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LMMs for Batch Mark Data 1

Summary: Batch marking is common and useful for many capture-recapture studies where individual marks cannot be7

applied due to various constraints such as timing, cost, or marking difficulty. When batch marks are used, observed8

data are not individual capture histories but a set of counts including the numbers of individuals first marked,9

marked individuals that are recaptured, and individuals captured but released without being marked (applicable to10

some studies) on each capture occasion. Fitting traditional capture-recapture models to such data requires one to11

identify all possible sets of capture-recapture histories that may lead to the observed data, which is computationally12

infeasible even for a small number of capture occasions. In this paper, we propose a latent multinomial model to13

deal with such data, where the observed vector of counts is a non-invertible linear transformation of a latent vector14

that follows a multinomial distribution depending on model parameters. The latent multinomial model can be fitted15

efficiently through a saddlepoint approximation based maximum likelihood approach. The model framework is very16

flexible and can be applied to data collected with different study designs. Simulation studies indicate that reliable17

estimation results are obtained for all parameters of the proposed model. We apply the model to analysis of golden18

mantella data collected using batch marks in central Madagascar.19

Key words: batch marking, capture-recapture, golden mantella, latent multinomial model, saddlepoint approxima-20

tion21

1. Introduction22

Standard models for capture-recapture data, like the closed-population models of Otis et al.23

(1978) and the Cormack-Jolly-Seber model (Cormack, 1964; Jolly, 1965; Seber, 1965), rely24

on the fact that marked individuals can be uniquely identified when they are recaptured.25

However, there are many experiments in which this is not possible either because it is too26

costly or too difficult to apply individual marks. Examples include fisheries research in which27

many thousands of smolts (young fish) may be captured and marked at the same time or28

the study of mosquitoes and other insects which are too small to mark individually (see29

e.g., Davidson et al., 2019; Doll et al., 2021). In these cases, it is common to apply batch30

marks such that all individuals captured on one or more occasions receive identical marks.31
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This strategy provides complete information in the case of a two-stage experiment in which32

individuals are captured and marked on one occasion and recaptured on a second occasion.33

The standard estimators for such data, the Lincoln-Petersen and Chapman estimators, do34

not rely on individual identification. However, information is lost if the study comprises35

more than two occasions because the capture history of individuals cannot be determined36

uniquely. This is referred to as an extended batch-mark study (Huggins, Wang, and Kearns37

2010; Cowen et al. 2017).38

This paper was motivated by the analysis of data from a batch marking study of golden39

mantella (Mantella aurantiaca), configured as a robust design (Pollock, 1982) including six40

primary periods each containing three to four secondary occasions (21 secondary occasions41

in total). The golden mantella is a critically endangered frog found only in small areas of42

forest in central Madagascar. Information on population status is urgently needed to inform43

conservation measures, but the small size of the frog makes individual marking difficult.44

However, batch marking using Visible Implanted Elastomers (VIE tags) is possible and was45

used to mark batches of frogs at two-month intervals during the rainy season, with a view46

to estimating abundance.47

Modelling data from extended batch-mark experiments is challenging because the actual48

capture histories for marked individuals required by common capture-recapture models can-49

not be observed. Observed data for such experiments comprise a set of counts including the50

numbers of individuals first marked, marked individuals that are recaptured, and unmarked51

individuals captured but released without being marked (applicable to some studies) on each52

capture occasion. An immediate solution is to identify all possible sets of the true (latent)53

individual capture histories that could have produced the observed data and then calculate54

the likelihood by summing up the probabilities for each set of latent capture histories. How-55

ever, if the study contains more than a few capture occasions and the number of individuals56
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marked is not very small, then there will be many configurations of the possible latent capture57

histories and computing the likelihood directly will be computationally expensive and thus58

infeasible in practice.59

Huggins et al. (2010) proposed a pseudo-likelihood approach for modelling batch mark data60

of marked individuals in the context of open populations. Survival and capture probabilities61

are estimated using estimating equations and population size is estimated through the62

Horvitz-Thompson estimator. Cowen et al. (2014) formulated a likelihood function for data63

from marked individuals and showed that their approach produces more accurate estimates64

and lower standard errors than the pseudo-likelihood approach of Huggins et al. (2010). The65

latter is also more advantageous in terms of efficiency for larger problems (e.g., more than 1166

capture occasions). These methods focus on marked individuals only; individuals captured67

with no marks are not included in the analysis. This gap was later filled by Cowen et al.68

(2017) who developed a flexible hidden Markov model (HMM) framework that accounts for69

data from both marked and unmarked individuals. Key to constructing the HMM for batch70

mark data is defining two sets of latent variables: the numbers of individuals with different71

batch marks that are available for capture on each occasion, and the numbers of unmarked72

individuals that are present in the population on each occasion. One appealing advantage73

of the HMM approach is that the likelihood can be maximized efficiently using the forward74

algorithm for HMMs.75

Although the HMM approach of Cowen et al. (2017) has advantages over previous methods,76

we foresee some potential practical issues adapting it for our mantella data analysis. As77

noted by the authors (Cowen et al., 2017, Section 7.2, page 1328), the HMM approach will78

encounter dimensionality issues when the numbers of marked and/or unmarked individuals79

become large. This occurs because a large number of marked/unmarked individuals results80

in high-dimensional state-dependent probability and transition probability matrices for the81
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HMMs. The weather loach example considered by Cowen et al. (2017) consists of 11 occasions82

with at most 280 marked individuals and the largest estimated abundance of 1007 on a single83

occasion. As a comparison, our data consist of 21 occasions with 1090 individuals marked in84

the first period, and results from our model (see details in Section 5) show that the lowest85

abundance estimate is 1385 for a single period. Thus, we anticipate that the dimensionality86

issue will be much more severe if we adapt the HMM approach for our data. Cowen et al.87

