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Abstract—Image processing using neural networks act as a tool
to speed up predictions for users, specifically on large-scale image
samples. To guarantee the clean data for training accuracy, var-
ious deep learning-based adversarial attack detection techniques
have been proposed. These crisp set-based detection methods
directly determine whether an image is clean or attacked, while,
calculating the loss is non-differentiable and hinders training
through normal back-propagation. Motivated by the recent
success in fuzzy systems, in this work, we present an attack
detection method to further improve detection performance,
which is suitable for any pre-trained neural network classifier.
Subsequently, the fuzzification network is used to obtain feature
maps to produce fuzzy sets of difference degree between clean
and attacked images. The fuzzy rules control the intelligence
that determines the detection boundaries. Different from previous
fuzzy systems, we propose a fuzzy mean-intelligence mechanism
with new support and confidence functions to improve fuzzy
rule’s quality. In the defuzzification layer, the fuzzy prediction
from the intelligence is mapped back into the crisp model
predictions for images. The loss between the prediction and label
controls the rules to train the fuzzy detector. We show that the
fuzzy rule-based network learns rich feature information than
binary outputs and offer to obtain an overall performance gain.
Experiment results show that compared to various benchmark
fuzzy systems and adversarial attack detection methods, our
fuzzy detector achieves better detection performance over a wide
range of images.

Index Terms—Neural network, adversarial attack detection,
fuzzification, fuzzy mean-intelligence, confidence function

I. INTRODUCTION

W ITH the advent of deep learning, neural network
models [1]–[3] have demonstrated revolutionary per-

formance in machine learning tasks, for example, natural
language processing (NLP) [4], object detection [5] and audio
signal processing [6], of real-world datasets. Nevertheless,
the vulnerability of neural networks to image corruptions
and adversarial examples has been unveiled [7]. Adversarial
attacks are techniques used to manipulate neural networks
by introducing small, often imperceptible, perturbations to
input images, audio, and videos, causing the model to make
incorrect predictions [8]. The impact of adversarial attacks is
significant, as they can undermine the reliability and security
of AI systems in critical applications, such as autonomous
driving [9], cyber security [10] and facial recognition [11].
Addressing these vulnerabilities is crucial for developing ro-
bust and trustworthy neural networks. Consequently, research
in adversarial defense mechanisms and attack detection [12]–
[14] has become a vital area in the field of AI.

In the machine learning, neural networks are trained to re-
estimate the input image sample by minimizing the recon-
struction loss between the re-constructed and original images.
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Towards guarantee credibility of input images by attack de-
tection, recent research looks at the distribution of the mean
reconstruction error (MRE) for attacked and original image
samples [15]. Particularly, image samples with higher MRE is
potentially caused by an adversarial attack or perturbation to
the clean image which leads to a wrong prediction or poorer
reconstruction as the model output. Since adversarial attacks
from new diverse sources become increasingly sophisticated,
obtaining lebelled images of all possible attack algorithms or
building attack detection techniques for each type of attack
algorithms are not feasible. There are various deep learning
methods [16]–[18] to make models more to unknown attack
algorithms. However, some require retraining of the model
with adversarial examples [19] or altering loss functions during
the training step.

Recently, fuzzy set theory is widely applied in deep learning
techniques [20], [21]. Different from crisp set-based tech-
niques, which output 0 or 1, fuzzy logic is a system of many-
valued logic where the truth value of variables can be any
real number between 0 and 1 [22]. It is applied to process
the concept of partial truth, where the truth value may range
between completely true and completely false. Recent studies
have shown that the fuzzy system offers several advantages in
handling problems traditionally addressed by crisp set-based
techniques. Firstly, fuzzy sets enable the representation of
uncertainty by assigning degrees of membership to elements
[20], [22]. In contrast, crisp sets operate under a binary classi-
fication, which proves inadequate in situations with vague or
uncertain information, particularly in the context of small and
imperceptible adversarial attacks. Secondly, Fuzzy sets exhibit
greater robustness in the presence of noise or data attacks
[23], while crisp sets, which are sensitive to exact values, are
adversely affected by small variations. Therefore fuzzy logic
can potentially handle tasks at several levels, from low level
(e.g., binary classification) to a high level (e.g., model-based
structural recognition and scene interpretation). It provides a
flexible framework for information fusion as well as powerful
tools for reasoning and decision making [24]. In this paper, we
show how the use of fuzzy detectors offers significant benefits
in adversarial attack detection. Specifically, we propose a
fuzzification process with difference degree between clean and
attacked images.

The contributions of this paper are summarized as follows:
• A fuzzy rule-based detector, simplified as fuzzy detector,

is introduced as a novel approach to address the adversarial
attack detection problem. The proposed method addresses the
limitations of crisp set-based predictions and offers advantages
in imperceptible attack detection.
• Different from previous intelligence in fuzzy logic, we

propose a new intelligence mechanism to improve fuzzy rule’s
quality. The proposed support and confidence functions are
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shown to be better adapted to the fitness function than the
previous work.
• A comprehensive evaluation of the proposed fuzzy detec-

tor with various backbones over a wide range of datasets and
attack algorithms is presented. The experimental results con-
firm the effectiveness of the proposed method. Furthermore,
it shows a promising way to apply fuzzy logic in adversarial
attack detection task.

