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Secure perception-driven control of mobile robots using chaotic
encryption

X. Zhang, Z. Yuan, S. Xu, Y. Lu and M. Zhu

Abstract— This paper considers perception-driven control of a
mobile robot for path tracking where perception is performed by a
machine learning system. The robot is subject to passive attacks
and evasion attacks on image transmission. To defeat the passive
attacks, we adopt chaotic encryption technique to disguise pixels
of plain images in real time, and construct a bank of fuzzy unknown
input observers to decrypt the cipher pixels in parallel. We char-
acterize the security level of the proposed chaotic cryptographic
scheme. As for the path tracking, we derive a set of LMI conditions
of the existence of a robust controller, which renders the output
zeroing manifold attractive and invariant by using internal model
technique, and also attenuates the effects of the evasion attacks
and learning errors of the machine learning system by reducing
L2 gain. Simulations are conducted in the CARLA simulator to
demonstrate robust path tracking and secure image transmission.

Index Terms— Robotic motion planning, perception, se-
curity

I. INTRODUCTION

MOBILE robotic systems, e.g., unmanned aerial vehicles and
self-driving cars, are becoming ubiquitous and have found

a number of civilian and military applications [1]. Mobile robots
integrate heterogeneous devices for embedded sensing, mobile com-
puting and real-time control. These devices exchange information via
on-board communication medium. Moreover, modern mobile robots
adopt machine learning techniques to improve intelligence. However,
the adoption of new technologies brings a wide spectrum of privacy
and security issues. This paper specifically considers two classes of
attacks. One is passive attacks on intra-robot communication, which
can be launched to eavesdrop confidential information during data
transmission. The other one is active attacks against machine learning
systems at test time.

Literature review. In control systems, cryptography has been widely
used to ensure data privacy during transmission. Existing works
mainly focus on encrypting all the data in the control systems by
homomorphic cryptosystems, such that all the operations in encrypted
control systems are performed over encrypted data [3]. This common
feature renders the sensitive data to be protected from eavesdroppers.
However, homomorphic encryption could be slow and computation-
ally expensive as key length increases [4], hence it is not suitable for
high-dimensional image data encryption, especially when encryption
needs to be done in real time. Since chaotic systems are extremely
sensitive to initial states and system parameters, chaotic encryption
methods can provide exceptionally good properties with regard to
strong security and high speed [6]. However, chaotic encryption is
also not integrated with control problems of dynamic systems.

Adversarial machine learning has been receiving increasing at-
tention [23], [24]. In general, machine learning systems could be
compromised during the training and test stages. First of all, training
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of a machine learning model requires an enormous amount of
computational resources and data gathered by diverse sources, and
adversaries can inject dirty samples into the training dataset to
manipulate the model [7]. Secondly, evasion attacks at test time
generate a set of elaborate samples to evade detection [8]. This set of
results do not consider mitigation of the attacks on machine learning
algorithms which are deployed on control systems.

There have been recent works which study attack-resilient es-
timation and control of robot systems. Availability, integrity, and
confidentiality is the classic categorization of information security.
Availability refers to that authorized users are able to access data
whenever required. Denial-of-Service (DoS) attacks are commonly
launched to compromise data availability and prevent legitimate users
from accessing specific network resources [9]. Integrity refers to that
data is not manipulated such that it keeps authentic, correct and
reliable. Sensor attacks are typical examples to compromise data
integrity and are studied in papers [10]. The above mentioned DoS
attacks and sensor attacks are classified into active attacks and are
well-studied. In contrast, passive attacks in robotic systems that can
be launched to compromise data confidentiality [2] have not been
sufficiently discussed yet.

Contributions. In this paper, we consider perception-driven control
of a mobile robot for path tracking where perception is performed
by a machine learning system. The robot is subject to passive attacks
and evasion attacks on image transmission. Major contributions are
listed as follows:

1) To defeat the passive attacks, we adopt chaotic encryption
technique to disguise pixel values in the real-time plain images,
and construct a bank of fuzzy unknown input observers to
decrypt the cipher pixels in parallel.

2) We provide a sufficient condition of the equivalence between the
proposed chaotic cryptographic scheme and conventional self-
synchronizing stream cipher by using flatness.

3) We derive a set of linear matrix inequality (LMI) conditions
of the existence of a robust controller, which renders the output
zeroing manifold attractive and invariant by using internal model
technique, and also attenuates the effects of the evasion attacks
and learning errors of the machine learning system by reducing
L2 gain.

The CARLA platform is used to conduct simulations on double
integrator. The simulation results demonstrate robust path tracking
and secure image transmission. Preliminary results of this paper were
published in [12] where the system can track arbitrary differentiable
paths under the assumptions on matching condition and observability.
This paper relaxes these two assumptions, and instead assumes that
the path is generated by a nonlinear exosystem. Moreover, this paper
provides the theoretical and experimental results including attenuation
to evasion attacks.

Notions and notations: Throughout the paper, we use R to rep-
resent the set of real numbers. The set of positive real numbers is
denoted by R+. We use Rm×n to denote the set of m×n real matri-
ces. The set of m-dimensional symmetric positive definite matrices is
denoted by Sm+ . The complement of set B1 with respect to a set B2

is written by B2/B1. We denote Bn
r the ball centered at 0 with radius

r in Rn. A block diagonal matrix with submatrices X1, . . . , Xp on

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3312581

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 07,2023 at 15:56:34 UTC from IEEE Xplore.  Restrictions apply. 



