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Abstract

Observed-score test equating is a vital part of every testing program, aiming to make test scores across

test administrations comparable. Central to this process is the equating function, typically estimated

by composing distribution functions of the scores to be equated. An integral part of this estimation

is presmoothing, where statistical models are fit to observed score frequencies to mitigate sampling

variability. This study evaluates the impact of commonly used model fit indices on bivariate presmoothing

model-selection accuracy, in both item response theory (IRT) and non-IRT settings. It also introduces a

new model-selection criterion that directly targets the equating function in contrast to existing methods.

The study focuses on the framework of non-equivalent groups with anchor test design, estimating bivariate

score distributions based on real and simulated data. Results show that the choice of presmoothing model

and model fit index influence the equated scores. In non-IRT contexts, a combination of the proposed

model-selection criterion and the Bayesian Information Criterion (BIC) exhibited superior performance,

balancing bias and variance of the equated scores. For IRT models, high selection accuracy and minimal

equating error were achieved across all scenarios.

Keywords: test score equating, smoothing, log-linear models, item response theory, model-

selection.

1 Introduction

One of the key components for an educational testing program is to ensure fair assessments for

all examinees. A routine task of most testing organisations therefore is test score equating,

which refers to the procedure of putting scores from different test administrations on a

common scale so that they can be compared and used interchangeably (González andWiberg;
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2017). The difficulty of a test may differ from time to time as many of the test items are

typically not reused in order to ensure a high validity. Without any score adjustment,

admission to for example university programs will therefore not be purely based on test-

taker ability but also on the difficulty level of the test forms. Furthermore, in many realistic

testing scenarios, the test groups are not randomized and therefore systematically differ

from each other. In other words, the effect of test form difficulty is confounded by the latent

ability, making it a highly non-trivial task to adjust for. The statistical task in test score

equating therefore is to find a function that maps the scores of the new test form to the

scale of the old, using samples from two non-randomized groups, thereby adjusting for the

difference in difficulty while taking the difference in ability into account. Test score equating

is thus a crucially important and fundamental component of fair assessments.

The starting point for any equating method is to define what notion of equivalence, in

terms of the test scores and the latent ability, to use. The most common approach is to

define two scores, x from test form X, and y from test form Y, as equivalent in terms of the

latent ability measured by the test if they share the same relative position in their respective

test score distribution. Following this definition, it is common practice to estimate the test

score distributions by fitting parametric statistical models to the score data. Successfully

applied, undesired irregularities of the observed score distributions are smoothed out, re-

sulting in reduced sampling variability. This estimation is in the equating literature known

as presmoothing. In this study, we view the test groups whose scores are to be equated as

samples from two different ability populations. For this setting, most testing programs use

a so called anchor test, meaning items which are common between test forms, to adjust for

ability differences. For each respondent, we therefore have both a main test score and an an-

chor test score, and presmoothing of the observed test score distributions therefore involve

bivariate data. This data collection design is commonly referred to as the nonequivalent

groups with anchor test (NEAT) design. The equating function to be estimated is however

defined only in terms of the main test score.

The most common presmoothing model is the log-linear model (Holland and Thayer;
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1987; Kolen; 1991). There are several studies showing the positive effect of log-linear pres-

moothing on equating accuracy, see for example Hanson (1991), Livingston (1993), Moses

and Holland (2007), and Moses and Liu (2011). Previous studies have also evaluated dif-

ferent model fit indices for log-linear models (Moses and Holland; 2010a) and their effect

on certain traditional equating estimator (Moses and Holland; 2009; Liu and Kolen; 2020).

There are furthermore other presmoothing options suggested in the literature, for example

the beta-4 model (Kim et al.; 2005), the cubic B-spline and direct presmoothing (Cui and

Kolen; 2009).

If the tests are calibrated with an item response theory (IRT) model, options for IRT

equating are available as well. IRT equating methods have been implemented for both true-

score and observed-score equating methods (Kolen and Brennan; 2014), thus considering

both classical and modern test theory approaches. Recently, Andersson and Wiberg (2017)

implemented IRT within kernel equating (von Davier et al.; 2004), an equating framework

which includes both the traditional and modern equating methods.

This study is concerned with the sensitivity of presmoothing model-selection on the

equated scores. We specifically evaluate the performance of the Akaike information cri-

terion (AIC; Akaike 1974), the Bayesian information criterion (BIC; Schwarz 1978) and the

Likelihood ratio chi-square statistic for selecting the parameterization of log-linear and IRT

models, respectively, when the overall goal is test score equating. We furthermore propose

a new model-selection method, which directly targets the equating function rather than the

fit of the empirical score data. This study is different from Moses and Holland (2010a) since

the selection of model parameterization is evaluated in terms of equated scores and not for

the distributions being estimated. This study further differs from both Moses and Holland

(2009) and Liu and Kolen (2020) who evaluate model fit indices for the equivalent groups

(EG) design, as the focus here is on non-equivalent ability test groups. Moses and Holland

(2010b) study model-selection for bivariate distributions for NEAT equating, but only con-

siders the selection of cross-moments in the log-linear model and not the full model. They

do moreover not consider IRT equating. In this study we furthermore considers a family
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of equating functions which includes both traditional and modern equating methods, and

non-IRT and IRT data. It makes this the most comprehensive study of model-selection for

test score equating. The proposed model-selection criterion, which targets the asymptotic

standard error of equating (ASEE; Holland and Thayer; 1989; von Davier et al.; 2004) and

is based on the AIC, BIC and LRT, furthermore makes it possible to study the equating

properties of these model-selection criteria. The results will be presented for both empirical

data from a real admissions test and for a comprehensive simulation study.

The paper is organized as follows. We start by giving an introduction to test score equating

and kernel equating, followed by a presentation of log-linear and IRT presmoothing. Next

the empirical study is described, followed by the simulation study. The paper ends with a

discussion and practical recommendations.

2 Test Score Equating

In this section, we will introduce all of the necessary definitions, notation and terminology.

We begin with clearly defining the equating function, before presenting the kernel equating

framework and the model-selection strategies that we consider in this study.

