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Summary. Accurate forecasting of the U.K. gross value added (GVA) is fundamental for
measuring the growth of the U.K. economy. A common nonstationarity in GVA data, such
as the ABML series, is its increase in variance over time due to inflation. Transformed
or inflation-adjusted series can still be challenging for classical stationarity-assuming fore-
casters. We adopt a different approach that works directly with the GVA series by advanc-
ing recent forecasting methods for locally stationary time series. Our approach results in
more accurate and reliable forecasts, and continues to work well even when the ABML
series becomes highly variable during the COVID pandemic.
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1. Introduction

The literature on forecasting stationary time series has been established for many years.
See, for example, Gardner (1985) or Box and Jenkins (1970) with easily implemented
code readily available on a variety of platforms. Rather surprisingly, the same cannot
be so readily said when it comes to forecasting of nonstationary time series. Indeed, it is
not uncommon for analysts to forecast time series assuming, but not testing for, second-
order stationarity. Yet, as Janeway (2009) describes, there can be grave consequences
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for ignoring this nonstationary structure. This article seeks to address this by providing
practical, implemented forecasting methods for nonstationary series.

Our work is motivated by a problem arising from the accurate forecasting of economic
time series. Specifically we consider the ABML time series, which contains values of the
U.K. gross value added (GVA), a major component of the U.K. gross domestic product
(GDP). Both are vitally important economic statistics, with accurate forecasts being
crucial in measuring the size of and growth in the UK economy. Our ABML series is
recorded quarterly from quarter one 1955 until quarter four 2020, consists of T' = 264
observations and is plotted in Figure 1. The impact of the ‘great financial crisis’ of 2008
and the COVID pandemic during 2020 can be clearly seen. The data can be acquired
from the Office for National Statistics website https://www.ons.gov.uk.
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Fig. 1. The ABML time series.

As with many economic time series, ABML exhibits a clear polynomial-like trend,
which is characteristic of an integrated economic time series. Using standard statistical
time series procedure, e.g. Chatfield (2003), we remove the trend using second-order
differences. The second differences of our ABML series, including and not including the
COVID period (up to Q4 2019), are shown in Figure 2, the latter amply demonstrating
the dramatic impact of the COVID pandemic.

Both figures strongly suggest that the series is not second-order stationary, in that the
variance of the series increases markedly over time. Methods from Nason (2013b) show
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Fig. 2. The second differences of the ABML time series (a) with and (b) without the COVID
pandemic period.

that the correlation also changes over time. Much of the increase in variance observed in
Figure 1 is probably due to inflation. However, we also analysed two different inflation-
corrected versions of ABML, one provided by the U.K. Office of National Statistics, and
both of these reject the null hypothesis of second-order stationary, as determined by tests
of stationarity in Priestley and Subba Rao (1969) and Nason (2013b). Consequently,
given that our series is nonstationary, to attempt forecasting we ought to use methods
designed for such series.

The fundamentals of nonstationary forecasting have been considered by several au-
thors, but mostly from a theoretical standpoint. See, for example, Whittle (1963),
Abdrabbo and Priestley (1967), Subba Rao (1973) and Hallin (1986). Dahlhaus (1996)
uses a version of Kolmogorov’s formula (Brockwell and Davis, 1991, Theorem 5.8.1) for
zero-mean locally stationary time series, paralleling the Subba Rao (1973) result for the
oscillatory process model. Several other methods for nonstationary series forecasting ex-
ist, such as the neural network method of Chow and Leung (1996), Mercurio and Spokoiny (2004)
or the simple, but effective, time-varying unconditional variance model of Van Bellegem and von Sachs (2004).

Fryzlewicz et al. (2003) derived time-varying Yule-Walker equations for the locally
stationary wavelet (LSW) model of Nason et al. (2000), introducing local Yule-Walker
estimators and solvers. The authors carefully established the theoretical properties of
their estimators and proposed a practical forecasting methodology, which included pa-
rameter selection advice. However, as a grid search based approach, it can be computa-
tionally intensive to implement in practice.

Our aim in this article is to develop a new, readily implemented, automated approach
to forecasting LSW time series. Here, we assume future observations can be modelled in
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terms of present and recent past values and adopt the stance of Fryzlewicz et al. (2003),
thus restricting our attention to predictors that are linear functions of the data and
seeking to minimize their associated mean square prediction error. We use the recently
proposed local partial autocorrelation (Killick et al., 2020) to dynamically select the
number of past time series observations to use in forecasting (denoted by p below), rather
than relying on the grid-type search proposed by Fryzlewicz et al. (2003). Our approach
is both computationally simpler and provides much improved forecasting results, which
we demonstrate on both simulated and real data.

Section 2 details the LSW forecasting framework from Fryzlewicz et al. (2003). Sec-
tion 3 introduces our improvement, uses of the local partial autocorrelation function to
estimate the local structure required for forecasting. Section 4 demonstrates this im-
proved performance on a range of simulated stationary and nonstationary time series.
Such a simulation study is required as although we strongly suspect our ABML gross
value added series is nonstationary, we cannot be absolutely sure. Hence, we need at
least some validation of our new methodology on both stationary and nonstationary
series. Section 5 provides our forecasting results on the ABML economic data series.
Section 6 provides further discussion and concludes.