(2017) handled the dimensionality issue in a trial-and-error manner by grouping the latent88

states into bins and putting an upper bound for the number of unmarked individuals in89

the population. These were proven to be useful for their example, but it is challenging in90

practice to determine appropriate values for the bin size and the upper bound for the number91

of unmarked individuals.92

We propose a new model to analyze extended batch-mark data, which avoids the prac-93

tical issues of the HMM approach. The model falls within the class of latent multinomial94

models (Link et al., 2010), where the observed vector of counts is assumed to arise from a95

non-invertible linear transformation of a latent vector that is modelled via a multinomial96

distribution. More specifically, we can model the true but unobservable capture-recapture97

process using a multinomial model, and then link the latent vector of frequencies of capture-98

recapture histories to the observed counts through a derived known matrix. There are two99

main reasons to develop the model here. First, the model framework is very flexible and can100

be easily adapted to analysis of different types of extended batch-mark data. Second, the101

model can be fitted via an efficient maximum likelihood approach based on the saddlepoint102

approximation (Zhang, Bravington, and Fewster, 2019; Zhang, Price, and Bonner, 2021).103

2. Data104

The data on the golden mantella were collected during their breeding seasons, December105

through March, in the austral summers of 2014–2015 and 2015–2016. Individuals were106
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captured during three primary periods in each year, one each in December, January, and107

March, with each primary period comprising three secondary occasions in the first year108

and four secondary occasions in the second. A total of 2730 individuals were marked, with109

1500 marked in the first year and 1230 in the second. The number of unmarked individuals110

captured on each secondary occasion ranged from a minimum of 21 on the fourth secondary111

occasion of the final primary period to a maximum of 438 on the second secondary occasion112

of the first primary period. The total number of recaptures of marked individuals was113

1326. The highest number of recaptures, 651, came from individuals marked during the114

first primary period, which is not surprising as these individuals have the most opportunities115

to be recaptured. Only one individual marked during the final primary period was recaptured116

on one of the subsequent secondary occasions. Table 1 provides a summary of the data on117

marking and recaptures by primary period.118

[Table 1 about here.]119

3. Models and Methods120

3.1 Latent process121

The latent (unobservable) process for the capture-recapture study of interest using batch122

marks can be described as a POPAN model (Schwarz and Arnason, 1996) incorporating the123

robust design (Pollock, 1982). Suppose the study consists of K primary periods indexed by124

k = 1, . . . , K, and within period k there are Tk secondary capture occasions indexed by125

t = 1, . . . , Tk. The model assumes that the population is closed within each primary period126

but allows for immigration/birth and emigration/death between two primary periods. As is127

standard for Jolly-Seber based models, immigration/birth is assumed to be completed at the128

beginning of each primary period, and emigration is assumed to be permanent.129

Let ωikt denote the latent (true) capture event for individual i = 1, . . . , N on occasion t of130
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period k, where N represents the size of the superpopulation that consists of all individuals131

which are ever present in the population and are available for capture. There are two132

possibilities for each ωikt: 0 (non-capture) and 1 (capture). Let ωik = (ωik1, . . . , ωikTk) denote133

the latent capture history for individual i in primary period k, and ωi = (ωi1, . . . ,ωiK) the134

overall latent capture history for the individual. Then each latent capture history ω is a135

vector of length T =
∑K

k=1 Tk. The number of all latent histories is J = 2T . For convenience,136

we index these latent histories as history j = 1, . . . , J .137

Suppose xj is the number of individuals with latent capture history j. Let πj = πj(θ)138

denote the probability that an individual has latent history j, where θ is a vector of model139

parameters. Assuming independence between individuals yields a multinomial model for140

x = (x1, . . . , xJ)′, x ∼ Multinomial(N ;π), where π = (π1, . . . , πJ)′.141

Now we consider how to express each element πj of π in terms of the model parameters142

θ, which include143

• pkt: the capture probability on secondary occasion t of period k; p = (p11, p12, . . . , pKTK )144

• φk: the survival probability from period k to k + 1; φ = (φ1, . . . , φK−1)145

• βk: the probability of entry in period k; β = (β1, . . . , βK).146

The probabilities of events 0 and 1 on secondary occasion t of period k are 1 − pkt and147

pkt, conditional on the individual being available for capture. The parameter φk denotes148

the probability that an individual is alive (i.e., available for capture) during period k + 1149

given that it was available in period k, and βk denotes the probability that an individual150

is first available for capture during period k. Given that emigration is permanent, β1 is151

the probability that an individual is available for capture during the first primary period,152