II. RELATED WORK

A. Attacks

As one of commonly used single-step adversarial attacks,
Fast Gradient Sign Method (FGSM) calculate the gradient by
using backpropagation [25]. Assume y and x are the clean
image and the attacked image, respectively, the adversarial
image is calculated as y + ϵ ∗ sign(∆yJ(λ, x, y)) with the
scale of the distortion ϵ and the cost function J(λ, x, y). As
an iterative version of the FGSM, Projected Gradient Descent
(PGD) introduces a perturbation in each step during the
training to improve robustness [26]. The PGD attack motivates
the recent success in diffusion models [27]. In [28], the authors
assert DeepFool is the first effective method to accurately
compute the robustness of state-of-the-art deep classifiers to
perturbations on large-scale datasets. Moreover, Basic Iterative
Method (BIM) attack is introduced in [29] show that neural
networks are vulnerable to adversarial examples by feeding
adversarial images obtained from a cell-phone camera to a pre-
trained classifier and measuring the classification accuracy of
the system. Carlini & Wagner (CW) [30] demonstrate that con-
ventional defensive algorithms cannot guarantee the robustness
of neural networks by introducing unseen attack algorithms
that are successful on both distilled and undistilled neural
networks with 100% probability. In [31], the authors introduce
Jacobian-based saliency map attack (JSMA) to generate craft
adversarial samples based on a precise understanding of the
mapping between inputs and outputs of neural networks.
As the most recent adversarial attack, semantic similarity
attack on high-frequency components (SSAH) concentrates in
semantic similarity on feature representations [7]. To maintain
the perceptual similarity between original and adversarial
data, the authors introduce a low-frequency constraint to limit
perturbations within high-frequency components of input data.
The high-frequency components of an image capture minor
details and noise, while the low-frequency components convey
fundamental information. The authors report that the algorithm
is one of the strongest attacks to recent detection and defense
techniques [7].

B. Adversarial Attack Detection

In [32], a general framework is introduced to defend ob-
ject detectors against adversarial attacks by using segment
and complete defense (SAC). Each image is segmented into
patches by patch masks which provide pixel-level localization
of adversarial patches. Then the completion algorithm is
trained to remove the adversarial patch from the image if
the outputs of the segmenter are within a certain Hamming
distance of the ground-truth patch masks. Qi et al. train two

neural networks in [33]. Some adversarial attack samples
are generated toward the local DL model. Then, the target
model is attacked and produces perturbed samples. In the
adversarial training, the misclassification probability of all
training samples is estimated by the local model to detect
and delete perturbed samples from the dataset. Different from
these techniques, multiple prediction heads (i.e., detectors)
are combined to generate predictions from different depths in
deep models and introduce shallow information for inference
[34]. The distribution parameter is estimated by moment
matching. Then, cognitive uncertainty from the adversarial
attacks becomes easier to remove. As a semi-supervised learn-
ing network, an adversarial autoencder enables imperceptible
attack learning multiclassification tasks for adversarial attacks
[35]. The experiments show high detection accuracy of the
AAE model with only very limited training samples. In more
recent attack detection techniques, center-outward ordering
of points is estimated with the data distribution [36], which
makes the halfspace-mass (HM) depth a natural choice for
adversarial attack detection in the feature space. To improve
the performance of the attack detector, Hussian et al. apply
naturally occurring noises to generate boundary- and decision-
based attacks to attack the neural network [37].

C. Fuzzy Systems
Recent fuzzy system studies demonstrate high performance

on classification and detection tasks. In order to enhance the
detection performance of adversarial attacks to deep models
and boost machine learning robustness, classification bound-
aries are blurred [38]. The network traffic is set with linear
decision trees are wrapped by a one-class-membership scor-
ing algorithm. In [39], a multiple-attribute decision-making
(MADM) model is introduced for fuzzy classification. Mem-
bership functions of a fuzzy set from training data are con-
structed to form a decision-making matrix. However, these
techniques have some shortcomings, e.g., limited generaliza-
tion capability, which leads to obtaining extensive uncovered
image samples over new unseen samples. Therefore, multiple
fuzzy candidate rules to each example [40]. The usage of
more rules boosts the generalization capacity of the feature
information to further improve the classification accuracy.
Furthermore, in order to efficiently address anomaly detection
problem, accurate and interpretable rules are extracted [21].
The population of individual rules is evolved in an evolution
system. Then, the fuzzy rules in the system are mined with a
Michigan cooperative approach.

III. PROPOSED METHOD

In this section, we present the fuzzy detector-based adver-
sarial attack detection framework. Data preparation and the
encoder in the overall framework of the proposed method is
introduced in the first subsection, followed by the description
of the fuzzy detector and training losses in the remaining
subsections.

A. Data Preparation and Encoder
The overall framework of the proposed fuzzy detector-based

adversarial attack detection is presented in Fig. 1. The aim
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Fig. 1. Proposed training framework of the proposed fuzzy detector-based adversarial attack detection method. The fuzzy detector obtains the feature maps
Fc and Fa and converts the difference between them into a fuzzy set. Then, a fuzzy prediction is generated by using the fuzzy rule with the proposed support
and confidence functions. The defuzzification module converts the fuzzy set back into a crisp model prediction. Furthermore, the loss between the label and
model prediction is utilized to fine-tune the fuzzy rule and make more accurate predictions.

of adversarial attack detection is to learn feature information
of images and detect the difference between feature maps of
clean and attacked images at the pixel level by re-estimating
the image sample.

