
Department: xxxx
Editor: Name, xxxx@email

On the Introduction of
Automatic Program Repair in
Bloomberg

Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano, Rafal
Szalanski,
Bloomberg, London, UK & New York, USA

Vesna Nowack1, Emily Winter2, Steve Counsell3, David Bowes2, Tracy Hall2, Saemundur
Haraldsson4, John Woodward1

1Queen Mary, University of London, UK
2Lancaster University, UK
3Brunel University, London, UK
4University of Stirling, UK

Abstract—A key to the success of Automatic Program Repair techniques is how easily they can
be used in an industrial setting. In this article, we describe a collaboration by a team from four
UK-based universities with Bloomberg (London) in implementing automatic, high-quality fixes to
its code base. We explain the motivation for adopting APR, the mechanics of the prototype tool
that was built, and the practicalities of integrating APR into existing systems.

Introduction
As a way of assisting software engineers in
their daily routine of fixing bugs, Automatic
Program Repair (APR) is an area attracting in-
creasing interest and involvement from industry
[1], [2]. The benefits of the approach are clear.
Why impose time-consuming and costly repair
processes on software engineers when we can
do it automatically [3]? In this article, we de-
scribe an initiative at Bloomberg’s London offices
exploring the incorporation of APR technology

into its existing software development pipeline.
A prototype tool, “Fixie”, was developed and
used by software engineers at Bloomberg for
the past twelve months. The work represents
joint research between the organisation and four
UK-based universities, namely Lancaster, Brunel,
Stirling and Queen Mary University of London.
The university team have previously collaborated
with one of the leads at Bloomberg [4] through
a longstanding research programme at Brunel
on bug analyses; two of the academic authors

IEEE Software Published by the IEEE Computer Society © 2020 IEEE 1



are currently on secondment as contractors at
Bloomberg, helping to develop the APR tool and
its integration into software engineers’ workflow.
Bloomberg is a formal, industrial partner on the
research team and various project meetings have
taken place both in the past and on an ongoing
basis to facilitate the tool’s development and to
discuss progress and results.

Why Automatic Program Repair?
Over time, Bloomberg has observed a number of
small, similar-looking bugs that occur often and
yet always needed to be fixed manually in a simi-
lar way; this was taking up significant amounts of
software engineer time in a repetitive, bug-fixing
process. Bloomberg’s vision in the short-term was
not to provide a repair system for all of its bugs,
but to deliberately target a more realistic and
achievable set of small, repeatable bugs impacting
its business. Addressing only those bugs would
remove tedious and costly “grunt” work, free-up
software engineers for more creative tasks and
provide a catalogue of information which could
help future development and project estimation
processes.

The project faced a number of real-world
constraints prior to APR introduction. Firstly,
the initiative required management buy-in and
a convincing cost-benefit analysis was needed
by the Bloomberg APR team before the work
could proceed; human resource limits and budgets
were a key influencing factor. Secondly, software
engineers (the Fixie users) were sceptical of the
value of APR at the start and suspicious of
the technology; change of any type can cause
disruption, but asking software engineers to con-
sider modifying their coding practices presented
a problem. Thirdly, implementing APR required
a range of technical skills and knowledge in
transferring theory to practice and it took time and
significant effort to develop the Fixie architecture.
Finally, it was important that the APR approach
conformed to existing coding and development
standards at Bloomberg.

The Academic-Industry “Divide”
Generally speaking, adoption of APR by industry
is still low. In terms of current industry initiatives,
one prominent example is that of Facebook [5],
[6]. The company has built a tool dedicated to

the Facebook app called Getafix [1]. The tool
is deployed in the app and finds fixes for bugs
automatically; engineers then approve those fixes.
Facebook claims that its tool both improves code
quality and provides a more effective way of
working for its engineers. However, any collab-
oration between academia and industry raises
different perspectives and conflicting goals [7].
These were certainly brought to light in the case
of collaboration between Bloomberg and the four
universities involved in Fixie. These conflicts can
be seen through multiple prisms which we now
describe.

Fix Novelty
Academia often focuses on trying to find and
then apply novel techniques for repairing bugs
automatically which other academic-based APR
tools have not a) repaired, or b) found solutions
to before [8]. Put another way, academic APR
research tends to focus on looking at the problem
in a wider context and demonstrating that its
approach is somehow better than all that have
come before. Academia then sets about spending
time solving those problems, often on a small
subset of systems with limited transferable value.
Indeed, academic research outputs often include
statements suggesting that its approach finds fixes
which cannot be found by any current repair
techniques. While this aim is at the heart of what
many would think was the purpose of academic
research, Bloomberg is looking only for solutions
to frequent and known bugs that were taking
up inordinate amounts of its software engineers’
time. Academics are often more interested in the
novel aspects of research and finding the next
new solution; industry, on the other hand, is
more interested in the value they get from the
technique, irrespective of whether it is novel or
not.

