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Abstract

Suppose you have a nonorientable Lagrangian surface L in a symplec-
tic 4-manifold. How far can you deform the symplectic form before the
smooth isotopy class of L contains no Lagrangians? I solve this ques-
tion for a particular Lagrangian Klein bottle. I also discuss some related
conjectures.

1 Introduction

Here are two overlapping questions:

Question 1.1 (Minimal nonorientable genus). Given a symplectic 4-manifold
(X,ω) and a Z/2-homology class β ∈ H2(X;Z/2), what is the minimal nonori-
entable genus of a nonorientable Lagrangian surface L ⊂ X with [L] = β?

Question 1.2 (Nonsqueezing). Given a symplectic 4-manifold (X,ω) and a
nonorientable Lagrangian surface L ⊂ X, how far can you deform ω in coho-
mology before there is no Lagrangian smoothly isotopic to L?

If L is orientable then these questions are less interesting: the genus is deter-
mined by [L]2 = −χ(L) and, in Question 1.2, it is necessary to deform ω subject
to the cohomological condition

∫
L

[ω] = 0. By contrast, if L is nonorientable,
we have H2(L;R) = 0, which means that it is possible to deform ω, keeping L
Lagrangian, in such a way that [ω] ranges over an open set in H2(X;R).

I will give some general discussion of these questions in turn, then give a concrete
example of a Lagrangian Klein bottle for which Question 1.2 can be answered
completely (Theorem 3.1).

One running theme throughout the discussion is the use of visible and trop-
ical Lagrangians in almost toric 4-manifolds: these provide a rich source of
Lagrangian submanifolds coming respectively from straight lines and tropical
curves in integral affine surfaces. I have found them useful for thinking about
some of the phenomena under discussion, and for formulating conjectures. Visi-
ble Lagrangians were introduced in Symington’s work [16]; tropical Lagrangians
were introduced independently by Mikhalkin [9] and Matessi [8].
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2 The minimal genus question

2.1 Review

Definition 2.1. Define the nonorientable genus of the nonorientable surface
#kRP2 to be k. Proposition 1.1 of [4] shows that any Z/2-homology class in
a symplectic 4-manifold can be represented by some embedded nonorientable
Lagrangian, so Question 1.1 has a well-defined answer, which I will denote1 by
N(X,ω, β).

Remark 2.2. Audin [1] showed that

P2(β) = χ(L) = 2− k mod 4,

where P2 denotes the Pontryagin square operation and χ is the Euler character-
istic. If you find a Lagrangian with nonorientable genus k then you can perform
a Hamiltonian finger move locally to introduce pairs of intersections with index
difference 1 and then perform Polterovich surgery [13] on these self-intersections
to get an embedded Lagrangian with nonorientable genus k + 4. This means
that the set of genera which can be realised is {N(X,ω, β), N(X,ω, β) + 4, . . .}.

Remark 2.3. The quantity N(X,ω, β) is known in a small range of cases, the
lower bound being the principal difficulty.

1. When X satisfies [ω] · c1(X) > 0, we know that N(X,ω, 0) = 6. This
follows from Givental’s construction [5] of a Lagrangian #6RP2 in the
4-ball and from the fact, proved by Shevchishin [14] that X contains no
nullhomologous Lagrangian Klein bottles (see also the beautiful papers by
Nemirovski [12, 11]).

2. Let Xa,b,c be the blow-up of the 4-ball in three subballs so that the sym-
plectic areas of the exceptional spheres E1, E2, E3 are a, b, c. Shevchishin
and Smirnov [15] show that E1 + E2 + E3 contains a Lagrangian RP2 if
and only if the following inequalities all hold

a < b+ c, b < c+ a, c < a+ b.

They call these the symplectic triangle inequalities. This gives the lower
bound N(Xa,b,c, ω, E1 + E2 + E3) ≥ 5 when a, b, c violate the triangle
inequalities.

