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Abstract. We describe an approach to universality limits for orthogonal polynomials on the real
line which is completely local and uses only the boundary behavior of the Weyl m-function at the
point. We show that bulk universality of the Christoffel–Darboux kernel holds for any point where
the imaginary part of the m-function has a positive finite nontangential limit. This approach is
based on studying a matrix version of the Christoffel–Darboux kernel and the realization that bulk
universality for this kernel at a point is equivalent to the fact that the corresponding m-function
has normal limits at the same point. Our approach automatically applies to other self-adjoint
systems with 2 × 2 transfer matrices such as continuum Schrödinger and Dirac operators. We
also obtain analogous results for orthogonal polynomials on the unit circle.

1. Introduction

Let µ be a probability measure on R with all finite moments,∫
|ξ|n dµ(ξ) < ∞, ∀n ∈ N.

We will always assume that µ has infinite support (in the sense of cardinality; this is not to be
confused with boundedness of the support – µ may or may not have compact support). Then
associated orthonormal polynomials {pj(z)}∞

j=0 are obtained by the Gram–Schmidt process from
the sequence of monomials {zj}∞

j=0 in L2(R, dµ). The Christoffel–Darboux (CD) kernel is

Kn(z, w) =
n−1∑
j=0

pj(z)pj(w).

It is the reproducing kernel for the subspace span{1, z, . . . , zn−1} in L2(R, dµ) and is a central
object in the theory of orthogonal polynomials [42]. We note that there are alternative notations,
with different placements of complex conjugate and/or summation up to n instead of n− 1.

Of particular interest are the rescaled limits of CD kernels

lim
n→∞

1
τn
Kn

(
ξ + z

τn
, ξ + w

τn

)
(1.1)

for an appropriate sequence τn → ∞ and z, w ∈ C, ξ ∈ R. They are called universality limits
because the limit is often found to be a standard kernel: the most common phenomenon is bulk
universality, in which case (1.1) gives a (suitably rescaled) sin(w − z)/(w − z), called the sinc (or
sine) kernel. The motivation for this line of inquiry comes from random matrix theory, where
universality limits describe the local eigenvalue statistics of unitary ensembles [10]. The interest in
this “universal” behavior dates back to foundational work in random matrix theory by Wigner [51],
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who proposed local eigenvalue statistics of random matrices as a model for local statistical behavior
of resonances in scattering theory.

Universality limits were first studied at scale τn = Kn(ξ, ξ) and proved by Riemann–Hilbert
methods for a large family of purely absolutely continuous measures with real analytic weights
[10, 11, 12, 13, 22]. A breakthrough result by Lubinsky [28], with further developments by [15, 43,
48, 50], instead requires Stahl–Totik regularity [46] (a global condition) and Lebesgue point and
local Szegő conditions; most of those results are restricted to compactly supported measures (but
see [26, 35]). In this paper, we present a new approach to universality limits which is based on
Weyl m-functions.

We will always assume that µ corresponds to a determinate moment problem, i.e., that there is
no other measure on R with the same sequence of moments; one of the equivalent characterizations
of this condition is that

lim
n→∞

Kn(z, z) = ∞

for one (and therefore all) z ∈ C \ R. This is equivalent to the limit point case in the language
of Jacobi matrices [44, Section 3.8]. In particular, any compactly supported µ corresponds to a
determinate moment problem; so do the normalized exponential weights Cαe

−|ξ|α

dξ for α ≥ 1
and e−Q(ξ) dξ for even degree polynomials Q with positive leading coefficient [10, Section 2.5]. In
summary, the assumptions on µ will be:

Hypothesis 1.1. µ is a probability measure on R with infinite support and finite moments. It
corresponds to a determinate moment problem (i.e. the limit point case).

In our first theorem, we conclude a universality limit from a nontangential limit of the imaginary
part of the m-function, defined on C+ = {z ∈ C | Im z > 0} by

m(z) =
∫ 1
ξ − z

dµ(ξ). (1.2)

Theorem 1.2. Let µ obey Hypothesis 1.1. Let m(z) be its Stieltjes transform (1.2). Let ξ ∈ R and
assume that for some 0 < α < π/2, the limit

fµ(ξ) := 1
π

lim
z→ξ

α≤arg(z−ξ)≤π−α

Imm(z) (1.3)

exists and 0 < fµ(ξ) < ∞. Then uniformly on compact regions of (z, w) ∈ C × C,

lim
n→∞

Kn

(
ξ + z

fµ(ξ)Kn(ξ,ξ) , ξ + w
fµ(ξ)Kn(ξ,ξ)

)
Kn(ξ, ξ) = sin(π(w − z))

π(w − z) (1.4)

(of course, the right-hand side is interpreted as 1 for w = z).