Fix simplicity
Academia’s view of APR is that it should strive
to repair complex bugs automatically because this
increases the applicability of an APR tool and
demonstrates the wider viability of the approach
[9]. Academic research will often claim that the
work motivates new research for the improvement
of APR application to important and hard to solve
bugs. The reality in our case is that, counter-

2 IEEE Software



intuitively, this makes an APR tool less applicable
and less attractive to industry. On the other hand,
Bloomberg was only interested in building a tool
that could initially repair small, frequent and most
importantly “trivial” bugs. Small fixes are easier
to understand and explain to a software engineer
and a complex repair does more to confuse a
software engineer than to help, takes more time
to understand and prevents its reuse. In summary,
small and simple fixes were far more preferable
to Bloomberg than complex fixes. If a small fix is
populated throughout the system, it can save vast
amounts of software engineering time and money.
The smaller the repair, the better.

Fix verification
A commonly-held theme in academic research is
that automatic verification of fixes is preferable to
where there are elements of human intervention
in the process [10]. Automated fix assessment
is often stated as the objective of APR research.
One explanation is that maybe academics always
take a purist’s point of view: APR should be
an end-to-end automatic process and strive for
complete automation without human intervention.
However, while in many domains this may be
true, Bloomberg’s view was that full automation
was far from ideal. This stance conflicts with
much (although not all) academic research; the
view expressed in many studies is that to tackle
difficulty, potential bias and scale in manual fix
assessment, automated fix assessment is neces-
sary. Bloomberg introduced a stringent mech-
anism for accepting or rejecting automatically
generated fixes before they were applied. First, a
fix should pass all Continuous Integration checks
and then it should be verified and reviewed by at
least one software engineer as a second line of de-
fence. Research APR tools often discard the fixes
that did not pass the verification process [10].
On the other hand, if the verification process at
Bloomberg rejects a fix, it will remain recorded
and might be offered the next time that the same
or a similar bug is encountered.

Fix readability
Ideally, fixes that minimise differences between
the fixed program and the buggy program are
usually preferred. Fixes that are both simple and
readable should be a principle of APR. However,

within academic research, there is some debate
around this, with some research highlighting the
importance of fix readability [11] and other re-
search challenging the idea that understandability
is always an appropriate goal [12].

Bloomberg views the readability of a fix and
future-proofing of fixes as a fundamental and
crucial part of the overall repair process. It is
Bloomberg’s intention to develop templates for
families of repairs and produce an APR system
that is configurable; a key principle of that is to
develop small and simple fixes. The team has also
invested significant time in optimising the user
interface “experience”. A criticism often levelled
by software engineers at software tools is that
they lack usability - Bloomberg is also trying to
address that aspect of tool usage.

The APR architecture
The underlying technique used at Bloomberg is
called “Fixie”; its architecture is illustrated in
Figure 1.

Fixie has three different fix types which can be
input into the system:

• Off-the-shelf: These fixes are already provided
by third-party tools such as clang-tidy1; see
Figure 2a.

• Custom fixes: Software engineers can also
provide fixes which they can apply to other
code bases (see Figure 2b). Post-mortems of
software outages can identify these fix types.
Software engineer-provided fixes can include
Abstract Syntax Tree (AST) based fixes using
tools such as srcML2, Clang refactoring tools
and simple scripts.

• Fixes automatically learned from version con-
trol history: Although still in its infancy, this
type of fix has proved to be useful, especially
if driven by bugs found from static/dynamic
code analysis (see Figure 2c).

“Fixie-learn” is the component developed for
learning fixes and generating fix patterns automat-
ically from version control history linked to other
data sources such as bug/issue tracking systems
and CI/CD (Continuous Integration / Continuous
Deployment) systems. “Fixie-store” is the central

1clang.llvm.org/docs/RefactoringEngine.html
2www.srcml.org

Nov/Dec 2020 3



Figure 1: The Fixie architecture

part of the system and stores provided and learned
fixes. “Fixie-apply” offers fixes to software en-
gineers by creating pull requests (PRs). “Fixie-
analytics” measures software engineer responses
and acceptance of fixes provided by Fixie-apply.

