ) from the illness-death process with parame-

ters θ∗b are simulated 2M times. The next step is to estimate τmod denoted by

τ ∗bmod for every b ∈ [1, B] using (3.12). Confidence intervals can then be con-

structed based either upon the sample standard deviation or sample quantiles of

τ ∗1mod, . . . , τ
∗B
mod.A non-parametric bootstrap variant of this algorithm is also possi-

ble whereB bootstrap samples are generated by repeatedly resampling from the

original data and the maximum likelihood estimates are recomputed to generate

each θ∗b .

3.3 Simulations

3.3.1 Simulation set up

In this section, the performance of the methods is studied through simu-

lation. It is assumed that the true underlying model is an illness-death model

as this plausibly reflects the underlying disease process. For the first simulation

scenario A, we assume a homogeneous semi-Markov model with Weibull tran-

sition intensities and take the values of the shape and scale parameters for each

intensity to be those that best fitted to an external dataset from a trial of treat-

ments for colon cancer55 which will be reanalyzed in Section 3.4. As it would

usually be expected, there is a lower hazard of death before progression than

after progression. However, in the second simulation scenario B, we design this

mechanism to be the other way around and therefore refer to this as the ‘unreal-

istic scenario’. In both scenarios, we assume a multi-state model with a homoge-

neous semi-Markov assumption, where the imminent future is only dependent

on the time spent in the present state and not on other previous history.
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For the final simulation scenario C, we seek to investigate sensitivity of the

illness-death model-based method to misspecification of a homogeneous semi-

Markov assumption, by generating data in which time-to-progression also af-

fects the hazard of death given progression. Specifically we assume a general

semi-Markov process where the Weibull hazard function of death after progres-

sion depends on the time of progression t0 as well as time since progression. The

sojourn time in the post-progression state depends on whether progression or

not occurred before a fixed time point, e.g. 2 months. Therefore, we use different

shape and scale parameters for the Weibull hazard function of death after pro-

gression. If progression occurs before 2 months, it is expected that the hazard

of death given progression is higher compared to the case where progression is

experienced after 2 months. Table 3.1 shows the setting values of the scale pa-

rameters λ01, λ02, λ12 and shape parameters α01, α02, α12 for scenario A, B and C,

respectively. Based on those parameter values, the Kendall’s τ can be obtained

for each scenario via simulation as mentioned in Section 3.2.5.

Table 3.1: Parameter values in the three simulation scenarios

Scenario
Parameter A B C

λ01 9.698 9.6978 9.6976
λ02 61.296 20 61.296

λ12 1.654 50
{

1.654 if t0 < 2

2.5 if t0 ≥ 2

α01 0.675 0.675 0.675
α02 1.088 1.008 1.088

α12 1.009 1.080
{

1.008 if t0 < 2

1.005 if t0 ≥ 2

τ 0.835 0.120 0.815

We consider four censoring cases for each simulation scenario A, B and C.
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In censoring cases 1 and 2, the censoring follows an exponential distribution.

However, case 1 has 20% of patients whose OS time is censored while case 2

has 45 % of OS times censored. In censoring cases 3 and 4, the same levels of

censoring are used, but the censoring times arise from a uniform rather than an

exponential distribution. In more detail, the upper limit of the uniform distribu-

tion of censoring implies the maximum follow-up time. Regarding the normal

scenario with high censoring, the maximum follow-up time is 10.5 years, where

39% and 45% of PFS and OS, respectively, were unobservable. The non-Markov

case is similar, as the maximum follow-up time is 12 years, where 36% of PFS

and 45% of OS are beyond the range of the follow-up. In comparison to these

two scenarios, the unrealistic case maximum follow-up time is 59 years, where

7% of PFS and 45% of OS are censored.

3.3.2 Simulation results

Box plots of the estimates of the Kendall’s τ from each method using 1000

simulated datasets under uniform censoring and exponential censoring are shown

in Figure 3.2 below and in Figure A.2 in Appendix A.2, respectively. Further

details such as the estimates of the Kendall’s τ , the respective bias, standard de-

viation and mean squared error for every model both under uniform censoring

and exponential censoring can be found in Appendix A.2.

As the patterns of the outcomes are very similar among the two censoring

types, we restrict on the analysis of the simulation results under uniform cen-

soring below.

The upper row of plots in Figure 3.2 corresponds to the realistic scenario (sce-

nario A) and indicates that the model-based method and the IPCW method per-

form very well. In particular, the IPCW continues to perform quite well even

when there is a higher rate of censoring. The results from the copula models are

quite varied. While the Clayton copula based estimator is almost unbiased, the
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Figure 3.2: Box plots of estimates of Kendall’s τ from 8 methods. Dashed red
line indicates the true value.
A: normal scenario, where the parameters are used from an external dataset
from a trial of treatments for colon cancer
B: unrealistic scenario
C: general semi-Markov scenario
sClayton: two stage semi parametric Clayton model; sHougaard: two stage semi
parametric Hougaard model; sFrank: two stage semi parametric Frank model

Hougaard copula model captures the dependence rather poorly. As expected,

the efficiency of the semi-parametric copula models is lower compared to the

fully parametric models. Both the Hougaard and Frank copula estimates are
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sensitive to the rate of censoring, with a greater degree of bias for higher rates

of censoring. Overall, the model-based method has the lowest bias and lowest

mean squared error, however as shown in Table A.1 in Appendix A.2, the Clay-

ton copula model also has a low mean squared error being very close to the mean

squared error of the generalized model-based method. Hence, the Clayton cop-

ula seems to be a very good model in this case. Further, it is not surprising that

the generalized model-based method performs very well, as it corresponds to

the mechanism of the data generation.

It is noticeable that the estimate of Kendall’s τ is sensitive to the choice of

copula function. The Clayton model performs very well, in contrast to Hougaard’s

model that seems to be misspecified leading to large negative biases.

Contour plots of the density functions of each of the copula models and

also the implied copula for the illness-death model are presented in Figure 3.3,

and offer an explanation of these differences. The Clayton, Hougaard and Frank

copulas assume lower tail, upper tail and symmetric dependence, respectively.

An approximation to the density of the implied copula for the true generating

model is obtained through bivariate kernel density estimation from simulated

PFS and OS times that are transformed by their respective marginal distribution

functions. The implied copula for the true generating model indicates lower tail

dependence, which is qualitatively similar to that of the Clayton model.

The middle row of Figure 3.2 shows the box plots of the estimates of Kendall’s

τ for each method in the unrealistic scenario (Scenario B). The model-based

method continues to perform well. However, in this case the IPCW estimator

is biased with a larger bias for the higher censoring rate. In the low censoring

case, it is noticeable that the performance of the copula models is different in

comparison to the first simulation scenario. The bias and the standard devia-

tion of the Clayton models have increased, but the Hougaard model seems less

misspecified than in the first simulation scenario.
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Figure 3.3: Realistic simulation case: Contour plots for the bivariate density
function based on the model-based method and the survivor joint Clayton’s cop-
ula model, Hougaard’s copula model and Frank’s copula model. Kendall’s τ is
0.836.

Figure 3.4 shows the bivariate density plots for the unrealistic scenario and

indicates why the performance of the copula models is sensitive to the type of

data. The top-left graphic represents the density of the implied copula for the

true model. The mode in the upper-left part of the plot corresponds to patients

with a quick time-to-progression, but then a long follow-up to death. The band

of higher density in the lower part of the plot corresponds to cases where PFS

and OS are equal. The bivariate copula models have problems incorporating

the combination of negative and positive correlation between PFS and OS and

consequently are a poor fit to this type of data.

In addition, it is somewhat surprising that some of the copula models per-
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form better in the presence of high censoring in comparison to the low censoring

case. However, this can be explained by higher censoring leading to less contri-

bution from the mode corresponding to short PFS and long OS, which the copula

models are unable to accommodate.

As the copula models are not able to fit this type of data well, the model-

based method is preferred in this special case. However, as with Scenario A, the

superior performance of the model-based method is somewhat to be expected

since it was the model by which the data were generated.
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Figure 3.4: Unrealistic simulation case: Contour plots for the bivariate density
function based on the model-based method and the survivor joint Clayton’s
Copula model, Hougaard’s Copula model and Frank’s Copula model. Kendall’s
τ is 0.119.

The results of the final simulation scenario C, based on a general non-

homogeneous semi-Markov illness-death model, are shown in the lower row of
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Figure 3.2. This scenario was used to investigate how incorrectly assuming a ho-

mogeneous semi-Markov model affects model-performance of the model-based

method. Indeed, there is some negative bias in this case, while the performance

of other methods stays broadly similar to scenario A. Due to the similar setting

in scenario A and C as seen in Table 3.1, the bivariate density functions in C are

expected to show the same structure as in A. The contour plots for the general

semi-Markov scenario can be found in A.2 in Appendix A.2.

One way of choosing the most appropriate copula model in practice is to choose

the one with the lowest AIC. Note that we can only compare AIC between the

parametric copula models or between the semi-parametric copula models, but

not between a parametric and semi-parametric model. Tables A.4 and A.5 in

Appendix A.3 give the percentage of simulation replications for which each cop-

ula model had the lowest AIC. Broadly similar results were obtained for the

parametric and semi-parametric models, except that the proportion of times

the Frank copula was chosen as opposed to Clayton was higher for the semi-

parametric models. In all cases the Clayton model was preferred the major-

ity of the time, with the Hougaard model never chosen. While for scenarios

A and C the Clayton model is the least biased, for scenario B in the 20% uni-

formly distributed censoring case the Clayton model is slightly more biased than

Hougaard and Frank. The results therefore seem to indicate that the best model

with respect to AIC will not necessarily correspond to the model which best es-

timates Kendall’s τ .

3.4 Application

In order to illustrate the performance of the different methods, they were

applied to data from a clinical trial of treatments for colon cancer.55 This trial

was conducted to investigate the effectiveness of two adjuvant therapies in im-

proving surgical cure rates in stage III colon cancer. Patients were randomized



37

to observation, to the treatment levamisole alone or to a combination of lev-

amisole plus fluorouracil. In terms of the measurements in this trial, the time-

to-progression and time-to-death were observed in order to evaluate the differ-

ence in the hazards of recurrence and death between the treatment groups. The

dataset contains the survival experiences of 929 patients who were followed up

for 5 years or more (median follow-up, 6.5 years). During the trial, 425 indi-

viduals died, 54 were censored after progression and 423 were censored before

progression. The maximum follow-up time was 9.1 years, by which point based

on the Kaplan-Meier estimates, 43% and 46% would be yet to experience the PFS

time and OS time, respectively. Hence, in this case, considerable extrapolation

beyond the follow-up period is required to fully characterize the distributions.

In the analysis we initially pool together data from all treatment arms when

estimating Kendall’s τ and we first considered models using either Weibull tran-

sition intensities or Weibull marginal distributions for the illness-death model-

based method and the parametric copula models. There was clear evidence

against the constrained Weibull model used in the method of Li and Zhang48

based on a likelihood ratio comparing the models with common and different

Weibull shape parameters for the three intensities (LR = 41.6 on 2 degrees of

freedom, p < 0.001). However, none of the Weibull-based models represented

an adequate fit to the data. Comparisons of the estimated cumulative marginal

hazard of PFS and OS with the Nelson-Aalen estimates are given in Figure A.3

in Appendix A.3 and indicate substantial discrepancies in all cases. To improve

the model fit we considered Royston-Parmar (RP) flexible parametric models.64

Specifically, we consider models for which the cumulative log-hazard function

logH(t) is modelled as a natural cubic spline s(x, γ) with respect to log time

x := log t. Note that this formulation includes Weibull hazards as a special case

when there is a linear relationship between logH(t) and x. Moreover the specifi-

cation of the natural spline to be linear beyond the range of the boundary knots,
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implies a Weibull tail. The RP transition intensity models can be fitted directly

using the flexsurv package in R.40

Following the guidelines in Royston and Parmar64 we considered spline

models of increasing complexity by placing the boundary knots kmin, kmax at the

lowest and highest uncensored event times, respectively, and placing internal

knots k1, . . . , km with k1 > kmin and km < kmax at quantiles of the distribution of

uncensored event times. Given these assumptions, a natural cubic spline can be

expressed as

s(x, γ) = γ0 + γ1x+ γ2ν1(x) + . . .+ γm+1νm(x),

where γl with l = 0, . . . ,m are unknown parameters to be estimated, and νj(x)

is the jth spline basis function defined for j = 1, . . . ,m as

νj(x) = (x− kj)3
+ − λj(x− kmin)3

+ − (1− λj)(x− kmax)3
+

where λj = (kmax − kj)/(kmax − kmin) and (x− a)+ = max(0, x− a).

For instance, for the model with one internal knot point, the knot is placed

at the median uncensored survival time to allow equal information to inform

the two periods. For the copula models, the best AIC was achieved by allow-

ing each marginal distribution to have an RP form with one internal knot. For

the illness-death based models, it was only necessary to include one internal

knot point for the transition to progression, with the RP model having a worse

AIC for the other two transitions. Figure 3.5 shows a comparison of the fitted

marginal cumulative hazard functions for PFS and OS and indicates an adequate

fit compared to the Nelson-Aalen estimates.

In Table 3.2 the required parameters for our flexible RP model-based method

are shown. The spline coefficients γ0, γ1, γ2 refer to the non-parametric spline

function representing the time-to-progression. The Weibull hazard function of

death before progression is defined by the shape parameterα02 and scale param-

eter λ02, while the Weibull hazard function of death after progression is given by
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the parameters α12 and λ12. The model parameters for the copula based models

are provided in Table A.6 in Appendix A.

Table 3.2: Estimates of the model parameters for the generalized model-based
method fit for the colon cancer data.

Parameter RP model-based method SE

γ0 0.5894 0.1507
γ1 2.4705 0.1555
γ2 0.0997 0.0077
α02 1.0600 0.1478
α12 0.9619 0.0376
λ02 79.8428 32.6204
λ12 1.6106 0.0838
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Figure 3.5: Nelson-Aalen and model-based estimates of the marginal cumulative
hazard functions for PFS and OS where the parametric models are fitted using
Royston-Parmar distributions

Based on AIC, the Clayton copula is preferred amongst the copula models since

(AICClayton = 4242.255 < AICFrank = 4256.965 < AICHougaard = 4355.2).
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Similarly for the semi-parametric copula models, the Clayton model is preferred

with (AICsemiClayton = −24.96 < AICsemiFrank = −3.20 < AICsemiHougaard =

181.79).

Table 3.3: Comparison of estimates of Kendall’s τ and associated standard
errors for the colon cancer dataset.

model Kendall’s τ standard error

generalized model-based method 0.836 0.01152

IPCW estimator 0.834 0.01084

one-stage fully parametric model(Clayton) 0.845 0.00921

one-stage fully parametric model (Hougaard) 0.736 0.01311

one-stage fully parametric model (Frank) 0.806 0.01003

two-stage semi-parametric model (Clayton) 0.830 0.00957

two-stage semi-parametric model (Hougaard) 0.668 0.12606

two-stage semi-parametric model (Frank) 0.767 0.03121

Table 3.3 gives the estimates of Kendall’s τ derived from each of the methods.

The example partially supports the findings of the simulation results. One sim-

ilarity is the high sensitivity to choice of copula, as the values of the Kendall’s

τ differ in the different copula models as well. There is also reasonably close

agreement between the model-based and the Clayton copula estimates.

Note that for this example, if we instead considered quantifying associ-

ation based on Pearson correlation (as proposed by Fleischer et al28 and Li and

Zhang48) then using the flexible RP model-based method and estimating by sim-

ulation, returns an estimate exceeding 0.999. This is due to the estimate being

dominated by the upper tail where there is strong agreement between PFS and

OS since long survival times will correspond to those who did not progress and

because the hazard of progression is estimated to decrease. The result highlights

that Pearson correlation is often not a useful measure of dependence for survival
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outcomes.

3.4.1 Separate estimates by treatment arm

After previously having pooled the treatment arms in our analysis, we can

instead take treatment into account in our calculations. As mentioned above the

colon data contains three treatment arms: the observation group, the group with

levamisole (Lev) alone and the group with a combination of levamisole and flu-

orouacil (Lev+5FU). It is of interest whether Kendall’s τ between PFS and OS

is different for each treatment arm. Burzykowski et al10 incorporated covariates

into the calculation of Kendall’s τ for copula models by allowing covariates to

affect the marginal distributions of PFS and OS. In this way, a common Kendall’s

τ applies to all groups. Following this procedure, assuming proportional haz-

ards for PFS and OS between each of the treatment groups, the Kendall’s τ under

a Clayton copula is 0.8464 (SE = 0.0093) which is almost unchanged from the

estimate ignoring treatment effects.