2. Review of Locally Stationary Wavelet Time Series Forecasting

We begin by reviewing the locally stationary wavelet (LSW) model (Nason et al., 2000)

and its associated forecasting framework (Fryzlewicz et al., 2003). The LSW approach

for modelling nonstationary time series has been used in many fields, from climatology
(Fryzlewicz, 2003) and ocean engineering (Killick et al., 2013) to biology (Hargreaves et al., 2019),
medicine (Nason and Stevens, 2015; Embleton et al., 2022a) and finance (Fryzlewicz, 2005).

2.1. The Locally Stationary Wavelet Model

The LSW model (Nason et al., 2000; Fryzlewicz, 2003) encompasses sequences of doubly-
indexed stochastic processes { X 7}i—o,.. . 7-1, T = 27 > 1, having the following repre-
sentation in the mean-square sense

J
Xor =Y > wikrtir()é, (1)

j=1 k

where §;;, is a random orthonormal increment sequence and the {;(t)};, form a
discrete non-decimated family of wavelets based on a mother wavelet, 1(t), of compact
support. The quantities in (1) are assumed to observe a number of key properties.
Most notably E(;,) = 0 for all j,k, and hence E(X;r) = 0 for all ¢,T, together
with an assumption that Cov (&, &¢,m) = 0;¢0km wWhere 6;; is the Kronecker delta.
In addition, Nason et al. (2000) also introduces a number of conditions to ensure the
amplitudes {wj .7} vary slowly within each level, thereby controlling the degree of
local stationarity of the process.

Within the LSW framework the evolutionary wavelet spectrum (EWS), defined as
S;(z) = |[W;(2)]%, at each scale j = 1,...,J and rescaled time z = k/T € (0, 1), plays
an analogous role to that of spectrum in the stationary time series setting. The EWS
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quantifies the process power distribution over time and scale, and is connected to a
localised autocovariance function defined for each (rescaled) time z and lag 7 € Z as
follows

lz7) = 3 5,(2)W5 (7). @

J=1

The {¥;(7)}; is a family of compactly supported autocorrelation wavelets, see (Nason et al., 2000).

Spectral estimation is usually carried out by means of the raw wavelet periodogram,
defined as I 1 = \dj,k;T|2, where dj .7 = Z;‘F:o X7k (t) are the empirical nondec-
imated wavelet coefficients. For notational simplicity, we shall refer to the raw peri-
odogram as ;.

An asymptotically unbiased estimator of the EWS is provided by the (corrected)
empirical wavelet spectrum

L(z) = A7'1(2), (3)

for all z € (0,1), where I(z) := (Ij,[zT])g'le is the raw wavelet periodogram vector and
Ais a J x J symmetric matrix with entries A;; = > _W;(7)¥,(7). As in the sta-
tionary setting, the wavelet periodogram is not a consistent estimator of the wavelet
spectrum (Nason et al., 2000). One way to overcome this is to smooth the raw wavelet
periodogram as a function of (rescaled) time within each scale j, and then to apply the
correction by A~! as in (3).

Once a well-behaved spectral estimator, f,, has been obtained, equation (2) can
be used to obtain a local autocovariance estimator ¢(z,7), e.g. in the notation above

é(z.m) = YLy Li(2) 5 (r).
The LSW framework has proved to be useful across a variety of tasks when compared
to competitor methods, e.g. for classification (Fryzlewicz and Ombao, 2009; Krzemieniewska et al., 2014),
clustering (Hargreaves et al., 2018), testing for stationarity (Nason, 2013b), spectral equal-
ity (Hargreaves et al., 2019) and replicate-effect (Embleton et al., 2022b), changepoint
detection (Nam et al., 2015) and testing for white noise and aliasing (Eckley and Nason, 2018).
We focus here on forecasting nonstationary time series, and in particular on the work of
Fryzlewicz et al. (2003).

2.2. Forecasting within the LSW framework

2.2.1. Existing work

Given observations Xgr,...,X;_1 1 of a zero-mean locally stationary wavelet process,
the method of Fryzlewicz et al. (2003) (FVBvS algorithm henceforth) proposes to pre-
dict the next observation X;r by taking a linear combination of the most recent p
observations

t—1
Xt = Z bi—1-s17Xs T (4)

s=t—p
Here the predictor coefficients b = (b 7, ...,b,—1,7) are chosen to minimize the mean

square prediction error (MSPE). This is similar to the typical forecasting approach in
the stationary context, except the weights b depend on time. Intuitively, the reason for
not using the whole series when predicting the next observation lies in the nonstationary
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character of the process: the beginning of the series might have a different structure to
the end and hence may not be useful for forecasting.

Fryzlewicz et al. (2003) showed that MSPE()AQ’T,Xt,T) = ]E(XLT - th)2 can be
approximated by b’ B;b, where By is a (p + 1) x (p + 1) matrix whose (m,n)th entry
is given by (Bt)mn :Z}]:l Si (M) Wi(m — n) = ¢ ("5, m —n) . The weights b can
then be obtained by solving the ‘generalised’ set of Yule-Walker equations

n+s n—+t
thlsTc<2T s—n>—c<2T,t—n),Vn—t—p,...,t—l, (5)

s=t—p

which can then be extended to h-steps-ahead prediction. These weights may be estimated
by plugging in a good estimator of the local autocovariance function, with the forecast
quality obviously highly reliant on the quality of these estimators.

