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Abstract Periocular recognition leverage from larger feature region and lesser
user cooperation, when compared against the traditional iris recognition. More-
over, in the current scenario of Covid-19, where majority of people cover their
faces with masks, potential of recognizing faces gets reduced by a large extent,
calling for wide applicability of periocular recognition. In view of these facts,
this paper targets towards enhanced representation of near-infrared periocular
images, by combined use of hand-crafted and deep features. The hand-crafted
features are extracted through partitioning of periocular image followed by ob-
taining the local statistical properties pertaining to each partition. Whereas,
deep features are extracted through the popular convolutional neural network
(CNN) ResNet-101 model. The extensive set of experiments performed with
a benchmark periocular database validates the promising performance of the
proposed method. Additionally, investigation of cross-spectral matching frame-
work and comparison with state-of-the-art, reveal that combination of both
types of features employed could prove to be extremely effective.
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1 Introduction

Biometrics has been solving the personal authentication and identification
tasks for long now. Among all the popular physiological biometric traits, peri-
ocular region has emerged as a potential trait [5]. The primary reason behind
its increasing popularity is its ability to facilitate recognition at-a-distance and
its viability to work with partially covered faces [33]. Both these attributes
make periocular recognition a potential biometric contender, especially for
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public applications like surveillance. Moreover, in the recent times of pan-
demic, when roaming around with uncovered faces could lead to high health
risks, the need of a better periocular recognition system becomes even greater.

Periocular region being in the vicinity of the eye, comprises of several
unique structures, like eyelid, eye shape and skin texture [13,19]. These unique
inclusions make the periocular region potential biometrics, which offers a
trade-off between using the entire facial region or the iris [20,21]. Owing to var-
ious advantages like less user-cooperation, no need of controlled lighting setup,
periocular recognition has been researched heavily by the research community.

The periocular region is set to find profound utility in view of the recent
distension of the Covid-19 pandemic. The natural reason behind this is the
prevalent mandate of wearing face coverings like masks. The large-scaled use
of face-masks has certainly raised questions on the utility of facial recognition,
as majority of the discerning regions of face gets covered behind the masks.
In view of this, periocular recognition can provide a subtle solution to iden-
tify the human beings. Therefore, the real-world applicability of the proposed
periocular recognition approach stands high. Furthermore, the conjunction of
hand-crafted and deep features paves a new way for enhanced and distinc-
tive representation of the pericoular images. Harnessing the detailed (through
deep learning model) and textural (through hand-crafted descriptor) infor-
mation of the periocular images facilitates the outstanding behaviour of the
proposed method.

2 Related work

Numerous researchers have worked in the emerging field of periocular recogni-
tion in the last decade. Hollingsworth et al. [14] carried out an intensive study
to identify the important features of the periocular region from near infrared
(NIR) and visible wavelength (VW) spectrum, based on the interpretations of
human and machine. Bhardwaj et al. [8] studied the use of periocular recogni-
tion in a scenario when iris recognition fails, by discussing a global descriptor
along with the effects of capturing distances. Mahalingam and Ricanek [18]
used local binary pattern (LBP) for periocular recognition from facial images.
Smereka and Kumar [32] explored the good periocular regions by extracting
features through probabilistic deformation models and m-SIFT approaches.
Raja et al. [23] adopted three popular descriptors, namely SIFT, SURF and
BSIF, for accomplishing periocular recognition on smartphone devices.

In another work, Raja et al. [25] investigated binarized statistical features
(BSIF) for combined iris and periocular recognition. Proenca and Briceno [21]
proposed a modified elastic graph matching (EGM) approach which was made
more globally coherent by avoiding sudden angular changes and modelling
non-linear distortions more faithfully. Santos et al. [27] studied about the
cross-sensor recognition for combined iris and periocular recognition, where
periocular features were extracted through LBP and histogram of gradient
(HoG). Gangwar and Joshi [10] implemented a robust periocular recognition
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system via score-level fusion of local phase quantization (LPQ) and Gabor
wavelet descriptors.

Sharma et al. [31] conducted investigations on cross-spectral periocular
recognition by jointly training a neural network. Uzair et al. [33] investi-
gated the potential of periocular recognition from RGB and NIR videos, along
with hyperspectral image cubes, where PCA (principal component analy-
sis) and LBP assisted features were processed through two-stage fusion to
achieve improved results. Behera et al. [6] proposed an illumination normal-
ization based cross-spectral periocular matching scheme, where features were
extracted through HoG. Additional details about some other existing perioc-
ular recognition approaches and related databases may be found in [5,4].