Initially, the noisy data is generated by attacking a clean
image sample with a random attack algorithm, e.g., FGSM
attack. The feature maps Fc and Fa are extracted from
clean and attacked images by using a pre-trained ImageNet
model, respectively. Particularly, we select the pre-trained
EfficientNetV2-XL on the ILSVRC dataset [41] because it
achieves the state-of-the-art benchmark on the ILSVRC chal-
lenge. The comparison of different encoder backbones will be
provided in the experiment section.

B. Fuzzy Detector

The feature maps Fc and Fa from the pre-trained encoder
are fed into the proposed fuzzy detector with hard labels,
i.e., clean or attacked samples. Then, the mean squared error
(MSE) loss at the pixel level between the feature maps is
calculated as:

LF =
1

N

N∑
n=1

(Fa −Fc)
2 (1)

where n refers to index of each pixel in feature maps and N is
the total number of pixels. We select the MSE loss because it
is more simple, interpretable, and differentiable [42] than other
loss algorithms, e.g., cross entropy loss. Then, in order to learn
more feature information than the crisp value-based prediction,
the loss is converted into the fuzzy set, which describes the
difference degrees between clean and attacked feature maps
at the pixel level. Particularly, high loss values refer to very
different feature information, which leads to a high possibility
of attacks to the image, and vice versa. In this work, we
use a triangular fuzzifier [43] to design the fuzzification. As
a consequence of the fuzzification, we obtain a non-interval
type-2 fuzzy system in which sets are characterised by fuzzy
subsets of the truth range and the membership function is
cropped triangular. The degree of differences in the fuzzy set
quantifies the difference levels across the feature maps of clean
and attacked images. The triangular membership function is
illustrated in Fig. 2.

Fig. 2. The membership of the fuzzy set.

The rules of the proposed fuzzifier follow a commonly used
fuzzy-rule-based classifier [20], [22] as:

Ri : IF (o1 is around oi∗1
)

AND (o2 is around oi∗2
)

AND · · ·AND(on is around oi∗n
)

THEN
(
P i

)
(2)

where o = [o1, o2, . . . , on]
T is the pixels of feature maps.

The prototype of i-th fuzzy rule is denoted as oi∗n . In the
intelligence layer, (on is around oi∗n ) indicates the l-th fuzzy
set of the i-th fuzzy rule Ri. To achieve that, we consider
the Eucledian Distance d between on and oi∗n with a hyper-
parameter αi

n. When the distance d is smaller than αi
n, the

fuzzy prediction with the i-th fuzzy rule is P i that predicts
how much the model trusts the image. The hyperparameter
αi
n is further updated to improve the boundary accuracy in

the training stage.
In order to determine the detection boundaries based on

the membership function shown in Fig. 2, we propose a
fuzzy mean-intelligence (FZ-I) mechanism. Firstly, we define
a fitness function f(·) based on a combination of a confidence
function C(·) and a support function S(·) with the i-th fuzzy
rule Ri described in equation (2).

f (Ri) = C (Ri) + S (Ri) (3)

where C(Ri) measures accuracy of the fuzzy rule with the
m-th sample xm and the p-th class Classp as:

C (Ri) =

∑
m∈Classp

∑L
l=1 φ (vkl (xm))∑

m=1

∑L
l=1 φ (vkl (xm))

(4)
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where vkl represents the k-th dimension of the membership
degree of the l-th antecedent fuzzy set. In this work, we
exploit the binary classification (i.e., clean or attacked images)
in adversarial attack detection problem. We define the binary
function of the membership degree φ(vkl) with the threshold
value T as:

φ (vkl (xm)) =

{
1 if vkl (xm) > T
0 Otherwise

}
(5)

Fuzzy logic leverages human expertise and intuition in system
design [22]. An adaptive threshold allows system designers
to incorporate their domain knowledge or intuition into the
fuzzy system, adjusting the threshold to align with the task.
Moreover, in real-world datasets, input data potentially vary
due to different distributions. The adaptability in the threshold
helps the system handle different scenarios. Therefore, we
empirically set the threshold value from the distribution of
the dataset. This adaptive threshold mechanism used in the
fitness function aims to adapt the miner system to problems
with dynamic training data. The adaptive threshold mechanism
is also used in our inference system for attack detection. To
find the winner rule, our inference system compute, for each
rule in the database, the sum of the membership degrees. If
the obtained result exceeds the defined threshold value, the
instance is classified as an anomaly; otherwise, it is classified
as normal. Moreover, S(Ri) with the i-th fuzzy rule Ri

measures how often the fuzzy rule appears in training images:

S (Ri) =

∑
m∈Classp

∑J
j=1 φ (vkl (xmj))

M × J
(6)

where j is the index of mutant vectors. These mutant vectors
are combined sets of linguistic values, e.g., very clean, few
clean, medium, very noisy, and extreme noisy. Total numbers
of samples and mutant vectors are denoted as M and J ,
respectively. In the proposed FZ-I mechanism, we maximize
the fitness function so as to be more adapted to the fuzziness
of the system and thus improve the rule’s quality.

A centroid defuzzification method is exploited to convert
the fuzzy prediction set into the model prediction [44]. Par-
ticularly, the center of gravity of the fuzzy set is calculated
along the difference degree as:

P =

∑
i µD (Pi)Pi∑
i µD (Pi)

(7)

where P is the model prediction, i.e., 0 or 1 for clean or
attacked image. The membership function µD(·) is:

µD =

{
1, if a < x < b
0, otherwise

(8)

where a and b are both trainable hyper-parameters. The
fuzzification and defuzzification are summarized in Fig. 3.