Alternatively, we can fit completely separate models to each treatment arm.

Table 3.4 shows the Kendall’s τ for each treatment arm based on the RP illness-

death model-based method and RP Clayton model, respectively. There is evi-

dence that the treatment affects the degree of dependence between PFS and OS.

In particular, Lev and Lev+5FU decrease the hazard of progression and hence

increases the proportion of patients for whom PFS equals OS.

Table 3.4: RP model-based method: Kendall’s τ and standard error in the three
treatment arms

RP RP IPCW
model-based method Clayton model method

Treatment arm Kendall’s τ se Kendall’s τ se Kendall’s τ se

Control group 0.786 0.023 0.810 0.017 0.802 0.020
Treatment ”Lev” group 0.804 0.023 0.816 0.018 0.805 0.021
Treatment ”Lev+5FU” group 0.903 0.015 0.912 0.011 0.901 0.014
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3.5 Discussion

The relationship between progression-free survival and overall survival

can be investigated by copula based approaches, a non-parametric IPCW ap-

proach or illness-death model-based methods. As the copula based approaches

ignore the fact that PFS cannot be longer than OS and the non-parametric IPCW

method requires a strong assumption about censoring, another approach with-

out these above drawbacks is of interest. The illness-death model-based method

proposed by Li and Zhang28 only offers a partial solution to these issues. In

this chapter, we generalized the model-based method to allow estimation of

Kendall’s τ for general parametric models, potentially allowing dependence both

on time since progression and time since randomization.

The simulation results in the previous section give insight on the issue of

the most appropriate method for quantifying the association between PFS and

OS in a series of scenarios. One notable result is the generally good performance

of the Clayton copula model in realistic scenarios, being close to be unbiased and

having efficiency similar to the illness-death model approach.

However, while the Clayton copula appears to perform well, it is clear that

in general the estimate of Kendall’s τ is sensitive to the choice of copula. These

varied outcomes are primarily due to the different tail dependencies of the copu-

las. The Clayton copula may be most appropriate in cancer survival, as it focuses

on the dependence in the lower tail of the bivariate density function, which cap-

tures the common situation where a quick time-to-progression leads to quick

time-to-death. However, as seen in the unrealistic scenario, there are illness-

death model scenarios where the Clayton copula model will be biased. If a cop-

ula based approach is to be used in practice, it is important to consider several

different copula models and adopt the one with the best fit. However, results

from the simulation study suggested AIC is not necessarily a reliable criterion
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for finding the model with the least bias for Kendall’s τ . Furthermore, it is ques-

tionable whether it is sensible to apply copula models even if they often produce

reasonable estimates, given that they do not offer an admissible model for PFS

and OS.

The generalized illness-death model-based method also relies upon the

underlying model being close to correctly specified, with the simulations show-

ing some bias arising if a homogeneous semi-Markov model is assumed when

the true model is non-homogeneous. Assessment of the appropriateness of the

model should therefore be considered. In addition, parametric assumptions

about the transition intensities have to be taken into account. A fully non-para-

metric approach is not possible as the hazard functions cannot be identified be-

yond the maximum follow-up time. The use of hazard functions based upon

flexible natural cubic splines reduces the danger of estimates being sensitive

to the particular parametric specification. However, they still rely on the as-

sumption of log-linearity of the hazards beyond the last knot point. Alternative

non-parametric approaches aiming a restricted version of Kendall’s tau will be

discussed in the overall discussion in Chapter 6.

Incorporating the treatment effect on PFS and OS was not the focal point in

this thesis. However, it is of interest to what extent the treatment is relevant for

the relationship between PFS and OS. There are various ways in which covari-

ates could be accommodated into the models for Kendall’s τ . In the copula based

models, such as in the work of Burzykowski et al,10 covariates are allowed to af-

fect the marginal distributions of PFS and OS, but the dependence between PFS

and OS is common across all patients. For the illness-death models, the natural

way to accommodate covariates effects is to allow separate effects for each of the

transition intensities. This results in a different estimated Kendall’s τ between

PFS and OS depending on the value of covariates. In the colon cancer example

there was clear evidence of the treatment affecting the degree of dependence be-
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tween PFS and OS, with a higher estimated Kendall’s τ in the Lev+5FU group.

Since we would usually expect an effective treatment to alter the proportion of

patients who progress before death, it seems reasonable that the Kendall’s τ be-

tween PFS and OS would also differ. Hence, copula based methods, if pursued,

should also incorporate covariate effects for τ itself. The next chapter concerns

joint modelling of PFS and OS with incorporating treatment effects. The pri-

mary outcome of interest is then the measurements of the group difference of

OS, but also the Kendall’s τ will be considered.



CHAPTER 4

Joint modelling of PFS and OS in a Bayesian framework

45



4.1 Introduction

Chapter 3 explored joint models of PFS and OS to deduce the relationship

between progression-free and overall survival and compared Copula-based, non-

parametric and illness-death model-based methods. This present chapter is par-

tially similar to the previous, but differ in its main focus. In this chapter, we also

consider parametric joint modelling of PFS and OS, and some of the models

overlap with the models from the previous chapter. However, in this chapter we

consider the models within a Bayesian framework. Furthermore, our main aim

in the modelling is to incorporate treatment effects to infer the group difference

between the treatment groups for PFS and OS.

The remainder of the chapter is structured as follows. In Section 4.3, we

describe two copula-based approaches and a multi-state model-based approach

for joint modelling for PFS and OS. In addition, it is shown how the group differ-

ence and relationship in terms of AHR and Kendall‘s τ , respectively, is derived

by each of the considered methods. Section 4.4 summarizes the results of sim-

ulation studies, where the methods are compared regarding group difference

measurements and correlation values. In Section 4.5, the methods are illustrated

on data from clinical ovarian cancer trials. This chapter concludes with a discus-

sion.

4.2 General background and computation for Bayesian

statistics

This subsection briefly summarizes the general Bayesian approach to esti-

mation and computation in order to provide relevant background for the content

in this chapter.

The idea of the Bayesian approach arises from Bayes’ theorem.5 The key
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characteristic of the Bayes approach is the incorporation of external information

into the statistical model.

In a frequentist approach, suppose the probability distribution f(y|θ) for

observed data y = (y1, . . . , yk) given a vector of unknown parameters θ = (θ1, . . . ,

θk), where θ refers to a fixed but unknown parameter. In a Bayesian approach,

θ is considered as a random quantity conditional on a prior distribution π(θ|µ),

where the µ refers the hyperparameters of the prior. The prior distribution is a

probability distribution for θ containing information about it without involving

any information from the observed data y. Here, we suppose that the hyperpa-

rameters are known, therefore π(θ) = π(θ|µ). Inference for θ is then yielded by

the Bayes Theorem as follows:

p(θ|y) =
p(y, θ)

p(y)
=

p(y, θ)∫
p(y, θ)dθ

=
f(y, θ)π(θ)∫
f(y|θ)π(θ)dθ

. (4.1)

In practice, the integral in the denominator is often high dimensional and in-

tractable. As such Bayesian estimation requires specific methods for generating

posterior samples. Markov chain Monte Carlo (MCMC) algorithms such as the

Metropolis-Hastings algorithm37,54 and the Gibbs sampler34,35 are typically used

for generating samples from posterior distributions. A brief overview of these

algorithms will be presented below.

4.2.1 The Gibbs sampler

Suppose θ = (θ1, . . . , θk). The Gibbs sampler can be applied to sample from

p(θ1, . . . , θk) if the full conditional distribution for each parameter given the data

and all other parameters is known and in a form from which it is straightforward

to sample. The conditional distribution for each parameter being conditional on

the other parameters and the observed data can be written as p(θi|θi 6= θj, y).

After choosing a set of initial values for all θ(0)
1 , . . . , θ

(0)
k , the algorithm follows

the steps as shown below.6 For every iteration (t ∈ 1 : T ), apply:
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Step 1: draw θ
(t)
1 from p(θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
k , y)

Step 2: draw θ
(t)
2 from p(θ2|θ(t−1)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
k , y)

...

Step k: draw θ
(t)
k from p(θk|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
k−1 , y).

If t is sufficiently large, then the simulated draws reflect the posterior distribu-

tion: (θ
(t)
1 , . . . , θ

(t)
k )

approx∼ p(θ1, . . . , θk|y).

4.2.2 Metropolis-Hastings algorithm

The Gibbs sampler is straightforward, but it requires the full conditional

distributions p(θ1, . . . , θk) for each parameter to be of known form in order to

sample from each distribution. However, cases might occur that a closed form

of the full conditional distribution may not known.6 The Metropolis-Hastings

algorithm works, even if the closed form of full conditional posterior distribu-

tion for each parameter does not exist. It can be categorized as a rejection algo-

rithm, as it includes a step of rejection sampling from specific candidate density.

Following the description of the Metropolis-Hastings algorithm in Berry et al,6

suppose we have joint posterior distribution p(θ|y) ∝ h(θ) ≡ f(y|θ)p(θ). A can-

didate density q(θ∗|θ(t−1)) needs to be specified that is a valid density function

for every realization of the conditioning variable θ(t−1).

After choosing an initial value for θ(0) at iteration t = 0, the following steps

in the algorithm are as follows:

For every iteration: t ∈ 1 : T , repeat:

Step1: draw θ∗ from q(·|θ(t−1))

Step2: compute an acceptance ratio: r = h(θ∗)
h(θt−1)

= exp(log h(θ∗)− log h(θ(t−1)))

Step3: if r ≥ 1 set θ(t) = θ∗.

If r < 1, set θ(t) =


θ with probability r

θ(t−1) with probability 1− r.
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If t is sufficiently large, then the simulated draws reflect the posterior distribu-

tion: θ(t) approx∼ p(θ|y).

4.3 Approaches to joint modelling of progression-

related measurements and overall survival

In this section different parametric approaches for joint modelling of PFS

and OS adapted to the Bayesian framework will be shown. Two of them are

copula-based approaches for semi-competing risks data. The third model is a

multi-state model-based approach. We will also use a Cox model approach in

this chapter.

The standard approach to estimate the group difference between control

and treatment, is the hazard ratio. However, despite the assumption of pro-

portional hazards for each transition between control and treatment group, the

three-state model leads to a non-proportional hazards assumption for overall

survival between the treatment groups. Therefore we will focus on the average

hazard ratio. It describes the average of the hazard ratio over through an esti-

mated weight function. The AHR is characterized by the choice of the weight

function. The general definition of the AHR is given in (2.9) in the Preliminary

Methods. Schemper et al68 chose a weight function, such that (2.9) simplifies to

AHR =

∫∞
0
htr(t)Sc(t)Str(t)dt∫∞

0
hc(t)Sc(t)Str(t)dt

. (4.2)

Schemper et al showed that (4.2) is equal to the concordance odds definition of

the AHR (see Section 2.3 for more details).

4.3.1 Copula based approach: Clayton model

One approach to jointly model PFS and OS is based on the Clayton cop-

ula function whose details can be found in Section 3.2.2, whereas the general

idea of copulas are summarized in Section 2.2 in the Preliminary methods. The
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marginal distributions of PFS and OS are assumed to each have separate Weibull

distributions. A corresponding bivariate joint survival copula function based

on Weibull distributions can be obtained by combining the marginal distribu-

tion for PFS and OS with a copula function.10 The scale and shape parame-

ters in the two hazard functions for PFS and OS as well as the copula depen-

dence parameter δ can be jointly estimated by using maximum likelihood esti-

mation within Bayesian framework. With respect to Kendall’s τ , a useful aspect

of Archimedean copula methods is that there is a direct link between Kendall’s τ

and the dependence parameter δ (Genest and MacKey).36 As we model the sur-

vival times in a Bayesian framework, the prior distributions for the scale param-

eters log(λPFS), log(λOS), the treatment effects log(θPFS), log(θOS) and the shape

parameters log(αPFS), log(αOS) for both the control and the treatment group

have to be specified.

In general, copula-based approaches are convenient to jointly model sur-

vival data. However, for modelling PFS and OS the copula model does not re-

strict the ordering of those endpoints even though by definition the PFS time

must be less than or equal to the OS time. Therefore, it is expected that the copula

model leads to biased results in modelling the survival endpoints. Surprisingly,

the Clayton copula-based method we considered in Chapter 3 for estimating the

rank correlation coefficient Kendall’s τ was seen to be close to unbiased in most

of the scenarios considered. However, the performance of a copula-based ap-

proach is sensitive to the choice of copula. It is therefore important to consider

several different copula models and adopt the one with the best fit.

Incorporating a treatment effect, we assume the treatment does not affect

the shape parameter, but the baseline scale parameter λ as follows

log(λT ) = log(λC) + θ. (4.3)

For the calculation of AHR for PFS and OS, we use (4.2) by plugging in the haz-

ard functions and density function of PFS and OS calculated from the sample.
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The model estimation in a Bayesian framework results in a sample from the pos-

terior distribution for the model parameters to be estimated. In order to obtain

an estimate of the AHR, we compute the AHR for each sample from that poste-

rior distribution and then take the mean of all AHR’s.

4.3.2 Normal induced copula estimation model

Fu et al32 proposed a Bayesian semi-competing risks approach to jointly

model TTP (time-to-progression) and OS and to explore the relationship be-

tween PFS and OS. As this approach uses a Gaussian copula to link the distribu-

tion of TTP and OS, it is called a normal induced copula estimation model (NICE

model). Compared to the previous copula-based approach in Section 4.3.1, for

this model the copula models the joint distribution with respect to TTP and OS,

not PFS and OS. In particular, this approach allows the ordering of PFS and OS to

be preserved in contrast to the Clayton copula-based approach. In order to con-

struct the likelihood, the four possible observed cases are considered: (1) Either

TTP and OS are observed, (2) TTP is observed but OS is censored and (3) TTP

is censored by OS and (4) both TTP and OS are censored. This model including

the likelihood function and the estimation method within Bayesian framework

is described in detail in Fu et al. The model induces the relationship between PFS

and OS. Correlation among these variables such as Kendall’s τ and Spearman’s ρ

can be directly derived from the joint model. Fu et al estimate correlation values

via Monte Carlo integration for single-arm trial based on simulation method. We

adapt this NICE model later in our simulation. However, instead of exponential

distribution for TTP and OS we use a Weibull distribution in order to reflect the

survival course of a patient more realistically. Further, for the same reasons as in

Chapter 3, we only consider Kendall’s τ as outcome measures representing the

correlation. As the NICE model is considered for a one-arm study and we con-

sider here a two-arm trial, we apply the NICE model to both treatment groups
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separately. After estimating the survival functions and hazard functions for PFS

and OS for each treatment group, the AHR can be obtained by using Formula

(4.2).

4.3.3 Multi-state model-based approach

The following approach is based on a multi-state model framework often

used to analyze event history data of patients with cancer (please refer to Section

2.1 for full details).

Suppose we have a data set comprising N patients. Incorporating the in-

dividual’s covariate effects on the hazards, we let the treatment affects the scale

parameters λ̃01,i, λ̃02,i and λ̃12,i given subject i ∈ N shown as follows

λ01,i = λ̃01 exp(β12Xi),

λ02,i = λ̃02 exp(β02Xi),

λ12,i = λ̃12 exp(β12Xi),

where vector Xi is the vector of covariates for all N individuals and β01, β02 and

β12 are the corresponding regression coefficients. The baseline hazards λ̃01, λ̃02

and λ̃12 are fitted using the assumption of an exponential distribution or a Weibull

distribution. Finally, the prior distribution has to be specified for all β′s, λ′s and

α′s. Estimating the parameters of the multi-state model in Bayesian framework

involves determining the likelihood contributions for the 4 possible cases of ob-

served patient history.