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

its main diagonal is denoted by diag{X1, . . . , Xp}. For a matrix
Γ ∈ Rm×n, ΓT denotes its transpose, the hermitian operator H {·}
is defined as H {Γ} ≜ Γ + ΓT, the orthogonal complement matrix
Γ⊥ is defined as Γ⊥Γ = 0 and Γ† ≜ (ΓTΓ)−1ΓT is the left
pseudo-inverse of Γ. We use σ(Γ) to denote the spectrum of Γ. We
use λmin(Γ) and λmax(Γ) to denote the minimal eigenvalue and
maximal eigenvalue of matrix Γ, respectively. Moreover, we use the
symbol ⋆ in a linear matrix inequality (LMI) to denote entries that
follow from symmetry. Let A be an n× p matrix and B an m× q
matrix. The Kronecker product of A and B is denoted by A⊗B. We
denote the ith column of A by a·,i ≜ [a1i a2i . . . ani]

T, and the
vec operator generates a column vector from a matrix A by stacking
the column vectors of A = [a·,1 a·,2 . . . a·,p] below one another, i.e.,

vec(A) ≜
[

aT·,1 . . . aT·,p
]T

.

For function w(t) : [0,∞) → Rm, we denote ∥w[t1,t2]
∥ ≜

supt1≤t≤t2
∥w(t)∥. For function f(x) : Rn → R, we denote by

∇f(x) its gradient at x.
A function γ : R+ → R+ is of class K if it is continuous, γ(0) =

0, and strictly increasing; and is of class K∞ if in addition it is
unbounded. A function β : R+ × R+ → R+ is of class KL if for
each fixed t ≥ 0, β(s, t) is of class K and for each fixed s ≥ 0,
β(s, t) decreases to zero as t → ∞. Function composition is defined
by g ◦ f(x) ≜ g(f(x)).

Consider a nonlinear system

ẋ(t) = f(x(t), w(t)), y(t) = h(x(t)) (1)

where f : Rn ×Rm → Rn is locally Lipschitz continuous in x and
w with f(0, 0) = 0, h : Rn → Rl is continuous with h(0) = 0 and
w(t) is a piecewise continuous, bounded function of t for all t ≥ 0.

Definition 1: System (1) is input-to-state stable (ISS) from w(t)
to x(t) if there exist a class KL function β and a class K function
γ such that for any initial state x(t0) and any input w(t), it holds
that ∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ

(
∥w[t0,t]

∥
)

for all t ≥ t0.
The following flatness extends controllability from linear systems

to nonlinear systems.
Definition 2: [21] System (1) is said to be flat if there exists

output y(t), referred to as flat output, such that state x(t) and input
w(t) can be expressed as a function of the flat output y(t) and a
finite number of its derivatives.

II. PROBLEM FORMULATION

This section introduces secure perception-driven control of a
mobile robot by applying chaotic encryption to communication of
sensor readings.

Fig. 1. Feedback loop of perception-driven control.

A. System model without encryption and evasion attacks
Consider the feedback loop in Fig. 1 where encryption and decryp-

tion, together with evasion attack d(t) are excluded. The dynamic

system of the robot is given by the following linear time-invariant
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control signal
and y(t) ∈ Rl is the output. The camera can generate state-dependent
images, which is modeled by z(t) = q(x(t)) where z(t) ∈ Rnp is
the image vector and np ≫ n. As [13], the image z(t) passes through
the perception unit, and the output is given as y(t) = p(z(t)) where
p : Rnp → Rl is the perception mapping. The output y(t) is used
to generate control command u(t). Given a desired output matrix
C, the perception mapping p is learned off-line from training data
set {z(t), Cx(t)} such that p ◦ q(x(t)) = Cx(t). Due to inherent
learning errors, p ◦ q(x(t)) could be different from Cx(t). Then
the output equation becomes y(t) = Cx(t) + w(t) where w(t) ≜
p ◦ q(x(t))− Cx(t) represents the learning error of mapping p.

B. System model with encryption and evasion attacks

Now we consider the complete feedback loop in Fig. 1 where
encryption, decryption, and evasion attacks are included. The 8-bit
image data z(t) can be tampered by evasion attacks d(t) ∈ Rnp . If
the image is free of evasion attacks at time instant t then d(t) = 0np ,
otherwise the evasion attacks can take any value from −255 to 255 to
alter the pixels. We denote the corrupted image by ž(t) ≜ z(t)+d(t),
which is transmitted through communication channels. In order to
ensure confidentiality of the image, the camera encrypts the plain
image using secret key Θ and sends the cipher image to the perception
unit. Then the perception unit decrypts the encrypted image using
Θ. The encryption mapping denoted by EΘ : Rnp → Rne is used
to mask the corrupted plain image and the corresponding corrupted
cipher image is represented as ze(t) ≜ EΘ(ž(t)). The decryption
mapping denoted by DΘ : Rne → Rnp is used to decrypt the cipher
image and the decrypted image is represented by žd(t) ≜ DΘ(ze(t)).
The decrypted image žd(t) passes through the perception unit and
thus y(t) = p(žd(t)). By function composition, we get y(t) = p ◦
DΘ ◦ EΘ ◦ (q(x(t)) + d(t)). Notice that DΘ ◦ EΘ(ž(t)) may not be
equal to ž(t).

The overall dynamic system for Fig. 1 is given by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) + v(t) (3)

where v(t) ≜ p ◦ DΘ ◦ EΘ ◦ (q(x(t)) + d(t))− p ◦ q(x(t)) +w(t).
Note that the difference between the first two terms represents the
error caused by decryption and evasion attacks.