β2 is the probability that an individual is available for capture during the second primary153

period given that it was not available during the first primary period, etc. The capture154

event 0 has a probability of 1 on any occasion on which an individual is not available for155
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capture, either because it has not entered or has already died/emigrated. Consider a simple156

example with K = 3 and Tk = 2 for k = 1, 2, 3. The probability of latent history 001010 is157

Pr(001010) = {β1(1− p11)(1− p12)φ1 + β2}p21(1− p22)φ2p31(1− p32).158

Note that the survival and capture probabilities are actually modelled on the logit scale to159

avoid the problem of constrained optimization when fitting the resulting model via maximum160

likelihood (introduced below). We also transform the entry probabilities, βk, k = 1, . . . , K,161

but more consideration is needed because of the added constraint that
∑K

k=1 βk = 1. Specifi-162

cally, we reparametrize the model in terms of the conditional entry probabilities, β∗1 , . . . , β
∗
K−1163

defined such that β∗1 = β1, β∗2 = β2/(1 − β1), . . ., β∗K−1 = βK−1/(1 − β1 − · · · − βK−2). Op-164

timization is then conducted with respect to logit(β∗1), . . . , logit(β∗K−1) which automatically165

constrains the value of βK so that
∑K

k=1 βk = 1 and βk ∈ (0, 1) for all k = 1, . . . , K.166

3.2 Observed data167

When batch marks are used for the study, the vector x cannot be observed because marked168

individuals are not identifiable. Instead, we can only observe the set of counts including:169

• mkt, the number of individuals marked on secondary occasion t of primary period k;170

• nkjt, the number of individuals that are marked in primary period k and recaptured on171

secondary occasion t of primary period j172

for each k = 1, . . . , K, j = 1, . . . , K, and t = 1, . . . , Tk. Let m = (m11, . . . ,m1T1 , . . . ,mKTK )′173

and n = (n111, . . . , nKKTK )′. Note that some elements of n are always equal to zero,174

specifically nkjt = 0 if j < k or both j = k and t = 1. These elements are removed from n175

and are not regarded as data.176

3.3 Connecting the observed and latent variables177

Let h1 (ω) and h2 (ω) denote the primary period and secondary occasion within this primary

period, respectively, on which an individual with true capture history ω is first captured (and
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marked). Let h (ω) = (h1 (ω) , h2 (ω)). It is noted that mkt =
∑N

i=1 I {h (ωi) = (k, t)} =∑
ω∈Ω xωI {h (ω) = (k, t)}, where xω denotes the number of individuals with true capture

history ω, Ω is the set of all latent capture histories, and I (·) is the usual indicator function.

This means that each element of m can be written as a linear transformation of the latent

vector x and so we can define

m = Ax, (1)

where A is a known matrix with only 0 and 1 entries. Similarly, a linear relationship between

n and x can be derived. If k < j, then nkjt =
∑
ω∈Ω xωI {h1(ω) = k} I (ωjt = 1). If k = j,

then nkjt =
∑
ω∈Ω xωI {h1(ω) = k, h2 (ω) < t} I (ωjt = 1). It follows that we can construct

a known matrix B such that

n = Bx. (2)

Combining equations (1) and (2) gives y = Tx where y = (m′,n′)′ denotes the concatenated178

vector of the observed counts and T = (A′,B′)′ is the matrix formed by stacking A and B.179

Since x follows a multinomial distribution and T is a known matrix, the model falls within180

the class of latent multinomial models (Link et al., 2010).181

3.4 Unmarked individuals182

The framework presented above does not consider the case in which some individuals are183

captured but are released without being marked due to time, cost or other constraints (Cowen184

et al., 2017), because this does not exist in the golden mantella data that motivated this study.185

However, unmarked individuals can be readily incorporated into the modelling framework186

here. We describe this in more detail in Section A of the Supporting Information.187

3.5 Inference188

We compute the maximum likelihood estimates and standard errors for the parameters

based on the saddlepoint approximation to the probability mass function of Y , the random
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variable associated with the observed vector y. This approach has been applied previously

to latent multinomial models allowing for identification errors by Zhang et al. (2019) and

Zhang et al. (2021). Briefly, if the moment generating function of X is MX(r), which

can be computed explicitly for the multinomial distribution, then the moment generat-

ing function of Y = TX can be computed as MY (s) = MX (T ′s). The saddlepoint

approximation to the likelihood function, first introduced by Daniels (1954), is f̃Y (y;θ) =

1

(2π)L/2|K′′
Y (ŝ;θ)|1/2

exp {KY (ŝ;θ)− ŝ′y} where θ denotes the vector of all parameters (as above),

KY (s;θ) = log {MY (s;θ)} denotes the cumulant generating function of Y , |K ′′Y (ŝ;θ) |

denotes the determinant of the Hessian matrix of KY (s;θ) with respect to s and evaluated

at ŝ, L is the length of Y , and ŝ = ŝ (y,θ) solves the saddlepoint equation

d

ds
KY (s;θ) = y. (3)