Remark. (a) Lebesgue-almost everywhere on R, the limit (1.3) exists. The limit fµ(ξ) recovers
the a.c. part of the measure in the sense that

dµ(ξ) = fµ(ξ)dξ + dµs(ξ) (1.5)

where µs is a measure singular with respect to Lebesgue measure. In particular, the set

Σac(µ) = {ξ ∈ R | fµ(ξ) exists and 0 < fµ(ξ) < ∞}

is said to be an essential support for the a.c. spectrum.
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(b) The point ξ ∈ R is said to be a Lebesgue point of µ if

lim
ϵ↓0

∫
(ξ−ε,ξ+ε)|fµ(s) − fµ(ξ)|ds

2ε = lim
ϵ↓0

µs((ξ − ε, ξ + ε))
2ε = 0 (1.6)

(more precisely, fµ is usually thought of as an equivalence class of functions in L1
loc(R, dξ), and

ξ is said to be a Lebesgue point of µ if there is a choice of value fµ(ξ) such that (1.6) holds).
At any Lebesgue point of µ, for any 0 < α < π/2, the limit (1.3) exists [39, Theorems 11.22,
11.23] and the two pointwise meanings of fµ(ξ) (from (1.3) or (1.6)) match. In particular,
Theorem 1.2 applies at every Lebesgue point with 0 < fµ(ξ) < ∞, so it applies at a.e. ξ in the
essential support of the a.c. spectrum.

(c) Condition (1.3) is unaffected by a change in the measure away from some neighborhood of ξ,
so it is a local condition on the measure.

(d) In terms of the m-function, the condition (1.3) is optimal; it cannot be replaced by a normal
limit. There is a class of examples by Moreno–Martinez–Finkelstein–Sousa [16] with a jump in
the weight where the normal limit limy↓0 Imm(ξ + iy) exists but rescaled CD kernels converge
to a different kernel.

Until now, the strongest results on convergence of rescaled kernels that were proven with local
conditions on the measure come from Lubinsky’s work [30, 31], where his conclusions establish
convergence in measure or convergence in mean. It was not previously known whether the bulk
universality limit (1.4) can be concluded pointwise from only a local condition on the measure,
and this is explicitly stated as an open problem in [31]. Theorem 1.2 resolves that open problem.
Many of the previous results assume a compactly supported measure; this does not matter for our
approach and is another demonstration of its locality.

If the limit (1.1) is to exist for some scale τn, taking z = w = 0 shows that the limit of Kn(ξ, ξ)/τn

must exist. Conversely, if this limit is finite and nonzero, the locally uniform convergence allows one
to change the scale from Kn(ξ, ξ) to τn. The growth rate of Kn(ξ, ξ) depends on global properties
of the measure. For weights of the form e−Q(ξ) dξ with polynomials Q, Kn(ξ, ξ) has power law
behavior with exponent dependent on the degree of Q [10]. For compactly supported measures, the
linear behavior

lim
n→∞

Kn(ξ, ξ)
n

= fE(ξ)
fµ(ξ) (1.7)

(where fE denotes the density of the equilibrium measure of the essential spectrum E = ess suppµ) is
heuristically natural, but in order to prove it, some global assumption on µ is needed. Máté–Nevai–
Totik [34] proved (1.7) for Stahl–Totik regular measures [46] (a global condition) under the local
assumptions that fµ(ξ) > 0, log fµ is integrable in a neighborhood of ξ, and ξ is a Lebesgue point
of both the measure µ and the function log fµ, for the case E = [−2, 2]; Totik [47] generalized this
to arbitrary compacts E ⊂ R. Of course, Theorem 1.2 can be combined with all such statements.
In fact, it is now clear that bulk universality at scale Kn(ξ, ξ) and the linear behavior (1.7) are two
separate questions which can be combined in their shared scope of applicability.