C. Control objective and assumptions

We consider a scenario where the robot dedicates to keeping track
of a leading robot. We aim to design a secure perception-driven
controller to achieve two goals:

(G1) image data ž(t) is transmitted securely;
(G2) output y(t) can keep track of the leading robot whose trajectory

is generated by a nonlinear exosystem.

We impose a mild assumption on mappings p and q.
Assumption 1: Mappings p and q are continuous.
Neural networks are widely used for perception (see [14] and

references therein). Since a neural network can be chosen by a
composition of affine functions and continuous activation functions,
e.g., sigmoid and ReLU, then p can be made continuous. By
calibrating the camera, the pixel coordinates can be obtained from
the world coordinate by linear matrix transformations, e.g., rotations
and translations [15]. Then, the continuity of mapping q is satisfied.
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The following assumption requires that the learning errors along
the trajectory of system (2) are uniformly bounded. Remark 4 dis-
cusses how to design the perception unit p to satisfy the assumption.

Assumption 2: ∥w(t)∥ ≤ cw for some cw > 0 and all t ≥ 0.

III. MAIN RESULTS

This section develops a secure perception-driven controller which
includes two components. One is chaotic encryption which protects
confidentiality of image data. The other is a robust path tracking
controller which attenuates the error caused by decryption and
evasion attacks.

A. Chaotic encryption

This section employs message-embedded chaotic encryption, and
injects the plain image into a chaotic system. Many chaotic systems,
e.g., Lorenz’s system and Chua’s circuit [6], can be written as a
Takagi-Sugeno fuzzy system

ẋe(t) =
∑N

i=1 µi(ξ(t))(Ae,ixe(t))

ze(t) =
∑N

i=1 µi(ξ(t))(Ce,ixe(t))
(4)

where xe(t) ∈ Rns , ze(t) ∈ Rne are the state and output vectors,
respectively; N is the number of subsystems, Ae,i and Ce,i are
matrices with appropriate dimensions. The weighting functions µi(ξ)
depend on parameter vector ξ and satisfy the convex sum property∑N

i=1 µi(ξ) = 1 and 0 ≤ µi(ξ) ≤ 1. Note that ξ is usually a
function of measurable state variables. As [20] defined, system (4)
exhibiting chaos is commonly referred to as a transmitter.

The camera maintains a message-embedded cryptosystem for each
pixel žj(t) ∈ R, and the cryptosystems are in the same form and
executed in parallel. To simplify notations, we remove the subscript
j of each pixel žj(t), and directly use ž(t) to represent a pixel in the
remaining of this section. In particular, each pixel ž(t) ∈ R of the
corrupted plain image is injected into the transmitter (4) with zero
feedthrough matrix, which becomes the following cryptosystem

ẋe(t) =
∑N

i=1 µi(ξ(t))
(
Ae,ixe(t)

)
+Bež(t)

ze(t) = Cexe(t).
(5)

In above, the pixel ž(t) acts as an unknown input of the transmitter
whose state is xe(t) ∈ Rns and output is ze(t) ∈ Rne . We represent
Be and Ce as the input matrix and output matrix, respectively.
In cryptography, xe(t) can be considered as keystream. For each
cryptosystem (5), the initial state xe(0) as well as the matrices
Ae,i, Be, Ce can be considered as part of the secret key Θ. The
perception unit aims to use ze(t) and że(t) to recover the corrupted
plain pixel ž(t). This can be achieved via an unknown input observer
(UIO).

In this paper, we pick a non-singular matrix Ce such that
rank(CeBe) = rankBe in the design of the cryptosystem (5). Then
we decompose cryptosystem (5) into two subsystems: one is free of
the unknown input ž(t), and the other is dependent on it. Matrices
Te ∈ Rns×ns and Ue ∈ Rne×ne are defined as

Te ≜

[
B⊥
e

(CeBe)
†Ce

]
, Ue ≜

[
(CeBe)

⊥

(CeBe)
†

]
. (6)

Note that Te is nonsingular since T−1
e Te = Ins where T−1

e ≜[
T̃e Be

]
and T̃e ≜

[
Ins −Be(CeBe)

†Ce

]
(B⊥

e )†. With the

state transformation x̄e ≜ Texe and output transformation z̄e ≜

Ueze, cryptosystem (5) is partitioned into a new form

˙̄xe,1(t) =
∑N

i=1 µi(ξ(t))
(
A1
e,ix̄e,1(t) +A2

e,ix̄e,2(t)
)

˙̄xe,2(t) =
∑N

i=1 µi(ξ(t))
(
A3
e,ix̄e,1(t)

+A4
e,ix̄e,2(t) + ž(t)

)
z̄e,1(t) = C̄ex̄e,1(t), z̄e,2(t) = x̄e,2(t)

where x̄e(t) ≜ [x̄e,1(t)
T, x̄e,2(t)

T]T, z̄e(t) ≜
[z̄e,1(t)

T, z̄e,2(t)
T]T, x̄e,1(t) ∈ Rns−1, x̄e,2(t) ∈ R,

z̄e,1(t) ∈ Rne−1, z̄e,2(t) ∈ R, and

A1
e,i ≜ B⊥

e Ae,iT̃e, A2
e,i ≜ B⊥

e Ae,iBe, C̄e ≜ (CeBe)
⊥CeT̃e

A3
e,i ≜ (CeBe)

†CeAe,iT̃e, A4
e,i ≜ (CeBe)

†CeAe,iBe.