The approximate likelihood is then maximized to compute point estimates, and standard er-189

rors are obtained from the inverse of the Hessian matrix as in the usual normal approximation190

for maximum likelihood estimators.191

Note that the saddlepoint equation (3) rarely has an analytic solution and is instead192

solved numerically by minimizing KY (s;θ)− s′y with respect to s. In particular, we apply193

the method of Zhang et al. (2019) which provides efficient computation of the saddlepoint194

approximation through the R package TMB (Kristensen et al., 2016). Optimization and195

approximation of the Hessian matrix are then conducted directly in R via the function196

nlminb(). To speed convergence of the optimization routine and decrease the chances of197

finding a local maximum, we compute initial values based on a modification of the Manly-198

Parr approach (Manly and Parr, 1968). Section B of the Supporting Information provides199

details.200
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3.6 Computational issues201

Two data related challenges arose during the modelling of mantella data using the latent202

multinomial approach. The first is that estimates of the survival and entry probabilities may203

be close to zero or one for some of the primary periods in all of the models we fit (described204

below). This leads to problems akin to separation in standard logistic regression models.205

Separation occurs when the response is completely explained by a linear combination of206

the covariates. In this case, the likelihood is actually divergent and continues to increase207

as the values of one or more of the coefficients in the linear predictor move away from 0.208

Optimization algorithms will end at some point returning a supposed maximum likelihood209

estimate, but the likelihood will in fact be non-concave. This violates the assumptions of210

the standard asymptotics for maximum likelihood estimators and means that the Hessian211

matrix may not be invertible or, if it is, that the likelihood tends to be close to flat and the212

resulting standard errors produced by inverting the Hessian matrix are very large and do not213

accurately reflect the variance of the estimators. Often the confidence intervals produced by214

the asymptotic normal approximation will cover the entire (0,1) interval, after rounding (see215

Agresti (2012, Section 6.5) for further details). To ensure that the likelihood is not divergent,216

we can penalize the likelihood by subtracting a penalty term P =
∑

θ∈Θp
logit(θ)2/(2σ2

p),217

where Θp denotes the subset of parameters in the model that are probabilities (i.e., are218

constrained between 0 and 1) and σp is a penalty tuning parameter. We set σp = 3 in our219

simulation studies and mantella data analysis. In a Bayesian framework, we could interpret220

the penalties as independent priors such that logit(θ) ∼ N(0, σ2
p) for each θ. Given σp = 3,221

this would mean, a priori, that P (0.003 < θ < 0.997) ≈ 0.95 for each θ ∈ Θp. This is a very222

small penalty but we found it was sufficient to stop the probabilities from getting too close223

to 0 or 1 so that standard errors could be computed (see Sections 4 and 5). If needed, one224

can change the value of σp to get a larger or smaller penalty term.225
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The second challenge is that larger numbers of capture occasions lead to a significant com-226

putational burden. The run times are relatively short (at least in comparison to conducting227

a Bayesian analysis through MCMC with data augmentation of the full population) but228

memory usage can be very high. Optimization of the likelihood for the most complex model229

of the mantella data took almost 2 hours, which is not too drastic, but required 95 GB of230

RAM. This forced us to fit these models using a high performance computing cluster, which231

may not be available to all users. The reason why memory usage is so high is that the number232

of possible latent capture histories is very large. Even after removing the latent histories that233

could not possibly have occurred given the observed data there are still over 1.15 million234

latent histories that could have been realized in generating the mantella data. The result is235

that matrices A and B are very large and consume a lot of memory even when represented236

in sparse format.237

As a solution, we tested the concept of prefiltering the set of latent histories by computing238

their probabilities based on the initial values and retaining only the 10% of histories with the239

highest probabilities. Results comparing the analysis of the complete and prefiltered data are240

provided for the application to the mantella data in Section 5. This solution is admittedly241

ad hoc and the results will likely depend on both the initial values and the proportion of242

capture histories that are retained. We discuss this further in Section 6.243

4. Simulation Study244

We ran a set of simulations to assess the performance of the proposed approach for parameter245

estimation. As an example, we show here the results of a simulation based on a study246

consisting of K = 6 primary periods each with Tk = 2 secondary occasions. We simulated247

100 datasets with the settings of N = 5000, β = (0.10, 0.24, 0.11, 0.12, 0.18, 0.25), φ =248

(0.87, 0.82, 0.93, 0.54, 0.52), and p = (0.27, 0.22, 0.25, 0.21, 0.17, 0.29, 0.33, 0.13, 0.19, 0.40, 0.14,249

0.26). We generated the values of β by simulating random numbers from a multinomial250
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distribution with size 100 and probability 1/6 for each of six classes and then dividing the251

numbers by 100. φ and p were generated from two uniform distributions over intervals252

(0.5, 0.95) and (0.1, 0.4) respectively. We then fit the data-generating model to each of the253

datasets using the original and penalized saddlepoint likelihoods.254

[Table 2 about here.]255

Table 2 summarizes the results of the simulation study. The estimators are almost unbiased256

for all of the model parameters with approximately nominal confidence interval (CI) coverage257

when the original saddlepoint likelihood is used for model fitting. We noted that estimates258

of the survival rate φ3 were often close or equal to 1, given that the true value was 0.93259

in the simulation. This resulted in rather wide Wald CIs, as indicated by the high mean260