Aginako et al. [1] completed an exhaustive study on extracting iris and
periocular features through popular local descriptors like LBP, variants of LBP,
LPQ, and Weber local descriptor (WLD). Ahmed et al. [2] explored the fusion
of iris and periocular scores for mobile database, where periocular features were
extracted via LBP. Kumar et al. [15] proposed non-overlapped interpolated
LBP (iLBP) for periocular recognition, where histogram from non-overlapping
sub-regions of the iLBP image were utilized as potential features.

The excessive use of LBP in the state-of-the-art for periocular recognition
limits the full potential of periocular features. It remains sensitive to the noise
due to its binary nature. Besides, it does not consider the effect of center
pixel of a local patch because it only comprises of the difference of the neigh-
boring pixels with the center pixel. Concurrently, other variants of LBP do
have some or the other limitations in terms of their neighborhood or calcu-
lation of the individual bins. Other common descriptors like HoG and LPQ
have high sensitivity to factors like rotation and blur, respectively. In order to
overcome these limitations, the proposed approach utilizes a different hand-
crafted descriptor which analyse the input images in a multi-resolution and
multi-orientation manner. This procedure of the proposed descriptor enriches
the extracted feature set and enhances the overall differentiability.

There have been various attempts from the researchers to examine the per-
formance of deep features in the domain of periocular recognition. Raja et al.
[24] proposed deep sparse filtering for smartphone-based periocular recogni-
tion, attributing to easy learning of the sparse filters via only one parameter
which is the number of features. Zhang et al. [35] utilized a convolutional neural
network (CNN) with ‘maxout’ layer and concatenation of iris and periocular
features through the deep learning model itself. Luz et al. [17] explored the
deep representation of periocular regions for the application of video surveil-
lance, where VGG deep CNN was employed with transfer learning. Alahmadi
et al. [3] effectively utilized the sparsity present in the activations of convolu-
tional layers of CNN models and employs a sparsity augmented collaborative
representation and classification.

Hernandez-Diaz et al. [12] evaluated multiple pre-trained CNNs in the
problem of periocular recognition and claimed that ResNet101 yields superior
results. Zhao and Kumar [36] proposed a improved periocular recognition ap-
proach where explicit attention was used to emphasize the important regions
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of the periocular image. Raja et al. [22] adopted a collaborative representation
of smartphone-based periocular images using deep sparse features and deep
sparse time frequency features.

In view of the above literature survey, it can be strongly inferred that
there has not been any attempt from the research fraternity to investigate the
fusion of traditional hand-crafted features and contemporary deep features for
the problem of periocular recognition. Despite the outstanding performances
of deep features for biometrics applications, there has always been a pressing
need of improving their recognition rates and incorporating the interpretability
measures. We believe that inclusion of hand-crafted features could cater to
both these needs in an effective manner. The same has been reflected through
the outcomes of current work.

This paper investigates the combination of hand-crafted and deep features
for the problem of periocular recognition, especially for the near-infrared ac-
quisition framework. For extracting the hand-crafted features, an effective ap-
proach based on partitioning of Gabor-filtered images and calculation of local
statistical measures, is adopted. Whereas, for the extraction of deep features,
a deep convolutional neural network, named ResNet, is employed. Further-
more, individual and collaborative performances for both the NIR and VW
acquisition frameworks are reported in the form of popular metrics and curves.

The rest of the paper is organized in the following manner. Section 2 details
about the related work and Section 3 explains the preliminaries for both the
hand-crafted and deep features. The details pertaining to the experiments
conducted are presented in Section 4 and the paper is concluded in Section 5.

3 Methodology

The proposed approach leverage from the benefits of both the hand-crafted and
deep feature descriptors. On one hand, hand-crafted features (HCF) enable us
to understand the behavior of the multiscale and multi-orientation features
of the periocular image, avoiding hyper-parameter tuning at the same time.
On the other hand, deep features (DF) aid to the recognition accuracy by
virtue of their distinctive representation. Figure 1 demonstrates the overall
block diagram of the proposed collaborative approach. Each of the individual
blocks is explained in subsequent subsections.