It indicates that x̄e,2(t) can be directly recovered from z̄e,2(t),
i.e., x̄e,2(t) = z̄e,2(t). We use the following unknown-input-free
subsystem to reconstruct x̄e,1(t)

˙̄xe,1(t) =
∑N

i=1 µi(ξ(t))
(
A1
e,ix̄e,1(t) +A2

e,ix̄e,2(t)
)

z̄e,1(t) = C̄ex̄e,1(t),

and then the state xe(t) can be recovered as follows:

xe(t) = T−1
e

[
x̄e,1(t)
x̄e,2(t)

]
= T−1

e

[
x̄e,1(t)

(CeBe)
†ze(t)

]
. (7)

The perception unit uses the following state observer to recover xe(t)

˙̄̂xe,1(t) =
∑N

i=1 µi(ξ(t))
(
A1
e,i

ˆ̄xe,1(t)

+A2
e,iz̄e,2(t) + Le,i(C̄e ˆ̄xe,1(t)− z̄e,1(t))

)
x̂e(t) = T−1

e

[
ˆ̄xe,1(t)

(CeBe)
†ze(t)

] (8)

where ˆ̄xe,1(t) is the estimate of x̄e,1(t), and Le,i, i = 1, . . . , N ,
are the observer gains. Differentiating the output equation of cryp-
tosystem (5) with regard to t and replacing xe(t) with x̂e(t), the
decrypted pixel is given as

žd(t) =
∑N

i=1 µi(ξ(t))(CeBe)
† (że(t)− CeAe,ix̂e(t)

)
, (9)

and the decrypted image consists of žd(t). In theory, że(t) is required
for the above derivation of the decrypted pixel žd(t). We define the
state estimation error as ˜̄xe,1(t) ≜ x̄e,1(t) − ˆ̄xe,1(t), then by the
obtained state observer (8), we derive the error dynamics

˙̄̃xe,1(t) =
∑N

i=1 µi(ξ(t))
(
(A1

e,i − Le,iC̄e)˜̄xe,1(t)
)
. (10)

The following lemma employs a common Lyapunov function to de-
rive a sufficient condition for exponential convergence of estimation
errors, which guarantees the synchronization between the state xe(t)
of the cryptosystem (5) and the state x̂e(t) of the receiver (8).

Lemma 1: If there exist matrices Pe ∈ Sns−1
+ , Qe,i ∈

R(ns−1)×(ne−1), ∀i ∈ {1, . . . , N} and scalar γe ∈ R+, to satisfy
the following LMI conditions

(A1
e,i)

TPe + PeA
1
e,i − (C̄e)

TQT
e,i −Qe,iC̄e + γeI < 0,

∀i = 1, . . . , N, (11)

the error dynamics (10) is globally exponentially stable with observer
gain matrices Le,i = P−1

e Qe,i, and ∥ž(t) − žd(t)∥ diminishes
exponentially.

The proof of Lemma 1 is present in Appendix VI.A of [27].
Next, we discuss the security level of our chaotic encryption method.
The following lemma theoretically shows the equivalence between
the message-embedded cryptosystem and the conventional self-
synchronizing stream cipher.
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Lemma 2: The message-embedded cryptosystem (5) is equivalent
to a conventional self-synchronizing stream cipher.

The proof of Lemma 2 is given in Appendix VI.B of [27].
Remark 1: By Lemma 2 and Proposition 1 in [20], our chaotic

encryption is able to provide the same level of security as a conven-
tional self-synchronizing stream cipher.

Remark 2: Notice that że(t) is used to theoretically guarantee the
recovery of the unknown input, and it is a standard and necessary
requirement for the continuous-time UIO technique (see [11] and
references therein). Notice that że(t) is well-defined only when ze(t)
is real-valued. However, in this paper, ze(t) is the value of a pixel
and an integer. In practice, we replace że(t) by ze(t)−ze(t−τ)

τ where
τ is the sampling period.

B. Robust tracking controller
The robot aims to follow the leading robot whose trajectory is

generated by the following nonlinear measurable exosystem, which
includes the Van der Pol oscillator,

ẋr(t) = Arxr(t) +
∑K

i=1 Eixr(t)ai(xr(t))
r(t) = Crxr(t)

(12)

where xr(t) ∈ Rnr is the state, ai : Rnr → R is continuously
differentiable with ai(0) = 0 and Ar , Cr , Ei, i = 1, . . . ,K,
are matrices with appropriate dimensions. Combining (12) with the
controlled system (3) as well as e(t) = y(t) − r(t) renders the
following augmented system

ẋ(t) = Ax(t) +Bu(t)

ẋr(t) = Arxr(t) +
∑K

i=1 Eixr(t)ai(xr(t))
e(t) = Cx(t)− Crxr(t) + v(t).

(13)

We decompose v(t) in such a way that v(t) = ∆(t) + w(t) where
∆(t) ≜ p(žd(t)) − p(z(t)). The following lemma gives an upper
bound of ∆(t).

Lemma 3: Let the assumptions of Lemma 1 and Assumption 1
hold. Then there exists a constant c∆ > 0 such that ∥∆(t)∥ ≤ c∆
for all t ≥ 0.