The reason why we consider the average hazard ratio rather than the stan-

dard hazard ratio based on the illness-death model framework is explained in

Section 2.3. Briefly summarized, despite the assumption of proportional haz-

ards for each transition between control and treatment group, the three-state

model induces a non-proportional hazards assumption for overall survival be-
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tween the treatment groups. Consequently, the proportional hazards assump-

tion is violated. Therefore, we use the average hazard ratio as an alternative

tool to estimate the group difference. This type of analysis is a more flexible ap-

proach than the standard hazard ratio estimates, as it incorporates the effect of

time on the group difference. It works well even if the proportional assumption

of overall survival between the treatment groups is violated.63

Once the parameters for the three hazard functions are estimated, the es-

timate for the average hazard ratio can be derived. In addition, the steps of how

to obtain the average hazard ratio will be described. Mathematically, the steps to

estimate the AHR are as follows: deriving the transition probabilities from the

estimated transition intensities of the illness-death model, the survival functions

for OS can be calculated. We consider the transition probabilities P00(t1, t2) and

P11(t1, t2) implying the probability to stay in state 0 and in state 1, respectively,

within the time interval [t1, t2]. They can be rewritten as survival functions such

as

P00(t1, t2) = S0(t2 − t1),

P11(t1, t2) = S1(t2 − t1).

The explicit expressions of the transition probabilities are given in Formulas

(2.4) and (2.5), respectively, in the Preliminary Methods. Note, that the expres-

sion of P11(t1, t2) only works for a semi-Markov model if t1 is the time the patient

entered state 1.

Then the survival function for overall survival S(t) and its estimate Ŝ(t)

can be expressed by

S(t) = P00(t) +

∫ t

0

P00(0, u)π01(u)P11(u, t)du,

Ŝ(t) = exp
(
−
( t

λ01

)α01

−
( t

λ02

)α02
)

+

∫ t

0

(α01

λ01

)
∗
( u

λ01

)(α01−1)

exp
(
−
( u

λ01

)α01

−
( u

λ02

)α02
)

exp
(
−
( 1

λ12

)α12

(t− u)α12

)
du. (4.4)
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The standard method to obtain an estimate of AHR is iteration-based. Let

B be the number of iterations and θ1, . . . , θB the samples from the posterior dis-

tribution π(θ|x). The AHR can be computed for each sample of the model param-

eters from the posterior distribution such as AHR1 = AHR(θ1), . . . , AHRB =

AHR(θB) by using Formula (4.2) for the AHR. Then the posterior mean of the

AHR is estimated as

AHR =
1

B

B∑
i=1

AHRi,

and the variance is

V ar(AHR) =
1

B − 1

B∑
i=1

(AHRi − AHR)2

A credible interval can be constructed either by assuming the posterior is ap-

proximately normal and using the estimated standard deviation, or else through

the percentiles of theAHRb. This iteration-based option is quite straightforward

as we get the estimated posterior parameters for all iterations directly, but in

practical terms it is very time consuming.

An alternative approach to get an estimate of the AHR and its posterior

standard deviation exists. We consider the mean of the posterior estimates for

each model parameter and then we compute the AHR using Formula (4.2) as

follows ÂHR = AHR(θ), where θ = 1
B

∑B
i=1 θi. In order to obtain the stan-

dard error the multivariate delta method can be applied to estimate the poste-

rior variance ofAHR. A finite differences numerical approximation can be used

to find the derivative of AHR with respect to the model parameters. Having the

gradient vector ∂AHR
∂θ

∣∣∣∣
θ=θ

the variance of the AHR defined by multivariate delta

method is then

V ar(AHR(θ)) ≈
∂AHR

∂θ

∣∣∣∣
θ=θ

V ar(θ)
∂AHR

∂θ

∣∣∣∣T
θ=θ

,

where V ar(θ) = 1
B−1

∑B
i=1(θi − (θ))(θi − (θ))T is the covariance matrix. This

method is quicker than the first method, but is based on a first order Taylor ap-

proximation. The first method is more accurate, but it is more time-consuming
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as AHR has to be numerically computed B times. Therefore, we consider the

second method.

In this chapter, one measure outcome we look at is the Kendall’s τ for quan-

tifying the relationship between PFS and OS. The Appendix B.1, in particular

Subsection B.1.1, contains a description how to obtain the estimate for Kendall’s

τ due to a lack of its closed form expression based on the underlying model. In

addition, the simulation-based method for how to get the standard error of the

Kendall’s τ is shown there.

Beside the above methods for joint modelling of PFS and OS, we also con-

sider a standard Cox model approach. This approach is fitted using the standard

Cox regression model and is based on assuming proportional hazards with re-

spect to overall survival. The group difference is then estimated by the hazard

ratio.

4.4 Simulation

4.4.1 Simulation Set up

A simulation has been conducted to test the performance of the Gaussian

copula model, the Clayton copula model, the multi-state model based approach

and the Cox model approach. We simulate 1000 datasets with a sample size of

1000 for each data, with 500 patients in each of the control and treatment groups.

No other explanatory variables apart from treatment are considered in the sim-

ulations. As the illness-death model reflects the underlying survival process of

patients with cancer, it is assumed to be the true model. In all four simulation

scenarios, we assume the data are generated from a homogeneous semi-Markov

model with Weibull transition intensity functions. Let the scale parameter be

λ01, λ02 and λ12 as well as the shape parameter be α01, α02 and α12 for each tran-
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sition then the transition intensities are given by

π01(t) = α01

( 1

λ01

)α01

tα01−1,

π02(t) = α02

( 1

λ02

)α02

tα02−1,

π12(s) = α12

( 1

λ12

)α12

sα12−1,

where t and s refer to time since randomization and to time since progression,

respectively.

The simulation scenarios mainly differ with respect to which transitions are

assumed to be affected by the treatment. As there is not one rule of pattern how

the treatment affects the transitions, we choose different patterns to be the true

model. In scenario 1, we choose values of the shape and scale parameters such

that we have a situation with a treatment effect both on transition from study

entry to progression and from progression to death prior to progression. In sce-

nario 2, we consider a situation where treatment affects the transition between

state 0 and 1, while death given progression is not affected by the treatment.

In scenario 3, we assume a treatment effect on all three transitions and test for

example how the parametric multi-state model-based approach assuming only

treatment effects on transitions 0→ 1 and 1→ 2 performs. Scenario 4 represents

a situation where the treatment affects transitions π01 and π12 such that the true

hazard ratio decreases over time much faster than in the first scenario in order

to see whether that setting makes a difference in terms of the performance of the

methods.

In Table 4.1, the setting values of the scale parameters and shape parame-

ters of the Weibull distributions used in each scenario are summarized. Graphics

of the hazard function, survival function and cumulative hazard function of OS

for scenarios 1-4 can be found in Appendix B.
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Table 4.1: Parameter values for the simulation scenarios 1-4

Scenario

Parameter 1.Scenario 2.Scenario 3.Scenario 4.Scenario

(λ01, λ02, λ12)control (2.5, 9, 2.3) (2.5, 9, 2.5) (2.5, 7, 2.1) (1.5, 9, 2.3)

(λ01, λ02, λ12)treat (5, 9, 2.6) (5, 9, 2.5) (3.1, 10, 2.5) (5, 9, 6)

(α01, α02, α12)control (0.8, 1, 1.2) (0.8, 1, 1.2) (0.9, 1, 1) (0.7, 1, 1.2)

(α01, α02, α12)treat (0.8, 1, 1.2) (0.8, 1, 1.2) (0.9, 1, 1) (0.7, 1, 1.2)

low censoring U[4, 10] U[4, 10] U[3, 10] U[6, 10]

high censoring U[2, 7] U[3.5, 5] U[2, 6] U[2.5, 7]

As the rate of censoring might influence the performance of the methods, we

consider two censoring cases for each simulation scenario. In case 1, 20% of

patients are censored with respect to OS while in case 2 around 40% of OS times

are censored. The censoring times arise from a uniform distribution.

The following section addresses the setting about the prior distribution

for each considered method. The program JAGS (see Section 4.3 for more de-

tails on computation of the posterior distribution in Bayesian analysis) was used

for the Clayton-based model to obtain the posterior distribution of the baseline

scale parameters λPFS and λOS , the treatment effects θOS and θPFS and the de-

pendence parameter ξ. Furthermore, the posterior distribution of the shape pa-

rameters αPFScontrol
, αOScontrol

, αPFStreat and αOStreat for the control and treatment

group will be generated. The initial values of all parameters were set to zero.

Like in the Clayton-based model approach, the posterior distribution of the pa-

rameters to be estimated were generated by JAGS within the framework of the

multi-state model-based approach. The various parameters include scale pa-

rameters λ01, λ02 and λ12, the baseline shape parameters α01, α02 and α12, and
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the treatment effects θ01, θ02 and θ12. In both approaches, the prior density dis-

tribution of all parameters were set to be weakly informative. The initial values

for all parameters were all set to zero prior density. For the Clayton-based ap-

proach and the multi-state model based approach, the output of the posterior

results were based on 10000 iterations after a burn-in period of 5000.

The summary of the setting for the prior distributions for all parameters

and the two approaches is shown in Table 4.2. Following the standard recom-

mendation in the Clayton copula-models we parameterize the model on the log

scale. Regarding the scale parameter for each transition in the multi-state model-

based method, we used a half normal distribution truncated at 0.05 rather than

a log-normal distribution because of the potential for the scale parameter λ02 to

get close to 0.

Table 4.2: Setting of prior distribution of the parameter values for Clayton
copula-based and multi-sate model-based approach

Approach
Clayton copula-based multi-state model-based

(in JAGS) (in JAGS)

log(λPFS) ∼ N(0.2, 3−2) λ01 ∼ N(0, 0.1)I[0.05, ]
log(λOS) ∼ N(0.2, 3−2) λ02 ∼ N(0, 0.1)I[0.05, ]
θPFS ∼ N(0.1, 3−2) λ12 ∼ N(0, 0.1)I[0.05, ]
θOS ∼ N(0.1, 3−2) θ01 ∼ N(0, 0.1)

log(αPFScontrol
) ∼ N(0.2, 3−2) θ02 ∼ N(0, 0.1)

log(αOScontrol
) ∼ N(0.2, 3−2) θ12 ∼ N(0, 0.1)

log(αPFStreat) ∼ N(0.2, 3−2) α01 ∼ N(0, 0.01)I[0.05, ]
log(αOStreat) ∼ N(0.2, 3−2) α02 ∼ N(0, 0.01)I[0.05, ]

ξ ∼ uni(−1, 50) α12 ∼ N(0, 0.01)I[0.05, ]

Instead of using the JAGS program to generate the posterior samples, the

Metropolis–Hastings algorithm was used for the Gaussian copula-based approach

to get the posterior distribution of the various parameters to be estimated. In
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order to perform the NICE model estimation, we adapted the code by Fu et

al.32 Therefore, we will use the posterior mode as the estimate for each iteration

while assuming a non-informative prior in terms of improper uniform priors.

Because the Bayesian estimate uses a non-informative prior, it will be equiva-

lent to the maximum likelihood estimate (MLE) of the NICE model. Compared

to the NICE model in the paper, where exponential hazards for the transitions

are assumed, we instead use Weibull hazards. Therefore we also need posterior

estimates for the shape parameters. The scale and shape parameters λTTP , λOS,

αTTP and αOS are required for both control and treatment group. In addition,

the posterior density for the dependence parameter ρ of the Gaussian copula

will be generated. The initial values for were all set to be λTTP = 0.1, λOS =

0.1, αTTP = 0.1, αOS = 0.1 and ρ = 0.4 for both treatment and control group.

The outcome of all posterior distributions of the parameters is the result from

20000 MCMC simulations with a burn-in period of 1000 iterations.

4.4.2 Simulation Results

Figure 4.3 shows the estimated values of the average hazard ratio and its

standard error from each method using 500 simulated data sets for the four sce-

narios under high censoring. The results under low censoring can be found in

Table B.1 in Appendix B.1.2.

In Scenario 1, where treatment effects on transitions 0 → 1 and 1 → 2 are

assumed, the Gaussian copula model seems to perform very well. The Gaus-

sian copula model has the lowest standard error and the smallest bias compared

to the other models. It is surprising, as it was expected that the model-based

method would provide the least biased AHR estimate, as the scenario is gen-

erated from this model. The multi-state model has a slightly smaller standard

error, but has a higher bias than the Cox model. The two versions of Clayton cop-

ula models give similar results, but their AHR are overestimated and biased. As
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in scenario 1, the data in scenario 4 is also based on the assumptions that the

treatment affects transitions 0→ 1 and 1→ 2, but with a higher treatment effect

on both transitions. As expected the standard error and bias in all models are

smaller than in scenario 1. The AHR in Gaussian copula model approach seems

to be unbiased with the smallest standard error. The model-based method per-

forms also well, and has a lower standard error and bias than in the Cox model.

Due to the higher intensity of the treatment effect on the transitions , the perfor-

mance of the two versions of Clayton copula methods have improved in scenario

4 compared to scenario 1.

Table 4.3: Simulation results for all 4 scenarios, high censoring

Scenario

Model Summary 1 2 3 4

max. follow-up time 7 5 6 7
true AHR 0.7556 0.8167 0.7406 0.4337

1 model-based method AHROS 0.7407 0.7965 0.7348 0.4239
SEAHR 0.0592 0.0646 0.0599 0.0358
BIASAHR -0.0149 -0.0202 -0.0057 -0.0098

2 Clayton-copula based methods AHR 0.8415 0.9172 0.7681 0.4504
(non-proportional hazards assumption) SEAHR 0.0618 0.0700 0.0579 0.0373

BIASAHR 0.0860 0.1005 0.0275 0.0168

3 Clayton-copula based methods AHR 0.8470 0.9324 0.7799 0.4352
(proportional hazards assumption) SEAHR 0.0596 0.0676 0.0563 0.0349

BIASAHR 0.0915 0.1157 0.0393 0.0016

4 Gaussian-copula based approach AHR 0.7566 0.8125 0.7420 0.4337
SEAHR 0.0384 0.0416 0.0376 0.0259
BIASAHR 0.0010 -0.0043 0.0014 1.75E-05

5 Cox Model HRCOX 0.7541 0.8085 0.7460 0.4206
SEHRCOX

0.0613 0.0661 0.0609 0.0360
BIASHRCOX

-0.0015 -0.0083 0.0054 -0.0131

Scenario 2 assumes treatment affects only transition 0→ 1, and not 1→ 2.

However, the structure of the results are still similar as in the previous scenarios.

The Gaussian copula model seems to be preferred. The model-based method

shows similar values as the Cox model. Furthermore, the copula-based methods

differ slightly in their results, but with biased estimates and higher standard
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errors than in the models. In scenario 3, where the data are based on assumption

with treatment effects on all transitions, the performance of all models are very

similar. Beside the AHR, the weighted Kendall’s τ was calculated for the model-

based method and the Clayton copula-based model. However, it is doubtful that

the weighted Kendall’s τ is meaningful in terms of the relationship when there is

a situation with two or more treatment groups. The weighted Kendall’s tau for

the Clayton and multi-state model-based method are shown in Tables B.2 and

B.2 under high and low censoring, respectively, in Appendix B.1.2. Comparing

them, the performance of the model-based methods is superior compared to the

two Clayton copula models in all scenarios.

4.5 Application

We applied the above methods to a dataset pooling data from 4 double-

blind randomized clinical trials in advanced ovarian cancer.59 The trials were

conducted to compare the efficacy of cyclophosphamide plus cisplatin (CP) ver-

sus cyclophosphamide plus adriamycin plus cisplatin (CAP) to treat advanced

ovarian cancer. In order to assess survival difference in the treatment of the ovar-

ian cancer, overall survival is considered to be the primary endpoint and defined

as time from randomization to death from any cause. In addition, the potential

surrogate endpoint progression-free survival was also measured in all four trials

and is defined as the time from randomization to death or clinical progression

depending on what occurs first. The sample size of the pooled data is 1194,

where 606 patients were assigned to cyclophosphamide plus cisplatin (CP) and

586 patients were assigned to cyclophosphamide plus adriamycin plus cisplatin

(CAP). The characteristics of the single trials are shown in Omura et al.59 The

dataset is provided by the frailtypack package in R. The maximum folllow-up

time was almost 14 years. As the dataset from the R package considers another

time scale than the original data in Omura et al,59 we multiplied the observed



62

times in the data from the package by 7 to get the same time scale as in the orig-

inal data.

Table 4.4 shows the results of the AHR estimate and its standard error.

