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A Markovian Model for the Analysis of Age of
Information in IoT Networks
Qamar Abbas, Syed Ali Hassan, Haris Pervaiz and Qiang Ni

Abstract—Age of Information (AoI) is a critical metric in
status update systems as these systems require the fresh updates.
This paper investigates the uplink of an Internet-of-thing (IoT)
network where L nodes transmit their information packets to
a base station. The effects of the arrival rate of packets at the
nodes, the number of nodes in the system, and queue length of
each node have been studied by devising a discrete time Markov
chain (MC) model. This model helps in predicting the values
of AoI and probability of packet drops in such systems. The
notion of first-in first-out is used for queuing, which transmits the
oldest packet first, resulting in decreasing the overall AoI of the
system. The results show that AoI increases with the increase in
queue length, number of nodes and arrival rate and we quantify
the aforementioned metrics using the MC model.The results
found using the MC model are also validated using extensive
simulations.

Index Terms—Internet-of-thing, age of information, Markov
chain, arrival rate, queuing theory.

I. INTRODUCTION

W Ith the explosive growth of Internet-of-thing (IoT) sys-
tems, real-time status updates have become a crucial

and ubiquitous form of communication. Examples of such
status update systems include smart agriculture, smart traffic
control systems, smart homes and smart cities, etc. To quantify
the information freshness about these remote systems, age of
information (AoI) has been recently introduced [1]. AoI is
defined as the time elapsed since the generation of the latest
successfully received update about the source system. The
notion of AoI is different from throughput and delay because
system utilization can be maximized by allowing the nodes
to send the arrived packets as soon as possible [2]. However,
this may result in backlogging of the communication system.
Similarly, the delay can be reduced by decreasing the number
of updates, but this can result in obsolete packets because of
the lack of fresh updates.

The characterization of information freshness in also
paramount in wide range of applications. AoI has been studied
so far as a concept, performance metric and a tool [3]. In
real-time monitoring of IoT systems, AoI is crucial to be
considered as the stale information can degrade the system
performance in such systems. For example, in [4], AoI is
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critical in agricultural monitoring as the latest information
is needed for precision agriculture applications and hence
precision agriculture along with IoT can be used to enhance
productivity of agriculture crops by monitoring soil properties,
moisture level, meteorological behavior, etc [5]. Similarly, [6]
models the problem of real-time scheduling based on AoI
in wireless ad hoc networks by using a scheduling policy to
improve the AoI without sacrificing the feasibility optimality.
A simplified method to evaluate AoI based on stochastic
hybrid system using a finite-state Markov chain is formulated
for a multiple source network sharing a single server [7].
The authors proposed closed-form AoI expressions for simple
queue models and the results are compared for different
queuing systems. [8] uses deadlines to drop the outdated
packets in a downlink IoT network updating multiple nodes.
AoI is evaluated using a fixed and random deadlines and
the advantages of respective deadlines in different deadline
regimes is shown.

Although recent studies focus on minimizing the AoI,
however, the probability of packet drops in such systems is
also important to discuss. This letter provides a performance
analysis of an uplink IoT system with the help of Markov
chains where the number of nodes and the queue length in
each node is used to quantify both the AoI and the probability
of packet drops. Specifically, we assume a first-in first-out
(FIFO) queue model where each information packet carries a
distinct information such as in a multi-sensory scenario and
each information packet is critical to reach the receiver with
a minimum AoI. A related example is [9], which considers
FIFO queuing which stores all newly-arrived status packets
and gives higher priority to the older status packets whereas
the newly-arrived packets are preempt in the queue till the
transmission of all older packets. However, when the buffer
is full, the queuing policy still blocks the latest update until
the transmission of older packets. This leads to the growth
of overall age unlike our model which discards the oldest
information from head of the queue instead to tail dropping.
Similarly, [10] compares FIFO and M/G/1/1 queuing for
diverse class of source content and it is shown that for a
constant service rate and regular arrivals from a source, FIFO
policy outperforms other policies for a large interval of high
priority stream generation rate.