CI width 0.59 in the table. It is well known that the Wald approach does not work in261

the case of boundary estimation. Zhang et al. (2021) adopted a parametric bootstrapping262

method in this context for a latent multinomial capture-recapture model for misidentification,263

which improves the precision of inference but is more time-consuming. Alternatively, the264

penalized likelihood approach is more efficient. As shown in Table 2, fitting the model using265

the penalized likelihood yields a negligible negative bias to the estimation of φ3 and the CI266

coverage rate (87%) is slightly below the nominal value. However, the mean CI width for φ3267

is reduced by about 54%, which means that the precision of inference is greatly improved268

in the estimation results. In addition, the mean CI width for φ1 is reduced by 19% when269

the penalized likelihood is used, but the coverage remains at 94%. Except for φ1 and φ3,270

penalization does not have significant effect on the estimation results of other parameters271

in this simulation. In simulations where the boundary estimation issue was rare we did272

not notice obvious differences between the estimation results of the original and penalized273

likelihoods.274
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4.1 Model selection275

Model selection needs careful consideration when analyzing real data. However, there is not276

a general method available for model selection when the saddlepoint approximation is used277

for maximum likelihood estimation. Zhang et al. (2019) suggested that the saddlepoint-278

approximation-based AIC works well for model selection when the observed data of the279

latent multinomial models consist mostly of large counts (e.g. no less than five), which is280

the case for the mantella data we analyze below. Here, we also use simulations to check281

the performance of AIC based on the saddlepoint likelihood for model selection under the282

proposed latent multinomial model for extended batch-mark data.283

[Table 3 about here.]284

We first considered the same datasets generated in the simulation study above. For each285

dataset, in addition to the true model, denoted by p(t)φ(k), we fit three simplified models286

denoted by p(t)φ(·), p(·)φ(k), and p(·)φ(·). Here p(t) and p(·) represent the options of287

either completely time-varying capture probabilities or constant capture probability over288

all occasions, and φ(k) and φ(·) represent the options of either period-dependent or constant289

survival rates. Entry probabilities were allowed to be time-dependent for all four models.290

We fit each model using both the original and penalized likelihoods, and then computed the291

AIC value in each case. In both cases, AIC can always correctly select the data-generating292

model.293

We further investigated the performance of AIC using another simulation study, where294

N was set to be 1000 while other parameters remained the same as in the simulation295

above. Table 3 presents the results of model selection for this simulation. When the original296

saddlepoint likelihood was used for model fitting, AIC selected the data-generating model297

p(t)φ(k) for 69 out of the 100 datasets. For the remaining 31 datasets, the simpler model298

p(t)φ(·) was favored by AIC. This indicates that AIC is conservative and able to determine299
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the model for capture probabilities but often selects a simpler model for survival probabilities.300

When model p(t)φ(·) was preferred, the difference between the AIC values of this model and301

the true model was not large. The largest difference was 5.7 and 35% of the time the difference302

was less than 2. We observed that the AIC computed from the penalized likelihood performed303

similarly and selected the data-generating model p(t)φ(k) for 63 of the 100 datasets while304

model p(t)φ(·) was preferred for the remaining 37 datasets. In terms of the inability of AIC305

computed using the original likelihood to always determine that time-dependent survival306

is necessary, we believe that this is due to a lack of power caused by batch-marking and307

not collecting individual level data. The lack of power is also evident from the widths of308

the confidence intervals for the survival probabilities in Table 2. The performance of AIC309

for model selection improves significantly for simulations with larger abundance or capture310

probabilities while other parameter values remain the same as those for the simulation study311

here. See Tables 6 and 7 in Section C of the Supporting Information.312

5. Application313

We fit six different models to the mantella data formed by combining three alternatives for314

the capture probability and two for the survival probability. The three alternatives considered315

for the capture probability were: 1) distinct on every secondary period within each primary316

period (model p(t) as in Section 4.1), 2) equal for all secondary periods within each primary317

period (model p(k)), and 3) constant over all secondary periods (model p(·)). For the survival318

probability, we considered the model with a distinct parameter for each primary period319

(model φ(k) as in Section 4.1) and a model with a constant monthly survival, denoted by320

φ(m). This is a variation of the constant survival model denoted by φ(·) in Section 4.1 which321

accounts for the fact that the primary periods in the mantella study are not equally spaced.322

Survival between periods k and k + 1 for this model is defined as φk = S∆m
k where S is the323

monthly survival rate and ∆m
k denotes the time in months between the two periods. If the324
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time between consecutive periods is constant, ∆m
k = d, then φk = sd recovers the constant325

survival model, φ(·). No constraints were placed on the recruitment parameters in any of326

these models.327

[Table 4 about here.]328

We also fit these models with all three of the methods described in Section 3: 1) constructing329

the likelihood from the complete set of latent histories without penalization (Original),330

2) constructing the likelihood from the complete set of latent histories with penalization331

(Penalized), and 3) constructing the likelihood from the prefiltered set of latent histories332

with penalization (Prefiltered). Table 4 compares the different models in terms of the fit to333

the data (AIC), run time, and memory usage computed with all three methods of fitting.334