2.1 Score Variables and Examinee Populations

Let X and Y denote the test scores on test forms X and Y, respectively. The test scores

X and Y are viewed as random variables with probability distributions as they are from

randomly selected examinees from populations P and Q, respectively. When the test groups

are assumed to be randomly equivalent and administered test forms with different difficulty

levels, equating is conducted using the EG design. This design only adjusts for differences

in test form difficulty. If the samples however are assumed to be drawn from different

populations, i.e., P ̸= Q, the equating is preferably conducted using a NEAT design with a

set of common items A as aid. To define equivalent scores, let FX(x) = Pr(X ≤ x|T) and

GY (y) = Pr(Y ≤ y|T), where T is the target population of the equating. Population T in
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Figure 1: An illustration of the equipercentile transformation for two score distributions FX(x) and GY (y).
Two scores, x and y, are equivalent if FX(x) = p = GY (y), p ∈ [0, 1].

the NEAT design could be thought of as a synthetic population and symbolically defined

as T = wP + (1 − w)Q, w ∈ [0, 1]. The term w determines how much weight is given to

each population in the synthetic T. As is custom, we let the relative sample sizes determine

this when analysing simulated and real data. Assuming that X and Y are continuous, an

equivalent score y on test form Y for a score x on test form X is obtained through the

function φ(x):

y = φ(x) = G−1
Y

(
FX(x)

)
(1)

Equation 1 gives a general expression for the comparison of two continuous distributions

(Wilk and Gnanadesikan; 1968) and is in the equating literature known as the equipercentile

transformation (Kolen and Brennan; 2014; González and Wiberg; 2017). In Figure 1, the

idea of the equipercentile transformation is illustrated. Note that the score variables need

to be continuous for the equipercentile transformation to be properly defined. Since most

testing programs utilize discrete test scores, certain continuous approximation is almost

always required, which we present next.
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2.2 Test Score Equating Using Kernel Functions

Test score equating can be described as comprising of four steps: 1) Estimation of the score

probabilities, 2) Continuization, 3) Equating and 4) Evaluation of the equating function (von

Davier et al.; 2004; González and Wiberg; 2017). Modern equating methods which employ

a kernel function in the second step are commonly referred to as kernel equating methods

(von Davier et al.; 2004). Since the first step is commonly combined with presmoothing of

the score distributions, which we describe in the next section, we start with Step 2 here. To

define the equating function within this framework, we begin by denoting the possible scores

of X and Y by xj, j = 0, . . . , J , and yk, k = 0, . . . , K, respectively. Let rj = Pr(X = xj|T)

and sk = Pr(Y = yk|T) denote the score probabilities on T. For a population model, the

continuization step in kernel equating approximates FX with the cumulative distribution

function (CDF) of the continuous random variable X̃ = aX(X + hXV ) + (1− aX)µX , which

equals

FX̃(x) := P
(
X̃ ≤ x

)
=

∑
j

rjΦ

(
x− aXxj − (1− aX)µX

aXhX

)
, (2)

where (µX , σ
2
X) are the mean and variance ofX, respectively, aX =

√
σ2
X/

(
σ2
X + hX

)
, hX > 0

is a smoothing parameter, V ∼ N (0, 1) and Φ(·) is the CDF for V . The continuized score

distribution GỸ of the score variable Ỹ is obtained in a similar way.

The bandwidth hX , which determines the smoothness level of the continuous approxi-

mation to FX , can be selected in several ways but the equated scores have been shown to

be robust to different choices (Wallin et al.; 2021). In this paper, we adopt the common

approach of selecting the bandwidth which minimizes

Q(hX) =
∑
j

(
r̂j −

d

dx
F̂X̃(x)

)2
. (3)

Two popular methods for equating in the NEAT design are Chained Equating (CE) and
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Post-Stratification Equating (PSE). The CE function is given by

φY (CE)(x) = G−1

QỸ
(HQÃ(H

−1

PÃ
(FPX̃(x)))) (4)

where FPX̃ , HPÃ, HQÃ and GQỸ are continuous approximations of the type in (2) to the

CDFs of X and A on population P and Y and A on population Q, respectively. Under

a population invariance assumption of the two links in (4), it can be shown that the CE

estimator aligns with the equipercentile transformation in (1).

The PSE function is given by

φY (PSE)(x) = G−1

T Ỹ

(
FTX̃(x)

)
, (5)

where FTX̃ and GT Ỹ are continuous approximations of FX and GY on the target population

T.

We conclude this section by pointing out that, with the bandwidth as only exception,

the distributions FX̃ , GỸ , and HÃ are entirely dependent on their means and standard

deviations, all of which are functions of the population test score probabilities. This paper

is consequently entirely focused on the estimation of these probabilities.

3 Presmoothing of Test Score Distributions

In this section, we present two ways of estimating the population test score probabilities,

depending on whether an IRT or non-IRT approach is used. We present the two most

common model choices and begin with the non-IRT approach, for which log-linear model are

the most common presmoothing model.

3.1 Log-Linear Models

Let the possible score values of the anchor score A be denoted by al, l = 1, . . . , L, where

L is the number of binary scored anchor items. Let njl denote the number of examinees

scoring X = xj and A = al, with
∑

j,k njl = N, and mkl denote the number of examinees
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scoring Y = yk and A = al, with
∑

k,l mkl = M. Further let p and q denote the respective

probability vectors for counts n11, . . . , nJL and m11, . . . ,mKL. Assume that

n = (n11, . . . , nJL)
⊤ ∼ Multinomial(N,p),

m = (m11, . . . ,mKL)
⊤ ∼ Multinomial(M,q),

and that n and m are independent from each other. From here on, only formulas for the

(X,A) scores will be presented, and the analogous expressions for (Y,A) will be suppressed.

In the NEAT design, the bivariate distributions of (X,A) and (Y,A), respectively, are es-

timated. Following from the assumptions stated above, the log-linear model for the bivariate

distribution of (X,A) equals

log(pjl) = β0 +
I∑

i=1

βx,ix
i
j +

B∑
b=1

βa,ba
b
l +

O∑
o=1

E∑
e=1

βxa,dex
d
ja

e
l , (6)

where pjl = Pr(X = xj, A = al), β0 is a normalizing constant, the β:s are parameters that

need to be estimated, and xi
j and ahl are functions of the score variables.