The proof of Lemma 3 is given in Appendix VI.C of [27].
Assume v(t) = 0. We would like to determine sufficiently smooth

functions x(xr) and u(xr) with x(0) = 0 and u(0) = 0 such
that the tracking error is constantly zero when the state of system
(13) is restricted to the output zeroing manifold M1 ≜ {(x, xr) ∈
Rn × Rnr |x = x(xr)} under controller u = u(xr). Substituting
x = x(xr) and u = u(xr) into dynamics (13) renders the following
regulator equation

Ax(xr) +Bu(xr) =
∂x(xr)

∂xr

(
Arxr +

K∑
i=1

Eixrai(xr)

)
Cx(xr)− Crxr = 0. (14)

Assumption 3: Solutions x(xr) and u(xr) of regulator equation
(14) exist and u(xr) is polynomial in xr .

The existence of solution x = x(xr) and u = u(xr) only
ensures the tracking error e = 0. To guarantee the boundedness of
all trajectories of the closed-loop system associated with system (13)
and controller u(t), the assumption that u(xr) is polynomial in xr
is required [18]. Since it is hard to solve regulator equation (14), we
first design a steady-state generator to reproduce u(xr). Second, we
design an internal model to reconstruct u(xr).

Letting x(xr) = Πxr with a matrix Π ∈ Rnr×nr . Since the
solution u(xr(t)) is a polynomial in xr(t), there exists a set of
matrices Λ1,Λ2, . . . ,Λr ∈ Rm×m for some positive integer r, such
that

Lr
Arxru = Λ1u+ Λ2LArxru+ . . .+ ΛrL

r−1
Arxr

u,

where LArxru ≜ ∂u
∂xr

Arxr , and Lj
Arxr

u ≜
∂L

j−1
Arxr

u

∂xr
Arxr , j =

2, 3, . . . , r. Denote

θ(xr) ≜ [u(xr)
T, (LArxru(xr))

T, . . . , (Lr−1
Arxr

u(xr))
T]T.

There exist Φ ≜

[
0m(r−1)×m Im(r−1)

Λ1 [Λ2 · · ·Λr]

]
and Ψ ≜

[Im 0m . . . 0m] such that

∂θ(xr)

∂xr
Arxr = Φθ(xr), u(xr) = Ψθ(xr). (15)

Assumption 4: There exists some matrix Φi satisfying

∂θ(xr)

∂xr
Eixr = Φiθ(xr), i = 1, . . . ,K. (16)

As [18] shows, Assumption 4 may hold in many cases, e.g., Van
der Pol oscillator. Assumptions 3 and 4 imply that system (13) has a
steady-state generator with output u. Let θ̂(xr(t)) ≜ Ωθ(xr(t)) with
any non-singular matrix Ω, and take Lie derivative on both sides along
system (12). By using (16), the steady-state generator is constructed
as

˙̂
θ(xr(t)) = Ω(Φ + ϕ(xr(t)))Ω

−1θ̂(xr(t))

u(xr(t)) = β(θ̂(xr(t))) = ΨΩ−1θ̂(xr(t)) (17)

where ϕ(xr(t)) ≜
∑K

i=1 Φiai(xr(t)).
We design a nonlinear internal model candidate as follows. We

pick any controllable pair (F,G) with F ∈ Rmr×mr being Hurwitz
and G ∈ Rmr×m. By [17], there exists a nonsingular matrix Ω ∈
Rmr×mr as the unique solution of the following Sylvester equation

ΩΦ− FΩ = GΨ. (18)

By (15) and (18), the steady-state generator (17) is written as

˙̂
θ(xr(t)) = F θ̂(xr(t)) + Ωϕ(xr(t))Ω

−1θ̂(xr(t)) +Gu(xr(t)).

Then an internal model candidate is constructed as

η̇(t) = Fη(t) + Ωϕ(xr(t))Ω
−1η(t) +Gu(t). (19)

Applying the following state and input transformations

x̃(t) ≜ x(t)−Πxr(t), η̃(t) ≜ η(t)− θ̂(xr(t)),

ũ(t) ≜ u(t)− β(η(t))

yields an error dynamics

˙̃x(t) = Ax̃(t) +BΨΩ−1η̃(t) +Bũ(t)

+BΨθ(xr(t))−Πa(xr(t)) +AΠxr(t)

˙̃η(t) = (F +GΨΩ−1 +Ωϕ(xr(t))Ω
−1)η̃(t) +Gũ(t)

e(t) = Cx̃(t) + v(t).

We let xr(t) = 0, and the resulting system is simplified as

˙̃x(t) = Ax̃(t) +BΨΩ−1η̃(t) +Bũ(t)

˙̃η(t) = (F +GΨΩ−1)η̃(t) +Gũ(t)

e(t) = Cx̃(t) + v(t). (20)

A dynamic error compensator is chosen as

ẋp(t) = Apxp(t) +Bpe(t), ũ(t) = Cpxp(t). (21)

where xp(t) ∈ Rnc is state and Ap, Bp, Cp are controller parameters
to be determined. Substituting controller (21) into (20) renders a
closed-loop system

˙̃xcl(t) = Ãclx̃cl(t) + B̃cl∆(t) + B̃clw(t)

e(t) = C̃clx̃cl(t) + ∆(t) + w(t) (22)
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where x̃cl(t) ≜ [x̃(t)T η̃(t)T xp(t)
T]T ∈ Rn+mr+nc , Ãcl ≜[

A′ B′Cp

BpC
′ Ap

]
, B̃cl ≜

[
0
Bp

]
, C̃cl ≜ [C′ 0] and A′ ≜[

A BΨΩ−1

0 F +GΨΩ−1

]
, B′ ≜

[
B
G

]
, and C′ ≜

[
C 0

]
. The following

lemma shows the convergence to a neighborhood of the output
zeroing manifold M2 ≜ {(x, η, xr) ∈ Rn × Rmr × Rnr |x =
Πxr, η = θ̂(xr)}.