Contrasting the usual approach in LSW estimation discussed in Section 2.1, the
FVBvS method proposes to obtain an estimate of the wavelet spectrum {S;(k/T)};
at all rescaled times corresponding to observed times (up to (t — 1)) without smooth-
ing and then to obtain an estimated local autocovariance ¢(k/T,7) at each time k =
t—p,...,t —1 and lags 7. For consistency, Fryzlewicz et al. (2003) smooth the esti-
mated local autocovariance by means of a standard kernel smoothing method (using
a normal or box kernel) with a chosen bandwidth that the authors denote by g. As
well as providing a consistent estimator for the observed times, smoothing the local au-
tocovariance additionally allows the forward estimation of the local autocovariance at
rescaled time ¢/T. This (smoothed) estimated local autocovariance can then be used
in the generahsed Yule-Walker equations (5) and the weights b derived. The forecast
Xt,T Z s—t—p bt 1-s,7 X, is then obtained, as well as its associated prediction error.
Fryzlewicz et al. (2003) generalised the above one-step-ahead prediction to an h-steps
ahead.

2.2.2. Criticisms of the FVBvS Method

Whilst theoretically tractable, Xie et al. (2009) noticed that the FVBvS algorithm some-
times produces abnormally large forecasts. They identified the cause to be the occasional
near-singularity of local covariance matrices and proposed a modification of the algorithm
in order to stabilise the forecasts. Their proposal constrains the Yule-Walker solution
vector b to have unit norm. The authors note that the revised method consistently
produces better forecasts for a variety of prediction horizons.

A key quantity in calculating the forecast in equation (4) is p: the amount of recent
data used for prediction. Fryzlewicz et al. (2003) and Xie et al. (2009) used an adaptive
grid search method to select p, which requires a starting value pg. In their approach,
from one time point to the next, p can only increase or decrease by one thus sometimes
resulting in a slow adaption to the dynamics of the evolving series.

FVBvS suggested a procedure, also adopted by Xie et al. (2009), for simultaneously
selecting the parameters p (the number of most recent observations from the past used
to inform the forecast X;7) and g (the bandwidth of the smoothing kernel). Briefly,
their algorithm starts with some initial values for parameters p and g, and the pair (p, g)
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then are updated in an iterative process that evaluates their corresponding prediction
performance for known data. The underlying idea is that the (p,g) pair gets trained
over a segment of length m at the end of the series. Fryzlewicz et al. (2003) proposed to
choose m to be the length of the longest segment at the end of the observed series with
an apparent stationary behaviour, judged by wvisual inspection. Having made a choice
for the parameter m, the FVBvS algorithm can be summarised as follows

(a) Make an initial choice of parameters, say (po,go), and use it to obtain predicted
Xt_m,T by means of equation (4) using the previous py process observations.

(b) Predict X;_,, 1 also by using pairs of parameters around (po, go), 1.e. (po£1, go=£9)
for some fixed constant 4.

(¢) The pair that gives ‘closest’ forecasts (in the sense of the minimum relative absolute
prediction error) to the observed process is chosen, (p1, g1), say.

(d) Repeat steps (a)—(c). The updated pair of parameters is then itself updated through
predicting X;_,,417 from the previous p; observations and, by re-iterating this
process, a parameter pair (p, g) is obtained for predicting the desired X; 7.

Hence, despite this ‘automatic’ tuning, the practitioner must decide on the initial pa-
rameter pair (pg, go), the training length m and the smoothing kernel (normal or box)
used in the FVBvS method.

3. Automating the Locally Stationary Wavelet Forecast

Our proposal departs from the currently adopted practice by automating the forecasting
procedure. Instead of the smoothing and forward estimation being undertaken at the
level of the local autocovariance function, we take advantage of the recent advances in
local spectral estimation (Nason, 2013b) and propose to perform running mean peri-
odogram smoothing, from which forward estimation followed by correction are straight-
forward. This avenue affords local autocovariance estimation through equation (2) and
yields estimators with desirable properties (Nason, 2013b). In turn, this approach also
removes the need for the initial bandwidth choice (go) and training process since our pro-
posed periodogram smoothing contains an automatic bandwidth selection. In addition,
we propose to remove the choice of py and segment length m by adopting a localised esti-
mator for p in order to determine the (time-dependent) forecasting window. Specifically,
we use the local partial autocorrelation function (Ipacf) proposed by Killick et al. (2020),
as a measure of the localised conditional correlation structure. Details of this approach
are provided below.

3.1.  Proposed Ipacf-based forecasting (FORLAP)

Intuitively, the choice of p amounts to establishing the length of a (sub)interval over
which the process displays stationary behaviour, so that data over this interval can fea-
sibly contribute to the linear prediction. This is evocative of the stationary autoregressive
setting where the unknown dependence order p is chosen via the partial autocorrelation
function, ¢, using the theoretical property p = min{r : ¢(7) = 0} (Tsay, 2002, p. 36).
Of course, in practice, estimates ¢(7) are computed and, as these will never be exactly
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zero, their associated confidence intervals can be used to obtain an estimator p (see e.g.
Theorem 8.1.2 from Brockwell and Davis (1991)). This method of selecting the num-
ber of past observations to feed into prediction is widely used, even when the assumed
underlying process is not autoregressive.

Our proposal is to use a similar approach in which a localised version of p (and its es-
timate) is used to inform the length of the forecasting window. In our approach we adopt
the recently proposed local partial autocorrelation function (Ipacf) of Killick et al. (2020),
as well as a corresponding estimator. We next define their lpacf before demonstrating
how we can apply it to nonstationary forecasting.

Mathematically, Killick et al. (2020) define the local partial autocorrelation function
q(z,7) at rescaled time z and lag 7 as follows.