As for the univariate case, the bivariate log-linear model possesses a moment-matching

property when the parameters are estimated using maximum likelihood (Moses and Holland;

2010a). From (6) it follows that I and B sample moments in the marginal distributions of X

and A, respectively, are preserved, and O and E determine the number of observed bivariate

moments that are preserved. We illustrate this property in Figure 2, where we have generated

univariate data for which we fit a sequence of log-linear models. For each window in the

figure, we include one additional polynomial term, thus preserving one additional moment

in the test score distribution.

Once we have fitted a log-linear model to (X,A) and (Y,A), we need functions that turn

the estimated joint probabilities p̂jl = P̂r(X = xj, A = al) and q̂kl = P̂r(Y = yk, A = al)

into the marginal probabilities required by the CE and PSE methods. For CE, we need the

marginal probabilities of X, Y and A in populations P and Q to plug into their continuized
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Figure 2: Log-linear models with I = 1 to I = 4.

CDFs. We get these by

r̂Pj = P̂r(X = xj|P) =
∑
l

p̂jl,

t̂Pl = P̂r(A = al|P) =
∑
j

p̂jl,

t̂Qj = P̂r(A = al|Q) =
∑
k

q̂kl,

ŝQj = P̂r(Y = yk|Q) =
∑
l

q̂kl

For PSE, we transform p̂ = (p̂11, ..., p̂JL)
⊤ and q̂ = (q̂11, ..., q̂KL) into r̂ = P̂r(X = xj|T)

and ŝ = P̂r(Y = yk|T) by

r̂ =
∑
l

[
w +

(1− w)t̂Ql

t̂Pl

]
p̂l
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and

ŝ =
∑
l

[
(1− w) +

wt̂Pl

t̂Ql

]
q̂l,

where p̂l =
[
p̂1l · · · p̂Jl

]⊤
and q̂l =

[
q̂1l · · · q̂Kl

]⊤
.

3.2 IRT Models

Another approach for estimating the score probabilities within the kernel equating framework

is by using an IRT model (Andersson and Wiberg; 2017). For this class of models, the

underlying assumption is that the probability of answering an item correctly is a function

of the latent ability and of item parameters that determines the shape of that function. Let

Xij∗ = 1 if examinee i from population P answers item j∗ ∈ {1, 2, ..., xJ} correctly, and

Xij∗ = 0 otherwise. Let pij∗ denote the probability that Xij∗ = 1. Let θi ∈ {−∞,∞} denote

the latent ability of test-taker i, αj∗ ∈ [0,∞} the discrimination of item j∗, bj∗ ∈ {−∞,∞}

the difficulty of item j∗, and cj∗ ∈ [0, 1] the lower asymptote, or guessing parameter. If the

three-parameter logistic (3-PL) model is used to calibrate the item pool, the probability pij∗

equals

pij∗ = Pr(Xij∗ = 1|αj∗ , bj∗ , cj∗ ; θi) = cj∗ +
1− cj∗

1 + exp
(
− αj∗(θi − bj∗)

) (7)

When cij∗ = 0, the model in Equation 7 reduces to the two-parameter logistic (2-PL) model

and when, additionally, αj∗ = 1, the one-parameter (1-PL), or Rasch, model is obtained

(Hambleton and Swaminathan; 1985).

As the probability specified in Equation 7 is on item-level and not for the sum-score, the

estimated probabilities need to be cumulated. Therefore, let

Xi =

xJ∑
j∗=1

Xij∗

denote the sum-score of individual i. The probability distribution of Xi for a given ability
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θi is given by the compound binomial distribution (Birnbaum; 1968),

Pr(Xi = x|θi) =
∑

∑
xij∗=x

[
xJ∏

j∗=1

p
xij∗
ij∗ (1− pij∗)

1−xij∗

]
.

As the compound binomial distribution is computationally intensive (González et al.; 2016)

an iterative process such as the Lord andWingersky (1984) algorithm can be used to calculate

the probabilities. See Andersson and Wiberg (2017) for explicit approximating formulas to

generate the score probabilities for CE and PSE for IRT equating.

4 Goodness-of-fit indices

Model fit indices are often classified as belonging to either a significance testing strategy or

a parsimony strategy (Moses and Holland; 2010a; Liu and Kolen; 2020). For the former,

there have been several statistics suggested which are asymptotically chi-square distributed.

One option is the the likelihood ratio test (LRT; Haberman; 1974a,b), which is based on the

following test statistic:

2
∑
j

njl log

(
njl

Np̂jl

)
,

where njl and Np̂jl are the observed and estimated frequencies, respectively, of {X = xj, A =

al}. Other common choices are the Cressie-Read chi-square (Read and Cressie; 1988), the

Pearson chi-square and the Freeman-Tukey chi-square (Holland and Thayer; 2000). For

nested models such as log-linear models and the 1-PL, 2-PL and 3-PL IRT models, it is

possible to compare the fit of a complex model relative to that of a simpler model by calcu-

lating the probability of such difference as measured by their respective chi-square statistics.

This discrepancy measure gets its p-value from the chi-square distribution with degrees of

freedom equal to the difference in the number of parameters of the models.

The indices belonging to the parsimony strategy try to balance model fit with the param-

eterization of the model. The model selection is made by comparing a number of competing

models with different parameterizations with respect to some suitable statistic. Two common
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choices for this statistic are the AIC and the BIC, which are defined as

AIC = −2 log(Ld) + 2d,

BIC = −2 log(Ld) + log(N)d,

where log(Ld) denotes the log-likelihood function for p, and d equals the number of param-

eters being estimated. The term −2 log(Ld) equals the likelihood ratio chi-square statistic,

and as such, the functional form differs between the considered models. For example, for a

bivariate log-linear model of (X,A),

log(Ld) =
∑
jl

njl log(p̂jl),

and for the 2-PL model,

log(Ld) =
exp

{
θi
∑

j∗ xij∗aj∗ −
∑

j∗ xij∗aj∗βj∗
}

∏
j∗

[
1 + exp

{
aj∗(θi + βj∗)

}] .