There it seems that the model-based methods and the Gaussian-copula based

approach seemed to perform well in terms of estimating the group difference

being close to the hazard ratio of the Cox model. By contrast, the Clayton copula

models seem to result in a weak performance due to potentially overestimated

average hazard ratios. In order to support the values we illustrated the survival

plots 4.1 for every method. However, they did not show an adequate fit to the

data, as the survival curves indicate that none of the methods perform well. One

way to solve this issue would be to incorporate Royston-Parmar (RP) flexible

parametric models64 into the models we considered. In Chapter 3 we applied

the Royston-Parmar parametric model, as we experienced the same issue. Please

refer to Section 3.4 for more details how the Royston-Parmar spline functions

work.

Table 4.4: Application results for the Ovarian data set

posterior
Model AHR SDAHR

1 model-based method 0.8383 0.0558

2 Clayton-copula based methods 1.0229 0.0596
(non-proportional hazards assumption)

3 Clayton-copula based methods 1.0434 0.0455
(proportional hazards assumption)

4 Gaussian-copula based approach 0.8511 0.0368

5 Cox Model 0.8484 0.0552
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Figure 4.1: Survival plots for control group and treatment group based on all
methods

4.6 Discussion

A multi-state model based approach and copula-based approaches to jointly

model progression-free related measurements and overall survival were explored

within a Bayesian framework. We investigated the performance of those ap-

proaches by focusing on the survival difference of both groups, assuming a two-

arm clinical trial. We expected the multi-state model-based approach to be the

most reasonable, convenient and precise approach in estimating the parameters

and treatment effect on overall survival. We investigated whether the multi-state

model-based approach still shows a benefit in the analysis of overall survival.

The motivation to use the average hazard ratio to express the group dif-

ference is that it is still relevant even without proportional hazards compared to

the standard hazard ratio. Regarding the multi-state model, there will be def-

initely non-proportional hazards for PFS and OS. As the Clayton copula-based

approach estimates PFS and OS directly, we have the choice to decide whether

to allow non-proportional or proportional hazards for the endpoints. Under
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an assumption of Weibull distributed data, assuming non-proportional hazards

means allowing different shape parameters in the treatment groups for PFS and

OS, respectively. In contrast, the assumption of proportional hazards implies

assuming the same shape parameter for PFS in both treatment groups and the

same shape parameter for OS in both treatment groups. The first assumption is

more realistic and flexible but leads to some loss of efficiency.

In this chapter, we consider joint modelling of PFS and OS in a Bayesian

framework. If there is prior information, then it can be easily incorporated into

the model estimation in the Bayesian framework to make posterior distribution

more informative. In theory, approaches might inform trial designs based on

external information. The work about overall survival based on external infor-

mation allows applications in some Bayesian contexts such as using posterior

predictive sample to generate and design future trials. However, the external

information is supposed to be informative and reliable. If there is information

from several past trials, then the effect from a new trial is expected to come from

the population effects observed in the previous trials. However, as we just use

data from one trial, it is not sufficient to predict anything. Therefore, one ex-

tension might be to extend the approaches to approaches incorporating results

from more several trials.

The simulation results show some surprising outcomes. Interesting is the

extremely good performance of Gaussian copula model in terms of estimating

the AHR, being close to be unbiased and being substantially more efficient than

the multi-state model. That is surprising, as the data generation was based on

the multi-state model for all scenarios. The better efficiency for the Gaussian

copula may be due to only requiring estimation of two treatment effects whereas

the multi-state model requires three.

The multi-state model and the Cox model result in a very similar perfor-

mance. Whilst the bias was lower in the Cox model, the multi-state model based
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methods showed a slight gain in efficiency in some scenarios. One notable result

is the weak performance of the Clayton copula-based model. Overall, the sim-

ulation results show an biased and overestimated AHR and a loss in efficiency.

That is in contrast to the good performance of the Clayton copula in Chapter

3. In that chapter it was noted that the performance of the copula method de-

pended on the choice of copula and the degree of association between PFS and

OS. Here, the poor performance of the Clayton copula in estimating the AHR

might also be related to the underlying model misspecification. The application

results are not meaningful, as none of the models showed a good fit to the data

we used. Comparisons of the estimated survival plots of OS indicated discrep-

ancies in all cases. Therefore the estimated AHR based on the copula do not

provide a reliable conclusion and comparison, as the models seem to be mis-

specified in modelling the survival function. Further work regarding this issue

relates to modifying the models by incorporating the idea of Royston-Parmar

models.



CHAPTER 5

Gaining efficiency in oncology trials using multi-state model-based methods
for modelling the survival times
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5.1 Introduction

It is of interest to establish more efficient ways of estimating the treatment

effects on overall survival. Instead of using surrogate endpoints with the in-

tention to replace the true outcome of interest, auxiliary variables such as the

information of time-to-progression of the disease can be used to provide im-

proved efficiency in analyzing the effect of treatment on overall survival. This

chapter explores a multi-state model-based approach for gaining efficiency in

testing for, and estimating the treatment effects on, overall survival in oncology

trials compared to the standard methods based on Cox regression or the log-rank

test. In consideration of the multi-state model-based approach, the previous

two chapters and this chapter differ in parametric assumptions. While Chapters

3 and 4 assume fully-parametric multi-state model-based approaches to model

progression-free related measurements and overall survival, the framework of

this chapter is semi-parametric.

Conlon et al18 utilized the time-to-progression as auxiliary information for

overall survival by using separate models for time-to-progression and time-to-

death. A cured fraction model was used to model the time-to-progression. Based

on the model for time-to-death multiple imputation was applied to generate

death times for censored subjects from their conditional distributions, and these

new calculated data were used in the primary analysis of overall survival. Con-

lon et al19 extended the approach by deriving a multi-state model with an in-

corporated cured fraction for progression to jointly model time-to-progression

and time-to-death. This joint multi-state model is parametric, with Weibull in-

tensities are assumed. The cured fraction is modelled using the mixture model

formulation of the cure model. The model is semi-Markov conditional on the

patient not being in the cured fraction is used.

This parametric model is used to impute death times for censored sub-
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jects aiming to improve the efficiency of the analysis of overall survival. In a

simulation and in a particular example,19 the multiple imputation procedure

within the model was shown to provide an improvement in efficiency of the

analysis of overall survival. However, this approach is somewhat dependent on

the assumption of a cured fraction, as the approach benefits from involving a

cured fraction. Further, the cure model assumes treatment only affects the prob-

ability of being cured and that only affects time-to-progression, not any post-

progression survival. A consequence might be that the general analysis of treat-

ment effects on OS based on the presence of a cured fraction might be improved.

This method is then more suitable for clinical trials where the assumption of a

cured fraction is plausible and there are no direct treatment effects on time-to-

death after progression.

In this chapter, we focus on a semi-parametric method based on a multi-

state model with three states as randomization, progression and death. Prior to

commencement of a trial it may be possible to a priori exclude the possibility

of treatment effects on some of the transitions between states. In particular, a

necessary condition for surrogacy of PFS is that the treatment only affects the

transition to progression.61 However, we may be willing to assume no treatment

effect on death prior to progression but not on death post-progression. It is of

interest to vary the method by assuming different parametric assumptions re-

garding treatment effects among the transitions in order to see how different

settings of circumstances affect the efficiency in analyzing the overall survival.

The treatment effects will be modelled by individual Cox models for each

transition of the illness-death model. The dependence of the transitions on time

can be specified by either Markov or semi-Markov assumptions (see Section 2.1

for more details). The performance of the semi-parametric multi-state model-

based method might be affected by the particular assumption. Whether a semi-

Markov or Markov assumption is most appropriate depends on the underlying
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process. While a semi-Markov model resets the clock to zero upon entry into a

new state, the Markov model uses a ”clock forward”-model. In other words, the

hazard of death given progression depends in a semi-Markov on time since pro-

gression, rather than time since randomization in a Markov model. The Markov

assumption is computationally/theoretically simpler but the paper by Shu et al70

indicates that a semi-Markov model is more efficient, at least with respect to the

overall survival estimates.

To estimate the treatment effect on OS, the hazard ratio is the standard

measure outcome in many clinical trials. However, if separate treatment effects

for each transition in an illness-death model are assumed, then OS will not have

proportional hazards (see Section 2.3 for more details). And that case of non-

proportional hazards might induce a hazard ratio which won’t be that meaning-

ful.63 The average hazard ratio proposed by Kalbfleisch and Prentice43 is a gener-

alization of the hazard ratio, appropriate even under non-proportional hazards.

The average hazard ratio is based on a flexible weighting function to incorporate

the impact of time on the treatment effect(see Section 2.3 for more details).

A reasonable comparison of the semi-parametric approach mentioned above

is the Cox regression model. Typical analysis of the treatment effect on OS would

be through the use of a log-rank test, with treatment effect estimates based on

the hazard ratio estimated through Cox model possibly supplemented by esti-

mated differences in survival at specific time points. However, such analyses

do not utilize the early information on time-to-progression. A further reason

why the log-rank test may not be efficient is that there may be non-proportional

OS hazards between treatment groups. The situation of non-proportional haz-

ards may affect the estimates of the group difference based on the Cox model.

Struthers and Kalbfleisch73 stated that under non-proportional hazards the Cox

model estimates an average hazard ratio where the weights are dependent on

the censoring distribution.
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The remainder of the chapter is structured as follows. In Section 5.2, we

discuss a typical analysis of the treatment effect on overall survival and review

the Colon approach.19 Subsequently, we describe both the semi-Markov and

Markov multi-state model-based method and how we estimate the treatment ef-

fect on overall survival. Section 5.3 shows results of simulation studies, whereas

the performance of the methods, in terms of bias and efficiency, are investigated

and compared through several simulation scenarios. In Section 5.4, the semi-

parametric multi-state model-based method is illustrated on the colon cancer

dataset. The chapter concludes with a discussion.

5.2 Approaches to improve the efficiency

in analyzing the overall survival

In this section, we focus on various approaches to investigating the treat-

ment effects on overall survival in oncology trials.

5.2.1 Semi-parametric semi-Markov illness-death model

The multi-state model can be used as a framework for approaches intend-

ing to be efficient in estimating the treatment effect on overall survival. It is the

basis for the approach we consider in this section in terms of jointly modelling

the time-to-progression and the time-to-death. Here, we consider an illness-

death model as depicted in Figure 2.1 in the Preliminary Methods. The states

”0”, ”1”, and ”2” correspond to ”randomization”,”progression” and ”death”,

respectively, and the three transition intensities are given by π01, π02 and π12.

In this section, a semi-parametric semi-Markov model-based approach will

be presented. Investigating to what extent this model improves the efficiency in

estimating the treatment effect on overall survival will be of main interest. In par-

ticular, we will focus on how parametric assumptions about the treatment effect
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and information about the time until progression can benefit the analysis of over-

all survival. Considering the characterization of the semi-parametric illness-

death model, the hazard functions are modelled by assuming a non-parametric

hazard function, common baseline hazards and proportional hazards among the

treatment groups. Different parametric assumptions about the treatment effect

can be made, when fitting the model using the standard Cox regression model.

Here, we consider the following four possible assumptions about the treatment

effect: (1) separate treatment effects on all transitions; (2) treatment affects both

transition 0→ 1 and transition 1→ 2; (3) treatment only affects transition 0→ 1;

(4) same treatment effect on all transitions.

We estimate the cumulative baseline transition hazards for each transition

from the Cox regression model, separately. This procedure can be extended to

the case with covariates such as treatment in order to obtain the cumulative tran-

sition hazards for the treatment group. The estimation of the 1 → 2 transition

intensity differs between the Markov and semi-Markov cases. Using the Cox

regression model, the extent how the Cox partial likelihood affects the risk set

depends on the assumption regarding Markov and semi-Markov. For example,

if a patient dies 5 months after progression, the risk set in a semi-Markov case

are the patients who are alive 5 months after progression. However in a Markov

case, it does not matter whether 5 months after progression or 3 years after ran-

domization, so the risk set are all the patients in the progression state. .

The derived estimates are the basis to study the treatment effect on over-

all survival. Note that, despite the assumption of proportional hazards for each

transition between control and treatment group, the three-state model leads to

a non-proportional hazards assumption for overall survival between the treat-

ment groups (see for more information Section 2.3). Consequently, the propor-

tional hazards assumption is violated and as a consequence our analysis will

be in terms of the average hazard ratio. This type of analysis is a more flexible
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approach than the standard hazard ratio estimates as it incorporates the effect

of time on the group difference. It works well even if the proportional assump-

tion of overall survival between the treatment groups is violated.63 However,

the method still requires proportional hazards within each individual transition

intensity so will not necessary work well in all cases.

After estimating the parameters for the three hazard functions, the esti-

mate for the average hazard ratio can be derived. In addition, the steps of how

to obtain the average hazard ratio will be described. Mathematically, the steps to

estimate the AHR are as follows: deriving the transition probabilities from the

estimated transition intensities of the illness-death model, the survival functions

for OS can be calculated. We consider the transition probabilities P00(t1, t2) and

P11(t1, t2) implying the probability to stay in state 0 and in state 1, respectively,

within the time interval [t1, t2]. They can be rewritten as survival functions such

as

P00(t1, t2) = S0(t2 − t1),

P11(t1, t2) = S1(t2 − t1).

The explicit expressions of the transition probabilities are given in Formulas

(2.4) and (2.5), respectively, in the Preliminary Methods. Note, that the expres-

sion of P11(t1, t2) only works for a semi-Markov model if t1 is the time the patient

entered state 1.

In a semi-Markov illness-death model, the survival function for overall sur-

vival S(t) and its estimate Ŝ(t) can be expressed by

S(t) = P00(t) +

∫ t

0

P00(0, u)π01(u)P11(u, t)dt,

Ŝ(t) = P̂00(t) +
∑
j,tj≤t

P̂00(0, tj)π̂01,jP̂11(tj, t)

= Ŝ0(t) +
∑
j,tj≤t

Ŝ0(tj)π̂01,jŜ1(t− tj),
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where π̂01 is the increment of Π̂01(t), the estimate of the cumulative hazard func-

tion.

For the definition of AHR, let f(t) be the marginal density and h(t) be the

hazard function for both groups. The survival function for both the treatment

group and the control group as well as the hazard function for both the treat-

ment group and the control group are donated by Str(t), Sc(t), htr(t) and hc(t),

respectively.

The general definition of the AHR43 is given in Formula (2.9) in the Pre-

liminary Methods. One component in this expression is the weight function,

which characterizes the influence of time on the hazard ratio. Computing the

AHR with a particular choice of weighting function68 leads to the concordance

odds definition of AHR shown in Formula (2.10).

Here, we consider a time-restricted AHR written by AHRres. As we work

here with non-parametric survival estimates, the AHR is calculated until the

maximum follow up time. The concordance odds definition of the restricted

AHR is relevant for the further work in this chapter, so we need to define the

weight function as in Schemper et al68 to simplify the general definition of the

AHR to the concordance odds definition of the AHR. The weight function is

w(t) = Sc(t)ftr(t)+Str(t)fc(t)
fc(t)+ftr(t)

. Then the version of the average hazard ratio in Section

2.3 modifies to

AHRres =

∫ τ
0

htr(t)
hc(t)+htr(t)

w(t)f(t)dt∫ τ
0

hc(t)
hc(t)+htr(t)

w(t)f(t)dt

=

∫ τ
0
htr(t)Sc(t)Str(t)dt∫ τ

0
hc(t)Str(t)Sc(t)dt

=
P[Ttr < Tc, Ttr < τ ]

P[Tc < Ttr, Tc < τ ]
, (5.1)

where P[Ttr < Tc, Ttr < τ ] is the concordance probability with randomly chosen

survival times Ttr and Tc from the treatment group and the control group, re-

spectively, conditionally on Ttr being shorter than the censoring time. Formula

(5.1) is equivalent to using a weight function that is as w(t) for t < τ and then
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identically 0 afterwards. Mathematically, the estimate of the concordance prob-

ability P̂[Ttr < Tc, Ttr < τ ] can be estimated by

P̂[Ttr < Tc, Ttr < τ ] =

∑
tj≤t Ŝc(tj)dŜtr(tj)

(1− Ŝtr(τ))Ŝc(τ)
.

After estimating the concordance probabilities, the AHR can then be estimated

as follows

ÂHRres =
P̂[Ttr < Tc, Ttr < τ ]

P̂[Tc < Ttr, Tc < τ ]
. (5.2)

In order to test the significance of the estimatedAHRres, the standard error

needs to be computed. One way to obtain the standard errors/confidence inter-

vals of the estimated average hazard ratio is by the non-parametric bootstrap

approach. As it is a simulation based approach, we firstly generate B samples

from the original set of data. We resample the data by sampling all the data from

an individual, at which we allow replacement. B is supposed to be large in or-

der to provide robust estimates of the standard error. The next step is to estimate

the average hazard ratio ÂHRresb for every b ∈ [1, B]. The standard error of the

ÂHRres is then yield by

ŜE(AHRres) =
1

1−B

B∑
b=1

(ÂHRresb − AHRres)
2,

where AHRres is the mean of all average hazard ratio estimates for all b ∈ {1, . . .