1ŋ is the International Phonetic Alphabet symbol for the “ng” sound.
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Remark 2.4. After the fact, we see that there is a tropical or almost toric moti-
vation for the Shevchishin-Smirnov triangle inequalities. The almost toric base
diagram in Figure 1 depicts the blow-up Xa,b,c; the affine lengths a, b, c indi-
cated correspond to the sizes of the exceptional spheres E1, E2, E3. In red you
can see a tropical curve; using the ideas of Mikhalkin [9] and Matessi [8], we
can construct a Lagrangian submanifold L living over a (small thickening of a)
tropical curve. This tropical Lagrangian is diffeomorphic to RP2 if and only if
the inequalities all hold: the preimage of the point marked with cross-hairs is a
circle in L whose neighbourhood is a Möbius strip.
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Figure 1: Almost toric base diagrams forXa,b,c with a tropical curve in red. Left:
The symplectic triangle inequalities and the associated tropical Lagrangian is
diffeomorphic to RP2 (with the core circle of a cross-cap living over the point
marked by the cross-hair symbol). Right: The symplectic triangle inequalities
are violated and the associated tropical Lagrangian is diffeomorphic to a disc.

2.2 S2 × S2

Let X = S2 × S2. Modulo an overall scale factor, any symplectic form on X is
diffeomorphic to one from the family λp∗1σ+ p∗2σ, where p1, p2 : X → S2 are the
two projections and σ is an area form on S2. We know that N(X,ω, 0) = 6, which
leaves two interesting Z/2-homology classes up to diffeomorphism: β = [?×S2]
and the class ∆ of the diagonal. The Pontryagin squares are P2(β) = 0 and
P2(∆) = 2, so there is a chance to represent β by Lagrangian Klein bottles.

Lemma 2.5. If λ < 2 then β is represented by a Lagrangian Klein bottle.

Proof. The rectangle in Figure 2 is the toric moment polygon for the standard
Hamiltonian torus action on S2 × S2 with symplectic form ωλ. There is a
Lagrangian Klein bottle living over the line ` (slope 1/2) in the diagram. To see
this, consider the two S2 factors sitting inside R3 and let (pj , θj) be cylindrical
coordinates on the jth factor (j = 1, 2). These are action-angle coordinates, so
ω =

∑
dpj ∧ dθj . The line ` is given by 2p2 = p1 and the Lagrangian Klein
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Figure 2: A visible Lagrangian Klein bottle in (S2 × S2, ωλ) for λ < 2. The
cores of two cross-caps are indicated with cross-hairs.

bottle is cut out by this equation together with θ2 = −2θ1. This is certainly
Lagrangian for this symplectic form. To see that L is a Klein bottle, notice that
the regular level sets of p1 restricted to L are circles θ2 = −2θ1 in the (θ1, θ2)-
torus, which collapse 2-to-1 onto the circles of maxima and minima at p1 = ±λ
(as the torus collapses to the circle with coordinate θ2). The projections of these
circles are denoted with cross-hairs in Figure 2.

Remark 2.6. This L is a visible Lagrangian in the sense of Symington [16] as
well as being a tropical Lagrangian in the sense of Matessi [8] and Mikhalkin
[9]. This Klein bottle is well-known: it appears in [3] as a Hamiltonian minimal
Lagrangian, in [6] as a Hamiltonian suspension, and in [4] as a fibre connect-sum
of RP2s. It has minimal Maslov number 1 and has a monotone representative
in its Lagrangian isotopy class if λ = 1.

If λ ≥ 2 then the line ` does not fit into the rectangle. The following conjecture
seems natural; while I cannot prove it, it inspired Theorem 3.1 below.

Conjecture 2.7. There is no Lagrangian Klein bottle in the class β if λ ≥ 2.

It is interesting to consider what happens for large λ. We have essentially
no tools to prove lower bounds when the Lagrangians are of high genus and
may be Floer-theoretically obstructed. The most pessimistic conjecture is that
Lagrangians with high genus become flexible enough that:

Conjecture 2.8. limλ→∞ N(X,ωλ, β) <∞.