DEFINITION 3.1. Let {X; 7} be a zero-mean locally stationary wavelet process with
local autocovariance c(z,7) and spectrum {S;(z)}; that satisfy

Zsup le(z,7)| < 00,C = essizn(fzSj(z)|1ﬁj(w)|2 > 0,

=0 T >0

where )j(w) = Y, ;0(s)exp(iws). Then, the local partial autocorrelation function
(lpacf) at (rescaled) time z and lag T is given by:
(0) \TRO) p®) 12

_ (7)) Binbpry
q (27 T) - SO[ZT],T,T 53

6)
(f) (f) ’ (
(b[zTH-T)TB [z2T)+7 7 [2T)+7

where

(a) the quantity p.1) - is the last element in the vector @1y . (of length T) obtained
as the solution to the local Yule-Walker equations i.e. Brj@1)r = T[1]s

~ (f) (b)
(b) the matrices B s and B

as in the proof of Lemma A.1 from Fryzlewicz et al. (2003).

; (f) (0)
(c) the coefficient vectors b, and by

ing and back-casting prediction equations, or equivalently through minimisation of
the MSPE. See Section 3.1 and Proposition 3.1 from Fryzlewicz et al. (2003) for
details.

are the local approzimations of Zg%H-T;T and EEZ’};T’

are obtained as the solution to the forecast-

The right hand term under the square root in (6) is a measure of nonstationarity. For
a stationary process, the square root term equals one and the localised ¢(z, 7) coincides
with the classical partial autocorrelation measure (7). If there is a degree of nonsta-
tionarity within the data, then ¢(z,7) will be modified by the nonstationarity factor.
Killick et al. (2020) propose two methods for estimating the lpacf. For the purposes
of forecasting we prefer to use the second, more stable windowed estimator, denoted
Gw (z,7), which has been shown to have an asymptotically normal distribution and
practically to work well both in simulated and real data settings (Killick et al., 2020).
Crucially, this windowed estimator allows for the local estimation of the partial auto-
correlation at the last observation in the process (¢ — 1), as this is the point around
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which the prediction is made. Corollary 1 from Killick et al. (2020) then allows us to
construct confidence bounds for the local partial autocorrelation function. Recall that
choosing p in the stationary setting is akin to estimating the number of significant lags
in the partial autocorrelation function. We mimic this idea and obtain the estimate p
as the largest significant lag 7 in the confidence interval of gy (z,7) at rescaled time
z = (t—1)/T. However we stress that we do not necessarily assume that the underlying
process is necessarily autoregressive of any order. Future work could investigate whether
P is a consistent estimator of the true value of p if the underlying process was indeed
locally autoregressive.

Algorithm 1 details the steps of our proposed forecasting algorithm, FORLAP. Whilst
our theoretical framework is based on Fryzlewicz et al. (2003), our practical implemen-
tation differs considerably. Specifically, in addition to (i) using p as an appropriate value
of p, we also (ii) use the recent locally stationary wavelet covariance and bandwidth
estimation from Nason (2013b), implemented in the locits R package (Nason, 2013a),
and (iii) permit the covariance matrix regularization method of Xie et al. (2009) as an
option.

lpacf-based forecasting algorithm (FORLAP):
Assume we observed {Xor,...,X¢—1,70} with T = 27,

(a) Determine p via lpacf estimation: obtain the Ipact estimate ¢y (Killick et al., 2023a) cor-
responding to time (¢ — 1) and set p to be the largest significant lag in its confidence
interval.

(b) Spectral estimation: estimate the spectral content of the observed signal by correcting
(with the matrix A™1, see equation (3)) the running mean smoothed raw periodogram
Ly = (2s+1)7} Zﬁiifs I; ., where the bandwidth s is obtained automatically as described
in Nason (2013b,a). Note that this procedure also embeds forward smoothing of the raw
periodogram and thus enables the estimation of S;(k/T) for k =0,...,t.

(¢) Autocovariance estimation: Estimate the local autocovariance ¢(k/T, 7) by means of equa-
tion (2) at rescaled times z corresponding to observed times up to (f — 1) and lags 7 as
dictated by the generalised Yule-Walker equations (5). Also obtain é(¢t/T,7) by making
use of the extrapolated spectrum S;(t/T).

(d) Solve the generalised Yule-Walker equations: obtain the estimated time-dependent weight
vectors b by solving equations (5) over the most recent p observations, subject to the
regularisation constraint of Xie et al. (2009) if desired.

(e) Forecast X r: by using the linear combination of the last p observations with weights l;, as
described in equation (4). The 1 — « prediction interval uses the corresponding estimated

A “ Lo\ 1/2
MSPE: X, 7 + & 1(1 - a/2) (bTBtb)

Algorithm 1. Proposed FORLAP algorithm for nonstationary time series forecasting.
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4. Simulation Study

We assess the performance FORLAP by simulating from a variety of scenarios, including
both stationary and nonstationary examples, as detailed below. Our overarching goal
is to demonstrate the versatility of our proposed FORLAP forecasting technique and
its utility in the ‘toolkit’ of any data analyst interested in forecasting. Our test set
includes locally stationary wavelet processes as well as processes not represented by this
framework. In so doing, we aim to assess the forecast performance of our approach both
on realisations of wavelet processes but also a variety of other important model classes.

Below, we compare FORLAP to (i) the Fryzlewicz et al. (2003) method (FVBvS), (ii)
forecasting using time-varying autoregressive processes (TVAR) of order 2 and higher,
(iii) the Box-Jenkins forecasting procedure (B-J), designed for stationary time series
but commonly used by analysts even on nonstationary data (see e.g., the report from
U.K. Centre for the Measurement of Government Activity (2008)), as well as (iv) the
often employed exponential smoothing (ES) (Hyndman et al., 2008).