3.1 Hand-crafted features

There has been a great thrust in the research community for devising novel
hand-crafted feature descriptors for biometric recognition. The advantage with
hand-crafted descriptors is that one does not need to finetune a massive set
of hyper parameters for them, as is usually desired for deep learning-based
descriptors. Moreover, the hand-crafted descriptors are developed by using
traditional, yet effective image representation means which have got the long-
lasting support of established image processing techniques.
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Fig. 1 Overall block diagram of the proposed approach

In this paper, the hand-crafted features (HCF) of the periocular images
are captured through extracting the local statistical properties of the image
at different levels of partitions. This work is inspired by our earlier work on
iris recognition [34], where the said descriptor performed well for iris images
from NIR as well as VW illuminations. In current work, the periocular images
are first resized to one fifth of their original sizes and then partitioned at
two different levels by having equal number of partitions at both the levels.
The resizing is done to speed up the feature extraction process. Whereas,
the equal number of partitions are chosen in order to attain uniform vertical
and horizontal resolutions in all the sub-images occurring at the same level
of partitioning. It is because of these partitions, that the statistical measures
(like mean and variance) exhibit the amount of texture variations occurring
at the local level.

Another important aspect of the employed descriptor is the execution of
image filtering via a 2D Gabor filter bank, which tends to highlight the multi-
faceted textural and spatial information present in the periocular image. The
filter bank is designed to have varying scales and frequencies, which would aid
the comprehensive representation of input image. The mathematical form of
2D Gabor filter bank can be expressed as:

G (p, q) = g (u, v, εp, ρp, αq) (1)

where, p and q are known as the filter identifiers and stand responsible
for selecting specified values of (ε, ρ) and α, respectively. Whereas, detailed
expression for individual filters would be as follows:

g (u, v, εp, ρp, αq) =
1√
2πε2p

exp

(
−u

2 + v2

ε2p

)
exp (2πiρp (u cosαq + v sinαq))

(2)
with εp = 1.9863×

√
2p, ρp = 0.2592

/√
2p and αq = qπ/4 being the scale,

frequency and orientation of the Gabor filter, respectively. With these huge
variations in the Gabor parameters, the filter bank becomes able to reveal the
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prominent texture of the periocular image, which can further be apprehended
through mean and standard deviation of each sub-region of the image. The
filtered images of one sample periocular image are shown in Fig. 2.
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Fig. 2 Filter responses for the 2D Gabor filter bank

Thereafter, the absolute difference of standard deviations pertaining to a
first-level sub-block and the second-level sub-blocks underneath it, form the
feature vector. Subsequently, the hereof formed feature vector for each individ-
ual filter from the filter bank is concatenated side by side to obtain the overall
feature template pertaining to one image. Finally, the feature templates of
query and gallery images are matched through city-block distance metric, to
yield matching scores. The detailed information about the matching scores are
presented in Section 4.
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3.2 Deep features

Unlike the hand-crafted features, deep features (DF) are obtained through con-
volutional neural networks (CNNs), which demand high computational power
for training and subsequent feature extraction. However, the CNNs are capa-
ble of obtaining more distinctive features of the images, attributing to their
in-depth layered structures and convolutions occurring at intermittent lay-
ers. Besides, the increased computational powers of personal computers (PCs)
nowadays has provided a boost to implementation of CNNs with reasonable
training times.

Hence, this paper considers a popular CNN, called residual neural net-
work (ResNet) [11], for extracting deep features of the periocular images. This
model is selected for its outstanding performance in complex problems like
image classification, object detection and face recognition. The core idea of
ResNet was to introduce skipping identity connections for one or more layers,
thus making the training of deeper networks free from accuracy degradation
problem. Moreover, ResNet has fast convergence and astonishing classification
accuracy, which motivated us to adopt this model for the problem of periocular
recognition.

In the current work, all the experiments for deep features are conducted
through ResNet-101 model. This model is chosen as a trade-off between depth
and training time of the model. The ResNet-101 model, pretrained on millions
of images from the ImageNet database [9], is utilized for the current task.
The pretrained model is modified to have the classification layer as per the
requirement of number of classes. Thereafter, weights of the initial layers of
the network are frozen by setting their learning rates to zero. This is usually
done to avoid overfitting in case of retraining of the CNN models on small
datasets. The model is then retrained with 60% of the periocular samples to
achieve distinctive representation of their features. Notably, the deep features
of the periocular samples are obtained from the “global average pooling” layer
of ResNet-101 model. The matching between query and gallery feature vectors
is performed through city-block distance metric, in order to have uniform score
ranges and distributions. Other details about the training options and used
hardware resources are provided in Section 4.