In this work, we use a discrete time BER/G/1/Q queuing
model where the arrivals occur at a time instant with proba-
bility λ following a Bernoulli distribution, and a queue length
Q as analyzed in [11] and compute the probability of packet
drops and AoI of the network using the state transition matrix
of Markov chain. The main contributions of this letter are
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outlined below.
• We model the AoI and probability of packet drops using

a discrete time Markov chain (MC) model and study
various attributes of network performance by analyzing
the state probability distribution.

• We quantify the effects of number of nodes, queue length
and arrival rate on AoI and packet drops using the
proposed analytical model.

II. SYSTEM MODEL

Consider the uplink of a wireless network consisting of
a base-station (BS) and L sensor nodes denoted by the set
L = {l1, ..., lL}, having a queue length, Q, each where each
node extracts real-time information from an environmental
source. Each node transmits information to the BS in the form
of packets, where the inter-arrival times are independent and
the size of all packets is considered the same. We consider a
BER/G/1/Q queuing model where the arrival process follows
a Bernoulli distribution with parameter λ and the processing
time at each node does not exceed one time slot.
When a packet arrives at the queue of a sensor, it waits in
the queue where each sensor has a queue length of Q. The
waiting time of ith node increases as L increases because
the total transmission time depends on the number of nodes.
Similarly, the waiting time increases as Q increases hence,
with the increase in L and Q, the information freshness
of each node is also compromised. We assume that every
packet is carrying unique information and when a node has
Q packets in its queue and another packets arrives, the oldest
packet is discarded from the queue to ensure the information
freshness. The discarded packets due to the queue overloading
are counted as packet drops. We now model the AoI and the
probability of packet drops, Pdrops, using a Markov chain,
which is described in the next section.

III. PROPOSED MARKOV MODEL

At a certain time n, the state of the system can be described
as the number of packets waiting for transmission in the
queues of each sensor and the decision metric for transmission
at the BS. Hence, the state of system at time n, represented
as X(n) is given as

X(n) = {S1(n),S2(n), ..,SL(n), D1(n),D2(n), ..,DL(n)},
(1)

where Si(n), i ∈ {1, 2, ...L} shows the number of packets
waiting in the queue of the ith sensor at time n and its value
is given as a Q-tuple indicator function, i.e.,

Si(n)=


0 if the node has no packets in queue
1 if the node has one packet in queue
...
Q if the node has Q (maximum) packets in queue.

(2)
Similarly the BS decision for the ith node is also a binary
indicator function such that for ith node and at time n,

Di(n) =

{
0 if the node is not transmitting
1 if the node is transmitting.

(3)

( (1/L

1/L1/L

Fig. 1: The state transition diagram of a single node for Q = 2, L = 2

Note that as only one node can transmit at one time, therefore
Di(n) = 1 implies

∑
∀n
f 6=i

Df (n) = 0, i.e., all other nodes are not

transmitting.
The next state of the system only depends on the current

state and the arrival probability, λ, on all nodes satisfying the
Markovian property. We now divert our attention on the state
transition of the ith node. The transition of the ith node to
state Si(n + 1) given that the current state is Si(n) depends
on Di(n) and λ. For instance, if the current state of ith node,
i.e., Si(n)=1 and Di(n)=1, the next state of the node will be
0 with a unit probability as the only packet in its queue is
transmitted. Similarly, if Si(n)=1 and Di(n)=0, the next state
of the node will be 2 with probability λ (packet arrives) or
Si(n+1) = 1 with probability 1−λ as shown in Fig. 1. When
a node is in Q state, the oldest packet will be replaced by the
new arrived packet. This implies that, when the current state
of a node is Q and an arrival occurs, the oldest packet will be
dropped until any packet is transmitted to change the current
state to any state having a value less than Q.