The following lemma gives an upper bound on N(X,ωλ, β), but it goes to infinity
with λ.

Lemma 2.9. We have N(X,ωλ, β) ≤ 20`+ 2 when λ < 10`+ 2.

Proof. If λ < 10` + 1 then there is a tropical Lagrangian in the class β with
nonorientable genus 20` + 2. We show the tropical curve for ` = 2 in Figure 3
below; for general ` we simply repeat the pattern between the vertical blue bars
as often as required to get from the left-hand side to the right-hand side of the
rectangle.

The edges of this tropical curve are:

4



⊗

⊗ ⊗

⊗ ⊗

pattern

⊗
⊗ ⊗

⊗ ⊗

Figure 3: A tropical curve giving a Lagrangian of genus 20`+2 in the case ` = 2.

• internal edges parallel to either (3, 1) or (2,−1),

• external edges parallel to (2,−1) or (1, 2).

The corresponding tropical Lagrangian intersects the horizontal spheres with
even multiplicity and the vertical spheres with odd multiplicity, so it inhabits
the class β. The vertices of the tropical curve are not smooth2: each has self-
intersection equal to 2. By [9, Theorem 3.2], this tropical curve therefore yields
an immersed Lagrangian with 8` double points and 2 + 4` cross-caps where
it hits the boundary (marked with cross-hairs in Figure 3). When we per-
form Polterovich surgery at the double points, we obtain a Lagrangian which
is topologically a surface of genus 8` with 4` + 2 cross-caps. This has Euler
characteristic 2−16`−4`−2 = −20`, so the nonorientable genus is 2 + 20`.

Remark 2.10. It seems harder to make the genus significantly smaller using
tropical Lagrangians, but there is no reason to believe that tropical Lagrangians
should give a sharp upper bound for N.

3 Nonsqueezing

3.1 Statement

For each connected open interval I ⊂ R (length |I|), let CI denote the cylinder
I × (R/2πZ) with coordinates (p, θ), equipped with the symplectic form 1

2πdp∧
dθ; this has total area |I|. Let S2 denote the 2-sphere equipped with its area
form σ satisfying

∫
S2 σ = 2.

Let UI = S2×CI . Note that UI is obtained from (S2×S2, ω|I|) by excising the
spheres S2×{n, s}, where n, s denote the poles of the second factor. Arguing as
in Lemma 2.5, we see that if |I| > 1, the only nontrivial class β ∈ H2(UI ;Z/2)
is represented by a Lagrangian Klein bottle (see Figure 4).

2At each vertex of a tropical curve, the outgoing edges v1, v2, v3 must sum to zero; if we
write m for the determinant |v1 ∧ v2| = |v2 ∧ v3| = |v3 ∧ v1| then the self-intersection of this
vertex is defined to be m−1

2
. Smoothness means all vertices have self-intersection zero.
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Figure 4: The visible Lagrangian Klein bottle in UI when |I| > 1.

Theorem 3.1. Suppose that |I| ≤ 1. If ι : K → UI is a Lagrangian embedding
of the Klein bottle in the class β then ι∗ : Q = H1(K;Q) → H1(UI ;Q) = Q is
the zero map.

Remark 3.2. The proof of Theorem 3.1 will occupy the rest of the paper. It
uses SFT and neck-stretching.

Remark 3.3. Note that if |I| > 1 then H1(L;Q)→ H1(UI ;Q) is an isomorphism
for the Lagrangian Klein bottle L coming from Lemma 2.5. To see this, take
either one of the circles living over the points marked with cross-hairs in Figure
4; this is a generator for both H1(L;Q) and H1(UI ;Q). We deduce:

Corollary 3.4. The Lagrangian Klein bottle in U(0,1+ε) from Lemma 2.5 cannot
be squeezed into U(0,1).