The absolute values of the AIC are different when comparing the three variants of the same335

model, but the qualitative results are exactly the same. For all three methods, the AIC336

provides very strong support for the most complicated model, Model 2: p(t)φ(k). However,337

the model fit using the complete set of latent histories ran for almost 2 hours and required338

almost 96 GB of RAM while the prefiltered version ran in under 16 minutes and required339

less than 9 GB of RAM. This makes it feasible to fit these models on a personal computer340

and to reasonably compare different models to test alternative hypotheses.341

Table 5 displays point estimates and confidence intervals of the demographic parameters342

for the three versions of the selected model, Model 2, while Figure 1 compares the estimates343

of the capture probabilities. Estimates and confidence intervals from the Original fit and344

Penalized fit were almost identical except when the estimate from the Original fit lay on the345

boundary and the corresponding confidence interval covered all of (0,1). In most cases, the346

estimate from the Penalized fit was pulled slightly inside the (0,1) interval, as in the case of347

β3, and the confidence interval narrowed to a reasonable range. The only exceptions to this348

are the parameters relating to the final primary period including the probability of survival349
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from period 5 to 6 (φ5), the probability of entry in period 6 (β6), and the abundance during350

the period (N6). Penalizing the likelihood reduced the estimate of φ5 from 1 (95%CI=0,1) to351

0.72 (95%CI=0.18,0.97) and of β6 from 0.16(95%CI=0.11,0.22) to 0.12(95%CI=0.07,0.21).352

These changes lead to the conclusion that there were fewer individuals alive during this353

period, either surviving from previous periods or entering the population in that period,354

and that the capture probabilities are higher. This in turn acts to reduce the estimate355

of abundance during this period, N6, which decreased from 2285(95%CI=1902,2746) to356

1649(95%CI=855,3178), and the estimate of the super-population size, N , which decreased357

from 5699(95%CI=5321,6133) to 5467(95%CI=5024,5995). This difference was not observed358

in the simulation study, and we believe that it is related to the fact that the number of359

recaptures during the 6th primary period was so low making the results relating to this360

occasion highly unstable. This may also indicate a violation of the model assumptions, which361

we discuss below. That said, the confidence intervals for the abundance, both in period 6362

and over all periods, overlap considerably so that there is no difference in the qualitative363

results.364

Point estimates and confidence intervals for all parameters from the Penalized and Pre-365

filtered methods were almost identical, except again on the final period. This suggests that366

there was almost no loss or change in the information by removing 90% of the latent histories367

and that prefiltering based on the initial parameter values provides a valid approach to reduce368

the computational burden.369

[Figure 1 about here.]370

One important observation is that there seem to be patterns in the estimates that may be371

indicative of systematic changes that have not been accounted for by any of the proposed372

models. Point estimates of the recruitment probabilities show a continual decrease within373

each of the two breeding seasons (i.e., periods 1 to 3 and again in periods 4 to 6) and374
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the estimated capture probabilities seem to vary in a smooth, almost seasonal fashion.375

We believe that this may indicate that individuals are entering and leaving the breeding376

grounds at different times during the breeding season, violating the assumption of closure377

within the primary periods. We did not explore more complicated models to account for this378

phenomenon in this research, and plan to do so in the future.379

[Table 5 about here.]380

6. Discussion381

The latent multinomial model offers a flexible framework for modelling extended batch-mark382

data. The ability to express the model in terms of the unobserved latent capture histories383

allows the model to accurately reflect the data-generating process and does not require384

unrealistic and overly simplistic model assumptions to be made. Batch marking studies385

are typically more time and cost effective and can be used for species that are difficult or386

impossible to mark individually. We have demonstrated that it is possible to estimate key387

parameters of interest with good precision from this type of data.388

In practice we have observed that the model works well in both the simulated and real389

data applications. Boundary estimation issues were encountered which are overcome with390

appropriate penalization methods. The model is computationally efficient in terms of time,391

but for scenarios with large numbers of primary and secondary occasions a large amount392

of computer memory was required. Given that not everyone has access to high performance393

computing resources, we have demonstrated that prefiltering the possible latent capture394

histories to those that are most likely to occur based on initial parameter estimates reduces395

the required RAM.396

The results of prefiltering the data will depend on both the initial parameter estimates and397

the proportion of latent capture histories retained. If either the initial values are far from398
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the true value or the proportion of capture histories retained is too small then the likelihood399

function will be distorted too much, and the resulting inference will not be accurate. In the400

analysis of the mantella data, we were able to conduct the analysis with the full set of latent401

capture histories and confirm that the results with and without prefiltering were almost402

identical. However, this negates the purpose of prefiltering. If sufficient RAM is available to403

conduct the analysis with the full set of latent capture histories then this is always preferable.404

If prefiltering is performed in practice then we recommend repeating the analysis starting405

from multiple sets of initial parameter estimates and comparing the results. The different sets406

of initial parameters should be chosen so that they are diffuse within the space of possible407

parameters, as is the case for choosing multiple sets of initial values for standard optimization408

routines to reduce the chances that the algorithm reaches a local maximum/minimum. This409

will require that the model is fit repeatedly, but this should not represent a computational410

burden as the jobs could be run in parallel. If the results differ significantly then the analysis411

should be repeated from the same initial values but retaining a larger proportion of the latent412

capture histories.413

As an example, we repeated fitting the selected model to the golden mantella data starting414

from two alternative sets of initial parameter values. These were generated by either setting415

p1 = · · · = p6 = 0.10 or p1 = · · · = p6 = 0.40 and then computing initial estimates for416

the remaining parameters as given in Section B of the Supporting Information. These values417

were chosen as they are expected to bound the capture probabilities based on the advice418

of the experts in the field. Table 11 in Section D of the Supporting Information presents419

the different sets of initial values. Table 12 and Figure 1 in Section D of the Supporting420