C. Training Losses

The training loss is calculated as follows. Firstly, we calcu-
late the fuzzy loss LF between the label and fuzzy prediction.

Fig. 3. Proposed fuzzy set-based fuzzy detector. The crisp difference between
feature maps from clean and attacked images are converted into a fuzzy set to
map into a fuzzy measure between 0 and 1 to describe how noisy is the input
image, i.e., higher values indicate more noisy images. The defuzzification
module makes a crisp prediction based on the fuzzy set.

Secondly, the overall loss L is calculated by the loss between
the label and model prediction LM with λ1 and λ2 as:

L =

{
λ1 · LF , if LM ̸= 0

LF/λ2, otherwise
(9)

The loss L updates the parameter αn to refine the fuzzy
rules, making more accurate fuzzy predictions. The pseudo-
code of the proposed fuzzy rule-based attack detection method
is summarized in Algorithm 1.

Algorithm 1: Fuzzy rule-based detector.
Input: Feature maps Fc and Fa, label X , pixels of

feature maps o = {o1, o2, ..., oN}, prototypes
for i-th fuzzy rule oi∗ = {oi∗1 , oi∗2 , ..., oi∗N}, loss
constraints λ1 and λ2, epoch Emax

Output: Model prediction P

1 Initialize hyperparameters a, b, αi
n;

2 for E = 1, 2, ..., Emax do
3 LF = MSE(Fc,Fa) // Calculate the loss between

feature maps;
4 for i = 1, 2, ..., I do
5 Ri ← o, oi∗, αi

n // Update fuzzy rules;
6 f(Ri) = C(Ri)+S(Ri) // FZ-I;
7 if f(Ri) < f(Ri−1) then
8 Ri = Ri−1 // Maximize R with FZ-I ;
9 end

10 if d(on, oi∗n ) < αi
n then

11 Pi ← Ri // Fuzzy prediction ;
12 end
13 end
14 P ← Pi, a, b with Eq. (8) // Defuzzification;
15 if X = P then
16 L = LF/λ2;
17 else
18 L = λ1 · LF
19 end
20 a, b, αi

n ← L // Updates parameters with loss ;
21 end

IV. EXPERIMENTAL RESULTS

A. Datasets and Attacks

We extensively perform experiments on ImageNet-R [45],
Canadian Institute For Advanced Research-10 (CIFAR-10)
[46], Common Objects in Context (COCO) [47], and Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
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[41]. In the training, validation, and test stages, 50,000, 10,000,
and 10,000 images are randomly selected from each dataset.

Moreover, we select 7 adversarial attack algorithms to
generate attacked images due to their robustness to recent
defense and recovery techniques [12], [48]. We summarize
the parameters of these attacks in Table I.

TABLE I
PARAMETERS OF SEVEN ADVERSARIAL ATTACKS

Attack Parameters
FGSM ϵ=0.008
PGD ϵ=0.01, α=0.02, Steps=40

SSAH α=0.01
DeepFool Steps=20

BIM ϵ=0.03, α=0.01, Steps=10
CW C=2, Kappa=2, Steps=500, learning rate=0.01

JSMA γ=0.02

B. Backbones and Competitors

As aforementioned we use the pre-trained EfficientNetV2-
XL [49] as the encoder’s backbone. Moreover, we apply the
proposed fuzzy detector on several state-of-the-art backbone
models, e.g., Res2Net-v1b-101 (ResNet ) [50], YOLOX-L
(YOLO) [2], and PRB-FPN6-2PY (PRB) [51]. These models
are initialized and re-trained with the proposed fuzzy logic.

In addition, the proposed method is evaluated and compared
to 7 adversarial attack detection techniques [32]–[37], [48] and
3 fuzzy systems [38]–[40]. It is highlighted that these models
are reproduced as the original implementations in the literature
but with same data as the proposed method.

C. Performance Measure

To evaluate and compare the adversarial attack detection
accuracy, we use the detection rate (DR) [48] as the perfor-
mance measure. In particular, we define a detection rate for
adversarial images ((DRa)) as:

DRa(%) =
TP + TN

TP + TN + FP + FN
× 100 (10)

where TP and TN are true positive and true negative results,
and FP and FN are false positive and false negative results.
Moreover, we define a detection rate for clean images ((DRc))
to evaluate the true positives as:

DRc(%) =
TP

TP + TN
× 100 (11)

D. Implementation Details

We dynamically set hyper-parameters λ1 and λ2 between 1
and 10 due to slightly different performance in experiments
over datasets and attack algorithms. In each experiment, we
aim to find the optimal values of λ1 and λ2 that strike a balance
between the model’s ability to capture the underlying data
distribution and its robustness against adversarial attacks. To
achieve this, we employ a systematic approach to dynamically
tune these hyperparameters based on the specific characteris-
tics of the dataset and the nature of the attacks encountered. By
adapting the values of λ1 and λ2 according to the experimental

conditions, we can effectively tailor the model’s behavior to
the task at hand, thereby enhancing its performance and gener-
alization capabilities. This dynamic parameter tuning strategy
enables us to explore a wide range of parameter configurations
and identify the most suitable settings for robust adversarial
defense. For example, we find that smaller values of λ1 and
λ1 provide slightly better performance (89.3% → 89.8%).
We train the proposed model with the M-SGD optimizer and
empirically set the learning rate to 0.0008. We set the batch
size to 32. The network is trained for 100 epochs with Tesla
V100 GPUs.