, B}, such that AHRres = 1
B

∑B
b=1 ÂHRresb . Then the confidence intervals can be

constructed based upon the standard error assuming approximate normality.

Alternatively, Shu et al70 presented an asymptotic theory for a Cox semi-Markov

illness-death model, which could in principle be extended to derive the variance

of the AHR.

It is of interest to establish whether the semi-parametric model-based method

gains any efficiency by making parametric assumptions about the treatment ef-

fects on the transitions compared to the Cox regression model. If the assump-

tions represent the structure of observed data well, then we may gain efficiency.
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Further, another characteristic of the model which could potentially improve

the performance of the analysis of overall survival is the assumption of a semi-

Markov instead of a Markov model. In a Markov illness-death model based

method, there is no clock reset to 0 after entering state 1. Hence, the entry into

state 2 only depends on the time spent in current state 1, though not on how

long the patient stayed in the previous state 0. According to the results of the

simulation study in Shu et al, some apparent improvement in MSE for the semi-

Markov model estimate of the survivor function could be found when either a

semi-Markov model was true or both a Markov and semi-Markov model held.

Here we investigate by simulation whether a similar result holds for the AHR

between two groups.

5.3 Simulation

5.3.1 Simulation set up

In this section, the performance of the methods is studied through sim-

ulation. The motivation for choosing the following simulation scenarios is to

explore the relative performance of the semi-parametric model-based method

and the Cox model in a range of situations. One objective is to investigate how

sensitive the models are in case of any model misspecification. Another focus

of investigation is whether the assumption of a semi-Markov multi-state model

leads to an improved efficiency in the analysis of OS compared to the assump-

tion of a Markov multi-state model. The role of censoring is also an aspect to be

considered in terms of how the intensity of censoring changes the performance

of the semi-parametric model-based methods and Cox approach.

It is assumed that the true underlying model is an illness-death model as

this plausible framework reflects the underlying disease process. In the first

four simulation scenarios the data are generated from a homogeneous semi-Markov



76

model with Weibull distributed transition intensities. As we incorporate treat-

ment effects on the hazards, we let the treatment affects the scale parameter of

each transition. Assuming N patients, the scale parameters incorporating the

treatment effects are given by

λ01,i = λ̃01 exp(β12Xi),

λ02,i = λ̃02 exp(β02Xi),

λ12,i = λ̃12 exp(β12Xi),

where λ̃01, λ̃02 and λ̃12 are the baseline scale parameters, the vectorXi represents

the vector of covariates for all N individuals and β01, β02 and β12 are the corre-

sponding regression coefficients. Mathematically, the Weibull transition inten-

sities with the shape parameters α01, α02, α12 for all three transitions are given

here by

π01(t) =
( 1

λ01

)α01α01t
α01−1,

π02(t) =
( 1

λ02

)α02α02t
α02−1,

π12(s) =
( 1

λ12

)α12α12s
α12−1,

where t and s refer to time since randomization and to time since progression,

respectively.

The first four scenarios differ with respect to which transitions are affected

by the treatment. As there is not one rule of pattern how the treatment affects

the transitions, we choose different patterns to be true model. In scenario 1 we

choose values of the shape and scale parameters such that we have a situation

with a treatment effect both on transition from study entry to progression and

from progression to death prior to progression. An illustration of the hazard

functions for each transition intensity and for overall survival for scenario 1 are

shown in Figure 5.1 and in Figure 5.2, respectively. In scenario 2 we consider a

situation where treatment affects the transition between state 0 and 1.
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Figure 5.1: Hazard functions for simulation scenario 1
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Figure 5.2: Survival function of OS and cumulative Hazard function for simula-
tion scenario 1

The two following scenarios are considered in order to investigate the ro-

bustness of the semi-Markov setting in case of some special types of misspecifi-

cation of the illness-death model. In scenario 3 we assume a treatment effect on

all three transitions and test, for example, how the semi-parametric multi-state
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model based approaches assuming only treatment effects on transition 0 → 1

and 1→ 2 perform.

In scenario 4 we do not assume proportional hazards for each transition.

Considering this case, we seek to explore how sensitive the performance of the

semi-parametric model is to violation of the proportional hazards assumption

for each transition in an illness-death model.

The simulation scenarios are now chosen to focus in particular on the per-

formance between a semi-Markov and a Markov semi-parametric model-based

approach. It is expected that a semi-Markov illness-death model reflects the un-

derlying disease process better than a Markov model. Assuming an exponential

distribution as in scenarios 1, 2 and 3 time-to-death given progression represents

both a semi-Markov and Markov framework for the transition from progression

to death.

Scenario 5 is then simulated based on a Markov illness-death model. By

the use of a truncated piecewise exponential distribution for transition to death

given progression, survival times given progression can be generated within a

Markov framework. The transitions π01(t) and π02(t) have then the same defini-

tion as in scenario 1-4. In order to create a fully Markov illness-death model it is

also possible to consider a left truncated Weibull distribution for time-to-death

given progression. However, the reason why we show a scenario based on a

truncated piecewise exponential distribution is that the temporal effect of a left

truncated Weibull distribution is often quite concentrated near t = 0 and there

is a less pronounced hazard ratio at later times.

A left truncated distribution for transition from progression to death im-

plies a Markov scenario, as the time-to-progression is considered as censored

and hence it doesn’t reset the clock to 0 upon entry into state 1. In order to con-

struct a left truncated distribution, we choose a piecewise exponential hazard
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function h(t) and a time point t0 such that

h(t) =


λ1 if t < t0

λ2 if t > t0.

The two exponential times T ∗1 ∼ Exp(λ1) and T ∗2 ∼ Exp(λ2) contribute then

time-to-death as follows. If progression occurs at time tp, then

T ∗ =


T ∗2 if tp > t0

min(T ∗1 , t0 − tp) + I(T ∗1 > t0 − tp) ∗ T ∗2 if tp < t0.

The time-to-death given progression since randomization is the sum of times tp

and T ∗.

Scenario 5 is created with treatment effects on transition 0 → 1 as well as

1 → 2. The robustness of the semi-Markov model will be tested by applying it

to scenario 5.

Instead of simulating survival times given progression based on a Markov

assumption, we now consider fully semi-Markov processes in scenarios 6 and 7.

Having a semi-Markov case makes it possible to investigate whether the semi-

parametric semi-Markov illness-death model-based method works better than

the Markov version. This scenarios are chosen in order to investigate whether

the semi-Markov approach is more efficient than the Markov approach when

the process is truly semi-Markov.

In scenarios 6 and 7, the hazard function for time-to-death given progres-

sion follows a Gamma distribution which makes it possible to define more ex-

treme semi-Markov cases easily. We can choose shape parameter k and scale

parameter θ such that time-to-death given progression follows a semi-Markov

assumption. For example we construct a case where within the first year after

progression death is very unlikely, though after one year the hazard function

increases quickly. That setting implies a strong semi-Markov effect even if the

scenario is somewhat unrealistic as it implies an initial decrease in the hazard of
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death following progression. In scenario 6, we assume the treatment affects all

three transitions. We consider two censoring cases for each simulation scenario.

Case 1 has 20% of patients whose OS time is censored while case 2 has 40% of

OS times censored. The censoring times arise from a uniform distribution.

Tables 5.1, 5.2 and 5.3 show the setting values of the scale parameters and

shape parameters according to the distributions used in each scenario. The il-

lustration of the hazard function and survival function and cumulative hazard

function of OS for scenarios 2-7 can be found in Appendix C.1.

Table 5.1: Parameter values for simulation scenarios 1-4

Scenario
Parameter 1.Scenario 2.Scenario 3.Scenario 4.Scenario
(λ01, λ02, λ12)control (2.5,9,2.1) (2.5,9,2.5) (2.5,7,2.1) (2,9,2.2)
(λ01, λ02, λ12)treat (5,9,2.8) (5,9,2.5) (3.1,10,2.5) (3.7,9,2.4)
(α01, α02, α12)control (0.8,1,1) (0.8,1,1) (0.9,1,1) (0.9,1,1.13)
(α01, α02, α12)treat (0.8,1,1) (0.8,1,1) (0.9,1,1) (0.7,1,1.2)
low censoring U[3,12.5] U[3,13] U[3,10] U[3,10]
high censoring U[2,6.7] U[3.5,5] U[2,6] U[3,5]

Table 5.2: Parameter values for simulation scenario 5

Parameter 5.Scenario
(λ01, λ02)control (2,7)
(λ01, λ02)treat (3,7)
(α01, α02)control (0.9,1)
(α01, α02)treat (0.9,1)
(λ1, λ2)control (1.5,7)
(λ1, λ2)treat (2,8)
t0 2
low censoring U[3,10]
high censoring U[2,8]
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Table 5.3: Parameter values for simulation scenarios 6 and 7

Scenario
Parameter 6.Scenario 7.Scenario
(λ01, λ02, λ12)control (1.5,9,0) (1.5,9,0)
(λ01, λ02, λ12)treat) (2.3,9) (2.3,9,0)
(α01, α02, α12)control (0.9,1,0) (0.9,1,0)
(α01, α02, α12)treat (0.9,1,0) (0.9,1,0)
(θ12)control 0.9 0.8
(θ12)treat 0.9 0.8
(k12)control 6 7
(k12)treat 7 7
low censoring U[6,14] U[6,13]
high censoring U[3,12] U[3,12]

5.3.2 Results

Results with the mean estimate of AHR, and the empirical SE and bias from

each method using 1000 simulated data sets for the above eight scenarios under

high censoring are shown in Table 5.4. The respective results for the same sce-

narios, but under low censoring, can be found in Table C.1 in Appendix C.1. The

semi-parametric model-based methods are flexible regarding the setting of treat-

ment effect assumptions. They can be modelled by assuming different scenarios

of the observed data. In the following, we consider scenarios based on three

types of treatment effect assumptions: (A) treatment effect on transitions 0→ 1

and 1→ 2; (B) treatment effect on transition 0→ 1; (C) independent treatment

effect on all three transitions. Table 5.4 shows the performance of the model-

based methods, where the methods are modelled such that they use the correct

treatment effect assumption considering the corresponding true scenario.
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Table 5.4: Results for all scenarios, high censoring

Scenario True HR

Model
maximum semi-Markov model-based Markov model-based Cox modelfollow-up method method

time AHR SE BIAS AHR SE BIAS AHR SE BIAS

true scenario: treatment ef-
fect on transitions 0→ 1 and
1→ 2:
1. scenario 0.7059 6.7 0.7062 0.0422 0.0004 0.7058 0.0422 -0.0001 0.7058 0.0582 -2.84E-05
4. scenario 0.7541 5 0.7676 0.0460 0.0136 0.7587 0.0459 0.0046 0.7545 0.0610 0.0004
5. scenario 0.8197 8 0.7970 0.0506 -0.0227 0.7994 0.0474 -0.0203 0.8062 0.0659 -0.0135
6. scenario 0.7359 12 0.7436 0.0412 0.0078 0.7409 0.0437 0.0050 0.7280 0.0597 -0.0079

true scenario: treatment ef-
fect on transition 0→ 1:
2. scenario 0.8182 5 0.8152 0.0273 -0.0030 0.8148 0.0274 -0.0034 0.8198 0.0673 0.0016
7. scenario 0.9484 12 0.9288 0.0176 -0.0196 1.0074 0.0108 0.0590 0.9376 0.0754 -0.0109

true scenario: treatment ef-
fect on transitions 0 → 1,
1→ 2 and 0→ 2:
3. scenario 0.7406 6 0.7416 0.0607 0.0010 0.7410 0.0607 0.0004 0.7447 0.0609 0.0042
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Scenarios 1, 4, 5 and 6 assume that the treatment affects transitions 0 → 1

and 1 → 2. Both model-based methods show gains in efficiency in terms of the

standard error in contrast to the Cox model. However the bias in the Cox model

is predominantly smaller than in model-based methods. Comparing the semi-

Markov model-based method with the Markov model-based method, they result

in a similar performance. Despite a slight difference in terms of the standard

error and bias between the two model-based methods, there is not a clear gain

in efficiency for one of those specific methods.

Scenario 5 assumes a non-homogeneous Markov illness-death model. This

scenario was used to investigate how incorrectly assuming a non-homogeneous

semi-Markov model affects the performance of the method. It is somewhat sur-

prising that the results of the semi-Markov model-based method indicate a ro-

bustness to such a type of misspecification since the individual survivor function

estimates would certainly be expected to be biased. In order to understand why

the AHR, its standard error and bias are so close to the corresponding estimates

in the Markov model-based method, we examine the average estimated survival

curves. Figure 5.3 shows the average estimated survival curves of OS between

the treatment groups based models for scenario 5. Both survival curves corre-

sponding to the semi-Markov model-based method are biased implying that in-

deed the Markov case affects the survival curve of a semi-Markov model-based

method. The curves of the log hazard ratio over time for the semi-parametric

model-based method based on both semi-Markov case and the Markov case are

very similar, illustrated in Figure 5.4. A possible explanation for the good per-

formance of the semi-Markov method despite the bias might be that the AHR

smooths the bias of the survival curves out, as we assume non-proportional haz-

ards of the survival function between the treatment groups.
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Figure 5.3: The survival curve of OS based on Kaplan-Meier, various semi-
parametric model-based methods
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Figure 5.4: The log hazard ratio of OS based on semi-parametric model-based
methods with semi-Markov assumptio versus Markov assumption

Scenario 6 is generated based on a semi-Markov assumption, therefore a

better performance for the semi-Markov model might be expected. However,
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the results seem to indicate very similar performance for the Markov and semi-

Markov models. The standard error is slightly lower in the semi-Markov model,

but the bias is higher in contrast to the model-based method with the Markov

model.

Scenarios 2 and 7 are generated by assuming a treatment effect only on transition

0 → 1. The outcome is very similar to the previous results. The model-based

methods are substantially more efficient in terms of the standard error compared

to the Cox model which shows a slight benefit regarding the bias though. Fo-

cusing on the difference of performance among the two model-based methods,

there is not a clear advantage for one of the methods. In scenario 3, all transi-

tions are affected by the treatment with a Weibull distributed hazard for time-

to-progression and exponential distributed hazard for time-to-death given pro-

gression and prior death. In that scenario, the semi-parametric model-based

methods perform better in terms of both the bias and the standard error. How-

ever, there is not really a difference between the semi-parametric model-based

methods regarding the Markov and semi-Markov assumption.

Besides the efficiency of the model-based methods, it is of interest to assess

how these methods perform in case of any model misspecification about the

assumptions regarding treatment effects. Specifically we consider cases where

the absence of a treatment effect is assumed for one or more transitions in which

a non-zero effect in fact exists. We show this type of investigation relating to

scenario 7 in the following table. Table 5.5 shows what happens to the power of

the model-based methods applied scenario 7, where a treatment effect only on

transition 0 → 1 is assumed. The considered types of the model-based method

are A, B, C and D. Assumption B is the true one, as it assumes the treatment

effect on transition 0→ 1. The results of the model-based methods and the Cox

model using assumption B are already given in Table 5.4.
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Table 5.5: Investigation of performance of the model-based method for scenario 7,
when assumption about treatment effect is misspecified, where
assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 7 (maximum follow up=12, true HR=0.9484)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.9300 0.9288 0.9307 0.7907
SEAHR 0.0505 0.0176 0.0719 0.0460
Power 30.8000 100.0000 19.7000 98.6000

Markov model-based method
with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.9268 1.0074 0.9276 0.7889
SEAHR 0.0539 0.0108 0.0741 0.0434
Power 29.3000 8.4000 19.7000 99.3000
Results Cox Model
HRCOX 0.9376
SEHRCOX

0.0754
Power 13.8000

Comparing the power for that particular scenario among the methods, the semi-

Markov model-based method results in a power of 100%, the Markov model-

based method shows a power of 8.5%, even lower than the power of the Cox

model. A possible explanation for this noticeable difference among the model-

based methods might be that the AHR based on the Markov assumption setting

leads to an overestimated value of AHR slightly greater than 1 probably due

to misspecification. Consequently, there is no rejection of the null hypothesis

implying no treatment effect of OS, whereas the true value of 0.9484 indicates

a slight treatment effect. The power of the Cox model is quite low despite the

almost unbiased estimate of the AHR. Hence, the corresponding standard error

is relatively high, therefore the confidence interval covers often the value 1 in the

analysis of the 1000 simulated data. As expected the semi-Markov model is most
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powerful assuming the correct treatment effect assumption. The power drops

strongly, if the semi-Markov model-based method presumes that assumption C

involves independent treatment effect on all three transitions.