3.3 Matching scores

The features obtained from hand-crafted and deep feature extractors are com-
pared through the city-block or Manhattan distance [7]. This distance function
is also known as 1-norm distance between two feature vectors. It yields smaller
values for similar vectors and larger values for dissimilar vectors. The math-
ematical definition of the city-block distance for N-dimensional query (FVQ)
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and gallery (FVG) feature vectors is given in eq. (3).

DQ,G =
∑
N

|FVQ − FVG| (3)

3.4 Score-level fusion

This is a fusion scheme where scores from different classifiers are combined
to furnish the final decision [26,16]. The score-level fusion is viable to achieve
without having knowledge of underlying feature extraction procedures. This is
the reason score-level fusion is generally preferred over other types of fusion,
like feature-level or decision-level fusions. The score-level fusion can take place
in two different ways. In the first way, the scores from different approaches
are combined through the popular fusion schemes like maximum, minimum,
average, and geometric mean. Whereas in the second way, a separate second-
level classifier is trained on the concatenations of individual scores, leading
to a more effective set of scores. Among both the ways, the former is said to
be more versed as it does not need the additional training which is otherwise
needed in the latter way. Hence, this paper utilizes the combination approach
of score-level fusion, where “average” rule of fusion is adopted for all the ex-
perimentation. This essentially means that a new set of genuine and imposter
scores are obtained by taking the average (or mean) of the individual gen-
uine and imposter scores from the corresponding frameworks of hand-crafted
and deep features. Since, scores in both the employed features are calculated
through city-block distance, they have similar ranges and distributions. This
excludes the need of executing any score normalization procedures.

4 Experimental results

In order to evaluate the performances of HCF and DF, a capacious set of exper-
iments were conducted on the benchmark CrossEyed Periocular database [29,
30], which constitutes of registered periocular images acquired from the near
infrared (NIR) and visible wavelength (VW) illuminations, respectively. This
database is highly suitable for periocular experiments as the images within this
database have the iris regions masked, so that any evaluation would solely re-
flect the potential of periocular features. Regarding the size of the database,
this database consists of periocular images from 120 subjects at the sample
rate of 8 samples per subject. In addition to that, the database provides sam-
ples from both the left and right periocular regions for all 120 subjects. Hence,
there are 960 images in each of the four acquisition frameworks: right perioc-
ular in NIR, left periocular in NIR, right periocular in VW and left periocular
in VW, leading to a total of 3840 samples from 480 different classes (as left
and right periocular of the same subject form different classes).
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For the training task of ResNet-101, the “MiniBatchSize” and “Initial-
LearnRate” are set to 10 and 0.0003, respectively. Further, training is accom-
plished by “sgdm” optimizer. Since the training data is small in size, several
data augmentation strategies (like random translations and scaling in both
horizontal and vertical directions, and random rotations) are employed. The
training is completed for 10 epochs with 20% periocular samples to be used
for validation. All the training tasks are completed in MATLAB R2019b on
a Windows system with Intel Core i5-10300H CPU @ 2.50 GHz, 8 GB RAM
and NVIDIA GeForce GTX 1650 (4 GB) GPU. Besides, the performance eval-
uation is analysed in terms of popular metrics like equal error rate (EER), de-
cidability index (DI), genuine acceptance rate (GAR), receiver operator char-
acteristics (ROC) curves and area under the ROC curves (AUC). Following
subsections discuss about the experimental results for both HCF and DF and
their combination.

4.1 HCF

The performance of proposed hand-crafted feature descriptor is presented in
the ROC curves illustrated in Fig. 3, where EER, DI and GAR (@ false accep-
tance rate (FAR) of 0.1% and 1%) are specified for both the left and right peri-
ocular regions. For the sake of completeness, results of the proposed approach
for both NIR and VW based images are mentioned in the curves. As observed
from Fig. 3, EER and GAR of right periocular images (12.28% and 70.59%,
respectively) are better than that of other matching frameworks. However, the
EERs and AUC values for all four frameworks fall in the interval of 12-14.5%
and 0.9235-0.9361 respectively, which do not seem reasonable for practical bio-
metric applications hence limiting the use of standalone HCF. Nevertheless,
the proposed HCF possess significant interpretability, as this descriptor turns
the highlighted textural information into corresponding numerical features.