Remark 3.5. To reduce Conjecture 2.7 to this result, you would need to produce
a pair of symplectic spheres in the class [S2 × ?] which “link” your Lagrangian
Klein bottle in an appropriate way. Since this class has non-minimal symplectic
area, it is difficult to control the SFT limit of such spheres.

We now proceed to the proof of Theorem 3.1.

3.2 Mohnke’s almost complex structure

Pick a flat metric g on the Klein bottle. There is a contact form (the canoni-
cal 1-form) on the unit cotangent bundle M ⊂ T ∗K whose closed Reeb orbits
correspond to closed geodesics on K. We will not distinguish notationally be-
tween geodesics and the corresponding Reeb orbits and we will write −γ for the
geodesic obtained by reversing γ. There are two isolated simple geodesics γ0, γ1

which are the core circles for two disjoint embedded Möbius strips in K. Any
isolated geodesic is a multiple cover of one of these and all other geodesics oc-
cur in one-parameter families. We call the isolated geodesics odd and the other
geodesics even.

Theorem 3.6 (Mohnke [10, Section 2.1]). There exists an almost complex struc-
ture J− on the cotangent bundle T ∗K with the following properties:

1. J− is cylindrical at infinity and suitable for neck-stretching.
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2. For any geodesic γ there is a finite-energy J−-holomorphic cylinder fγ in
T ∗K asymptotic to γ and −γ.

3. [10, Lemma 7(2)] Any J−-holomorphic cylinder in T ∗K which intersects
the zero-section is one of these fγ for some closed geodesic γ.

Remark 3.7. If we let W := T ∗K denote the compactification of the cotangent
bundle obtained by gluing on its ideal contact boundary M then there is a well-
defined intersection pairing H2(W,M ;Z/2)⊗H2(W ;Z/2)→ Z/2. The cylinders
fγ define elements of H2(W,M ;Z/2) and we have [10, Lemma 7(3)]

fγ ·K =

{
1 if γ is odd
0 if γ is even.

Remark 3.8 ([10, Lemma 7(1)]). Note that there are also no finite energy planes
in T ∗K, nor in the symplectisation R×M , for any cylindrical almost complex
structure adapted to our chosen contact form. This is because there are no
contractible Reeb orbits, and a finite energy plane would provide a nullhomotopy
of its asymptote.

3.3 Neck-stretching

Let I = (0, 1) and Ī = [0, 1]. Suppose there is a Lagrangian Klein bottle
K ⊂ UI such that Q = H1(K;Q) → H1(UI ;Q) = Q is nonzero (in particular,
it is injective). Think of K sitting inside UĪ and make symplectic cuts to
UĪ at p = 0, 1 to obtain a Lagrangian Klein bottle K living in the manifold
X = S2 × S2 equipped with the product symplectic form giving the factors
areas 2 and 1 respectively. Crucially, the symplectic cut introduces symplectic
spheres S0 and S1 (at the p = 0, 1 cuts respectively) which are disjoint from K.

Pick a sequence of almost complex structures Jt, t ∈ R, on X with the following
properties:

• on a Weinstein neighbourhood of K, Jt coincides with Mohnke’s almost
complex structure J−;

• on a neck-stretching region (at, bt)×M around K, Jt is a neck-stretching
sequence;

• the spheres S0, S1 are Jt-holomorphic for all t ∈ R.

Pick a point k on K which does not lie on any of the cylinders fγ for an
odd geodesic γ. Let ut : S2 → X be a Jt-holomorphic curve representing the
class α = [? × S2] and such that ut(0) = k; there is a unique such ut up to
reparametrisation by a theorem of Gromov [7, 2.4.C], since α is a minimal area
sphere class in X.

By the SFT compactness theorem [2], there is a sequence ti such that uti con-
verges (after reparametrisations) to a holomorphic building with components
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in T ∗K (the completion of the Weinstein neighbourhood of K), components in
R×M (the completion of the neck) and components in X \K (the completion
of the complement of the Weinstein neighbourhood).