The simulations, and real data example in later sections, use the forecast package
(Hyndman and Khandakar, 2008), tvReg package (Casas and Fernandez-Casal, 2019) and
the smooth package in the R statistical programming language (R Core Team, 2022).
Specifically, we use the auto.arima function in the former package that automatically
chooses and fits an ARIMA model and in addition its forecast function for forecast-
ing, while time-varying autoregressive forecasting is carried out using the forecast
function in the latter package. Our FORLAP algorithm is implemented within the
forecastLSW package (Killick et al., 2023b), also in R. Forecasts are produced using
the method described in Section 3 and implemented in the forecast.lpacf function,
which makes use of the Ipacf function estimate gy implemented in the 1pacf R package
(Killick et al., 2023a).

In the simulations, we consider one-step-ahead forecasts over the stretch of last 20
observations, h = 1, although other horizons can be used. In addition, the methods and
associated software implementation work for arbitrary length time series even though
some example series below happen to be of dyadic length.

Our study presents empirically computed measures for the prediction interval cov-
erage rates and accuracy for all forecasting methods. Nominal rates ranging from 40%
to 90% in steps of 10% are used. The accuracy measure we adopt is the interval score
of Gneiting and Raftery (2007) which simultaneously penalises wide prediction intervals
and lack of coverage. In this setup, lower interval scores correspond to better prediction
intervals.

The results in Tables 1, 2 and 3 are based on averages taken over K = 500 runs.
Specifically, the final columns of each table contain for each method (i) the mean of the
prediction coverage ratios (MCR) and (ii) the mean interval score (MIS) at the 90% level,
both relative to Box-Jenkins. An MCR value greater than one demonstrates that the
respective method provides better predictive coverage than the classical Box-Jenkins,
while MIS values less than one indicate that the respective method provides better
prediction intervals, and balance between narrow range and coverage. We note that the
tables only show results corresponding to the TVAR2 method, but similar results are
also obtained when using higher orders (e.g. order 5), hence these are not reported here.
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Table 1. Empirical Prediction Interval Coverage Rates and Accuracy: stationary

underlying series. MCR=Mean Prediction Coverage. MIS= Mean Interval Score.

(Superior behaviour relative to B-d when MCR > 1, MIS < 1).
Nominal

40% 50% 60% T70% 80% 90% | MCR MIS

B-J | 39.3 485 585 68.6 79.0 89.2

Model A FORLAP | 38.8 48.0 581 682 783 88.8 1.00 1.00

N(0,1) FVBvS | 36.7 46.4 55.7 654 74.9 86.1 0.97 1.09

TVAR2 | 39.1 484 585 688 78.9 89.2 1.00 0.99

ES | 395 494 594 69.3 795 89.7 1.01 1.00

B-J | 3819 489 582 682 787 889

Model B FORLAP | 36.8 46.0 549 65.0 75.1 855 0.96 1.38

AR(1) FVBvS | 259 325 393 46.9 554 652 0.74 5.22

TVAR2 | 29.4 372 453 534 628 74.7 0.84 1.66

ES | 39.7 494 59.3 69.0 79.3 89.9 1.01 1.05

B-J | 392 493 59.1 69.1 79.8 894

Model C  FORLAP | 36.7 45.8 56.0 659 763 87.0 0.97 1.11

MA(1) FVBvS | 322 41.1 496 588 683 79.3 0.89 1.49

TVAR2 | 35.9 45.0 54.5 64.7 749 86.2 0.96 1.10

ES | 40.1 50.2 60.2 704 80.7 90.6 1.02 1.09

4.1. Stationary series

Table 1 shows empirical prediction interval coverage rates for three models each with
T = 128 and standard normal innovations. Model A simulates independent N(0,1)
variates, Model B simulates from a stationary AR(1) model with parameter o = 0.7,
and Model C simulates from a stationary MA(1) model with parameter § = —0.5.

The prediction coverage rates and accuracy for Box-Jenkins are best across all models,
with FORLAP and ES almost matching for coverage across all models. The accuracy
of FORLAP and ES for models A and C is close to their nominal values (a very similar
behaviour to TVAR2). For model B, ES has better accuracy, but still lower than that
of B-J. While all methods do well for model A, FVBvS and TVAR are markedly inferior
for model B, and to a lesser extent for FVBvS on model C.

As we designed this setup specifically to include stationary processes, a priori one
would have expected Box-Jenkins to be significantly better as it is designed for stationary
series. However, the results show that our proposed FORLAP method is competitive
even though it is not designed for stationary data, while the other nonstationary methods
underperform.

4.2. Nonstationary series

Model Specification. Tables 2 and 3 show coverage rates for ten nonstationary models,
summarised as follows. Models D and E are realisations of TVAR(1) processes of different
forms, whilst Models F and G are higher-order TVAR processes of orders two and twelve,
respectively. Models H-J correspond to different time-varying MA processes. Model K
is a uniformly modulated white noise process (Priestley, 1983, p. 826), whilst models
L and M are locally stationary wavelet processes. Complete model descriptions can be
found in A. In each case the underlying innovations are independent N (0,0%) random
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Table 2. Models D—H. Empirical Prediction Interval Coverage Rates and Accuracy: non-

stationary underlying series. MCR=Mean Prediction Coverage. MIS= Mean Interval
Score. (Superior behaviour relative to B-d when MCR > 1, MIS < 1).