In this study, the same approach as in Liu and Kolen (2020) is taken, where only the

likelihood ratio chi-square, AIC and BIC indices are evaluated. As pointed out in Liu and

Kolen (2020), previous studies such as Moses and Holland (2009, 2010a) have shown that

these indices performs as well or better than the other exisisting indices. For the significance

testing strategy, a significance level of 1− (1−α)1/(#Models−1) is used for the individual tests,

where #Models denotes the total number of models that are tested.

Recently, Brown et al. (2015) pointed out that although the 1-PL, 2-PL and 3-PL models

are nested, the likelihood ratio test is not appropriate when selecting between the 2-PL and

3-PL model. This is due to the fact that the guessing parameter cj∗ for such test is set to its

boundary value (cj∗ = 0) in the null hypothesis. This violates one of the assumptions of the

likelihood ratio test, making the chi-square distribution as a reference distribution invalid.

In the literature of mixed-effects modeling however, the problem of testing a null hypothesis

that is on the boundary of the parameter space is well-known. Brown et al. (2015) suggest to
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use the p-values from a simulated null distribution, as given by the ltm package (Rizopoulos;

2006) of the statistical software R (R Core Team; 2022), when using the likelihood ratio test

to determine whether the guessing parameter is significantly different from zero. This is

therefore the approach taken in this study.

4.1 Our Implementation

In our implementation, we set up candidate models up to the user-specified polynomial

degree for the univariate and cross moments, i.e. the I, B, O, and E terms in (6). Since

this creates a very large set of possible models, we adopt a two-step approach. In the first

step, we let each criterion select the best-fitting model among the set of models with only

univariate moments, not including any cross-moments. In the second step, we take the best-

fitting models from the first step according to each respective criterion and sequentially add

cross-moments. The final model for each criterion is selected from this set, and still allows

for the model without any cross-moments, i.e. the best-fitting model from the first step,

to be the final model chosen. For each pair of selected models, the test forms are equated,

resulting in one estimated equating function per model-selection criterion.

4.2 A Selection Algorithm Targeting the Equating Function

We propose a new model selection algorithm for log-linear presmoothing that directly targets

the equating function. The idea is a two-step approach: First, we search for the best-fitting

models to the bivariate data (X,A) and (Y,A), according the AIC, BIC and LRT, respec-

tively. This will give us at most six unique models, one (X,A)-model and one (Y,A)-model

for each criterion. In the second step, we search through all combinations of model pairs,

and select the pair which minimizes certain loss function which is related to the equating

function. For this function, we propose the ASEE. Based on the asymptotic normality of

the maximum likelihood estimator of
[
r̂ ŝ

]⊤
, the asymptotic distribution of the equating
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function is given by

φ(x; r̂, ŝ)
d−→ N

(
φ(x; r, s),JφY

JDFCC′J′
DFJ

′
φY

)
for all x (von Davier et al.; 2004; Holland and Thayer; 1989). Here, JφY

is the Jacobian of the

equating function, JDF represents the Jacobian of the design function, and C is connected

to the score distributions’ covariance matrix. For a detailed derivation of the ASEE, refer

to von Davier et al. (2004). The ASEE is consequently given by

ASEE(x) = ||JφY
JDFC||, (8)

where || · || denotes the Euclidean norm. We summarize the procedure in Algorithm 1.

Algorithm 1 Log-linear model selection targeting test score equating

Input: Observed bivariate data (Xi, Ai), i = 1, ..., NP and (Yi, Ai), i = 1, ..., NQ, where NP and NQ are the
respective sample sizes of the test groups.

1. Fit log-linear models to the bivariate data according to (6), for an increasing number of univariate
and cross-moments. Select the best (X,A) and (Y,A) models according to the AIC, BIC and LRT,
respectively.

2. Search among the selected models in Step 1 to find the pair that minimises

1

J + 1

J∑
j=0

ASEE(xj) (9)

where J equals the test length, and ASEE(xj) denotes the ASEE for the xjth test score.

Output: One fitted log-linear model for (X,A) and one for (Y,A).

It is possible to give different importance to score points. In that case, 1/(J+1) in (9) can

be replaced with other weights δj such that
∑J

j=0 δj = 1, so that each δj conveys importance

to score xj. The criterion then becomes
∑J

j=0 δjASEE(xj).

Note that Algorithm 1 can be seen as both a way to select the log-linear presmoothing

models but also as a way to evaluate the AIC, BIC and LRT criteria when the goal is to

equate test forms. By simulating test data and selecting the presmoothing model according

to the AIC, BIC and LRT, respectively, we can count how many times Algorithm 1 selects

each criterion. In that way we can use Algorithm 1 to evaluate which of the AIC, BIC and
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LRT most often select models that minimize the ASEE. Since the output of Algorithm 1 is a

pair of presmoothing models, we are in turn able to evaluate Algorithm 1 as a model-selection

tool. Note also that this algorithm does not make sense to use in an IRT setting since we do

not wish to end up with for example a Rasch model for the (X,A) data and a 3-PL model

for the (Y,A) data. From this point forward, we will refer to this model-selection approach

as the ASEEmin CE or ASEEmin PSE depending on whether CE or PSE is used. We lastly

point out that the term δj is used as a weight to give, possibly, different importance to

scores. In certain testing situations, score points near certain cut-scores might convey more

importance and it might therefore be better if ASEEs are smaller around cut-scores than

they are for other score-points1. In this paper we only consider δj = 0, j, ..., J .

5 Empirical Study

In this section, we explore the influence of presmoothing techniques and model selection on

the equated scores, using real data from two forms of the Swedish Scholastic Aptitude Test

(SweSAT). The test comprises both a verbal and a quantitative section, each of them equated

separately. Each section consists of 80 binary-scored multiple-choice items. In addition, a

40-item anchor test is administered. For this study, we utilized a sample of 7,322 examinees

from each of two groups from the quantitative section for a test administration within the

last ten years. The new test form is denoted as X and the previous form as Y. Detailed

information about this quantitative test form and its associated anchor test can be found in

Table 1.

For instance, a clear difference between the mean scores of the new and old test forms

and their respective skewness can be clearly observed. The correlation between the new test

form (X) and the anchor test scores stands at 0.808, while that between the old test form

(Y) and the anchor test scores is slightly lower at 0.806.