E. Number of Fuzzy Rules

We conducted experiments to demonstrate the trade-off
between performance improvement and computational cost,
specifically, varying the number of fuzzy rules. Fig. 4 (upper
left) present these results, with each data point being an
average of 70,000 experiments (10,000 images of ImageNet-R
× 7 attacks).

Fig. 4. Detection performance against the number of fuzzy rules (upper left)
and threshold value (others).

Fig. 4 (upper left) compares the number of fuzzy rules
against detection accuracy on ImageNet-R. The results in-
dicate: (1) I = 35 offers the best trade-off, validating the
chosen implementation setting. (2) The detection performance
is sensitive to the number of fuzzy rules. This is maybe
because the number of rules affects the coverage of different
input scenarios. Limited rules may result in an insufficient
representation of the input space, leading to imprecise or
incomplete decision-making.

F. Threshold Value

As aforementioned, we empirically set the threshold value
in equation (5) to 0.5. In this section, we aim to confirm
the chosen configuration. The results are presented in Fig. 4,
with each data point being an average of 70,000 experiments
(10,000 images × 7 attacks).
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TABLE II
ATTACK DETECTION RATIO (%) ON THE CIFAR-10 AND IMAGENET-R DATASETS.

Detection Ratio (%)
CIFAR-10 ImageNet-R

Method FGSM PGD SSAH DeepFool BIM CW JSMA FGSM PGD SSAH DeepFool BIM CW JSMA
SAC [32] 60.1 59.7 56.8 21.6 16.1 17.7 23.4 58.9 57.5 52.9 19.5 15.8 17.0 21.2

Sim-DNN [48] 70.5 60.0 49.4 26.7 22.3 22.9 31.1 71.0 66.2 61.4 28.3 26.0 26.1 34.6
DTBA [33] 78.3 75.6 71.7 36.2 30.7 32.3 40.4 78.0 72.4 68.9 34.8 32.7 32.9 36.5
MH-UI [34] 79.2 76.5 74.6 49.1 49.7 52.5 71.8 79.4 74.9 70.6 59.2 46.0 44.7 69.9
AAE [35] 80.5 76.9 75.4 63.7 60.4 60.2 75.8 79.7 75.6 71.8 60.8 55.1 55.0 74.9
HSJ [37] 77.5 75.2 75.6 60.1 55.2 59.4 72.0 78.1 76.8 71.3 59.7 48.9 53.6 71.5
HM [36] 86.9 84.5 84.0 80.6 76.7 77.9 87.8 87.3 85.2 80.7 85.2 79.3 81.1 88.4
FCB [38] 49.8 47.1 43.6 15.1 10.7 11.4 16.8 48.5 46.8 43.9 14.9 10.1 10.7 15.9
MF [40] 51.4 48.0 46.1 16.4 11.1 11.9 18.2 53.6 48.2 48.2 15.0 10.7 11.2 16.5

MADM [39] 62.4 54.2 51.5 19.0 15.8 14.3 23.1 60.7 54.0 54.6 21.6 13.8 13.9 20.1
ResNet+Ours 89.3 86.7 85.9 88.8 86.3 86.5 89.6 89.0 85.8 85.2 88.1 85.6 85.7 88.9

PRB+Ours 89.5 87.0 86.2 87.7 86.1 86.8 90.1 89.5 85.9 85.6 90.3 86.2 86.4 90.3
YOLO+Ours 89.6 87.2 86.6 89.5 88.0 85.9 90.1 89.8 86.2 85.7 90.4 87.8 86.1 89.9

TABLE III
ATTACK DETECTION RATIO (%) ON THE COCO AND ILSVRC DATASETS.

Detection Ratio (%)
COCO ILSVRC

Method FGSM PGD SSAH DeepFool BIM CW JSMA FGSM PGD SSAH DeepFool BIM CW JSMA
SAC [32] 58.7 58.9 55.0 21.1 16.0 16.8 22.8 56.3 55.2 52.7 16.2 13.9 16.7 21.0

Sim-DNN [48] 63.5 62.5 57.8 24.2 21.0 22.8 30.5 74.1 70.8 66.7 25.7 25.8 28.2 33.1
DTBA [33] 74.6 70.2 67.1 34.0 25.9 31.6 37.8 79.8 79.1 74.6 36.8 35.3 36.5 40.2
MH-UI [34] 76.0 74.9 71.5 47.5 48.8 50.1 37.5 80.3 81.6 75.0 52.4 52.2 55.6 72.0
AAE [35] 77.3 74.6 72.9 56.5 57.7 55.1 69.1 82.0 83.5 75.4 66.6 58.1 60.7 77.3
HSJ [37] 76.6 73.0 71.7 58.8 51.9 57.5 68.3 73.9 74.8 69.5 56.7 43.6 51.0 68.7
HM [36] 85.6 83.7 81.2 78.3 78.8 75.8 84.9 89.6 83.6 79.9 82.8 76.9 80.1 86.7
FCB [38] 46.7 45.0 39.8 14.3 10.1 10.5 14.4 51.1 48.5 47.8 14.6 9.2 10.5 14.6
MF [40] 48.8 47.6 45.2 15.9 11.0 11.5 17.7 56.4 51.7 50.1 15.8 13.3 12.5 20.1