The next state of the ith node given that the node is in state
Si(n) at a time n is given as,

Si(n+ 1) =


Si(n) if Di(n) = 0 and no arrival
Si(n) + 1 if Di(n) = 0 and arrival
Si(n)− 1 if Di(n) = 1.

(4)

The total number of states for the Markov chain X given L
and Q is denoted as LS and is given as

LS = L× (Q+ 1)L. (5)

Suppose there are two nodes, i.e., L = 2 and queue length of
each sensor is 2 i.e., Q = 2. The BS allocates a time slot for
transmission to the two sensors randomly. The probability of
transmission in this case will be 1/2 whereas the total number
of transition states will be 18 according to (5). Suppose both
sensors have a single packet waiting in their queue, and the
first node gets a time slot for transmission. The current state
of the system will be X(n) = 1110, where the first two digits
indicate that both sensors have one packet in their queues and
the last two digits show the decision of the BS, respectively. If
the BS allows transmission to the first sensor, the next possible
states will be X(n+1) = 0110 or X(n+1) = 0101, given that
there is no arrival on both nodes. In this example, the state of
the first node becomes 0 as the waiting packet is transmitted
and there is no arrival on the first node in this slot. The second
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node is not transmitting, therefore, there is a probability of
arrival λ on the second node. The state of the second node
will be 2 if arrival occurs or the node will remain in state 1
otherwise. If there is an arrival on the second node, the next
possible states are X(n+2) = 0210 or X(n+2) = 0201 and
this process continues.

Considering the above discussions, let the first L digits of
the system state of X(n) are represented by the vector an
such that an ∈ Z+(1×L) where Z+ is the set of positive
integers including zero and the last L digits of the system
state are represented by the vector bn. The purpose is to
find the transition probability of the system from the state
X(n) = {an bn} to the state X(n+1) = {an+1 bn+1}, where
we need the values of α, β and γ, which are found using
Algorithm 1. In the algorithm, γ counts the number of nodes
having a full queue, whereas α denotes the number of nodes
having arrival at a time instant n. Moreover, β represents the
number of nodes that remain in the same state and have less
than Q packets in their queues.

Algorithm 1: Finding the parameters (α, β and γ) of
transition probability matrix

Input: X(n), X(n+ 1), L,Q
Output: α, β, γ
Initialize: α, β, γ=0 , c̃n(m)← 0, m = 1, . . . , L
Extract an & bn from X(n) where, the dimension of
an, bn is [1× L]
Find cn using cn= an − bn
index ← find(cn 6= an)
if an+1(index)==cn(index) then

for i = 1 to L do
if cn(i) == Q then

c̃n(i)← 0
γ ← γ + 1
else if cn(i) ≤ 0 then
c̃n(i)← 0

end
else

c̃n(i)← cn(i)
end

end
end
Find ∆ ∈ Z(1×L) using ∆= an+1-c̃n

for j = 1 to L do
if ∆(j) == 1 then

α← α+ 1
end

end
Find β = L− α− 1

end

For any pair of states X(n) and X(n + 1), the following
propositions are applied to calculate the transition probability
from X(n) to X(n+ 1):

Proposition 1. For the states X(n) and X(n + 1), when
any element of the vector ∆ does not belong to {0, 1},
P(X(n),X(n+1))|(D(n)) = 0.

Proposition 2. For the states X(n) and X(n + 1), when
all elements of the vector ∆ belong to {0,1}, the transition
probability is given as

P(X(n),X(n+1))|(D(n)) =
1

L

(
λα(1− λ)β−γ

)
. (6)

The transitions to and from all transient states are incorpo-
rated in a transition probability matrix, P, for which a single
entry is given by Proposition 1 or 2. Note that the matrix P is
sparse owing to the fact that many transitions are prohibited
given the state space of the system. After the formation of
stochastic matrix, using the property of MC, let v be the
eigenvector of P corresponding to the eigenvalue χ, then,

(P− χI)v = 0. (7)

The eigenvector v after normalization provides the state prob-
ability distribution of the system φ, which is further used to
calculate the AoI as described in the next section.