Information compare the point estimates and 95% confidence intervals of the parameters421

for the fitted models. The results do differ, but this is to be expected given that different422

sets of the latent capture histories are retained. However, the changes are small and the423
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qualitative conclusions are practically identical. Estimates of the total population size from424

the new analysis are within 95 of the original estimate (a difference of < 2%) and the 95%425

confidence intervals overlap almost completely. Estimates of the population size by primary426

period are within 110 (a difference of 5%) except for the final period when the difference is427

as high as 284 (nearly 15%), but these estimates are very uncertain and the 95% confidence428

interval for the estimate of N6 from the original initial values is completely contained within429

the 95% confidence interval computed with the initial estimate pk = 0.10, k = 1, . . . , 6.430

These results suggest that prefiltering is not affecting the overall conclusions of the analysis431

and support the results without having to fit the model including the complete set of latent432

capture histories.433

We have observed that population size and capture probabilities are estimated well from434

batch mark data as is evident from both the simulation study and mantella application435

results. However, we have also seen that survival estimates are much less precise. This436

observation is not surprising, since estimation of survival relies on recaptures of individuals437

from batches of previously marked cohorts of animals and these observations will typically438

be fairly small relative to the number of individuals marked. The lack of individual-level439

information in batch mark data means that the data are a lot less informative for the440

estimation of survival than for other types of data such as capture-recapture or ring-recovery441

data. We observed this through the wider confidence intervals of survival probabilities in the442

simulation study. Similar results were also shown by Cowen et al. (2014) who conducted a443

simulation study to compare estimates from the Jolly-Seber model with complete identity444

information and an associated batch mark model in which identities were removed. They445

reported that estimates of the survival probabilities from batch mark data were between 30446

and 40% as efficient as those from data with complete identities, though the exact results447

depended heavily on the choice of parameters. This observation should guide those planning448
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studies to consider what the parameters of interest are when selecting which type of data449

they should collect.450

One key advantage of the latent multinomial approach is that it is often much simpler451

to conceptualize the model and write the probabilities for the latent histories than the452

observed histories. It is clear that further adaptations could be made to the model, for453

example, accounting for temporary emigration from the site, which we believe would be454

possible due to the robust design nature of the data, following an approach similar to Zhou455

et al. (2019). It would also be of interest to explore how batch mark data could be used in456

conjunction with other forms of data, such as count data, to share information on common457

parameters and to examine the relative information contained in the different data types.458

Such an integrated approach may alleviate some of the high correlations observed between459

parameters for extended batch-mark data alone, see for example Catchpole et al. (1998).460

The treatment of multiple data types using a latent multinomial approach may also offer a461

practical solution to overcome needing to assume independence between data sets.462
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FIGURE 1 Estimated Capture Probabilities
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Estimates of the capture probabilities from the selected model using 1) the complete set
of latent histories without penalization (red circles), 2) the complete set of latent histories
with penalization (green triangles), and 3) the prefiltered histories with penalization (blue
squares). Vertical bars show the extents of the 95% confidence intervals. Points for each
version of the model have been offset to avoid overlap. This figure appears in color in the
electronic version of this article, and color refers to that version.
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TABLE 1 Data Summary

Period Marks 1 2 3 4 5 6

1 1090 219 55 17 255 90 15
2 295 43 42 41 62 37
3 115 35 7 2 0
4 686 174 81 30
5 403 107 13
6 141 1

Summary of the golden mantella data. The Marks column indicates how many individuals
were marked over all occasions within each primary period. The columns to the right show
how many times these individuals were recaptured on the subsequent secondary occasions
within that same period and in each of the following periods.
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TABLE 2 Simulation Results

Original Penalized
Parameter True Mean RMSE CIC% CIW Mean RMSE CIC% CIW

N 5000.00 5036.75 160.01 96 614.63 5027.06 155.44 94 593.91
φ1 0.87 0.86 0.07 92 0.32 0.86 0.06 94 0.26
φ2 0.82 0.83 0.05 94 0.21 0.82 0.04 99 0.19
φ3 0.93 0.93 0.06 92 0.59 0.91 0.05 87 0.27
φ4 0.54 0.54 0.04 94 0.17 0.55 0.05 95 0.17
φ5 0.52 0.55 0.09 97 0.28 0.53 0.07 94 0.27
β1 0.10 0.10 0.01 98 0.06 0.10 0.01 96 0.06
β2 0.24 0.24 0.02 97 0.10 0.24 0.02 98 0.10
β3 0.11 0.11 0.02 95 0.09 0.11 0.02 94 0.09
β4 0.12 0.12 0.02 95 0.07 0.12 0.02 94 0.07
β5 0.18 0.18 0.02 93 0.06 0.18 0.02 93 0.06
β6 0.25 0.25 0.02 97 0.09 0.25 0.02 96 0.09
p11 0.27 0.27 0.04 99 0.17 0.28 0.04 95 0.17
p12 0.22 0.22 0.03 99 0.14 0.21 0.03 97 0.14
p21 0.25 0.25 0.02 96 0.08 0.26 0.02 94 0.08
p22 0.21 0.21 0.02 97 0.07 0.21 0.02 97 0.07
p31 0.17 0.16 0.01 95 0.05 0.17 0.01 90 0.05
p32 0.29 0.29 0.02 96 0.08 0.29 0.02 95 0.08
p41 0.33 0.33 0.02 94 0.09 0.33 0.02 95 0.08
p42 0.13 0.13 0.01 98 0.04 0.13 0.01 98 0.04
p51 0.19 0.19 0.01 93 0.06 0.19 0.01 95 0.06
p52 0.40 0.40 0.02 97 0.10 0.40 0.03 93 0.10
p61 0.14 0.13 0.02 94 0.06 0.13 0.02 94 0.06
p62 0.26 0.25 0.03 94 0.11 0.26 0.03 96 0.11