MADM [39] 61.2 52.6 48.9 18.5 15.3 14.0 22.8 64.8 58.3 56.2 26.7 18.0 17.2 23.5
ResNet+Ours 87.3 84.4 81.9 84.2 87.1 86.8 88.7 90.1 87.3 85.5 88.5 86.8 85.7 90.3

PRB+Ours 86.3 85.5 83.8 85.0 87.2 87.3 89.4 91.0 86.1 84.5 88.3 87.9 85.8 91.4
YOLO+Ours 86.6 85.8 85.9 84.8 87.6 87.4 89.7 91.3 87.0 84.6 88.6 88.5 85.9 91.4

As Fig. 4 (upper right) shows, detection accuracy on
ImageNet-R starts to increase with T = 0.01 and reaches its
peak around T = 0.5, but performance drops after the peak
point. Therefore, Fig. 4 (upper right) suggests the threshold
value T = 0.5 for ImageNet-R. Moreover, Fig. 4 (lower)
confirms that expertise and intuition provide valuable insights
when dealing with datasets that differ significantly from the
current data distribution.

G. Comparisons to SOTA Methods

We compare the proposed method to state-of-the-art ad-
versarial attack detection methods [32]–[35], [48] and fuzzy
systems [38]–[40] with the same attack between the training
and test stage. The results are provided in Tables II&III.

Tables II&III shows the averaged attack detection perfor-
mance of the proposed method as compared with those of
the methods using the CIFAR-10, ImageNet-R, COCO, and
ILSVRC datasets. From these tables, it can be observed
that: (1) In all the evaluated models, the proposed fuzzy
prediction-based methods with different backbones offer the
best effectiveness. Different from crisp set-based decision-
making pipelines, the proposed fuzzy detectors convert the loss
between feature maps into fuzzy sets and provide difference
scores (’very clean’, ’few clean’, ’medium’, ’very noisy’, and
’extreme noisy’). Therefore, the proposed method exploits

more feature information than binary decisions. The fuzzy
rules are trained with difference scores to help the detector
make more accurate decisions. (2) The proposed method offers
the best attack detection performance with the YOLO model
on all datasets. The reason is likely due to the combined
implicit knowledge and explicit knowledge in the YOLOX
decoder [2]. (3) Compared to the improvement in FGSM,
PGD, and SSAH attacks, the improvement of detection accu-
racy tends to fall drastically when evaluating the true positives
on clean image samples. For example, compared to ESMAF
model, the proposed method with the YOLO model obtain
7.9% improvement on PGD attacked CIFAR-10 dataset, while
it is only 2.8% on the true positive evaluation.

Furthermore, some qualitative analysis are given in Fig.
5 which are related to the reconstructions after detecting
attacks of three randomly selected images from the COCO
dataset. After comparing the reconstructed images with the
original and attacked images, it can be observed that the
reconstructions obtained via the proposed method, i.e., Fig.
5 (d), are closer to original images, which again confirms the
efficacy of the proposed method.

Fig. 6 compares confusion matrices of AAE (left) and
ours (right) on ImageNet-R. The results indicate: (1) Our
model outperforms AAE in both TP and TN. (2) TP and TN
are both relatively high, but there is a significant difference
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TABLE IV
ATTACK DETECTION RATIO (%) WITH DIFFERENT ENCODER BACKBONES. EACH RESULT IS THE AVERAGE OF 40,000 EXPERIMENTS. BOLD INDICATES

THE BEST RESULTS. Italic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)
Method clean FGSM PGD SSAH DeepFool BIM CW JSMA Average

Pre-trained EfficientNetV2-XL + YOLO + Ours 94.2 89.3 86.6 85.7 88.3 88.0 86.3 90.3 88.6
Pre-trained VGG-16 + YOLO + Ours 93.8 89.4 86.4 85.8 88.1 88.2 86.0 89.8 88.4
Pre-trained Resnet56 + YOLO + Ours 93.2 88.8 85.5 85.1 87.2 86.9 85.6 89.4 87.7

Reproduced EfficientNetV2-XL + YOLO + Ours 94.0 89.1 86.2 85.6 87.9 87.8 86.0 90.0 88.3
Reproduced VGG-16 + YOLO + Ours 93.5 89.0 86.2 85.1 87.4 87.8 85.5 89.3 88.0
Reproduced ResNet56 + YOLO + Ours 93.0 88.5 85.1 84.7 87.0 86.3 84.9 89.2 87.3
Pre-trained EfficientNetV2-XL + AAE 90.6 80.5 78.0 74.1 62.4 57.5 58.2 74.9 72.0

AAE 90.5 80.0 77.7 73.9 61.9 57.8 57.8 74.3 71.7

Fig. 5. Attack detection results: (a) original images; (b)&(c) attacked by
random attack types and error rates; (d) reconstruction from attacks.

Fig. 6. Confusion matrices of AAE (left) and ours (right).

between them. This suggests that while the model performs
well in correctly identifying clean images, it shows even
greater proficiency in correctly classifying attacked images.

Moreover, Fig. 7 presents the t-distributed stochastic neigh-
bour embedding (t-SNE) visualisation of the penultimate layer
of the baseline YOLO model [2], proposed fuzzy rule-based
YOLO model, and fuzzy mean-intelligence based YOLO
model. We observe that the feature embeddings by the baseline
YOLO model are not quite separable for detection of clean
(blue) and attacked (yellow) images. The features representa-
tion from both proposed fuzzy detectors is generally better sep-
arated than those from the baseline YOLO model because the
proposed fuzzy prediction-based methods capture more feature
information than crisp value-based predictions. Moreover, the
proposed method with the YOLO detector achieves the best

separated clusters among clean and attacked images, which
means that the learned representations in the embedding space
are more distinguishable. These t-SNE visualization results
demonstrate that proposed methods are able to learn discrim-
inative feature representations which are better generalized to
adversarial attack detection with various attack algorithms.