The generation of fix patterns in Fixie-
learn is the Bloomberg implementation of the
GumTree [13] and anti-unification [14] algo-
rithms (also used by Facebook’s Getafix [1]).
Fixie-learn takes a code change (as a commit
from version control history) and finds the dif-
ferences between two ASTs (before and after the
code change). To generate a fix pattern, Fixie-
learn takes a pair of code changes (two com-
mits), anti-unifies them and extracts the richest
AST fix pattern that can reproduce both original
code changes. A fix pattern is composed of a
before pattern and an after pattern and it is
chosen as a fix candidate if the before pattern
matches a targeted part of code. The situation
requiring attention can be any chunk of code,
but is usually in the context of an error code
or lint warning, as opposed to a program crash;
this can significantly improve the outcome, by
filtering the fix patterns to only those learned
from such situations. Multiple fix candidates for

the same targeted code need to be ranked. Unlike
Getafix (where ranking is based on the relevance
of the fix patterns to the code changes they
were generated from), Fixie-learn ranks the fix
candidates according to their success in producing
a correct fix in the past. The fix generated from
the top fix pattern is then provided as a report to
software engineers who view one fix at a time,
each of which they can then either accept or
reject. In Bloomberg’s opinion, this is practical
from a user point of view. Six common bug types
were selected for Fixie-learn to learn fixes from
and, for each of them, 500 commits that served
as examples on how to fix them. Pairing these
commits to each other generated around 120k fix
patterns. After discarding invalid and duplicated
fix patterns and those with a low success rate in
the past, the remaining fix patterns produced 5-
20 unique fix candidates for the chosen bug types.
The deliberate strategy of only attempting to fix
well-known, recurring bugs that take up much of
software engineers’ time allowed the Fixie tool
to be integrated into development processes at
Bloomberg in a relatively unobtrusive way.

4 IEEE Software



(a) Two off-the-shelf fixes provided by clang-tidy. 1) The tool
detects local variables without an initial value and initialises
them to zero. 2) The tool suggests modernising the for
loop to exploit features in a new C++ standard. Software
engineers sometimes rejected this fix because the change was
incompatible with older compilers still in use.

(b) A custom fix example provided by software engineers. A
function whose return type is an enumeration was used as if
its return type was Boolean.

(c) Three fixes provided by Fixie-learn. 1) Dynamic exception
specifications have to be removed from the code when using
newer versions of C++. 2) Passing the value of an argument is
replaced by passing its reference. 3) A deprecated parameter
usage is removed.

Figure 2: Samples of code fixes at Bloomberg.
Those in green replaced lines of code marked red.

User feedback
There was initially some critical feedback

from software engineers using the tool. Some
responded negatively to suggested fixes that, for
them, came “out of the blue” and which were
perceived as either time-wasting or distracting.
Bloomberg’s approach was subsequently shifted
to a focus on goal alignment; in other words,
integrating Fixie into particular work streams
where its benefits would be much clearer. This
approach positioned Fixie as helpful rather than

intrusive and, most importantly, put the user in
control. In a recent migration of build systems in
Bloomberg, software engineers around the world
got a chance to verify and apply Fixie-suggested
code change instead of applying them manually.
This led to an acceptance rate of 48% (61/127)
and very positive feedback. The general opinion
now is that the tool is easy to use and helpful.
The tool has also helped software engineers with
ideas on how to re-engineer areas of code close to
the fix and for promoting a heightened awareness
of practices for preventing bugs arising in the first
place.

As an interesting side-effect, the language and
terminology for describing bugs and their fixes
have become more widely understood by software
engineers using the tool, aiding software engineer
inter-communication. Finally, the tool has freed
up time for software engineers to work on other
aspects of the code that they would not usually
have the time for, such as keeping code clean.

APR context and insights
The APR prototype had only minor impact on

project management (PM) style or effectiveness
at Bloomberg. There was some initial concern
about the risk of inserting bugs as part of the
APR process. However, software engineers were
re-assured by the unobtrusive assistance received
from the APR tool, which helped rather than
hindered PM. In the COVID-19 climate of work-
ing from home, software engineers saw the tool
as an important home “assistant” and similar to
working closely with another software engineer.
APR powered development ran seamlessly with
the Agile development strategy at the company.
Rather than conflicting with conventional soft-
ware engineering processes, it was integrated into
them without any problems.

Insights into systems at Bloomberg from APR
arise from three sources. Firstly, software engi-
neers seemed to develop a greater understanding
of how refactoring [15] could be applied as
part of the bug fix process, a practice that is
often overlooked due to time pressure. Secondly,
engineers started to suggest their own fixes to
common bugs, effectively extending the reach
of the APR tool; this was an unexpected side-
effect of the tool. Finally, because APR exposed
engineers to different styles of code in the bug fix,

Nov/Dec 2020 5



it became evident that engineers were becoming
more careful with, and reflective of, their own
coding nuances.

Future directions
For future directions, ideally, Bloomberg would
like to have several Fixie tools running in parallel.
Each would give differing levels of confidence in
the solutions offered. For example, one Fixie tool
might offer experimental solutions while another
tool might offer only well-accepted solutions. The
choice as to which to use would depend on the
level of risk acceptable at the time. Also, an
APR solution may hold the long-term promise
of learning about where and why outages arose,
a logging system to be established over time and
template solutions provided automatically when
outages arose. Finally, the APR tool at Bloomberg
is currently just a prototype that needs to be
developed further and fine-tuned.