The power investigation of the remaining scenarios is shown in Appendix

C.1. Regarding power results for the other scenarios, sometimes the model-

based methods are quite robust to misspecification, such that the power is not

adversely affected. However, it depends on the scenario and the treatment effect

situation of the observed data, how the power of the model-based method per-

forms in case of any misspecification. The power of the Cox model/log-rank test

depends on the scenario. In the scenarios, where we assume a treatment effect

on transitions 0 → 1 and 1 → 2, the log-rank test has a relatively high power,

but mostly smaller than the power for the model-based methods. For the sce-

nario where we assume only treatment effect on transition 0 → 1, the log-rank

test was not able to detect the treatment effect whereas the semi-Markov model

based methods did.

5.4 Application

The above methods were applied to the colon cancer data55 in order to il-

lustrate their performance in terms of analyzing OS. In fact, this dataset is the

same used for the application in Section 3.4. Recalling the description of the clin-

ical trial, its objective of interest was to assess the performance of two adjuvant

therapies in improving surgical cure rate in stage III colon cancer. Patients were

assigned to observation, the treatment levamisole alone or a combination of lev-

amisole plus fluorouracil. The measure outcomes were time-to-progression and

time-to-death. The observed survival data results from 929 patients who were

followed up for 5 years or more (median follow-up, 6.5 years). During the trial,

425 individuals died, 54 were censored after progression and 423 were censored
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before progression. The maximum follow-up time was 9.1 years, by which point

based on the Kaplan-Meier estimates.

It is not obvious what assumptions about the treatment effects and the type

of illness-death model apply to the colon dataset. In order to get a more detailed

impression of the dataset, we investigate whether the true scenario in the data is

more based on a Markov or semi-Markov illness-death model and which transi-

tion is affected by the treatment. Figure 5.5 shows the estimated survival curves

based on Kaplan-Meier and the model-based methods among the control group

and for treatment group levamisole plus fluorouracil.
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Figure 5.5: The estimated survival curves of OS among treatment group levamisolePlus
and control group based on Kaplan-Meier and various semi-parametric model-based
methods

Assuming a treatment effect on transitions 0 → 1 and 0 → 2 (assumption

A), the estimated survival curves of the model-based methods are very close

to the non-parametric survival curves for the treatment and control group, re-

spectively. Comparing the Markov model-based method with the semi-Markov
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model-based method, the estimated survival curves are very similar. Although

there seems to be a little benefit for the method with the Markov assumption

for the treatment group, as the corresponding survival curves seem to be closer

to the non-parametric survival curve. Furthermore, the model-based methods

with the assumption B result in similar estimated survival curves, whereas there

seems no clear advantage for either the semi-Markov or Markov assumption.

Table 5.6 shows the AHR estimates between the control group and treat-

ment group levamisole plus fluorouracil, the respective standard errors for the

semi-Markov model-based method, Markov model-based method and the Cox

model. As it is not clearly known what the true underlying treatment effect as-

sumption of the observed data might be, the results for the model-based meth-

ods based on 4 different treatment assumptions A, B, C and D are considered.

The results for the both model-based methods with assumption B involving

treatment effect on transition 0 → 1 show lower standard errors compared to

those for the models with assumption A, C and D. Hence, a benefit exist for as-

sumption B. However, the estimated treatment effects for each transition, mod-

elled by the Cox regression model, case A seems to be the most plausible as-

sumption. As shown in Table C.9 in Appendix C.2, the treatment effect for tran-

sition 0 → 1 is highly significant while the 1 → 2 is mildly significant in the

counter direction. Hence, assumption B is probably not reasonable despite the

benefit for the assumption according to Table 5.6. Moreover, the standard error

for the model-based method with assumptions and A and B is lower than the

standard error for the Cox model. However, the AHR estimates of the model-

based methods for assumption C are the closest to the AHR estimate of the Cox

model.
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Table 5.6: Investigation of performance of the model-based method for Colon
data.
assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Colon data(maximum follow up=9.1), comparison of treatment
treatment effect on OS between control group and arm levamisole plus fluorouracil )

Semi-Markov model-based method
with different treatment effect assumptionsResults

A B C D
AHR 0.7215 0.6509 0.7120 0.8274
SEAHR 0.0803 0.0655 0.0860 0.0985
P − value 0.0039 3.07E-05 0.0058 0.1181

Markov model-based method
with different treatment effect assumptionsResults

A B C D
AHR 0.7081 0.6496 0.6986 0.8005
SEAHR 0.0765 0.0661 0.0836 0.0923
P − value 0.0017 3.46E-05 0.0033 0.0574
Results Cox Model
HRCOX 0.6888
SEHRCOX

0.0818
P − value 0.0017

5.5 Discussion

We investigated how information about the time-to-progression can im-

prove the efficiency in terms of estimating the treatment effect on OS under dif-

ferent assumptions regarding which transitions are affected by treatment. Our

main measure outcome to express the group difference is the average hazard

ratio, as it is still meaningful without proportional hazards of overall survival

among the treatment group hazard ratio.

Based on the simulation results, the multi-state model based method per-

forms well in some settings. In particular, a gain in efficiency of the model-based

methods in contrast to the Cox regression can be achieved, provided it is pos-
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sible to assume no treatment effect on at least one of the transition intensities.

However, the benefit depends on the type of data, as the bias of the hazard ratio

based on the Cox regression was quite often lower than the AHR based on the

multi-state model-based method.

Comparing the Markov multi-state model-based method with the semi-

Markov multi-state model-based method in terms of efficiency gains, there is

only a slight difference and it depends on the data which type of the model-

based method shows benefits. The results indicated that there was little or no

difference in efficiency between the semi-Markov and Markov models when es-

timating AHR. The Markov model-based method was quite robust to misspeci-

fication, when we assume a true scenario based on an non-homogeneous semi-

Markov model, and the semi-Markov model seems to be more sensitive to mis-

specification than the Markov model. It is somewhat surprising that the AHR

can smooth biased survival estimates out in our simulation quite well in case of

misspecification, such that the AHR estimates seem to be much less biased than

expected.

Using the multi-state model-based method in practice requires making as-

sumptions about the analysis before collecting the data. These decisions involve

the choice of the Markov or semi-Markov assumption and which treatment ef-

fects could be excluded. It might be likely to incorrectly assume how the treat-

ment affects the course of disease of the data to be analyzed. We considered the

power in our simulation, in order to control and to explore to what extent the

power suffers from the misspecification. Due to the results the misspecification

of the treatment effect can have quite an effect to the power. Furthermore, the

procedure can only partially control the Type I error rate error. Essentially if

the hypothesis H0 is that there is absolutely no effect of treatment for any tran-

sition then Type I error is controlled. However, the Type I error is not controlled

with respect to the set of all processes for which AHR=1. An AHR with that
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value can imply a case where an effect of treatment exists for the transitions, but

calculating the AHR can cancel out all the individual effects.

A further issue to be considered is the use of the average hazard ratio. We

don’t assume proportional hazards of overall survival among the control and

treatment group. Hence, hazards are expected to change over time and the haz-

ard ratio. The average hazard ratio is able to cope with non-proportional haz-

ards well as it considers group difference depending on time. The value of AHR

describes the average of the hazard ratio over time through a estimated weight

function. The AHR depends on the way of defining the weight function. In this

chapter, our weight function is defined such that the AHR represents the concor-

dance odds definition of AHR. As we assume non-parametric survival curves,

we modified the definition of the AHR68 by restricting it up to the maximum

follow-up time.

A commonly used alternative to get the treatment effect estimates is based

on the Cox regression model. The hazard ratio based on this standard model

is not optimal under proportional hazards of overall survival between the con-

trol and the treatment group. Neverthless, the hazard ratio estimates of the Cox

model worked quite well in the simulation. However, there is no guarantee the

Cox model estimate will be close to the concordance odds definition of the AHR.

Struthers and Kalbfleisch73 investigated the form of a Cox model under non-

proportional hazards. The HR estimate based on a Cox model is heavily de-

pendent on the censoring distribution. It is expected that the simulation results

would provide much more biased results of the hazard ratio when exponential

rather than uniform distributed censoring were used. However, the scenarios in

the simulation were chosen to ensure the Cox estimate is reasonably close to the

AHR.

The standard method to test for treatment effects is the log-rank test. It

is purely non-parametric and equivalent to performing a score test in a Cox
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model with one binary covariate. However, the log-rank test is most powerful

under proportional hazards of overall survival between the treatment groups.

Therefore, the test might not be appropriate for many applications, as propor-

tional hazards are not always realistic. An alternative of the log-rank test is

the weighted log-rank test which can better accommodate situations where the

treatment effect on OS is expected to be more pronounced at either the begin-

ning, middle or end of a clinical study. A weighted log-rank test can be rep-

resented by Flemington-Harrington test,44 which is seen as a variation of the

standard log-rank test. In a Flemington-Harrington test it is allowed to choose

the weights, whereas one corresponds to the weights for earlier survival times

and the other one corresponds to the more weights for later survival time. We

applied the weighted log-rank-test to all our scenarios. However, there was not

a real benefit using a weighted log-rank test in our simulation cases compared

to the standard log-rank test.

Further work might refer to the improvement of design in oncology trials

by using semi-parametric multi-state model-based methods. More details will

be discussed in the subsequent Chapter 6.
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6.1 Overview

This thesis has concerned topics relating to time-to-event analysis in on-

cology trials. We explored the performance of various statistical models for

quantifying the association between progression-free and overall survival, and

exploiting the relationship to estimate treatment effects. This chapter outlines

conclusions, limitations and further work arising from the research-related three

previous chapters.

6.1.1 Conclusions

The research in Chapter 3 does not result in one preference of the various

methods we considered for quantifying association between PFS and OS. The

simulations suggest that the illness-death model–based method provides good

estimates of Kendall’s τ across several scenarios. In some situations, copula-

based methods perform well however their performance is sensitive to the choice

of copula. The Clayton copula is most appropriate in scenarios, which might

realistically reflect an oncology trial, but the use of copula models in practice is

questionable.

Chapter 4 explored various methods to jointly model PFS and OS within

a Bayesian framework and test for the group difference in terms of the average

hazard ratio. According to the simulations results the Gaussian copula-based

model performed the best overall, but the illness-death model-based approach

showed a good performance as well. However, in contrast to the good perfor-

mance of the Clayton copula based approach in Chapter 3, it does not show a

good behaviour due to overestimated average hazard ratios.

Chapter 5 explored various methods for gaining efficiency in testing for,

and estimating the treatment effects on, overall survival in oncology trials com-

pared to the standard methods based on Cox regression or the log-rank test.
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The performance was investigated by simulation for a wide range of scenarios

and illustrated using data from a clinical trial of treatments for colon cancer.

In most of the situations, the semi-parametric multi-state model-based method

performs better than the Cox-based approach. In the scenarios considered there

was little, and not significant difference in the performance under Markov and

semi-Markov.

6.1.2 Limitations and Further Work

We expressed the association for quantifying the relationship between PFS

and OS by the use of Kendall’s τ . In the discussion of Chapter 3, we concluded

that a fully non-parametric approach, based on the copula-based approach and

illness-death model-based approach, for obtaining Kendall’s τ is not possible

when the support of the censoring distribution does not contain the support

of the PFS and OS distributions, due to the inability to non-parametrically esti-

mate the hazard functions beyond the maximum follow-up times. An alterna-

tive non-parametric approach would be to aim to estimate a restricted version

of Kendall’s τ . For instance, rather than compute the unconditional probabil-

ity of concordance and discordance, one could replace the probability terms in

(3.1) with ones conditional on S1 ∧ T1 < t∗, S2 ∧ T2 < t∗ for some choice of t∗,

where (S1, T1) and (S2, T2) are two independent realizations of (S, T ). A simi-

lar approach was employed in the context of estimating concordance odds in an

Aalen additive hazards model52 and we also use a similar idea in Chapter 5 to

define an estimable version of the average hazard ratio. Provided t∗ is less than

or equal to the maximum follow-up time, a consistent model-based estimate of

the restricted Kendall’s τ can be obtained from, for instance, the Nelson-Aalen

estimates of the transition intensities under a Markov assumption. Note, how-

ever, that restricting the definition of Kendall’s τ would also allow consistent

estimation using IPCW method with the added advantage of not requiring a
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particular Markov or semi-Markov assumption.

Furthermore, in a situation with two or treatment groups, the Kendall’s τ

can be modified to a weighted Kendall’s τ for measuring a weighted rank corre-

lation. In Chapter 4, we calculated a weighted Kendall’s τ rather than using the

Kendall’s τ , at which the treatment groups are pooled. However, it is doubtful

how meaningful the weighted Kendall’s τ would be in a situation with two or

more treatment groups.

Throughout the thesis it has been assumed that both time-of-death and

time-to-progression can be continuously observed up to right-censoring. While

such an assumption is commonly applied, in practice assessments of progres-

sion are intermittent resulting in different right-censoring times for progression

and death and interval-censored progression times.75 For instance, for the multi-

state model-based approach as in Chapter 3, provided the assessment times for

progression are known, the model can be fitted using a likelihood that properly

accounts for the intermittent observation.17,42 However, adaptation of other ap-

proaches (such as the copula-based method and the IPCW-method in Chapter

3) where PFS is a composite measure of progression, which may be interval-

censored, and of OS, which is right censored, is less straightforward.

When estimating treatment effects on overall survival in Chapters 4 and 5,

we used the average hazard ratio. An illness-death model induces non-propor-

tional hazards of overall survival among the control and treatment group. The

average hazard ratio is able to cope with non-proportional hazards well as it

considers group difference depending on time. The AHR weights the hazard

ratio over time via a specified weight function. In Chapter 5 we used a trun-

cated version of the weight function that gives a concordance odds interpreta-

tion to the AHR. Alternative outcome measures instead of the AHR include the

difference of survival estimates between the treatment groups at a prespecified

time point19 and the difference in restricted mean survival time.65 The semi-
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parametric multi-state models in Chapter 5 can be the basis for calculating the es-

timated difference which can be calculated at a specific time. A non-parametric

approach would consist of the estimation of separate Kaplan-Meier survival es-

timates for each group and calculation of the difference in survival at a given

point. It would be interesting to see whether there are similar gains in efficiency

using the Cox multi-state model with these treatment effect measures.

Moreover, the decision how to measure progression in cancer trials is of

relevance. Throughout this thesis, we have assumed a binary assessment of pro-

gression. However, progression is often defined in terms of tumour size or tu-

mour growth. As such progression could be viewed as a continuum rather than

a binary event which suggests survival methods directly using tumour measure-

ments could be used. In theory, methods like that such as a joint longitudinal-

survival modelling have the potential to provide more information than just a

survival model with binary measurements for progression. For instance, there

might be situations where progression is defined in terms of tumour growth

and the measurements result in being close to criterion for progression, but not

all requirements are met. It would be reasonable to expect the overall survival

of such patients is more similar to those who did progress than patients with

little or no tumour growth. As such the survival model utilizing the tumour

measurements provides more information than just a binary survival model for

progression.

While this thesis has focussed on the analysis of oncology trial data, re-

lated future work could consider how the methods impact the design of trials.

In particular, one could consider how to design a phase III trial in oncology that

incorporates the semi-parametric multi-state model-based method described in

Chapter 5. The necessity to control the Type I error rate in a phase III trial poten-

tially precludes directly using the method in Chapter 5, since Type I error will

be inflated if either the model is misspecified (i.e. treatment effects on transi-
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tion intensities are not proportional) or the set of intensities without a treatment

difference is misidentified. Instead, the idea would be to keep the primary end-

point as overall survival, assessed using a non-parametric method such as the

log-rank test, but to use the semi-parametric multi-state model-based method

for interim analyses of the trial for the basis of stopping for futility. If the as-

sumptions of the semi-parametric multi-state model-based method are correct

it would lead to making better decisions at interim analyses, thus shortening the

average trial length or providing greater power for the same average number of

patients. Whereas, if the model is incorrect there is no impact on Type I error

since any decision regarding a significant difference would be on the basis of a

log-rank test. Please refer to Muller and Schafer56 for full details of the general

general principle of adaptive group sequential designs. They presented a gen-

eral approach combining the concept of adaptive interim analyses and classical

group sequential testing.