H. Comparison of Encoder Backbones

Moreover, to confirm the fair of experiments, we conduct
experiments without pre-trained model. Firstly, we use dif-
ferent pre-trained models, i.e., VGG-16 [52] and Resnet56
[1] because they are commonly used feature extractor [48].
Secondly, we reproduce them with same data. Thirdly, we
replace the original encoder in AAE [35] to pre-trained
EfficientNetV2-XL [49] to evaluate the performance improve-
ment when comparing to original implementation in [35]. It is
highlighted that this experiment share the same experimental
setting with Section IV. E, i.e., same attack algorithms and
dataset between the training and test stages. Each result in
Table IV is the average of 40,000 experiments (10,000 images
× 4 datasets).

From Table IV, it can be observed that the proposed fuzzy
detector brings much more performance improvement than the
pre-trained encoders, which further confirms the effectiveness
of the proposed fuzzy detector. For an example, when the
pre-trained EfficientNetV2-XL is implemented as the feature
extractor, the proposed method with the YOLO model achieves
16.6% better accuracy than the AAE decoder. However, com-
paring to original AAE, the combination of the pre-trained
EfficientNetV2-XL and AAE only obtains a slight improve-
ment, i.e., 0.3%, which again confirms the effectiveness of
the proposed fuzzy detector than the SOTA attack detector.
Moreover, the detection accuracy of reproduced models makes
a slight difference to pre-trained models, which confirms the
implementation.

I. Unseen Domain Study

In this experiment, to evaluate and compare the detection
performance in a more challenging case, we use unseen attack
algorithms and datasets in domains between the training and
test stages. To achieve that, we first randomly select 5000,
1000, and 1000 images from each dataset for the training,
validation, and test stages. Then, each image is attacked by
using a random attack algorithm. Therefore, there are 140,000,
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(a) Baseline YOLO (b) YOLO + Fuzzy rules (c) YOLO + Ours
Fig. 7. t-SNE feature visualization of the model penultimate layer of (a) Baseline YOLO model [2]; (b) YOLO + proposed fuzzy rules; (c) YOLO + proposed
fuzzy rules + fuzzy mean-intelligence.

28,000 and 28,000 samples (5,000, 1000 and 1000 images ×
4 datasets × 7 attack algorithms) images are labelled with the
attack algorithm and dataset for the training, validation, and
test stages, respectively. In each batch of 5000 training samples
with same attack algorithm and dataset, we randomly select
samples with different labels from test images. For example,
the proposed fuzzy detector and competitor models are trained
by using images with unseen attack algorithms and datasets,
while evaluated by using images with FGSM attack from the
COCO dataset. Therefore, each result in Table V is the average
of 18,000 experiments (1000 images × 3 datasets × 6 attack
algorithms).

TABLE V
ATTACK DETECTION RATIO WITH UNSEEN ATTACK ALGORITHMS AND

DATASETS IN THE TEST STAGE. EACH RESULT IS THE AVERAGE OF 18,000
EXPERIMENTS.

Method Detection Ratio (%)
SAC [32] 50.7

DTBA [33] 60.4
MH-UI [34] 63.8
AAE [35] 66.7
FCB [38] 40.9
MF [40] 45.1

MADM [39] 65.6
ResNet + Ours 72.5

PRB + Ours 73.3
YOLO + Ours 73.4

We can observe from Table V that the proposed fuzzy
rule-based models achieve better performance than previous
models. Moreover, compared to Table II, it is possible to note
that the proposed DGAD models performance tends to fall
less than the previous models when less training data applied
and unseen attack type evaluated. The goal of the adversarial
training provided by the MH-UI and AAE is to increase
the model’s robustness, however, they lack generalisation to
unseen domains, i.e., datasets and attack algorithms. The
proposed fuzzy detector maintains its performance stable even
when adversarial or clean images from unknown datasets
are presented to the detection model due to its inner fuzzy
rules and detection mechanism that was projected for such
scenarios.

We further conduct a more challenging experiment with
different semantics, e.g., clear weather and foggy weather. The
proposed methods and competitors are trained with 50,000
images from the ImageNet-R dataset. Table VI presents the

results, each of them is average of 5,000 images of clear
weather from the Cityspaces dataset or 5,000 images of foggy
weather from the Foggy Cityscapes dataset [53].

TABLE VI
ATTACK DETECTION RATIO WITH IMAGENET-R → CITYSCAPES. F REFERS

TO FOGGY WEATHER. β IS THE ATTENUATION COEFFICIENT.

Method Clear F (β=0.0005) F (β=0.001) F (β=0.002)
SAC [32] 59.9 58.4 57.9 55.0

Sim-DNN [48] 63.4 63.0 62.1 60.4
DTBA [33] 66.3 66.1 65.5 64.6
MH-UI [34] 70.7 69.9 69.5 67.7
AAE [35] 73.1 73.0 72.4 71.1
FCB [38] 56.5 55.9 55.2 52.6
MF [40] 59.8 59.2 58.3 56.0

MADM [39] 69.9 69.8 69.2 68.1
ResNet + Ours 71.7 71.5 71.1 70.5

PRB + Ours 72.9 72.6 72.2 71.7
YOLO + Ours 73.3 73.1 73.0 72.5

It can be observed that the proposed method with YOLO
outperforms the competitor models for both clear and foggy
weathers. The proposed method with PRB and ResNet is also
competitive with AAE, the best of the state-of-the-art methods,
particularly at high attenuation coefficients. (71.7% VS 71.1%
with β=0.002).