IV. AGE OF INFORMATION MODEL

Consider a packet, p, is generated at a node at time u(n),
then the age of that packet can be written as

ψp(n) = n− u(n), (8)

where n is the current time instant. AoI of a packet is incre-
mented by 1 at next time slot if the packet is not transmitted
while it becomes zero if it is transmitted. According to the
above discussion, AoI in the next slot of any packet which is
oldest packet in a node is written as

ψp(n+ 1) =

{
0 if Di(n+ 1) = 1

ψp(n) + 1 if Di(n+ 1) = 0
(9)

following the well known sawtooth pattern introduced in [1].
As the length of the vector Si(n) shows the number of

packets currently waiting in the queue of the ith node, we
can find the AoI of the ith node by summing the ages of all
packets currently waiting in its queue. Let the length of vector
Si(n) at time n be κ and ψp(n) be the AoI of the pth packet
in ith node then,

AoIi(n) =

κ∑
p=1

ψp(n). (10)

If the state of the ith node at time n is Si(n), then the AoI
at time n + 1 will be summation of AoI in the current time
slot, i.e., AoIi(n), and the state Si(n) with probability 1− λ
when Di(n+ 1) = 0. Similarly, when Di(n+ 1) = 0, the AoI
at time n + 1 will be summation of AoI in the current time
slot, i.e., AoIi(n), and the state Si(n)+1 with probability λ. If
Di(n+ 1) = 1, the AoI at time n+ 1 will be AoIi(n)-Si(n)
with unit probability. The AoI for ith node at BS at time n+1
can be expressed as,

AoIi(n+ 1) =


AoIi(n) + Si(n) if Di(n+ 1) = 0 and no arrival
AoIi(n) + Si(n) + 1 if Di(n+ 1) = 0 and arrival
AoIi(n)− Si(n) if Di(n+ 1) = 1

(11)
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Fig. 2: AoI and Pdrops trade-off for queue length, Q, and L = 3

TABLE I: Mean Absolute Error
λ L=3,Q=2 L=3,Q=3 L=4,Q=2 L=5,Q=2
0.1 0.034% 0.040% 0.020% 0.013%
0.3 0.025% 0.038% 0.017% 0.010%
0.5 0.021% 0.037% 0.016% 0.007%
0.7 0.017% 0.023% 0.015% 0.006%
0.9 0.013% 0.015 % 0.012% 0.004%

As per our assumption above, the BS schedules transmission
of each node unbiasedly and the arrival λ on each node is
kept same. Therefore, the AoI at each node will also be same.
When we find the AoI at any random node, we can also find
AoI of the entire system, AoI, at n+ 1 using (11) as

AoI(n+ 1) =

L∑
i=1

AoIi(n+ 1). (12)

Similarly, the probability of packet drops (Pdrops) on each
node will also be equal as it is a function of λ and the state
of a node. Pdrops at the ith node can be found using the state
distribution vector of the system φ. The probability of packet
drops on the ith node can be given as,

Pdrops =
(L− 1)λ

L
×

Ls∑
j=y

φ(j) (13)

where, y = (Q(Ls

L + 1) + 1)/(Q+ 1).
Note that the AoI derived in (11) and (12) does not

include transmission impairments where it is assumed that
each transmitted packet reaches the BS with unit success
probability. However, for a more realistic receiver model, we
consider a Rayleigh fading channel between a node and the
BS, where the outage probability at a given SNR threshold, Γ,
is given as, Pout = 1− e−Γ(Pt/σ

2), where, Pt is the transmit
power of a node and σ2 is noise power spectral density.
Therefore, the effective AoI with fading can be found as,
AoIeff = AoI/(1− Pout). It can be seen that as the outage
event of a packet increases, the effective AoI also increases.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

This section discusses the performance of the network in
terms of AoI and probability of packet drops for different
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Fig. 3: The state probability distribution of the system for L = 3, Q = 3 and
λ = 0.7

queue lengths and the arrival rates on each node. The results
are found analytically using Markov chain and compared with
the simulation results.