Such an approach would perhaps be most useful for multi-arm trials as-

sessing two or more treatments. In such a situation, the semi-parametric multi-

state model, if extended to the case of three or more groups, could be used to

decide which, is any, treatments to proceed with at interim analyses. As before,

the final analysis of the treatment effect on overall survival could still be based

on log-rank tests.

A further extension of the model in Chapter 4 would be to include a frailty

term between time-to-progression and time-to-death after progression. This is

an alternative way of allowing non-Markov dependence between time-to-progres-

sion and time-to-death after progression which should be relatively easy to im-

plement within a Bayesian framework. However, the inclusion of a frailty term

would further complicate the expression for the average hazard ratio.

Finally, a possible extension of the work from Chapter 4 would be to extend

the approach for a single trial to one which pools information across several tri-
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als. According to Buyse,11 in order to establish PFS as a surrogate endpoint, a

meta-analytic approach is needed. Applying the approach to one trial is not

as meaningful as applying it to more trials for testing PFS as a surrogate end-

point for OS. However, previous work in this vein has used a copula approach,

therefore extending the multi-state modelling approach to the analysis of several

trials, allowing the baseline hazards and treatment effects to vary across trials

as random effects, would be potential work for the future. The data we used in

the application in Chapter 4 involve the aggregation of 4 trials for ovarian can-

cer and as such would be a good example to work with. However, the dataset

provided in R does not specify which patient belongs to which trial.
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A.1 Derivation of the formula for model-based

Kendall’s τ

Under an assumption that patients are independent and identically dis-

tributed and that S and T are continuous random variables, from (3.11),

τmod = 4P (S1 > S2, T1 > T2)− 1,

where (S1, T1) and (S2, T2) are two independent pairs of realisations of (S, T ).

The probability P (S1 > S2, T1 > T2) can be expanded into three cases de-

fined by which of patient 1 or patient 2 dies before progression. Specifically we

may write

P (S1 > S2, T1 > T2) =P (S2 = T2 < S1)

+ P (S1 > S2, T1 > T2, T2 > S2, T1 > S1)

+ P (S1 = T1, S2 < S1, S2 < T2 < T1).

(A.1)

Note that Sj can also be interpreted as the sojourn time in state 0 and that

Tj =


Sj if ∆j = 0

Sj + Vj if ∆j = 1,

where ∆j is an indicator of whether progression occurs before death and Vj is

the sojourn time in the progression state. Let fS1(t) = π01(t) exp (−Π0(t)) and

fS2(t) = π02(t) exp (−Π0(t)) be the cause-specific densities for progression and

death before progression, respectively. Also, let SS(t) = exp (−Π0(t)) be the sur-

vivor function of the sojourn distribution in state 0 andSV |S(s;u) = exp (−Π12(s;u))

and fV |S(s;u) = π12(s;u) exp (−Π12(s;u)) be the survivor function and density

of the conditional sojourn distribution in state 1 given a sojourn of time u in state
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0. Then

P (S2 = T2 < S1) =

∫ ∞
0

P (S2 = s,∆2 = 0)P (S1 > s)ds

=

∫ ∞
0

fS2(s)SS(s)ds

=

∫ ∞
0

π02(s) exp{−2Π0(s)}ds,

P (S1 > S2, T1 > T2, T2 > S2, T1 > S1)

=

∫ ∞
0

∫ s1

0
P (S1 = s1,∆1 = 1)P (S2 = s2,∆2 = 1)

×P (T1 > T2|S1 = s1, S2 = s2,∆1 = ∆2 = 1)ds2ds1

=

∫ ∞
0

∫ s1

0

∫ ∞
0

P (S2 = s2,∆2 = 1)P (S1 = s1,∆1 = 1)P (V1 = s3|S1 = s1)

×P (V2 < s1 + s3 − s2|S2 = s2)ds3ds2ds1

=

∫ ∞
0

∫ s1

0

∫ ∞
0

fS1(s1)fS1(s2)fV |S(s3; s1)(1− SV |S(s1 + s3 − s2; s2))ds3ds2ds1

=

∫ ∞
0

∫ s1

0

∫ ∞
0

π01(s1)π01(s2) exp{−Π0(s1)−Π0(s2)}π12(s3; s1)

× exp{−Π12(s3; s1)}[1− exp{−Π12(s1 + s3 − s2; s2)}]ds3ds2ds1

and

P (S1 = T1, S2 < S1, S2 < T2 < T1)

=

∫ ∞
0

P (S1 = s1,∆1 = 0)P (S2 < T2 < s1)ds1

=

∫ ∞
0

∫ s1

0

P (S1 = s1,∆1 = 0)P (S2 = s2,∆2 = 1)

×P (V2 < s1 − s2|S2 = s2)ds2ds1

=

∫ ∞
0

∫ s1

0

fS2(s1)fS1(s2)(1− SV |S(s1 − s2))ds2ds1

=

∫ ∞
0

∫ s1

0

π02(s1)π01(s2) exp{−Π0(s1)− Π0(s2)}

×(1− exp {−Π12(s1 − s2; s2)})ds2ds1.

Substituting these terms into (A.1) and then into (3.11) produces the expression

given in (3.10).
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A.2 Additional Simulation Results

Tables A.1, A.2 and A.3 present the bias and standard deviation (SD)

of the estimators of Kendall’s τ in the realistic, unrealistic and non-Markov

scenarios, respectively.

Table A.1: Scenario A (realistic scenario): simulation results including the
Kendall’s τ , Bias, SD and MSE for each model.

Censoring cases

Model Summary 1 2 3 4

1 model-based method Bias 0.0003 0.0003 0.0004 0.0003
SD 0.0076 0.0083 0.0093 0.0097
MSE 0.00006 0.00007 0.00009 0.00010

2 IPCW estimator Bias -0.0013 -0.0011 -0.0030 -0.0059
SD 0.0092 0.0087 0.0101 0.0095
MSE 0.00009 0.00008 0.00011 0.00012

3 one-stage fully parametric model (Clayton) Bias 0.0024 0.0023 -0.0023 -0.0068
SD 0.0083 0.0084 0.0092 0.0098
MSE 0.00008 0.00008 0.00009 0.00014

4 one-stage fully parametric model (Hougaard) Bias -0.1197 -0.1158 -0.1663 -0.1617
SD 0.0140 0.0122 0.0158 0.0126
MSE 0.01452 0.01356 0.02792 0.02631

5 one-stage fully parametric model (Frank) Bias 0.0026 -0.0052 -0.0324 -0.0563
SD 0.0146 0.0075 0.0104 0.0099
MSE 0.00022 0.00008 0.00116 0.00327

6 two-stage semi-parametric model (Clayton) Bias 0.0015 -0.0004 -0.0082 -0.0110
SD 0.0089 0.0082 0.0107 0.0098
MSE 0.00008 0.00007 0.00018 0.00022

7 two-stage semi-parametric model (Hougaard) Bias -0.1408 -0.1411 -0.1956 -0.1932
SD 0.0136 0.0130 0.0163 0.0135
MSE 0.02001 0.02007 0.03854 0.03750

8 two-stage semi-parametric model (Frank) Bias -0.0301 -0.0330 -0.0551 -0.0696
SD 0.0108 0.0101 0.0124 0.0113
MSE 0.00102 0.00119 0.00319 0.00498

Setting: sample size in each simulation is 1000, 1000 simulations.
True Kendall’s τ : 0.8348.
Censoring case 1: 20% exponential distributed censoring
Censoring case 2: 20% uniform distributed censoring
Censoring case 3:45% exponential distributed censoring
Censoringcase 4: 45% uniform distributed censoring
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Table A.2: Scenario B (unrealistic scenario): simulation results including the
Kendall’s τ , Bias, SD and MSE for each model.

Censoring cases

Model Summary 1 2 3 4

1 model-based method Bias 0.0006 0.0004 0.0006 0.0009
SD 0.0166 0.0166 0.0174 0.0168
MSE 0.0003 0.0003 0.0003 0.0003

2 IPCW estimator Bias 0.0150 0.0116 0.0526 0.0483
SD 0.0222 0.0222 0.0253 0.0244
MSE 0.0007 0.0006 0.0034 0.0029

3 one-stage fully parametric model (Clayton) Bias -0.0457 -0.0486 -0.0073 -0.0018
SD 0.0203 0.0208 0.0373 0.0207
MSE 0.0025 0.0028 0.0014 0.0004

4 one-stage fully parametric model (Hougaard) Bias -0.0417 -0.0259 -0.0226 -0.0259
SD 0.0430 0.0304 0.0256 0.0242
MSE 0.0036 0.0025 0.0012 0.0013

5 one-stage fully parametric model (Frank) Bias -0.0296 -0.0352 -0.0084 -0.0952
SD 0.0472 0.0205 0.0231 0.0458
MSE 0.0031 0.0017 0.0006 0.0112

6 two-stage semi-parametric model (Clayton) Bias -0.0509 -0.0519 -0.0090 -0.0026
SD 0.0174 0.0181 0.0232 0.0250
MSE 0.0029 0.0030 0.0006 0.0006

7 two-stage semi-parametric model (Hougaard) Bias -0.0348 -0.0362 -0.0220 -0.0264
SD 0.0183 0.0193 0.0194 0.0196
MSE 0.0015 0.0017 0.0009 0.0011

8 two-stage semi-parametric model (Frank) Bias -0.0337 -0.0360 -0.0094 -0.0135
SD 0.0209 0.0196 0.0218 0.0209
MSE 0.0016 0.0017 0.0006 0.0006

Setting: sample size in each simulation is 1000, 1000.
True Kendall’s τ : 0.1201.
Censoring case 1: 20% exponential distributed censoring
Censoring case 2: 20% uniform distributed censoring
Censoring case 3: 45% exponential distributed censoring
Censoring case 4: 45%uniform distributed censoring
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Table A.3: Scenario C (non-Markov scenario ): simulation results including the
Kendall’s τ , Bias, SD and MSE for each model.

Censoring cases

Model Summary 1 2 3 4

1 model-based method Bias -0.0183 -0.0169 -0.0118 -0.0061
SD 0.0093 0.0093 0.0113 0.0106
MSE 0.00042 0.00037 0.00027 0.00015

2 IPCW estimator Bias 0.0011 0.0003 0.0047 0.0041
SD 0.0089 0.0087 0.0099 0.0096
MSE 0.00008 0.00008 0.00012 0.00011

3 one-stage fully parametric model (Clayton) Bias -0.0053 -0.0043 -0.0009 -0.0006
SD 0.0087 0.0090 0.0093 0.0099
MSE 0.00010 0.00010 0.00009 0.00010

4 one-stage fully parametric model (Hougaard) Bias -0.1312 -0.1246 -0.1598 -0.1687
SD 0.0106 0.0106 0.0129 0.0121
MSE 0.01731 0.01564 0.02572 0.02859

5 one-stage fully parametric model (Frank) Bias -0.0007 -0.0079 -0.0245 -0.0486
SD 0.0086 0.0076 0.0096 0.0096
MSE 0.00008 0.00012 0.00069 0.00245

6 two-stage semi-parametric model (Clayton) Bias -0.0094 -0.0085 -0.0089 -0.0035
SD 0.0101 0.0090 0.0115 0.0093
MSE 0.00019 0.00015 0.00021 0.00010

7 two-stage semi-parametric model (Hougaard) Bias -0.1279 -0.1313 -0.1748 -0.1794
SD 0.0133 0.0127 0.0151 0.0135
MSE 0.01653 0.01739 0.03078 0.03237

8 two-stage semi-parametric model (Frank) Bias -0.0266 -0.0295 -0.0435 -0.0584
SD 0.0099 0.0088 0.0112 0.0101
MSE 0.00080 0.00095 0.00202 0.00352

Setting: sample size in each simulation=1000, 1000 simulations.
True Kendall’s τ : 0.8155.
Censoring case 1: 20% exponential distributed censoring
Censoring case 2: 20% uniform distributed censoring
Censoring case 3: 45% exponential distributed censoring
Censoring case 4: 45% uniform distributed censoring
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Box plots of the estimators under exponentially distributed cen-

soring are shown.
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Figure A.1: The three-state illness death model under exponential censoring.
A: normal scenario, where the parameters are used from an external dataset
from a trial of treatments for colon cancer
B: unrealistic scenario
C: non-Markov scenario
sClayton:two stage semi parametric Clayton model; sHougaard: two stage semi
parametric Hougaard model; sFrank: two stage semi parametric Frank model
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Contour plots of the density function of the non-Markov sce-

nario

Generalized 
 model-based method

margin PFS

m
ar

gi
n 

O
S

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clayton

FPFS(PFSi)

F O
S
(O
S
i)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hougaard

FPFS(PFSi)

F O
S
(O
S
i)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frank

FPFS(PFSi)

F O
S
(O
S
i)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.2: Simulation scenario C (non-Markov case): contour plots for the bi-
variate density function based on the model-based method and the survivor
joint Clayton’s copula model, Hougaard’s copula model and Frank’s copula
model. Kendall’s τ is 0.815.
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Proportion of the lowest AIC of each full parametric and semi-

parametric copula model

Table A.4: The proportion of each full parametric copula regarding the lowest
AIC based on 1000 simulation for each scenario (20% uniform distributed
censoring).

AIC

Scenario parametric Clayton parametric Hougaard parametric Frank

A (20%) 91.6 0.0 8.4
B (20%) 99.8 0.0 0.2
C (20%) 79.9 0.0 20.1

Table A.5: The proportion of each semi-parametric copula model regarding the
lowest AIC based on 1000 simulation for each scenario (20 % uniform
distributed censoring).

AIC

Scenario semi-parametric Clayton semi-parametric Hougaard semi-parametric Frank

A (20%) 99.7 0.0 0.3
B (20%) 100.0 0.0 0.0
C (20%) 98.1 0.0 1.9
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A.3 Additional Application Results

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Progression-free Survival

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

non-parametric
model-based
Clayton
Hougaard
Frank

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cu
m

ul
at

iv
e 

ha
za

rd
 ra

te
 fu

nc
tio

n

non-parametric
model-based
Clayton
Hougaard
Frank

Figure A.3: Non-parametric cumulative hazard rate functions for both PFS and
OS and the cumulative hazard functions for both PFS and OS based on the
generalized model-based methods and the three copula approaches assuming
Weibull hazards.
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Table A.6: Estimate of the RP copula models and the se of each parameter
estimation

RP Clayton model RP Hougaard model RP Frank model

Model parameter estimates se estimates se estimates se

γPFS0 0.1675 0.2778 -1.5865 0.2215 -0.0765 0.2778
γPFS1 2.0621 0.1998 0.8622 0.1348 1.8935 0.1998
γPFS2 0.0405 0.0321 -0.1125 0.0303 0.0376 0.0321
γPFS3 0.0379 0.0335 0.1647 0.0348 0.0308 0.0335
γOS0 -1.6132 0.2064 -2.4361 0.1448 -1.6625 0.2064
γOS1 2.2008 0.2862 0.7460 0.1261 2.0947 0.2862
γOS2 -0.0202 0.0859 -0.2404 0.0615 0.0120 0.0859
γOS3 0.1797 0.1018 0.3403 0.0824 0.1209 0.1018
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A.4 Derivation of the log-likelihood function for the

model estimation based on the generalized multi-

state model

In Section 3.2.5 we consider an illness-death model characterised by tran-

sition intensities (based on Weibull distribution) given by

π01(t) = α01

( 1

λ01

)α01

tα01−1,

π02(t) = α02

( 1

λ02

)α02

tα02−1,

π12(s) = α12

( 1

λ12

)α12

sα12−1,

where t and s refer to time since randomization and to time since progression, re-

spectively. The estimation of the parameter vector θ = (α01, α02, α12, λ01, λ02, λ12)

for the illness-death model is estimated via maximum-likelihood.