Figure 3 displays the score distributions for both X and Y, in addition to the anchor

test scores, denoted as AX and AY . A noticeable difference in the distributions is evident,

1We thank one of the anonymous reviewers for this idea and motivation.
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Figure 3: The score distributions of the X and Y scores (upper panel) and the anchor scores (lower panel),
where X represents the new test form and Y the old test form.

indicating either a higher average ability level among respondents taking the new test form

X, an easier test form, or possibly both. The distributions of the anchor test scores suggest

that a difference in ability between the groups is present.

At the time of these test administrations, a SweSAT result retained its validity for five

years. Examinees were permitted unlimited attempts, with only the highest test result being

considered when applying to a university program. In practice, the SweSAT is equated using

non-IRT methods under the NEAT design (Lyrén and Hambleton; 2011). The available

data consists solely of the total score, as opposed to individual item scores. Therefore, we

will employ log-linear presmoothing and equate the test forms using the smoothed score

distributions for both CE and PSE.

Table 1: Mean, standard deviation (SD), skewness and number of examinees (N) in the empirical study and
for the created test forms used in the simulation study.

Test form Mean SD Skewness
X 43.315 12.654 0.098
Y 39.341 11.802 0.336
AX 12.171 4.593 0.063
AY 10.555 4.643 0.303
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Table 2: The selected log-linear models for each model fit index.

Model AIC BIC LRT ASEEmin CE ASEEmin PSE

(X,A) X5, A4, X3 : A3 X5, A4, X3 : A X5, A5, X3 : A3 X5, A4, X3 : A X5, A4, X3 : A
(Y,A) Y 5, A4, Y 3 : A3 Y 5, A4, Y : A Y 5, A4, X3 : A3 Y 4, A4, Y : A Y 4, A4, Y : A

5.1 Results of Empirical Study

Table 2 shows the presmoothing models chosen by each model-selection criterion. Only the

highest power moment is displayed, meaning for example that X2 implies that both X and

X2 are included in the model, and X3 : A3 means that the interactions X : A, X : A2,

X : A3, X2 : A, X2 : A2, X2 : A3, X3 : A, X3 : A2 and X3 : A3 are included.

We see that the BIC, ASEEmin CE and ASEEmin PSE select the same (X,A)-model,

i.e., the BIC selects the model that minimizes the ASEE when either CE or PSE is used to

equate the test forms. For the (Y,A)-model, the BIC includes the fifth univariate moment for

Y , which the ASEEmin criteria do not do. The AIC and LRT select nearly identical models,

which include more cross-moments than the BIC and ASEEmin criteria does. Noticeably, all

of the traditional criteria select slightly different models. The next question is to determine

to what extent this affects the equated scores and the corresponding ASEE values.

Figure 4 demonstrates the estimated equated scores (with the raw score deducted) and the

corresponsing ASEE values by the CE (left column) and PSE (right column) estimator. Due

to the selection of identical pairs of presmoothing models, the BIC and ASEEmin criteria

produce identical results. Since the AIC and LRT criteria selected very similar models, their

results are also close to identical. In Figure 4 we therefore see two unique curve patterns in

each panel: the solid line, derived from models chosen by the AIC, and the dot-dashed line,

which is the result of presmoothing models chosen via the BIC and ASEEmin.

These curves reveal that the equated scores and ASEE values share a high degree of

similarity across a substantial portion of the score scale. At the extremes of the score scale,

however, differences emerge. These differences at the tails exceed the so-called ’difference

that matters‘ (DTM; Dorans and Feigenbaum; 1994), defined as a difference of half a score

unit. In practical terms this indicates that these methods will produce different equated
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Figure 4: The difference between the equated scores and the raw scores (first row) and the ASEEs (second
row), for each respective equating estimator using the CE and PSE estimator, respectively.

scores at the score range where many critical decisions are being made. Therefore, the

equated scores depend significantly on the presmoothing model-selection criterion. Lastly,

we note that the BIC and ASEEmin criteria produce substantially smaller ASEE values for

the lowest and highest score values.

From the empirical analysis, we conclude that the presmoothing model seletion have an

impact on the equated scores, and the magnitude of this influence is dependent on the choice

of equating estimator. We study this phenomenon in greater depth in the following section,

which includes a comprehensive simulation study.
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6 Simulation Study

We evaluate the performance of all of the considered model-selection criteria and their influ-

ence on the estimation of the equating function through an extensive simulation study. We

consider two setups that will be treated in separate subsections. The first setup generates

data from an underlying log-linear model and the second setup from an underlying IRT

model. In this way, we can evaluate the performance of the model selection criteria both

when the score distributions are smoothed using log-linear models, and when the test is cal-

ibrated with an IRT model. For both setups, we vary the underlying, true data-generating

process, together with other key quantities such as the sample size and the number of items.

The results are based on 100 iterations using sample sizes of 3,000 and 6,000, and with test

lengths of 40 and 80. When the test length is 40, we set the anchor length to 13, and when

the test length is 80, we set it to 25. Since the results for a sample size of 3,000 and of

6,000 were very similar, we have placed the results based on the larger sample size in the

Appendix. For the same reason, we did the same for some of the results based on J = 80.

Most of the computations are made using the R package kequate (Andersson et al.; 2013),

which includes functions for conducting test score equating using kernel functions. We also

use the R package copula (Yan; 2007) to generate bivariate data. Our own functions, in-

cluding the proposed algorithm for model-selection, have been included with the submission

of this manuscript and will be made publicly available as an R package upon acceptance of

the paper.