J. Ablation Study

In this experiment, we investigate the effectiveness of each
contribution based on the ImageNet-R dataset. The cross mark
7 for fuzzy logic means we only use crisp values to train the
decoder. Then, we break the fitness function into the support
function and confidence function. Then, we study the perfor-
mance improvement of these two sub-functions individually.
The ablation study is presented in Table VII and the setting
of adversarial attack parameters is the same as Table I. It is
highlighted that this experiment share the same experimental
setting with Section IV. G, i.e., different attack algorithms and
dataset between the training and test stages. Each result in
Table VII is the average of 18,000 experiments (1,000 images
× 3 datasets × 6 attack algorithms).

Initially, the effectiveness of the fuzzy prediction is stud-
ied. Compared to the baseline, the detection performance is
significantly improved by the fuzzy detector. The reason is
membership scores from fuzzification in the proposed fuzzy
detector are added as new features to improve detection
performance. As the most influential contribution, the fuzzy
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TABLE VII
ABLATION STUDY OF TWO CONTRIBUTIONS IN THE PROPOSED METHOD.

EACH RESULT IS THE AVERAGE OF 18,000 EXPERIMENTS. BOLD
INDICATES THE BEST RESULTS.

Ablation Settings DR (%)Fuzzy rule Support function Confidence function
✗ ✗ ✗ 61.6
✓ ✗ ✗ 69.3
✗ ✓ ✗ -
✗ ✗ ✓ -
✗ ✓ ✓ -
✓ ✗ ✓ 70.8
✓ ✓ ✗ 71.1
✓ ✓ ✓ 73.4

prediction provides a soft response whereas crisp predictions
have discontinuous response at the detection boundary, which
enables smoother fits and hence lower bias around the split
boundaries.

Moreover, the experiment is performed by adding the pro-
posed fitness function f(·). This is due to the different mecha-
nisms implemented in the learning process, more specifically,
the new support and confidence sub-functions used in the
fitness function which are more adapted to the fuzziness of
the system and the mechanism of sharing information between
fuzzy rules through the fuzzy detector. In the proposed frame-
work, the difference degrees are converted into fuzzy sets
through a fuzzification process. Different from conventional
approaches, the intelligence are tailored for each fuzzy rule
as an important step in the framework. The complexity is
increased when fuzzy sets shared by all fuzzy rules, but
the intelligence of fuzzy system improves and further boost
detection performance.

K. Discussion

The above detailed experimental results confirm that the
proposed fuzzy detector with a new fuzzy mean-intelligence
mechanism can further improve adversarial attack detection
performance in different scenarios, i.e., seen or unseen datasets
and attack algorithms, compared to the state-of-the-art attack
detection methods and fuzzy systems.

YOLO shows better accuracy because it is optimized for ob-
ject detection tasks, with a well-balanced structure for feature
extraction and detection speed. The backbone integrates deep
feature hierarchies effectively, making it robust to adversarial
perturbations. In contrast, ResNet and PRB may not capture
multi-scale features as efficiently in combination with the
encoder, which could explain the lower accuracy. YOLOX’s
architecture may better align with EfficientNetV2-XL in ex-
tracting discriminative features from adversarial inputs.

Expertise and intuition may still provide valuable insights
when dealing with datasets that differ significantly from the
current data distribution, which is even more critical. Our
understanding of the underlying data generating processes,
potential biases, and domain-specific nuances are leveraged to
make most appropriate decisions about adapting the threshold.
Intuition, developed through experience and familiarity with
the data, can also guide practitioners in identifying patterns,
outliers, and anomalies that may impact the detection accuracy.

However, it’s essential to fine-tune the threshold on the new
dataset to ensure the effectiveness and generalizability of the
detection approach across different datasets. In future work,
incorporating automated techniques, such as cross-validation
or model monitoring, can help enhance the adaptability and
robustness of the proposed method in diverse data settings.

The major limitation of this paper includes encoder and
prototypes. Firstly, the proposed fuzzy logic is implemented
on the decoder and further studies on encoder are out of scope
of this paper. The fuzzy logic-based encoder is considered by
converting feature vectors into fuzzy concepts in the future
work. Secondly, prototypes play an important part in recent
studies [48], which allows a reasoning process that relies on
the similarity (proximity in the feature space) of a data sample
to a given prototype. In the further study, we will exploit local
peaks of the density as the prototype to help calculate the
difference degree between clean and attacked image samples.

V. CONCLUSION

In this paper, we have proposed a fuzzy detector-based
adversarial attack detection method, a simple yet effective
replacement to the conventional crisp set-based decision-
making pipelines. Differing from these pipelines, the differ-
ence degrees between clean and attacked feature maps provide
rich information to improve the proposed model’s ability to
detect adversarial attacks. Moreover, we have proposed a
fuzzy mean-intelligence mechanism with new support and
confidence functions to improve fuzzy rule’s quality. Our
evaluation with different datasets and attacks has demonstrated
the high effectiveness of the proposed method.
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