In order to estimate the parameters, a log-likelihood function has to be con-

structed. Using the model estimation as in Li and Zhang,48 we first describe the

individual survival experiences by four possible different cases: Patients can (1)

progress and then censor, (2) progress and then die, (3) die before progression

or (4) get censored without experiencing progression and death. In terms of

failure times, every individual i ∈ {1, . . . , n}, ti1 represents the time from the

initial state to the state of progression or death, ti2 exists given progression and

describes the time from progression to death. The likelihood of the estimates

can be derived from the single likelihood L
(k)
i (θ), (k = 1, 2, 3, 4) for each experi-

ences of patient:

if case 1 occurs:

L
(1)
i (θ) = f1(ti1)S2(ti1)S3(ti2),

if case 2 occurs:

L
(2)
i (θ) = f1(ti1)S2(ti1)f3(ti2),
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if case 3 occurs:

L
(3)
i (θ) = S1(ti1)f2(ti1),

if case 4 occurs:

L
(3)
i (θ) = S1(ti1)S2(ti1),

where

f1(·) and S1(·): density and survival function for time-to-progression,

f2(·) and S2(·): density and survival function for time-to-death without progres-

sion,

f3(·) and S3(·): density and survival function for time-to-death given progres-

sion.

Then, the overall log-likelihood for all subjects is given by:

log(L(θ)) =
n∑
i=1

(d1)(1− d2)(1− d3)L
(1)
i (θ)

+ (d1)(1− d2)(d3)L
(2)
i (θ)

+ (1− d1)(d2)L
(3)
i (θ)

+ (1− d1)(1− d2)L
(4)
i (θ),

where d1 describes the censoring indicator for progression, d2 is the indicator for

death without progression, and d3 is the indicator for death given progression.

The censoring indicator is zero for censoring, otherwise 1.



APPENDIX B

Joint modelling of PFS and OS in a Bayesian framework

122



B.1 Estimation of weighted Kendall’s tau for 2-arm

trial

Monte-Carlo methods provide a particularly convenient way of evaluating

the model based Kendall’s τ . Here we denote PFS by S and OS by T . We can

use the fact that for a model where S and T are continuous,

τ =
1

4
{ 2P (S1c > S2c , T1c > T2c)− 2P (S1c < S2c , T1c > T2c)

+2P (S1t > S2t , T1t > T2t)− 2P (S1t < S2t , T1t > T2t)

+2P (S1c > S2t , T1c > T2t)− 2P (S1c < S2t , T1c > T2t)

+2P (S1t > S2c , T1t > T2c)− 2P (S1t < S2c , T1t > T2c)}

=
1

4
{ 2P (S1c > S2c , T1c > T2c) + {1− 2P (S1c > S2c , T1c > T2c)}

+2P (S1t > S2t , T1t > T2t) + {1− 2P (S1t > S2t , T1t > T2t)}

+2P (S1c > S2t , T1c > T2t) + {1− 2P (S1c > S2t , T1c > T2t)}

+2P (S1t > S2c , T1t > T2c) + {1− 2P (S1t > S2c , T1t > T2c)}}

= 4{P (S1c > S2c , T1c > T2c) + (P (S1t > S2t , T1t > T2t)

+ P (S1c > S2t , T1c > T2t)− P (S1t > S2c , T1t > T2c)} − 1. (B.1)

It is therefore only necessary to evaluate P (S1 > S2, T1 > T2) which can be

achieved by simulating 2M pairs of (Si, Ti) and then taking

P̂ (S1 > S2, T1 > T2) = M−1

M∑
i=1

I(Si > Si+M , Ti > Ti+M). (B.2)
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B.1.1 Estimation of standard error of the weighted Kendall’s

tau based on the multi state model

Simulation for general illness-death models can be achieved using the meth-

ods in Beyersmann et al.7 The Monte-Carlo standard error associated with the

approximation is at most 1/2
√
M. Typically, M = 1 × 106 or 1 × 107 samples

can be generated using very little computation time meaning the Monte-Carlo

standard error is negligible. A point estimate for 3.12 can be obtained by simu-

lating 2M independent pairs of PFS and OS times from the illness-death model

with parameter estimates θ̂ := (λ̂01, λ̂02, λ̂12, α̂01, α̂02, α̂12). The posterior sam-

ple for the parameters of the parametric illness-death model are estimated via

maximum likelihood within the Bayesian framework and then the mean of the

parameters of the posterior samples. A simulation based approach may also be

used to obtain confidence intervals for τmod using a variant of the simulation delta

method.51 This involves firstly generating B samples

θ∗1 . . .θ
∗
B ∼ N(θ̂, I(θ̂)−1),

where I(θ̂) is the observed Fisher information of the log-likelihood. For each

of the B samples, a pair of (S, T ) from the illness-death process with parame-

ters θ∗b are simulated 2M times. The next step is to estimate τmod denoted by

τ ∗bmod for every b ∈ [1, B] using (3.12). Confidence intervals can then be con-

structed based either upon the sample standard deviation or sample quantiles of

τ ∗1mod, . . . , τ
∗B
mod.A non-parametric bootstrap variant of this algorithm is also possi-

ble whereB bootstrap samples are generated by repeatedly resampling from the

original data and the maximum likelihood estimates are recomputed to generate

each θ∗b .



125

B.1.2 Additional Simulation Results

Table B.1: Simulation results for all 4 scenarios, low censoring

Scenario

Model Summary 1 2 3 4

max. follow-up time 10 10 10 10
true AHR 0.7542 0.8087 0.7419 0.4323

1 model-based method AHROS 0.7389 0.7960 0.7365 0.4233
SEAHR 0.0528 0.0568 0.0535 0.0313
BIASAHR -0.0153 -0.0127 -0.0054 -0.009

2 Clayton-copula based methods AHR 0.8373 0.9218 0.7666 0.4475
(non-proportional hazards assumption) SEAHR 0.0571 0.0629 0.0537 0.0341

BIASAHR 0.0831 0.1131 0.0247 0.0152

3 Clayton-copula based methods AHR 0.8392 0.9334 0.7880 0.4080
(proportional hazards assumption) SEAHR 0.0500 0.0559 0.0486 0.0274

BIASAHR 0.085 0.1247 0.0461 -0.0243

4 Gaussian-copula based approach AHR 0.7540 0.8110 0.7431 0.4371
SEAHR 0.0346 0.0369 0.0341 0.0239
BIASAHR -0.0002 0.0023 0.0012 0.0048

5 Cox Model HRCOX 0.7404 0.7971 0.7508 0.4059
SEHRCOX

0.0526 0.0566 0.0536 0.0300
BIASHRCOX

-0.0138 -0.0116 0.0089 -0.0264

Table B.2: Weighted Kendall’s tau for the model-based method and the two
versions of the Clayton copula method, high censoring

Scenario

Model Summary 1 2 3 4

max. follow-up time 7 5 6 7
true Kendall’s τ 0.5538 0.5447 0.5101 0.4228

1 model-based method Kendall’s τ 0.5514 0.5425 0.5090 0.4197
SEτ 0.0166 0.0170 0.0173 0.0178
BIASτ -0.0024 -0.0052 -0.0057 -0.0011

2 Clayton-copula based methods Kendall’s τ 0.5600 0.5573 0.5270 0.4251
(non-proportional hazards assumption) SEτ 0.0171 0.0172 0.0179 0.0199

BIASτ 0.0062 0.0126 0.0169 0.0023

3 Clayton-copula based methods Kendall’s τ 0.5596 0.5568 0.5267 0.4252
(proportional hazards assumption) SEτ 0.0170 0.0172 0.0179 0.0198

BIASτ 0.0058 0.0121 0.0166 0.0024
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Table B.3: Weighted Kendall’s tau for the model-based method and the two
versions of the Clayton copula method, low censoring

Scenario

Model Summary 1 2 3 4

max. follow-up time 10 10 10 10
true Kendall’s τ 0.5533 0.5457 0.5102 0.4224

1 model-based method Kendall’s τ 0.5515 0.5434 0.5092 0.4213
SEτ 0.0144 0.0145 0.0150 0.0152
BIASτ -0.0018 -0.0023 -0.001 -0.0011

2 Clayton-copula based methods Kendall’s τ 0.5359 0.5320 0.4802 0.3886
(non-proportional hazards assumption) SEτ 0.0160 0.0161 0.0173 0.0183

BIASτ -0.0174 -0.0137 -0.03 -0.0338

3 Clayton-copula based methods Kendall’s τ 0.5352 0.5311 0.4799 0.3882
(proportional hazards assumption) SEτ 0.0160 0.0161 0.0173 0.0182

BIASτ -0.0181 -0.0146 -0.0303 -0.0342
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C.1 Additional Simulation Results

Illustration of the hazard function and survival function and cu-

mulative hazard function of OS for scenarios 2-8

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hazard function, transition 01

time

H
az

ar
ds

control group

treat group

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hazard function, transition 02

time

H
az

ar
ds

control group

treat group

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hazard function, transition 12

time

H
az

ar
ds

control group

treat group

Figure C.1: Hazard functions for simulation scenario 2
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Figure C.2: Survival function of OS and cumulative hazard function for simula-
tion scenario 2
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Figure C.3: Hazard functions for simulation scenario 3
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Figure C.4: Survival function of OS and cumulative hazard function for simula-
tion scenario 3
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Figure C.5: Hazard functions for simulation scenario 4
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Figure C.6: Survival function of OS and cumulative hazard function for simula-
tion scenario 4
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Figure C.7: Hazard functions for simulation scenario 5
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Figure C.8: Survival function of OS and cumulative hazard function for simula-
tion scenario 5
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Figure C.9: Hazard functions for simulation scenario 6
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Figure C.10: Survival function of OS and cumulative hazard function for simu-
lation scenario 6
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Figure C.11: Hazard functions for simulation scenario 7
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Figure C.12: Survival function of OS and cumulative hazard function for simu-
lation scenario 7
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Table C.1: Results with the estimates of the AHR, SE and BIAS from each method: Results for all scenarios, low censoring

Scenario True HR

Model
maximum semi-Markov model-based Markov model-based Cox modelfollow-up method method

true scenario: treatment ef-
fect on transitions 0→ 1 and
1→ 2:
1. scenario 0.7050 12.5 0.7019 0.0366 -0.0031 0.7016 0.0367 -0.0034 0.6992 0.0498 -0.0058
4. scenario 0.7571 10 0.7635 0.0408 0.0064 0.7550 0.0405 -0.0021 0.7596 0.0541 0.0025
5. scenario 0.8200 16 0.8124 0.0436 -0.0076 0.8118 0.0416 -0.0082 0.8283 0.0588 0.0084
7. scenario 0.7359 14 0.7559 0.0355 0.0199 0.7546 0.0368 0.0187 0.7125 0.0506 -0.0235

true scenario: treatment ef-
fect on transition 0→ 1:
2. scenario 0.8138 13 0.8048 0.0264 -0.0090 0.8043 0.0266 -0.0095 0.8096 0.0573 -0.0042
6. scenario 0.8471 10 0.8062 0.0327 -0.0409 0.8091 0.0317 -0.0380 0.8298 0.0581 -0.0173
8. scenario 0.9482 13 0.9265 0.0173 -0.0217 1.0049 0.0100 0.0568 0.9150 0.0645 -0.0332

true scenario: treatment ef-
fect on transitions 0 → 1,
1→ 2 and 0→ 2:
3. scenario 0.7419 10 0.7417 0.0548 -0.0002 0.7415 0.0549 -0.0004 0.7514 0.0536 0.0096
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Investigation of performance of the model-based method for sce-

nario 1-7, when assumption about treatment effect is misspeci-

fied

Table C.2: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 1(maximum follow up= 6.7, true HR=0.7059)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A (true assumption) B C D

AHR 0.7062 0.8058 0.7071 0.6284
SEAHR 0.0422 0.0288 0.0583 0.0479
Power 100.0000 100.0000 99.5000 100.0000

Markov model-based method
with different treatment effect assumptionsResults

A (true assumption) B C D
AHR 0.7058 0.8049 0.7066 0.6278
SEAHR 0.0422 0.0289 0.0583 0.0481
Power 100.0000 100.0000 99.5000 100.0000
Results Cox Model
HRCOX 0.7058
SEHRCOX

0.0582
Power 98.8000
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Table C.3: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 2(maximum follow up=5, true HR= 0.8182)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.8180 0.8152 0.8196 0.7057
SEAHR 0.0485 0.0273 0.0678 0.0538
Power 94.1000 100.0000 74.0000 99.5000

Markov model-based method
with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.8176 0.8148 0.8192 0.7054
SEAHR 0.0486 0.0274 0.0677 0.0540
Power 94.0000 100.0000 74.0000 99.5000
Results Cox Model
HRCOX 0.8198
SEHRCOX

0.0673
Power 68.7000

Table C.4: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 3(maximum follow up=6, true HR= 0.7406)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A B C (true assumption) D

AHR 0.8520 0.9301 0.7416 0.7626
SEAHR 0.0513 0.0294 0.0607 0.0564
Power 79.5000 66.0000 97.1000 96.2000

Markov model-based method
with different treatment effect assumptionsResults

A B C (true assumption) D
AHR 0.8517 0.9298 0.7410 0.7621
SEAHR 0.0514 0.0295 0.0607 0.0567
Power 79.4000 65.6000 97.1000 96.2000
Results Cox Model
HRCOX 0.7447
SEHRCOX

0.0609
Power 95.2000
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Table C.5: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 4(maximum follow up=5, true HR=0.7541)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A (true assumption) B C D

AHR 0.7676 0.8025 0.7694 0.6780
SEAHR 0.0460 0.0285 0.0624 0.0509
Power 99.3000 100.0000 93.4000 100.0000

Markov model-based method
with different treatment effect assumptionsResults

A (true assumption) B C D
AHR 0.7587 0.8082 0.7605 0.6678
SEAHR 0.0459 0.0279 0.0619 0.0505
Power 99.5000 100.0000 93.4000 100.0000
Results Cox Model
HRCOX 0.7545
SEHRCOX

0.0610
Power 94.0000

Table C.6: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 5(maximum follow up=8, true HR= 0.81966)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A (true assumption) B C D

AHR 0.79695 0.93269 0.79854 0.73030
SEAHR 0.05056 0.01665 0.06815 0.05099
Power 96.40000 99.80000 79.60000 99.70000

Markov model-based method
with different treatment effect assumptionsResults

A (true assumption) B C D
AHR 0.79940 0.90444 0.80094 0.72962
SEAHR 0.04736 0.02158 0.06462 0.05013
Power 97.70000 100.00000 79.60000 99.70000
Results Cox Model
HRCOX 0.80621
SEHRCOX

0.06591
Power 75.30000
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Table C.7: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 6(maximum follow up=5, true HR=0.8503)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.8310 0.8232 0.8313 0.7809
SEAHR 0.0515 0.0335 0.0658 0.0588
Power 90.4000 100.0000 74.2000 95.8000

Markov model-based method
with different treatment effect assumptionsResults
A B (true assumption) C D

AHR 0.8250 0.8239 0.8254 0.7726
SEAHR 0.0523 0.0328 0.0669 0.0596
Power 91.9000 100.0000 75.5000 96.2000
Results Cox Model
HRCOX 0.8395
SEHRCOX

0.0666
Power 61.5000

Table C.8: assumption A: treatment effect on transitions 0→ 1 and 1→ 2;
assumption B: treatment effect on transition 0→ 1;
assumption C: independent treatment effect on all transitions;
assumption D: same treatment effect on all transitions.

Scenario 7(maximum follow up=12, true HR=0.7359)
Semi-Markov model-based method

with different treatment effect assumptionsResults
A(true assumption) B C D

AHR 0.7436 0.9360 0.7423 0.6869
SEAHR 0.0412 0.0169 0.0578 0.0398
Power 100.0000 100.0000 97.8000 100.0000

Markov model-based method
with different treatment effect assumptionsResults

A(true assumption) B C D
AHR 0.7409 1.0097 0.7399 0.7128
SEAHR 0.0437 0.0107 0.0594 0.0389
Power 100.0000 13.7000 97.8000 100.0000
Results Cox Model
HRCOX 0.7280
SEHRCOX

0.0597
Power 98.0000
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C.2 Additional Application Results

Table C.9: Results of the treatment effects for each transition in the illness-death
model. Cox regression model was used to model the treatment effects.

log(hazard ratio) hazard ratio se(log(hazard ratio)) p value
transition 0→ 1 -0.5125 0.5990 0.1187 1.57E-05
transition 0→ 2 -0.1069 0.8986 0.3802 0.7785
transition 1→ 2 0.3053 1.3570 0.1261 0.0155
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