6.1 Setup A - Data Generated by Log-Linear Models

In the first setup, we follow the design of Wallin et al. (2021). We therefore start by generating

the true score probabilities pjl = Pr(X = xj, A = al), j = 0, . . . , J, l = 0, . . . , L and qkl =

Pr(Y = yk, A = al), k = 0, . . . , K, l = 0, . . . , L. In the following, we describe only the

procedure for the (X,A) probabilities since the (Y,A) probabilities are generated in the same

way. To generate pjl, we begin by generating auxiliary score variables (Ui, Vi), i = 1, ..., N ,
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using a normal copula bivariate distribution, which is a joint distribution for (U, V ) and where

we set the marginal distributions to follow Beta(α, β) distributions. The shape parameters

α and β are set according to three distributional settings, as soon explained. The correlation

between U and V is set to 0.82 to mimic the strong correlation often seen in real data,

such as in the Empirical Illustration. After the auxiliary scores have been generated, score

variables X and Y are generated as Xi = ⌊(J−1)Ui⌉ and Ai = ⌊(L−1)Ui⌉, meaning that the

auxiliary variables are multiplied by the test length and thereafter rounded to the nearest

integer so that they are discrete random variables with support in the range (0, J) and (0, L),

respectively. In this simulation study, we consider J = {40, 80} and L = {13, 25}. Next,

a log-linear model is fit to the (X,A) data. The model fits the fourth power of X and the

third power for A, which is based on visual inspection. The estimated probabilities from

the model fitted to the population-level data are now treated as the true score probabilities

pjl = Pr(X = xj, A = al).

In the next step, we sample test score frequencies nJL = {njl =
∑N

i=1 I(Xi = xj, Ai =

al)}, j = 1, . . . , J, l = 1, . . . , L, as nJL ∼ Multinomial(N, (p11, . . . , pJL)). The model selection

criteria are thereafter employed to select the most fitting log-linear models for the (X,A) and

(Y,A) combinations, considering models up to the sixth polynomial degree for the univariate

moments, and up to the third cross-moment, i.e. I = B = {1, 2, 3, 4, 5, 6}, and O = E =

{1, 2, 3} in (6). Since this creates a very large set of possible models, we adopted a two-step

approach. In the first step, we let each criterion select the best-fitting model among the set of

models with only univariate moments, not including any cross-moments. In the second step,

we take the best-fitting models from the first step according to each respective criterion and

sequentially add cross-moments. The final model for each criterion is selected from this set,

and still allows for the model without any cross-moments, i.e. the best-fitting model from

the first step, to be the final model chosen. For each pair of selected models, the test forms

are equated, resulting in one estimated equating function per model-selection criterion.

In Figure 5 we illustrate the true score distributions rj = Pr(X = xj|T), j = 0, ..., J ,

and sk = Pr(Y = yk|T), k = 0, ..., K for each scenario, considering the shape parameters
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for the beta distribution to be (α = 5, β = 5) for a symmetric setting, (α = 5, β = 2) for

a skewed setting and to produce a bimodal setting, a mixture of Beta distributions with

(α = 25, β = 15) and (α = 15, β = 25) is used. Note that for the Y data, we shift the data

by 2 units along the score axis, making it represent a more difficult test. Note that with the

true rj and sk generated, we can define the population-level score CDFs in Equation (2),

and thus, the true equating transformations in Equations (4) and (5), respectively. When

we are generating our samples, we are therefore sampling test scores from the true test score

probability distributions illustrated in Figure 5. The anchor score distributions, illustrating

the ability differences, are shown in Figure 6.

6.2 Set-Up B – Data Generated by IRT Models

In Set-Up B, the data is generated by an IRT model, where we let the true model equal

the Rasch, 2-PL and 3-PL model, respectively. The data generation and equating estima-

tion procedure follows the kernel equating IRT method proposed in Andersson and Wiberg

(2017). This equating method generates test score probabilities from IRT models using the

Lord-Wingersky algorithm (Lord and Wingersky; 1984) and use these probabilities in the

continuization step of the kernel equating framework. First, we generate item parameters for

the test forms. These parameters include difficulty parameters, discrimination parameters

and guessing parameters, depending on which model defines the true model. The difficulty

parameters are generated from a N (0, 1) distribution, the discrimination parameters are

drawn from a Uniform(0.52) distribution and the guessing parameters are drawn from a

N (0.25, 0.5) distribution.

For each individual in the P test group, an ability is drawn from a standard normal

distribution and for each individual in the Q group, an ability is drawn from a N (0.5, 1.2)

distribution. Based on this ability and the previously defined item parameters, the individ-

ual’s responses to the items on the test forms and anchor test are generated through the item

response function in (7). The final dataset is obtained by randomly selecting a sample from

the population for each form. Thereafter, a model selection process begin where the choice
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Figure 5: True total-score distributions for three distributional scenarios: (a) Symmetric, (b) Skewed, and
(c) Bimodal.

of IRT model (Rasch, 2-PL, or 3-PL) is determined by the AIC, BIC and LRT, respectively,

resulting in three potentially different parametrisations. Using these IRT models, the test

forms are equated and the results are stored for each iteration.

Since the aim of this paper is to inform practitioners on model selection for smoothing

of test score distributions, and since IRT equating with kernel functions still lacks full im-

plementation in R, we employ the traditional percentile-rank with the PSE method in this

set-up. We note that this is a special case of kernel equating, using a uniform kernel with

a fixed bandwidth of 0.33 (von Davier et al.; 2004). This method is available in several
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Figure 6: True distributions on anchor-set scores for three distributional scenarios: (a) Symmetric, (b)
Skewed, and (c) Bimodal.

R packages for all IRT models that we consider in this paper. For this study, we use the

equateIRT package (Battauz; 2015).

6.3 Evaluation Measures

The equating estimators are evaluated in terms of bias, simulation standard errors (SE) and

the ASEE based on the asymptotic distribution of the equating function. Let φ̂(x)(r) denote

the kernel equating estimator evaluated at point x for the rth replicate using sample data,
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let φ(x) denote the population equating function and let

φ̄(x) =
1

100

100∑
r=1

φ̂(x)(r),

then

Bias
[
φ̂(x)

]
=

1

100

100∑
r=1

φ̂(x)(r) − φ(x), (10)

and

SE
[
φ̂(x)

]
=

√√√√ 1

100− 1

100∑
r=1

[
φ̂(x)(r) − φ̄(x)

]2
. (11)

6.4 Results – Set-Up A

Figure 7 presents the percentage of accurately selected models ((X,A)-model, (Y,A)-model)

across various model-selecting strategies for a sample size of N = 3, 000. It provides insights

into the effectiveness of each strategy across the three different distributional scenarios. For

all distributions, the BIC and the ASEEmin criteria was most successful in model selection.