In Fig. 3, the state probability distribution is shown for
L = 3, Q = 3 and λ = 0.5 using the proposed MC model.
The horizontal axis shows the states of the system which has
27 length for the given combination of L and Q calculated
using Eq. (5) and vertical axis shows the probability of all
states. The hollow bars show the probability distribution using
the MC model while the filled bars are numerical simulation
results. It can be seen that the proposed analytical model has a
close agreement with simulations, thereby validating the MC
model. As the arrival rate is 0.5, therefore, the graph is not
skewed on either side. If λ > 0.5, the graph shifts to right side
because the probability of states representing larger number
of packets in the queue increases and vice versa. The mean
absolute error between the analytical and simulation results is
computed in Table I for various values of L, Q and λ and it
can be seen that the proposed model is valid for a variety of
parameter combinations.

Fig. 2 shows the trade-off between AoI and probability
of packet drops. The y-axis on left side of the graph shows
the probability of packet drops, while the y-axis on the right
side denotes AoI without transmission errors. It can be seen
that an increase in the queue length increases the AoI while
it decreases the probability of packet drops. The results are
shown for arrival rates of 0.3 and 0.7 and also validated using
simulation results. For a given L, the AoI increases with an
increase in Q because with an increase in the queue length, the
stale information packets will reside in the queue for longer
times instead of dropping with queue overloading in smaller
queue lengths. Similarly, for a constant queue length, when
L increases, the AoI also increases because with an increase
in L, the transmission probability of a node decreases. An
increase in Q, decreases the packet drops because there will
be more space for the packets in the queue. The result also
depicts that the packet drops decrease with an increase in
queue length for a given number of nodes.



5

1 6 11 16 21 26 31 36 41 46 50

Time steps

0

0.5

1

1.5

2

2.5
A

g
e

 o
f 

In
fo

rm
a

ti
o

n

No outage event

=-10dB

=-5.2dB

L=3, Q=2

L=2, Q=3

L=2, Q=2

L=3, Q=3
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In Fig. 4, the evolution of AoI with the time steps is shown
for different number of nodes and different queue lengths for
λ = 0.5. For each L and Q pair, the results are compared
for different SNR thresholds i.e., no outage, Γ = −10dB and
Γ = −5.2dB for operating SNR of 0 dB. It can be seen that
initially, with the increase in the number of steps, the AoI
increases however, it becomes constant after a steady state
is reached. The result also indicates that AoI increases with
increment in queue length and number of nodes. Furthermore,
with the increase in Γ, the outage probability increases which
results in increasing the AoI. It can also be noticed that
when the number of nodes and/or queue length increases,
the number of states increases therefore, the steady state is
attained after large time steps.

Similarly, Fig. 5 shows the evolution of AoI with the
number of time steps for different arrival rates. The results
are simulated for L = 3 and Q = 3 for different arrivals
and outage values at 0 dB SNR. The results indicate that AoI
increases with the arrival rate because when the arrival rate
increases, the number of packets in the queue becomes large.
Likewise, when Γ is increased, the outage probability is also
increased incrementing the AoI. It can also be seen that a
larger arrival rate also results in obtaining the steady state
earlier as compared to lower values of arrival rate.

VI. CONCLUSION

This letter investigated the effects of the arrival rate of
packets, queue length, and the number of nodes in an uplink
IoT system on the AoI and probability of packet drops using
a MC model. The accuracy of the approach is evaluated using
mean absolute error between the probability distribution of the
proposed MC and simulation results. The results showed that
the probability state distribution, AoI and probability of packet
drops are function of arrival rate, queue length and number of
nodes in the system. Further investigations to the current work
include incorporating different queuing models in the study
such as last-in first-out (LIFO) where the service/processing
time of a packet may have a longer duration than a single time
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slot. Similarly, the optimization of queue length to achieve a
desired AoI under an outage probability constraint is another
future direction to this work.
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