Nominal

40% 50% 60% T0% 80% 90% | MCR MIS

B-J 314 39.6 47.8 57.1 67.5 79.1

Model D FORLAP 30.1 375 455 544 64.5 76.3 0.96 1.08

TVAR(1) FVBvS 21.6 273 333 39.7 476 57.7 0.73 3.88

TVAR2 27.6 34.6 422 50.1 59.6 71.3 0.90 1.21

ES 29.8 37.8 46.1 54.9 64.9 77.4 0.98 1.13

B-J 25.2 322 392 47.8 56.8 69.4

Model E FORLAP 19.4 246 30.2 36.0 43.1 51.9 0.75 2.49

TVAR(1) FVBvS 22.9 285 35.1 41.5 49.1 57.9 0.84 502.36

TVAR2 19.2 246 29.8 36.1 44.3 54.3 0.77 1.92

ES 186 24.1 30.1 36.9 44.8 56.1 0.80 1.92

B-J 29.8 38.2 46.6 554 65.7 77.80

Model F FORLAP 35.4 448 539 639 74.1 84.4 1.09 0.84

TVAR(2) FVBvS 29.5 374 46.3 55.0 64.8 76.0 0.98 1.45

TVAR2 29.8 37.8 46.2 553 654 76.9 0.99 0.93

ES 474 582 68.8 782 86.6 93.6 1.22 0.82

B-J 36.6 458 555 65.0 754 @ 86.1

Model G FORLAP 35.8 448 543 64.0 744 85.4 0.99 1.01

TVAR(12) FVBvS 33.3 41.7 50.2 595 694 80.5 0.94 1.32

TVAR2 | 35.10 44.1 52.9 628 73.3 84.4 0.98 1.00

ES 37.8 473 573 67.1 775 88.1 1.03 0.96

B-J 273 347 42.0 504 59.1 69.9

Model H FORLAP 33.1 424 509 60.1 694 80.2 1.17 0.66

TVMA(1) FVBvS 30.7 38.9 47.0 554 64.7 74.8 1.09 5.53

TVAR2 32.5 423 498 594 T71.0 82.6 1.20 0.53

ES 36.5 46.2 55.6 65.1 75.6 85.9 1.25 0.60




Table 3. Models I-M. Empirical Prediction Interval Coverage Rates and Accuracy:
nonstationary underlying series. MCR=Mean Prediction Coverage. MIS= Mean

Forecasting Gross Value Added

Interval Score. (Superior behaviour relative to B-J when MCR > 1, MIS < 1).

Nominal

40% 50% 60% T70% 80% 90% | MCR MIS

B-J | 33.1 419 50.7 60.2 70.6 82.3
Model I ~ FORLAP | 33.2 41.7 504 599 70.2 82.1 1.00 0.93
TVMA(1) FVBvS | 289 36.2 43.8 520 61.4 73.0 0.89 1.66
TVAR2 | 30.8 38.5 46.9 558 659 781 0.95 1.01
ES | 341 428 51.6 614 720 &83.9 1.02 0.96

B-J | 222 28.2 34.7 415 49.7 60.6
Model J  FORLAP | 28,0 353 429 51.6 60.9 73.0 1.22  0.80
TVMA(2) FVBvS | 314 39.4 480 56.9 67.0 78.2 1.32  0.88
TVAR2 | 22.0 28.2 34.5 420 50.7 61.7 1.03 0.96
ES | 226 29.1 354 43.0 516 62.9 1.05 0.96

B-J | 20.6 26.0 31.9 389 47.3 58.3
Model K  FORLAP | 26.3 33.4 40.5 48.7 582 704 1.23  0.79
TVWN FVBvS | 29.8 379 46.3 554 65.6 77.0 1.35 1.00
TVAR2 | 21.0 26.8 329 39.8 484 59.2 1.02 0.95
ES | 21.3 27.0 33.2 40.1 488 59.7 1.03 0.96

B-J | 416 514 611 712 815 910
Model L  FORLAP | 41.9 523 62.5 726 824 91.7 1.01 1.05
LSW-P3 FVBvS | 31.3 39.1 470 56.0 659 77.4 0.85 4.03
TVAR2 | 41,5 51.0 61.1 71.2 81.2 91.0 1.00 1.02
ES | 43.3 53.8 64.4 747 845 934 1.03 1.02

B-J | 34.2 427 51.7 60.2 706 824
Model M FORLAP | 36.8 45.8 555 65.1 75.1 854 1.05 1.02
LSW-P4 FVBvS | 33.7 421 50.9 59.7 69.7 80.8 0.99 2.24
TVAR2 | 31.8 40.0 48.6 579 67.6 79.3 0.97 1.02
ES | 372 471 56.5 66.0 764 86.8 1.06 0.95

13
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variables, and all realizations are of length 7' = 128, except for model L where T' = 512,
and model M where T' = 350 for variety.

Discussion of simulation results. The FORLAP method provides much better coverage
(MCR > 1.05) than Box-Jenkins for five of the models considered (F, H, J, K, M). For
the models D, G, I, L the two methods are broadly comparable. The method accuracy
as measured by MIS provides a broadly similar picture, with FORLAP superior to B-J
for five models F, H, I, J, K (MIS < 0.95), similar calibration for models G, L. and M
(MIS in the range 0.95-1.05) and lower for models D and E (MIS > 1.05).