Lemma 4: If there exist P ∈ Sn+mr+nc
+ and γp ∈ R+ such thatH {PÃcl}+ P PB̃cl C̃T

cl

B̃T
clP −(γp − 1)Il Il
C̃cl Il −(γp − 1)Il

 < 0, (23)

then system (22) is ISS from w(t) and ∆(t) to x̃cl(t).
The proof of Lemma 4 is provided in Appendix VI.D of [27].
Attaching the internal model (19) to the given system (3) renders

the following augmented system

ẋ(t) = Ax(t) +Bu(t)

η̇(t) = Fη(t) + Ωϕ(xr(t))Ω
−1η(t) +Gu(t)

e(t) = Cx(t)− Crxr(t) + v(t). (24)

Then, the path tracking problem is converted into a stabilization
problem of the augmented system (24). By (17) and (21), an output-
feedback controller is given by

ẋp(t) = Apxp(t) +Bpe(t), u(t) = Cpxp(t) + ΨΩ−1η(t) (25)

and substituting it into the augmented system (24) yields the follow-
ing closed-loop system

ẋcl(t) = Acl(xr(t))xcl(t) +Bcl(xr(t), v(t))

e(t) = Cclxcl(t)− Crxr(t) + v(t) (26)

where xcl(t) ≜ [x(t)T η(t)T xp(t)
T]T, Acl(xr) ≜ A BΨΩ−1 BCp

0 F +GΨΩ−1 +Ωϕ(xr)Ω
−1 GCp

BpC 0 Ap

, and Bcl(xr, v) ≜ 0
0

−BpCrxr +Bpv

.

Considering a ball Bn
ν̂ with the radius ν̂, the following lemma is

used in the proof of our main results.
Lemma 5: If f(x) : Rn → R is continuous on Rn, then g(ν̂) ≜

maxx∈Bn
ν̂
f(x) is continuous on R+.

The proof of Lemma 5 is given in Appendix VI.E of [27]. We
pick any ν > 0 such that ∥xr(t)∥ ≤ ν for t ≥ 0. The following
theorem shows a sufficient condition of the local stability of closed-
loop system (26).

Theorem 1: Let the assumptions of Lemma 3 and Assumption
2 hold. Suppose that there exist R ∈ Sn+mr

+ , S ∈ Sn+mr
+ , and

matrices Âp ∈ Rnc×nc , B̂p ∈ Rnc×l, Ĉp ∈ Rm×nc , and scalar
γp ∈ R+ such that the following LMIs are feasible

H {A′R+B′Ĉp}+R ⋆

Âp +A′T + In+mr H {SA′ + B̂pC
′}+ S

0 B̂T
p

C̄′R C̄′

⋆ ⋆
⋆ ⋆

−(γp − 1)Il ⋆

Il −(γp − 1)Il

 < 0, (27)

[
R In+mr

In+mr S

]
> 0. (28)

Then the following properties hold.

(P1) The scalar γp and the positive-definite matrix P =

[
S Y

Y T Inc

]
satisfy (23), and the parameters Ap, Bp, Cp, in controller (25)
can be computed by[

Ap Bp

Cp 0

]
=

[
Y SB′

0 Il

]−1

×([
Âp B̂p

Ĉp 0

]
−
[

SA′R 0
0 0

])[
MT 0
C′R Il

]−1

(29)

where matrices M,Y ∈ Rnc×nc have full rank and satisfy
YMT = Inc −RS.

(P2) Choose any R0 > 0 and δ ∈ (0, 1). Let Rs ≜
√

λmax(P )
λmin(P )

R0+
2∥P∥∥Bp∥∥Cr∥

λmin(P )δ
(ν+∥Cr∥−1(cw+c∆)). For a sufficiently small

ν, if xcl(0) ∈ Bn+mr+nc
R0

, system (26) satisfies the following
properties:

(P2.1) ISS from w(t), ∆(t) and xr(t) to xcl(t);
(P2.2) xcl(t) ∈ Bn+mr+nc

Rs
for all t ≥ 0;

(P2.3) limT→∞

∫ T
0 ∥e(t)∥2dt∫ T

0 ∥∆(t)+w(t)∥2dt
< γ2p .

The proof of Theorem 1 is given in Appendix VI.F of [27].
Remark 3: One can check the feasibility of the LMI conditions

(27)-(28) using Robust Control Toolbox in Matlab [26].
Remark 4: Theorem 1 provides a guideline to design a neural

network for the perception unit p to satisfy Assumption 2. First,
choose any bound cw > 0 for learning error w. Second, choose a
pair of R0 and δ and compute Rs. Third, by universal approximation
property (see Theorem 2 in [22]), for any compact set, a standard
multilayer feedforward network with a sufficiently large number of
hidden-layer neurons is able to approximate any continuous function
to any degree of accuracy if the activation functions are continuous,
bounded and nonconstant. Hence we can choose a neural network
with sigmoid activation functions for the perception unit p, and
increase the number of hidden-layer neurons such that ∥w(x)∥ ≤ cw
for all x ∈ Bn

Rs
. By Theorem 1, if xcl(0) ∈ Bn+mr+nc

R0
, then

xcl(t) ∈ Bn+mr+nc
Rs

and ∥w(t)∥ ≤ cw for all t ≥ 0, i.e.,
Assumption 2 holds.