Parameter estimation results of a simulation study with 100 replicates in the setting of
K = 6, Tk = 2 for k = 1, . . . , 6, N = 5000, β = (0.10, 0.24, 0.11, 0.12, 0.18, 0.25),
p = (0.27, 0.22, 0.25, 0.21, 0.17, 0.29, 0.33, 0.13, 0.19, 0.40, 0.14, 0.26), and φ = (0.87, 0.82,
0.93, 0.54, 0.52). RMSE: root mean square error. CIC%, and CIW represent 95% confidence
interval coverage, and mean 95% confidence interval width.
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TABLE 3 Model Selection

Likelihood p(t)φ(k) p(·)φ(k) p(t)φ(·) p(·)φ(·)
Original 69 0 31 0
Penalized 63 0 37 0

Summary of the simulations for model selection. Each entry of the table gives the number of
cases (out of 100) where the model has the lowest AIC value and is selected as the preferred
model.
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TABLE 4 Model Comparison

Original Penalized Prefiltered
Model AIC Mem. Time AIC Mem. Time AIC Mem. Time

1: p(t)φ(m) 1131.15 95.77 96.65 1155.95 94.98 88.43 1159.92 8.33 12.73
2: p(t)φ(k) 1007.51 95.77 116.75 1029.34 94.94 93.43 1034.87 8.32 15.80
3: p(k)φ(m) 1321.31 95.47 57.25 1330.79 95.44 46.85 1334.50 9.24 11.95
4: p(k)φ(k) 1201.96 95.52 71.32 1212.58 95.50 59.90 1217.27 7.90 12.67
5: p(·)φ(m) 2645.83 95.38 39.35 2660.74 95.37 52.33 2662.63 9.25 11.08
6: p(·)φ(k) 1443.91 95.39 54.33 1453.14 95.33 42.27 1454.74 7.76 10.57

Comparisons for the six models fit to the golden mantella data retaining the complete set of
latent histories without penalization (Original), retaining the complete set of latent histories
with penalization (Penalized), or retaining only the 10% with the highest probability given
the initial values with penalization (Prefiltered). Each model is defined by the structure of
the capture and survival probabilities. Results include the AIC, memory usage in GB, and
run time in minutes.
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TABLE 5 Point Estimates

Parameter Original Penalized Prefiltered

N 5699(5321,6133) 5467(5024,5995) 5567(5145,6063)
φ1 0.5(0.42,0.58) 0.5(0.42,0.58) 0.5(0.42,0.58)
φ2 1(0,1) 0.98(0.77,1) 0.98(0.78,1)
φ3 0.64(0.53,0.74) 0.65(0.54,0.74) 0.66(0.55,0.76)
φ4 0.36(0.29,0.44) 0.36(0.29,0.43) 0.37(0.3,0.45)
φ5 1(0,1) 0.72(0.18,0.97) 0.85(0.21,0.99)
β1 0.43(0.38,0.47) 0.44(0.39,0.5) 0.44(0.39,0.49)
β2 0.18(0.14,0.24) 0.19(0.14,0.25) 0.18(0.13,0.24)
β3 0(0,1) 0.01(0,0.09) 0.01(0,0.09)
β4 0.13(0.09,0.18) 0.13(0.09,0.18) 0.13(0.09,0.18)
β5 0.1(0.08,0.13) 0.11(0.09,0.14) 0.11(0.08,0.13)
β6 0.16(0.11,0.22) 0.12(0.07,0.21) 0.14(0.08,0.22)
N1 2431(2187,2703) 2427(2184,2696) 2427(2184,2697)
N2 2259(1915,2664) 2233(1890,2639) 2232(1891,2635)
N3 2259(1915,2664) 2227(1878,2641) 2229(1883,2639)
N4 2185(1939,2462) 2164(1922,2437) 2192(1948,2467)
N5 1385(1178,1630) 1364(1161,1602) 1403(1196,1646)
N6 2285(1902,2746) 1649(855,3178) 1948(1223,3104)

Point estimates and 95% confidence intervals of the demographic parameters from the
selected model fit to the golden mantella data. The second and third columns provide the
results from fitting with the complete set of latent histories using the original and penalized
likelihoods while the fourth column provides the results from fitting with the 10% of latent
histories having the highest probabilities given the initial values.