For model E no approach proves particularly competitive. However, this is not alto-
gether surprising as model E is neither stationary nor, in fact, locally stationary with Lip-
schitz smoothness constraints as it experiences six changes in parameter, «(z), over only
T = 128 observations. Hence, a stationary forecasting system is clearly not appropriate
and estimation by the nonstationary models is likely to be poor, as few observations
contribute to any region of local stationarity.

When compared to the Box-Jenkins method, the FVBvS method provides much
better coverage (MCR > 1.05) for three of the models considered (H, J, K); of these,
FORLAP outperforms FVBvS on model H (1.17 vs 1.09) and has lower performance
on models J and K (1.22 vs 1.32, and 1.23 vs 1.35, respectively). The accuracy of the
FVBvS prediction intervals is lower (MIS > 1.05) than that of B-J for all models except
for models J (superior) and K (the same).

When comparing TVAR coverage rates to those achieved by the Box-Jenkins baseline,
TVAR outperforms B-J on model H and delivers comparable results (MCR values in the
range 0.95-1.05) on all other models except for underperforming on models D and E.
Unlike FVBvS, TVAR achieves similar levels of accuracy to B-J (MIS in the range
0.95-1.05) for models G, I, J, K , L, M, worse accuracy for models D, E, and better
performance for models F and H.

The forecasting accuracy measure (MIS) consistently indicates that our proposed
FORLAP technique delivers better calibrated prediction intervals than FVBvS on all
models, with sizeable performance gaps in favour of FORLAP. This metric indicates
that FORLAP and TVAR deliver comparably accurate prediction intervals for models
G, L and M (ratio in the range 0.95-1.05), FORLAP is better for models D (1.08 vs
1.21), F (0.84 vs 0.93), 1 (0.93 vs 1.01), J (0.80 vs 0.96) and K (0.79 vs 0.95), and worse
for models E (2.49 vs 1.92) and H (0.66 vs 0.53). According to the coverage rate measure,
FORLAP is superior to TVAR on all models, except for models E, G, H, I and L where
they deliver similar rates (corresponding to ratios in the range 0.95-1.05).

The simulations for model F are particularly revealing. The underlying model is a
TVAR(2) and, indeed, the forecasting method based on that (TVAR2) performs some-
what better (MCR 0.99, MIS 0.93) than the B-J method. However, it is interesting that
our new method, FORLAP, produces best coverage (1.09) and accuracy (MIS 0.84).
Note that the other wavelet-based method, FVBvS, has comparable coverage to TVAR2
(0.98) at the price of sacrificing some accuracy (MIS 1.45).

In the TVAR2 setting, the real competitor for FORLAP turns out to be ES, which
produces comparable results in terms of coverage and accuracy rates (corresponding
ratios in the range 0.95-1.05) to FORLAP for all models, except for ES obtaining superior
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Table 4. Percentage of times that the Box-Jenkins
and the FORLAP methods’ 95% one-step ahead
forecast prediction intervals contain the truth over the
last 50 time points.

ABML series
Method With COVID Without COVID
Box-Jenkins 66 72
FORLAP 90 90

results on model H and FORLAP on models J and K, where ES performs closer to the
B-J benchmark.

In addition to the simulations described above, we repeated our simulations on these
models with ¢4-distributed innovations scaled to have unit variance for B-J, FORLAP
and FVBvS. With the heavier-tailed innovations the relative performance of Box-Jenkins
compared to FORLAP forecasting changes negligibly: the largest MCR. change is 0.05
and 70% of the changes are less than 0.02.

Overall, one could conclude that, for zero-mean locally stationary series, the FORLAP
method is much better than the Box-Jenkins method in two-thirds of cases and about
the same in the remaining one-third, and provides an improvement over all of the other
nonstationary-based methods across the majority of our models.

5. Forecasting the U.K. National Accounts time series

We now return to consider the ABML series that helped motivate this work in Sec-
tion 1. The Box-Jenkins method is sometimes used to forecast the ABML series,
see U.K. Centre for the Measurement of Government Activity (2008) for example. Ta-
ble 4 shows that FORLAP seriously outperforms the Box-Jenkins methodology for fore-
casting the second differences of ABML series at one-step ahead. Here, the input data is
provided to both methods up tot =T —n and T'—n + 1 is forecast and the percentages
are average success rates over n =T —51,...,T — 1.

Figure 3 compares FORLAP against Box-Jenkins forecasting for ABML in a similar
way to Table 4 except for the last 20 time points. The good performance of FORLAP
relative to Box-Jenkins can be discerned, e.g. particularly Q1 and Q4 of 2020, but the
sheer size of the movements during the pandemic obscures what the forecasts are doing
earlier in the plot. So, Figure 4 shows a similar plot except the vertical axis is plotted
on a signed square-root transformed scale to de-emphasize the COVID period. Here is
is clear that FORLAP succeeds 16 times out of 20 (80%), whereas Box-Jenkins succeeds
13 times (65%).

After extensive experiments with the ABML data it seems that Haar wavelets perform
best. Also, FORLAP’s advantage persists over high step-ahead forecasts (e.g. h = 2, 3),
but diminishes and becomes worse the further into the future. This is perhaps not
surprising, due to the quite strong nonstationarity and Box-Jenkins, in this case, still
providing some degree of ‘catch all’ forecast accuracy.
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Figure 3. Forecast results for one-step ahead forecasting of the final twenty observations of
the ABML series including the COVID period. Green diamond=True value of series. Black=Box-
Jenkins. Red=FORLAP. Solid circle indicates point forecast and double-headed arrows indi-
cate 95% prediction intervals.