4.2 DF

As opposed to HCF, DF have high capacity to achieve improved EER and
GAR values, reason being the employed end-to-end CNN model and extrac-
tion of meaningful features from the deepest layer. The performance of deep
features in all four matching frameworks is depicted in the ROC curves of Fig.
4. It is apparent from Fig. 4 that performance of deep features is certainly at
par as compared against that of HCF. The best EER (1.44%) achieved is for
right periocular images from VW illumination. Concurrently, both the GAR
(at 0.1% and 1% FAR) and AUC values are extremely high, when compared
against proposed non-deep features. This certainly facilitates the application of
deep features with highly accurate system and minimum possible false accep-
tance rate. In addition to the performance metrics, Fig. 5 shows the gradient-
weighted class activation mappings (Grad-CAM) [28], which provides a coarse
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Fig. 3 ROC curves for HCF

localization map to highlight the important regions in the image, which are
more responsible for the predictions made by the network. These maps could
be useful in identifying the discerning regions of the periocular images. Figure
5 demonstrates the explanations generated for the sample periocular images
from all four frameworks, where it is revealed that the regions just above the
eye, especially comprising the eyelids, eyelashes, eyebrows and surrounding
skin, emerge as the discerning regions.
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Fig. 5 Grad-CAM [28] explanations for the deep features; (a-d) Sample periocular images,
(e-f) Grad-CAM explanations corresponding to samples in (a-d).

4.3 Fusion

The next part of experimentation deals with the score-level fusion of HCF and
DF individual performances. The results of score-level fusion are presented via
ROC curves for each of the four matching frameworks. As a result of fusion,
the performance metrics (like EER/GAR/DI) either improve or remain com-
parable to the individual performance of deep features. For instance, the EER
becomes 2.41% after fusion as compared against 1.79% of the individual deep
features, in case of left periocular regions captured in NIR (please see Fig.
6(a)). However, the GAR (@FAR=0.1%) value for the same scenario improves
as a result of fusion. Explicitly, it improves from 92% to 94.28% which counts
to 2.48% improvement. The corresponding values of AUC does not differ sig-
nificantly, proving the fact that the proposed fusion yields comparable AUC
(if not improved) with respect to that of DF, simultaneously exhibiting signif-
icant improvement with respect to HCF. Hence, it can be inferred that fusion
of HCF and DF facilitates the use of the system at lower FAR values like 0.1%,
which is a significant gain. Similar pattern of improvement could be observed
from Fig. 6(b), for the case of right periocular images from NIR illumination.
In this case, the improvement in GAR (@FAR=0.1%) is even greater, count-
ing to be 6.52% improved value (i.e. 93.11% as compared against 87.41%).
In addition to that, EER and GAR(@FAR=1%) are also improved. On the
contrary, fusion of HCF and DF does not always lead to an improvement
for the images captured in VW illumination. As can be observed from Figs.
5(c,d) that the fusion results in enhancement of performance metrics for left
periocular images, but it does not improve the parameters for right periocular
images. This could be attributed to the several challenges posed by the visible
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wavelength, like specular reflections and non-uniform illumination. Therefore,
in view of the significant improvements with NIR images, the overall idea of
collaborative representation, to improve the recognition performance, proves
to be effective. Additionally, constant high values of AUC for all four matching
frameworks prove the effectiveness of the proposed approach.
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Fig. 6 Roc curves depicting effects of fusion (a) Left NIR, (b) Right NIR, (c) Left VW,
(d) Right VW

4.4 Cross-spectral matching

Another important investigation conducted in this paper is about the perfor-
mance of both the employed descriptors in the context of cross-spectral match-
ing. This is essentially an important evaluation framework, where features of
images from one wavelength (say VW) are matched against those of another
(say NIR). This sort of matching is challenging in terms of uncorrelated VW
and NIR features, therefore leading to reasonable drop in the performance
metrics. However, the current investigation targets on evaluating the fusion of
hand-crafted and deep features in this challenging matching scenario. Table
1 reports the values of various important metrics for cross-spectral matching
with individual and combined features, respectively.