For example, under the symmetric design, the BIC correctly identified 100% ((X,A)-model)

and 96% ((Y,A)-model) of the models for J = 40 and 100% of the models for J = 80. The

ASEEmin selector had almost the same accuracy. It is noteworthy that LRT consistently

failed to correctly identify any model across all the categories and distributions. In summary,

these results suggest that model selection performance is highly dependent on the choice of

selection criterion, but not on the characteristics of the test score distributions and the test

length. While BIC and ASEEmin appear most reliable, the AIC also shows high accuracy

in selecting the true model. Whenever it fails to do so, it generally selects a bigger model

with more cross-moments.

In Figures 8, 9, and 10, the percentages of times that the AIC, BIC and LRT, respectively,

were chosen by the ASEEmin criterion are presented. In the symmetric data setting for the

N = 3, 000 case, the AIC selector appears to be used slightly more frequently than the BIC

and LRT selectors in both the (X,A)-model and the (Y,A)-model. For the skewed data

setting, the difference is clearer in favor of the AIC. For the bimodal data, the difference
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Figure 7: The percentage of correctly selected models ((X,A)-model, (Y,A)-model) for each respective
model-selecting strategy for N = 3, 000.

is rather small again, and with a few cases where the BIC is chosen more frequently. The

LRT is, with only a few exceptions for the skewed data setting, never chosen, which clearly

indicates that the ASEEmin favors model criteria with high model selection accuracy.

In Figure 11, the bias, SE and ASEE are displayed under the symmetrical distribution

setting considering both the CE estimator (left panel) and the PSE estimator (right panel).

As was seen in the Empirical Analysis, the estimators perform similarly along a majority of

the score scale, and exhibit differences in the tails. In the upper range, the biases are the

largest. The BIC and ASEEmin criteria show close to identical performance, especially for
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Figure 8: The percentage of times each selector was used in the proposed methods (X–A model, Y–A model)
under the symmetric data setting, for N = 3000.

the CE estimator, since they selected very similar presmoothing models. Note that the AIC

and BIC often select the same model, and when different, they select very similar models.

The ASEEmin selects the AIC slightly more often for the symmetric design (see Figure 8)

but the performance of the resulting equating estimator is very similar to both the AIC

and the BIC-selected estimators. This is indeed reflected in Figure 11. Also note that the

BIC has an almost perfect model selection performance in all of the distributional scenarios,

so whenever the ASEEmin selects the BIC, which it does 40-50% of the time, it typically

selects the true model. It will therefore be reflected in the results. Interestingly, the LRT

has smaller bias than the AIC for the top scores, even though it consistently failed to select

the true model. Instead, it seems like the slightly larger presmoothing models are not a

disadvantage in terms of equating error. On the other hand, the LRT does produce the

largest SE and ASEE values. We lastly notice that there is no clear winner between the CE

and PSE estimator, as they both show similar performance.

As seen in Figures 12 and 13 the relative performance of the model-selection criteria re-

mains similar for the skewed and bimodal data settings, where the sparse data at certain
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Figure 9: The percentage of times each selector was used in the proposed methods (X–A model, Y–A model)
under the skewed data setting, for N = 3, 000.

intervals from the respective distributions are reflected in increased equating error and un-

certainty. It is noteworthy that the SE and ASEE for the equatings based on LRT-selected

modes are particularly high in the tails of the score distributions for the skewed and bimodal

settings.

6.5 Results – Set-Up B

In Figure 14, the percentage of correctly selected models in the IRT setting is displayed.

Under the 1-PL data setting, the AIC and LRT criteria showed a distinct advantage in

model selection, achieving 100% accuracy across all tested sample sizes and test lengths.

In contrast, the BIC strategy demonstrated variable performance, with the percentage of

correctly selected X–A and Y–A models fluctuating around 50-60%.

The 2-PL data setting saw all criteria correctly identifying the true model 100% of the

times. The 3-PL data setting presented more challenging conditions for all three strategies,

who performed the same model selection accuracy for both test lengths. The accuracy

levels ranged from 10% to 46% depending on the test length, thus showing the overall worst
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Figure 10: The percentage of times each selector was used in the proposed methods ((X,A)-model, (Y,A)-
model) under the bimodal data setting, for N = 3000.

performance of all IRT settings. When the selection criteria selected an incorrect model

in the 3-PL data generating case, they always selected the 2-PL model. We made sure to

generate a guessing parameter that did not have values too close to 0, and so the 3-PL

generated data would be different from the 2-PL generated data. It is however a challenging

task to decide between the 2-PL and the 3-PL, a problem nicely discussed and investigated

in Brown et al. (2015), and also reflected in our results. In summary, the AIC and LRT

criteria stood out in the simpler 1-PL and 2-PL data settings, but all strategies experienced

diminished performance in the more complex 3-PL setting.

In Figure 15, the bias, SE and ASEE are displayed under all three data-generating scenar-

ios. We see that the bias of all equating estimators when the true data-generating process is

either described by a 1-PL model or a 2-PL model is negligible. When the data is generated

from a 3-PL model on the other hand, the bias increases. We also see that the simulation

SEs and ASEE values generally increase as the complexity of the data-generating process

increases. We conclude that when there is any practical difference between the methods, the

LRT seem to perform the worst, followed by the AIC, and the BIC consistently performing
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the best.

Finally, we note that the differences between the equated scores from the considered

estimators were within the DTM for all considered scenarios in both simulation set-ups,

which differs from our empirical analysis. We, however, note that the SE and ASEE values

have clearer differences which could be of practical importance, especially in cases where the

sample size is small.

7 Discussion

This study aimed to evaluate the impact of the AIC, BIC and LRT criteria for log-linear

and IRT models when they are used to estimate the score distributions within the kernel

equating framework. An algorithm is proposed which uses these three criteria and selects the

pair which minimizes the ASEE. Since test groups are often heterogeneous, both within the

group and between groups it is not necessarily the case that the same criterion will select the

model which minimizes the estimated ASEE for both groups. We believe that the proposed

criterion can serve as a tool to inform the user on which criterion that actually performs

best in some well-defined sense. It could for example, in the best of cases, confirm that the

selected model is the one that minimize the ASEE, or at least that the selected model is very

similar to the one that minimize the ASEE. If several criteria point in the same direction, it

might give further evidence in favor of a certain model. So even though it might be slightly

unnatural to consider different criteria for different groups, we solve the model selection

problem in an unconstrained way and use the ASEEmin criterion as a way to further inform

us on the model selection. The study has considered both empirical and simulated data for

the NEAT design and was motivated by the fact that the three model fit indices considered

are all commonly used to select parameterization for these classes of models (Andersson and

Wiberg; 2017; Moses and Holland; 2010a; Lêoncio et al.; 2023). Our findings, based on both

real and simulated data, reveal that the choice of presmoothing model and model fit index

impacts the equated scores, especially in terms of SE and ASEE, emphasizing their practical
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importance.