6. Discussion

We have demonstrated how the recently proposed local partial autocorrelation function
introduced in Killick et al. (2020) can be used to select the p parameter, i.e. how much
recent data is relevant, in the locally stationary forecasting method of Fryzlewicz et al. (2003).
Our subsequent modified forecasting method, FORLAP, outperforms not only the origi-
nal Fryzlewicz et al. (2003) approach, but also the method based on direct time-varying
autoregressive estimation and the Box-Jenkins method, on the majority of our simulated
examples and on the practical data application.

A bootstrap test might provide an alternative to using asymptotic-based confidence
intervals to select p. One could view p as a kind of local autoregressive model order,
even if the underlying process was not autoregressive, and attempt to develop a theory
of how well p estimates it if the underlying process was autoregressive, but this is beyond
the scope of the current work. Additionally, the simulation results in Section 4 provide
good examples of the phenomenon highlighted by Kley et al. (2017), where the best
predictor of a nonstationary time series might be a stationary predictor, and vice versa,
e.g. Model E in Table 2. Finally, the predictive interval coverage, and our use of the



Forecasting Gross Value Added 17

300
|

200
|

100
|

0
|
'y

-100

Truth, Forecast and Intervals (signed square root scale)

-200

I I I I I
2016 2017 2018 2019 2020

Year

Figure 4. Forecast results for one-step ahead forecasting of the final twenty observations of
the ABML series including the COVID period plotted on a signed square root scale. Green
diamond=True value of series. Black=Box-Jenkins. Red=FORLAP. Solid circle indicates point
forecast and double-headed arrows indicate 95% prediction intervals.

least-squares loss function are not necessarily the only, or the best, methods for assessing
predictive performance and problem-specific/problem-tailored measures are of value. For
a more detailed discussion see Gneiting (2011), for example.

For the ABML time series, it is fascinating to see how well FORLAP does against Box-
Jenkins even during periods of significant change, as, for example, during the COVID
pandemic. We can only put this down to the flexible modelling and forecasting afforded
by a method that explicitly acknowledges the nonstationary nature of the time series.
Part of FORLAP’s success is that it can position its forecast intervals better, but it can
respond much quicker to variance changes and this can be seen in the forecast intervals
shown in Figures 3 and 4.

Further research is also necessary to properly develop a mature understanding of the
proposed forecasting methodology, particularly on comparisons with other methods for
forecasting of nonstationary series (where code is not freely available), on different types
of series, and at forecast horizons other than h = 1.

The FORLAP forecasting method is available within the forecastLSW R package on
CRAN.
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A. Simulation study models for nonstationary series

Model D corresponds to the time-varying autoregressive TVAR(1) model Xy = oy X1+
Zyfort =1,...,128 and oy = a(t/T) where a(z) = 1.82 — 0.9 for z € (0, 1).
Model E corresponds to the TVAR(1) model with the same specification as for Model
D except that
5.62—0.9 for z € (0,1/8),
482 —-0.8  for z € (1/8,2/8),
3.2z—-04  for z € (2/8,3/8),
a(z) =408 for z € (3/8,5/8),
—242+2.6 for z € (5/8,6/8),
—7.2z45.4 for z € (6/8,7/8),
—1.62+0.5 for z € (7/8,1).

Model F corresponds to the TVAR(2) model X; = a1 X¢—1 + a0 X¢—2 + Z; with
it = a;(t/T) for i = 1,2 and o;(2) = az(z) = 1.6z — 1.1 for z € (0,1).

Model G corresponds to the TVAR(12) model X; = aq ¢ X1+ Xi—ot+a12: Xi—12+
Zy where a; 3 = o(t/T) for i = 1,2,12 and ;1 (2) = aa(z) = 0.72—0.4 and «aj2(2) = 0.3z
for z € (0,1).

Model H corresponds to the TVMA(1) model X; = Z; + 5:Z;—1 where 5, = B(t/T)
where 3(z) =1 for 2z € (0,0.9) and 5(z) = —1 for z € (0.9, 1).

Model I corresponds to the TVMA(1) model as in Model H but with (z) =2z — 1
for z € (0,1).

Model J corresponds to the TVMA(2) model X; = Z; + 51421 + P24 Zi—2 with
Bit = Bi(t/T) for i = 1,2 where $1(z) = 2z — 1 and f2(2) = 9z — 0.8 for z € (0, 1).

Model K corresponds to uniformly modulated white noise, see Priestley (1983, page
826), where X; = 07Z; where 07 = o%(t/T) where 0%(z) = (92 + 1)*/2 for z € (0,1).
Note, this model might be a good fit for the ABML time series from Section 1.

Model L is a locally stationary wavelet (LSW) process from Nason et al. (2000) with
spectrum P3 from Nason (2013b) defined by S;(z) = 0 for j > 2, S1(2) = 1 —(2—3)* and
Sa(z) = Si(z+3) for z € (0, 1), assuming periodic boundaries for spectrum construction
only.

Model M is a LSW process from Nason et al. (2000) with spectrum P4 from Nason (2013b)
defined by S;(z) = 0 for j = 2,j >4 and S1(2) = exp {—4(z — 1)}, 93(2) = S1(z — 1)
and Si(z) = Si(z + i), for z € (0,1), assuming periodic boundaries for spectrum con-
struction only. The process, X, is computed for ¢ = 1,...,512 and the first T = 350
values are returned.