It is evident from Table 1 that the hand-crafted features perform poorly
when used in cross-spectral matching scenario, with EER as low as 27.55%
and 25.20% for left and right periocular regions, respectively. Whereas, the
deep features show noteworthy improvement over hand-crafted feature, with
EERs close to 20%. Besides, last two rows of the table report the metrics for
evaluation conducted with combined HCF and DF (the combination is simply
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performed through concatenation). The combined features show significant
results, with huge improvements in the performance metrics. For instance,
the relative improvements in EER with respect to the standalone HCF and
DF performances are (38.91%, 37.58%) and (15.26%, 22.01%), respectively for
left and right periocular images. Whereas the relative improvements in AUC
values with respect to their individual counterparts are (14.75%, 11.20%) and
(3.20%, 4.97%), respectively for the left and right periocular images. The ROC
curves depicted in Fig. 7 also follow the similar patterns of improvement. These
improvements clearly validate the effectiveness of the collaborative represen-
tations proposed in the current work.

Table 1 Performance metrics for cross-spectral matching

Features EER (%) DI GAR (%)
(@FAR=0.1%)

GAR (%)
(@FAR=1%)

AUC

Left HCF 27.55 1.14 9.10% 23.55% 0.7955

Right HCF 25.20 1.35 8.49% 27.37% 0.8284

Left DF 19.86 1.68 14.35% 36.48% 0.8845

Right DF 20.17 1.65 15.18% 35.18% 0.8776

Left Fused 16.83 1.94 26.09% 47.88% 0.9128

Right fused 15.73 2.05 27.31% 51.55% 0.9212
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Fig. 7 ROC curves for cross-spectral matching scenario
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4.5 Comparison with state-of-the-art

In order to furnish qualitative comparison of the proposed approach with state-
of-the-art periocular recognition approaches, this paper provides comparative
results from two benchmark descriptors, namely LBP and LPQ. The com-
parative performance metrics are presented in Table 2. It is not difficult to
observe from Table 2 that the proposed collaborative representation of peri-
ocular images outperforms the LBP and LPQ descriptors significantly. The
major point of difference between the proposed scheme and state-of-the-art is
the high values of GAR at lower FAR of 0.1%. It is worth mentioning that
the specified GAR position is improved considerably by the fusion of HCF
and DF, as detailed in the subsection 4.3. In addition to this, an overall im-
provement of the proposed approach can also be observed from the increased
AUC values for each of the matching frameworks. This is the reason proposed
scheme of periocular recognition is at par with the highly effective benchmark
schemes for all four acquisition frameworks (which are left/right in NIR/VW),
as highlighted by the bold-faced values in Table 2.

Table 2 Comparative analysis

Periocular
region

Illum. Descriptor EER
(%)

DI GAR (%)
(@FAR=0.1%)

GAR (%)
(@FAR=1%)

AUC

Left

NIR

LBP 4.07 2.31 4.19 92.78 0.9883

LPQ 3.13 1.92 3.95 94.65 0.9878

Proposed 2.41 4.49 94.28 97.14 0.9939

VW

LBP 4.30 1.36 3.56 88.33 0.9849

LPQ 4.15 1.46 4.19 92.77 0.9871

Proposed 2.63 4.51 94.61 96.94 0.9957

Right

NIR

LBP 3.47 2.41 4.23 92.22 0.9894

LPQ 2.87 2.06 3.85 95.49 0.9902

Proposed 2.86 4.44 93.11 96.65 0.9947

VW

LBP 3.98 1.47 4.13 90.24 0.9888

LPQ 4.53 1.54 3.97 91.08 0.9880

Proposed 1.91 4.74 94.72 97.61 0.9965

5 Conclusion

This paper deals with collaborative representation of near infra-red periocular
images through traditional hand-crafted and end-to-end deep features. On
one hand, hand-crafted feature descriptor is free from any sort of learning
and/or hyperparameter tuning. While on the other hand, deep features are
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advantageous in terms of superior performance and facility of transfer learning.
Hence, the current work focuses on extraction of both hand-crafted and deep
features to study the potential of periocular recognition. The hand-crafted
features are extracted through multiresolution and multi-scale analysis of the
periocular image through a 2D Gabor filter bank, followed by calculation of
local statistical measures from the image partitions. Whereas, deep features
are extracted through fine-tuning of a popular CNN, namely ResNet-101, and
extracting features from its deepest pooling layer. It has been observed from
the experimental results that combined knowledge of hand-crafted and deep
features can certainly lead to improvement in performance metrics. Notably,
the system becomes applicable to highly demanding security venues, where
lower FARs remain preferable. This statement is specially supported by the
rise in GAR values at lower FARs of 0.1%, which happens as a result of the
proposed collaborative representation. In addition to the above, the proposed
approach exhibits promising results for challenging matching scenarios like
cross-spectral matching. The comparison with state-of-the-art further proves
the utility of the proposed approach.
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