IV. SIMULATION

This section provides a simulation by using double integrators in
the CARLA simulator [16]. The computer used in the simulation has
Core i7− 3632 QM CPU with 2.20 GHz and 15.5 GiB Memory.

A. System model
Consider a robot moving in a 2-D plane. The dynamics of the

double integrator for horizontal and vertical directions are compactly
given by

ẋ(t) =


0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0

x(t) +


0 0
1 0

0 0
0 1

u(t),

y(t) =

[
1 0 0 0

0 0 1 0

]
x(t)

where state x(t) includes positions x1(t), x3(t) and velocities x2(t),
x4(t), output y(t) includes positions, and control u(t) is acceleration.
The camera model is z(t) = q(x(t)) where z(t) is the plain image.
We learn the perception mapping p by a convolutional neural network
(CNN), which has been widely applied to image detection and
recognition.
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B. Controller and UIO design

This subsection considers the case where the trajectory of the
leader robot is generated by a Van der Pol oscillator[

ẋr1(t)
ẋr2(t)

]
=

[
xr2(t)

−xr1(t) +
(
1− xr1(t)

2
)
xr2(t)

]
= Arxr(t) + E1xr(t)a1(xr(t))

with Ar =

[
0 1
−1 1

]
, E1 =

[
0 0
0 −1

]
and a1(xr(t)) =

xr1(t)
2. We let two double integrators track xr1 and xr2, respec-

tively. For brevity, we only give the controller design details when the
double integrator in the horizontal direction follows xr1. In this case,

system matrices are given by A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =[

1 0
]

and Cr = [1 0]. The solution of regulator equation (14) is

given as x(xr) =
[
xr1 xr2

]T
,u(xr) = −xr1 +

(
1− x2r1

)
xr2.

Then Assumption 3 is satisfied. As [18], to simplify the controller
design, we let uc(xr) =

(
1− x2r1

)
xr2 and û(xr) = −xr1 such

that u(xr) = uc(xr)+û(xr). Given û(xr), we can design a steady-
state generator with state θ(xr) = [−xr1 − xr2]

T. Then based on

(15), we derive matrices Φ =

[
0 1
−1 1

]
and Ψ =

[
1 0

]
. After

calculation, we have Φ1 =

[
0 0
0 −1

]
satisfying Assumption 4 and

ϕ(xr) = Φ1a1(xr) =

[
0 0
0 −1

]
x2r1. The next step is to find the

solution Ω of Sylvester equation (18). According to the property of
Kronecker product, taking vec operation on both sides of (18) renders
vec(ΩΦ) = (ΦT⊗I2)vec(Ω) and vec(FΩ) = (I2⊗F )vec(Ω). Then
Sylvester equation (18) is rewritten as[

ΦT ⊗ I2 −I2 ⊗ F

−I2 ⊗ F ΦT ⊗ I2

] [
vec(Ω)
vec(Ω)

]
=

[
vec(GΨ)
vec(GΨ)

]
.

We let F =

[
−0.7 0
0 −0.4

]
and G =

[
0.549
1

]
such that F is non-

singular and the pair (F,G) is controllable. Then substituting system
parameters into (18) and solving the above equation yields Ω =[

0.42616 −0.25068
0.89743 −0.64102

]
. After solving LMI conditions (27) and

(28), we obtain the controller parameters for horizontal and vertical
directions as follows:

Ap =


18.749 −1292.58 −486.05 −623.56
38.51 −2584.42 −971.45 −1246.23
−78.76 5057.8 1899.11 2431.74
−18.49 1218.39 459.07 589.91

 ,

Bp =
[
−2.86 −0.000028 0.0002 −0.000076

]T
,

Cp =
[
115.27 −7473.56 −2810.15 −3604.22

]
.

The controller of the double integrator in the horizontal direction is
given by u(t) = ΨΩ−1η(t) + Cpxp(t) + (1− x2r1)xr2.

For the vertical direction, Cr = [ 0 1 ], and the solution of
regulator equation (14) is u(xr) = −xr1 − 2xr1x

2
r2 + x3r1 −

2x2r1xr2 + x4r1xr2. Using the same procedure, we obtain the same
parameters Φ,Ψ,Ω, Ap, Bp, Cp, and the controller of the double
integrator in the vertical direction is given by u(t) = ΨΩ−1η(t) +
Cpxp(t)− 2xr1x

2
r2 + x3r1 − 2x2r1xr2 + x4r1xr2.

Lorenz’s chaotic system is adopted for encryption [6]. Its T-S fuzzy

model is written as (4) where Ae,1 =

 −10 10 0
28 −1 −30

0 30 − 8
3

, and

Ae,2 =

 −10 10 0
28 −1 30

0 −30 − 8
3

. To transmit the image data, we

pick Ce = I3 and Be =
[
1 0 0

]T such that rank(CeBe) =
rankBe = 1. After solving the LMI conditions (11), the gains of

the state observer (8) are given by Le,i =

[
1.1497 0

0 −0.5170

]
,

i = 1, 2.

C. Experiment results
1) Encryption: As [6], we evaluate the performance of chaotic

encryption from the following two aspects: encryption and decryption
speed, as well as key sensitivity.