Our analysis of log-linear models showed that model selection performance is dependent

on the selection criterion. We discovered that the BIC and ASEEmin criteria were most

effective in accurately selecting models across diverse distributional scenarios, which included

symmetric, skewed, and bimodal data. While the AIC also demonstrated high accuracy in

selecting the true model, it usually favored larger models with more cross-moments when it

failed to do so. We, however, conclude that for both symmetric and skewed data, the AIC is

the criterion which most often selects the pair of models which minimize the ASEE in finite

samples. For bimodal data, the BIC instead most often minimize the ASEE.

Another intriguing finding was the relatively smaller bias displayed by LRT for top scores,

despite its consistent failure in model selection. The LRT always selected a larger model

than the true model, which implies that a larger presmoothing model may not inherently

disadvantage equating error. However, caution is warranted as the LRT produced the highest

SE and ASEE values, signaling potential inconsistencies in equating precision. We note

that our implemented procedure is a slight alteration of the complex-to-simple strategy

used in Moses and Holland (2009), where model selection of a univariate model, i.e., a log-

linear model for X and Y , respectively, are considered. In Moses and Holland (2010a),

bivariate data is considered; however, they fix the number of univariate moments and focus

on model selection of the cross-moments. On the other hand, in our study, we consider

model selection of the full model and implement an exhaustive search through all possible

nested models. After all models are fitted and compared, our function iterates through the

LRT results, comparing each p-value against the adjusted significance threshold as described

in Section 4. The best model by LRT is determined as the one with a p-value below this

threshold. If multiple models meet this criterion, the last one iterated over (and thus with the

highest powers within the specified range) is selected. Since we tackle slightly different model

selection problems (selecting the cross-moments vs. selecting the full model), the results are

expected to differ from those of Moses and Holland (2009) and Moses and Holland (2010a).

In the IRT setting, the AIC and LRT criteria excelled in model selection in simpler 1-PL
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and 2-PL data settings, achieving 100% accuracy. However, under the more complex 3-PL

data scenario, all strategies witnessed reduced performance, with accuracy levels ranging

from a mere 10% to 46%. This observation underscores the increasing challenge faced by

these criteria when dealing with more complicated IRT models, and calls for further inves-

tigation into strategies that can maintain high model selection accuracy in these situations.

Concerning the bias, SE and ASEE, the BIC criterion consistently demonstrated the best

performance in the IRT context. A discernible pattern emerged where the bias, as well as

the SE and ASEE values, generally increased with the complexity of the data-generating

process.

The idea of targeting the equating function when selecting log-linear presmoothing model

has been considered recently by Liu and Kolen (2020), where a log-linear model-selection

criterion aiming at minimizing an estimate of the mean squared error of the equating func-

tion was proposed. However, their method was only considered for univariate data under

the EG design, which in general is a simpler task. Secondly, they aimed at minimizing a

measure which requires the estimation of the equating bias, a quantity always unknown.

The statistical properties of their selection method is therefore hard to determine. With

the procedure proposed in Algorithm 1 there are certain statistical guarantees since we only

consider models among the subset of models that have been selected by the AIC, BIC and

LRT in the first step, which all have good and theoretically established selection properties.

In conclusion, our study emphasizes the important role of model selection in test score

equating and highlights the importance of the careful choice of model fit indices. Given

the variable performance of different criteria under different distributional scenarios and test

designs, a one-size-fits-all strategy might be inadvisable. We therefore recommend that prac-

titioners test the sensitivity of their equating results to slight changes in the presmoothing

model. One convenient way of doing so is to use our own R function for log-linear model-

selection, which takes the bivariate score data as input and outputs the best fitting model

according to the AIC, BIC, LRT and ASEEmin, for any number of univariate and bivariate

moments, as specified by the user. We note that the ASEE is merely one of several possible
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equating-specific measures that can be used in the proposed algorithm. In our R function,

we also give the user the possibility to select the model which minimizes the percent relative

error (von Davier et al.; 2004), another equating-specific evaluation measure. In our simu-

lations, the results of such criterion did however not stand out but performed similarly to

the other criteria, and are therefore omitted. Further research on this and similar criteria

is however motivated. It would also be of interest to examine which measure to use when

including covariates such as age and gender in the presmoothing models, as described in

Wiberg and Bränberg (2015) and Wallin and Wiberg (2019). In these cases the models may

be more complicated, or misspecified as in Wallin and Wiberg (2023) and thus more research

is needed. One limitation to our study is that we have only considered external anchor items,

motivated by the design of the empirical data. By considering internal anchor items, one

has to, additionally, address the issue of structural zeros. Model-selection performance un-

der such setting is left for future research. Finally, we point out that this study has not

considered postsmoothing, i.e., smoothing of the equipercentile transformation rather than

the test score probabilities. The topic of postsmoothing is left for future research.
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Symmetric score distributions
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Figure 11: The bias, SE and ASEE of each equating estimator for a test length of 40, a sample size of 3,000
and symmetric score probability distributions.
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Skewed score distributions
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Figure 12: The bias, SE and ASEE of each equating estimator for a test length of 40, a sample size of 3,000
and skewed score probability distributions.
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Bimodal score distributions
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Figure 13: The bias, SE and ASEE of each equating estimator for a test length of 40, a sample size of 3,000
and bimodal score probability distributions.
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Figure 14: The percentage of correctly selected models ((X,A)-model, (Y,A)-model) for each respective
model-selecting strategy (in the IRT setting) for N = 3000.
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Figure 15: The bias, SE and ASEE under the 1-PL, 2-PL and 3-PL data-generating setting, for N = 3000
and J = 40.
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