3.4 SFT limit analysis

The components v1, . . . , vn of the SFT limit building living in X \ K can be
compactified, yielding topological surfaces in X with boundary on K; we will
still denote these by v1, . . . , vn. The sum of the ω-areas of the vi (weighted by
multiplicities if the SFT limit involves a branched cover) equals the ω-area of
α, which is 1.

Lemma 3.9. There must be at least two planar components amongst the vi,
possibly geometrically indistinct (i.e. having the same image).

Proof. First note that the limit building intersects K because ut(0) = k ∈ K
for all t. It also necessarily has at least one component in X \K because T ∗K is
exact and so contains no closed holomorphic curves. A genus zero holomorphic
building with at least two levels must have two planar components (just for
topological reasons) though these could be geometrically indistinct. Any planar
components live in X \K.

Lemma 3.10. There are two components v0, v1 of the limit building such that
vi ·Sj = δij. These components are planar and there are no further components
of the limit building in X \K.

Proof. Since α intersects S0 and S1 there must be components of the limit
building which intersect S0 and S1. By positivity of intersections, either:

(A) there is one component v1 which hits both S0 and S1 once transversely
and all other components are disjoint from S0, S1.

(B) there are two components v0, v1 such that v0 intersects S0 once trans-
versely and is disjoint from S1 and vice versa for v1.

Moreover, each of these components occurs with multiplicity one in the SFT
limit in order to get the correct intersection numbers α · S0, α · S1.

If v2 is a component which does not intersect S0 or S1 then it defines a class in
H2(UI ,K;Z). By assumption, the kernel of the map Z ⊕ Z/2 = H1(K;Z) →
H1(UI ;Z) = Z is precisely the torsion part. Therefore the long exact sequence

· · · → H2(UI ;Z)→ H2(UI ,K;Z)→ H1(K;Z)→ H1(UI ;Z)→ · · ·

splits off a sequence

· · · → Z→ H2(UI ,K;Z)→ Z/2→ 0.
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This implies that the areas of classes in H2(UI ,K;Z) are half-integer multiples
of the area of the generator β ∈ H2(UI ;Z), which is 2. Therefore v2 has integer
area.

The area of α is 1, so the (weighted) sum of the ω areas of the vi equals 1. Since
v1 has positive area, v2 must have positive area strictly less than 1, but this is
not possible if v2 has integer area. Therefore there cannot be any component
v2 disjoint from S0 and S1.

By Lemma 3.9, there are at least two planar components (or one planar com-
ponent with multiplicity two) in the limit building. This is not compatible with
Case (A), so we must be in Case (B) and v0, v1 must additionally be planes.

Lemma 3.11. 1. All the remaining parts of the limit building are cylinders.

2. At least one of these cylinders lives in T ∗K and has the form fγ for an
odd geodesic γ.

3. There are no other cylindrical components of the SFT limit building in
T ∗K.

Proof. 1. If a component has three or more punctures then the limit building
must contain at least three planar components (counted with multiplicity)
but we have seen that all the planar components must live in X \ K
(Remark 3.8) and that there are precisely two such components (Lemma
3.10).

2. Since ut(0) = k for all t, the limit building contains a component in T ∗K,
which must be a cylinder of the form fγ by Theorem 3.6(3). At least one of
these cylindrical components must correspond to an odd geodesic because
α has odd intersection with K in H2(X;Z/2) and the intersection number
picks up contributions from each component of the building inside T ∗K,
which are nontrivial if and only if γ is odd (Remark 3.7).

3. If there are two or more cylindrical components in T ∗K then there must be
a further cylindrical component in R×M which connects the asymptotes
of two of these cylinders. Since this cylinder has no positive asymptote,
this cannot exist by the maximum principle.

Proof of Theorem 3.1. We chose k ∈ K not to lie on any of the cylinders fγ for
γ an odd geodesic, but we have showed that these are the only cylinders which
can arise as components of the SFT limit building. Since the SFT limit building
must pass through k, we get a contradiction.
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