The approach to universality by localization and smoothing relies on a combination of Stahl–Totik
regularity and local assumptions on the measure at ξ. Initially this was proved by Lubinsky [28]
for ξ /∈ suppµs with fµ continuous, strictly positive at ξ; this was generalized in various ways by
Simon [43], Totik [48], and Findley [15] to ξ such that ξ is a Lebesgue point of µ and fµ obeys a
local Szegő condition in a neighborhood of ξ. Our Theorem 1.2 shows that regularity or the local
Szegő condition are not needed to conclude bulk universality at scale Kn(ξ, ξ).
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Theorem 1.2 generalizes all previous pointwise results on bulk universality (1.1) at scale τn =
Kn(ξ, ξ). Bulk universality limits are sometimes formulated with a factor of n inside the kernel and
a factor of Kn(ξ, ξ) outside. In most cases this is merely a presentational choice, since the results
are only proved to hold within a scope where (1.7) holds; there are also examples [4, 7] for which
(1.7) isn’t proved or expected; such mixed scale bulk universality limits don’t fall within the scope
of this paper.

One of the standard applications of universality is to the fine structure of zeros near a point
ξ ∈ suppµ. We denote by ξ(n)

j (ξ) for j ∈ Z the zeros of pn counted from ξ, i.e.,

· · · < ξ
(n)
−2 (ξ) < ξ

(n)
−1 (ξ) < ξ ≤ ξ

(n)
0 (ξ) < ξ

(n)
1 (ξ) < . . .

with no zeros of pn between ξ
(n)
j and ξ

(n)
j+1. By the Freud–Levin theorem [17, 25] (see also [1,

Theorem 1.2]), the bulk universality limit (1.4) implies

lim
n→∞

fµ(ξ)Kn(ξ, ξ)(ξ(n)
j+1(ξ) − ξ

(n)
j (ξ)) = 1 ∀j ∈ Z. (1.8)

(when it occurs at scale n, this uniform spacing of zeros is described as clock behavior). Avila–
Last–Simon [1] proved that (1.4) and (1.8) hold a.e. on Σac(µ) for measures with ergodic Jacobi
parameters; we prove that these phenomena hold a.e. on Σac(µ) for arbitrary measures µ, thereby
solving a conjecture of Avila–Last–Simon [1, p. 83]:

Corollary 1.3. For any measure µ obeying Hypothesis 1.1, (1.4) and (1.8) hold for Lebesgue-a.e.
ξ ∈ Σac(µ).

Theorem 1.2 can also be formulated uniformly for a set of energies J ⊂ R:

Theorem 1.4. Let µ obey Hypothesis 1.1 and fix a compact set J ⊂ R. Assume that for some
0 < α < π/2, (1.3) holds uniformly in ξ ∈ J with 0 < fµ(ξ) < ∞ for ξ ∈ J . Then uniformly on
compact regions of (ξ, z, w) ∈ J × C × C, (1.4) holds.

The results presented so far are merely one facet of our approach; that approach naturally takes
place in the setting of a matrix version of the Christoffel–Darboux kernel and links universality
limits with normal limits of the m-function. To formulate this, we recall that µ corresponds to a
sequence of Jacobi parameters an > 0, bn ∈ R, n = 1, 2, 3, . . . such that

zpn(z) = anpn−1(z) + bn+1pn(z) + an+1pn+1(z)

with the convention p−1(z) = 0. This second order recursion can be written as a first-order system,
and iterating that system gives transfer matrices in SL(2,C),

B(n, z) = A(an, bn; z) · · ·A(a1, b1; z), A(a, b; z) =
(

z−b
a − 1

a
a 0

)
(1.9)

whose entries are

B(n, z) =
(

pn(z) −qn(z)
anpn−1(z) −anqn−1(z)

)
where qn denote the second kind polynomials for µ, which are defined by

qn(z) =
∫
pn(z) − pn(ξ)

z − ξ
dµ(ξ)
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for n = 0, 1, 2, . . . and q−1(z) = −1. This is the standard transfer matrix formalism for Jacobi
recursion [44, Section 3.2]; the same transfer matrices are central to the Riemann–Hilbert approach
to orthogonal polynomials [10, Section 3.2]. We define

Kn(z, w) =
(∑n−1

j=0 pj(z)pj(w)
∑n−1

j=0 qj(z)pj(w)∑n−1
j=0 pj(z)qj(w)

∑n−1
j=0 qj(z)qj(w)

)
(1.10)

and call this the matrix Christoffel–Darboux (CD) kernel. Its upper left entry is precisely the CD
kernel; moreover, through the other entries, the behavior of the matrix CD kernel also describes
the behavior of second kind polynomials and arbitrary eigensolutions of the Jacobi matrix.