Conventional encryption schemes usually involve modular expo-
nentiation operations over large integers, which could be highly
time-consuming, while our proposed chaotic encryption algorithm
only involves simple matrix inverse operations and solves ordinary
differential equations. For an 8-bit image in the experiments, the
average speed of Paillier’s algorithm [5] is about 1Kb/s with key
length 1024, while the average speeds of our chaotic encryption
and decryption are about 4.7Mb/s and 5.2Mb/s, respectively. It
demonstrates that the proposed chaotic encryption algorithm in this
paper is significantly faster than the conventional encryption methods.

We let the initial state of the transmitter be the secret key Θ. Fig. 2
shows the chaotic encryption and decryption results of key sensitivity
test. Specifically, Fig. 2(a) is a plain track image with size 80× 60,
Fig. 2(b) is its cipher track image, and Fig. 2(c) is the correctly
recovered track image. The difference between the plain image
and the correct decrypted image is 6.9282 where 2-norm is used.
This demonstrates the correctness of chaotic encryption strategy. We
assume that the attacker eavesdrops the cipher image ze, and knows
everything of the chaotic transmitter (4) except for the secret key,
e.g., −10. If the eavesdropper instead uses −10.00000000001, the
recovered image is a random image as shown in Fig. 2(d). The
difference between the plain image and the incorrectly decrypted
image is 3.4174 × 104. It shows that the cipher image cannot be
accurately recovered with a slightly changed key, which demonstrates
the key sensitivity of chaotic encryption.

(a) Plain track image. (b) Cipher track image.

(c) Decrypted image (correct key). (d) Decrypted image (wrong key).

Fig. 2. Results of chaotic encryption and decryption.

2) Path tracking in absence of evasion attacks: We choose an
initial state as (1.4 2.1)m, which is at the center of the track. Fig.
3 shows the path tracking in first 15 seconds. Fig. 4(a) shows the
tracking errors over time. In particular, dotted line depicts the tracking
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Fig. 3. Path tracking for the Van der Pol oscillator.

(a) (b)

Fig. 4. Tracking error over time: (a) provides tracking error comparisons
between attack-free scenario and attacked scenario; (b) provides track-
ing error comparisons applying chaotic encryption and Paillier algorithm.

error in absence of evasion attacks, and the subfigure clearly shows
that the steady tracking error is smaller than 0.05m where 2-norm is
used, and the settling time is about 2 seconds. Fig. 4(a) demonstrates
that the double integrator can quickly track the path with a small
steady-state error despite the learning error of the perception mapping
p.

We replace chaotic encryption with partially homomorphic encryp-
tion algorithm, e.g., Paillier algorithm [5], in the control loop. In
terms of high security, the key length of Paillier algorithm is typically
chosen as 1024 [25]. The controller performance comparisons apply-
ing chaotic encryption and Paillier algorithm are shown in Fig. 4(b).
It can be seen that the tracking error diverges using 1024-bits paillier
algorithm since time delay caused by encryption and decryption is
introduced in the control loop.

3) Path tracking under evasion attacks: We adopt the fast
gradient sign method (FGSM) to generate the attacks. As [19], the
perturbation of a plain image is denoted as d ≜ c0sign(∇ziJ)
where J is the cost function of the trained model, ∇zi is the
gradient of the model and c0 is the perturbation’s amplitude. Here
the attacker chooses c0 = 5. Then the ith corrupted image is given
by ži = zi + di.

We choose the same initial state as (1.4 2.1)m. Solid line in Fig.
4(a) shows the tracking errors subject to evasion attacks over time.
The steady tracking error is smaller than 0.08m, and the settling time
is also about 2 seconds. The simulation results demonstrate that eva-
sion attacks only induce small degradation of tracking performance.

V. CONCLUSION

In this paper, we study perception-driven control of a mobile robot
for path tracking. We consider passive attacks on image transmission
and evasion attacks on a machine learning system. To defeat the
passive attacks, we utilize chaotic encryption technique to mask pixels
of plain images in real time, and construct a bank of fuzzy unknown
input observers to decrypt the cipher pixels in parallel. As for the

path tracking, we design a robust output-feedback controller, which
can attenuate the effects of the evasion attacks and learning errors
of the machine learning system by reducing L2 gain. Simulations
are conducted in the CARLA simulator to demonstrate robust path
tracking and secure image transmission.
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G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” 2013th European Conference on Machine Learning and
Knowledge Discovery in Databases - Volume Part III, pp. 387-402, 2013.

[9] L. Zhou, V. Tzoumas, G. J. Pappas, P. Tokekar. “Distributed attack-robust
submodular maximization for multi-robot planning,” IEEE International
Conference on Robotics and Automation, Paris, France, pp. 2479-2485,
2020.

[10] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu and P. Liu, “ RoboADS:
Anomaly detection against sensor and actuator misbehaviors in mobile
robots,” IEEE/IFIP International Conference on Dependable Systems
and Networks, Luxembourg City, pp. 574-585, 2018.

[11] M. Hou and P. C. Müller, “Design of observer for linear systems with
unknown inputs,” IEEE Transactions on Automatic Control, vol. 37, no.
6, pp. 871-875, 1992.

[12] X. Zhang, Z. Yuan, S. Xu, Y. Lu, and M. Zhu, “Secure perception-driven
control of mobile robots using chaotic encryption,” American Control
Conference, New Orleans, LA, USA, pp. 2575-2580, 2021.

[13] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for
perception-based control,” Conference on Learning for Dynamics and
Control, on-line, pp. 350-360, 2020.
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