Acknowledgments
The study was partly funded by the UK’s Engi-
neering and Physical Sciences Research Council
(grant number: EP/S005730/1).

REFERENCES
1. J. Bader, A. Scott, M. Pradel, and S. Chandra,

“Getafix: Learning to fix bugs automatically,” Proc.

ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019.

[Online]. Available: https://doi.org/10.1145/3360585

2. R. Bavishi, H. Yoshida, and M. Prasad, “Phoenix: auto-

mated data-driven synthesis of repairs for static analy-

sis violations,” in European Conference and Symposium

on the Foundations of Software Engineering, Tallinn,

Estonia, 2019. ACM, 2019, pp. 613–624.

3. W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Au-

tomatically finding patches using genetic programming,”

in International Conference on Software Engineering,

ICSE 2009, May 16-24, 2009, Vancouver, Canada, Pro-

ceedings. IEEE, 2009, pp. 364–374.

4. S. Kirbas, B. Caglayan, T. Hall, S. Counsell, D. Bowes,

A. Sen, and A. Bener, “The relationship between

evolutionary coupling and defects in large industrial

software,” J. Softw. Evol. Process., vol. 29, no. 4, 2017.

[Online]. Available: https://doi.org/10.1002/smr.1842

5. A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia,

K. Mao, A. Mols, and A. Scott, “Sapfix: automated end-

to-end repair at scale,” in International Conference on

Software Engineering, Montreal, Canada, 2019. IEEE

/ ACM, 2019, pp. 269–278.

6. D. Distefano, M. Fähndrich, F. Logozzo, and P. W.

O’Hearn, “Scaling static analyses at facebook,”

Commun. ACM, vol. 62, no. 8, pp. 62–70, 2019.

[Online]. Available: https://doi.org/10.1145/3338112

7. C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-

Cushon, and C. Jaspan, “Lessons from building

static analysis tools at google,” Commun. ACM,

vol. 61, no. 4, pp. 58–66, 2018. [Online]. Available:

https://doi.org/10.1145/3188720

8. M. White, M. Tufano, M. Martinez, M. Monperrus,

and D. Poshyvanyk, “Sorting and transforming program

repair ingredients via deep learning code similarities,”

2019 IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering (SANER),

Feb 2019. [Online]. Available: http://dx.doi.org/10.1109/

SANER.2019.8668043

9. M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun,

“Do automated program repair techniques repair hard

and important bugs?” Empirical Software Engineering,

pp. 1–47, 11 2017.

10. H. Ye, M. Martinez, and M. Monperrus, “Automated

patch assessment for program repair at scale,”

CoRR, vol. abs/1909.13694, 2019. [Online]. Available:

http://arxiv.org/abs/1909.13694

11. S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix:

Looking for simple program repairs,” in 37th IEEE/ACM

International Conference on Software Engineering,

ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,

A. Bertolino, G. Canfora, and S. G. Elbaum, Eds. IEEE

Computer Society, 2015, pp. 448–458.

12. M. Monperrus, “A critical review of ”automatic patch

generation learned from human-written patches”: Essay

on the problem statement and the evaluation of auto-

matic software repair,” in International Conference on

Software Engineering. New York, NY, USA: Associa-

tion for Computing Machinery, 2014, p. 234–242.

13. J. Falleri, F. Morandat, X. Blanc, M. Martinez, and

M. Monperrus, “Fine-grained and accurate source code

differencing,” in ACM/IEEE International Conference on

Automated Software Engineering, ASE ’14, Vasteras,

Sweden - September 15 - 19, 2014, 2014, pp. 313–

324. [Online]. Available: http://doi.acm.org/10.1145/

2642937.2642982

14. T. Kutsia, J. Levy, and M. Villaret, “Anti-unification for

unranked terms and hedges,” Journal of Automated

Reasoning, vol. 52, no. 2, pp. 155–190, 2014. [Online].

Available: https://doi.org/10.1007/s10817-013-9285-6

6 IEEE Software

https://doi.org/10.1145/3360585
https://doi.org/10.1002/smr.1842
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3188720
http://dx.doi.org/10.1109/SANER.2019.8668043
http://dx.doi.org/10.1109/SANER.2019.8668043
http://arxiv.org/abs/1909.13694
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1007/s10817-013-9285-6


15. M. Fowler, Refactoring: Improving the Design of Exist-

ing Code. Boston, MA, USA: Addison-Wesley, 1999.

Nov/Dec 2020 7


	Introduction
	Why Automatic Program Repair?
	The Academic-Industry ``Divide"
	Fix Novelty
	Fix simplicity
	Fix verification
	Fix readability

	The APR architecture
	User feedback
	APR context and insights
	Future directions
	REFERENCES