Since m is a Herglotz function (analytic map C+ → C+), its normal limits can only take values
in the closure

C+ = C+ ∪ R ∪ {∞}.
It is common to study bulk universality in the presence of a.c. spectrum, corresponding to limits
η ∈ C+. However, in our results below, the case η ∈ R∪ {∞} is also allowed, and it corresponds to
qualitatively different behavior.

Likewise, trace-normalized real symmetric positive 2 × 2 matrices can be parametrized by a
parameter η ∈ C+. For η ∈ C+, we denote

H̊η := 1
1 + |η|2

(
1 − Re η

− Re η |η|2
)

η ∈ C+ ∪ R

H̊∞ :=
(

0 0
0 1

)
.

(1.11)

Denote also
j =

(
0 −1
1 0

)
(1.12)

and define
M̊η(z) = ezjH̊η

and
K̊η(z, w) =

∫ 1

0
e−twH̊ηjH̊ηe

tzjH̊η dt.

Note that this kernel can be computed much more explicitly. If we denote

hη := Im η

1 + |η|2
≥ 0 for η ∈ C+, hη = 0 for η ∈ R ∪ {∞}

then we have

K̊η(z, w) =
j(cos(hη(w − z)) − 1) + H̊η

hη
sin(hη(w − z))

w − z
, for η ∈ C+,

K̊η(z, w) = H̊η, for η ∈ R ∪ {∞}.
The quantities M̊η, K̊η will appear in our results as universality limits; they emerge in the proofs
as reproducing kernels of canonical systems (see Section 2) with constant trace-normalized Hamil-
tonians equal to H̊η, evaluated at unit length.

In particular, in some approaches to universality the sinc kernel seems to appear through its
Fourier transform; in our approach it appears as an eigensolution of a constant coefficient canonical
system, normalized by an initial condition. Note that if η = i, that is H̊η = 1

2I2, we obtain the well
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known Paley-Wiener (namely sinc) kernel. Moreover, note that the cos part only appears on the
off diagonal and thus does not appear in the scalar reproducing kernels.

We show that normal limits of the m-function at ξ ∈ R imply a universality limit for the matrix
Christoffel–Darboux kernel Kn, with scale

τξ(n) = tr Kn(ξ, ξ).
From now on, we will formulate all results in a version uniform over a compact set J ⊂ R; a
singleton set J = {ξ} is of course allowed.

Theorem 1.5. Let µ obey Hypothesis 1.1 and fix a compact set J ⊂ R. If m has a normal limit
uniformly on J , i.e., there exists η : J → C+ such that

lim
y↓0

m(ξ + iy) = η(ξ) (1.13)

uniformly in ξ ∈ J , then

lim
n→∞

1
τξ(n)Kn

(
ξ + z

τξ(n) , ξ + w

τξ(n)

)
= K̊η(ξ)(z, w), (1.14)

uniformly on compact regions of (ξ, z, w) ∈ J × C × C.

Since we allow η = ∞, (1.13) should be understood with respect to the chordal metric on the
Riemann sphere Ĉ.

Remark. (a) Evaluating (1.14) at z = w = 0 shows

lim
n→∞

1
τξ(n)Kn(ξ, ξ) = K̊η(ξ)(0, 0) = H̊η(ξ). (1.15)

In particular, passing to the (1, 1)-entry gives

lim
n→∞

Kn(ξ, ξ)
τξ(n) = 1

1 + |η(ξ)|2 . (1.16)

Thus, when η(ξ) ̸= ∞, it is trivial to pass from the scaling by τξ(n) to the scaling by Kn(ξ, ξ).
(b) (1.16) recovers a central result of subordinacy theory [18, 19]: written in terms of polynomials,

it means ∑n−1
j=0 pj(ξ)2∑n−1

j=0 (pj(ξ)2 + qj(ξ)2)
→ 1

1 + |η(ξ)|2 ,

so the eigensolution pn(ξ) is subordinate if η(ξ) = ∞ and not subordinate if η(ξ) ∈ C+ ∪ R.
Similar considerations starting from (1.15) show that a subordinate solution exists at energy ξ
if and only if η(ξ) ∈ R ∪ {∞}.

Theorem 1.5 can even be turned into an equivalence statement, if the kernels Kn are embedded
in a continuous family of kernels by a linear interpolation. We define for L ≥ 0

KL(z, w) = K⌊L⌋(z, w) + (L− ⌊L⌋)(K⌊L⌋+1(z, w) − K⌊L⌋(z, w)) (1.17)
The resulting kernels interpolate between projections to subspaces span{1, . . . , zn−1}. We also point
out for ξ ∈ R the objects

ML(z, ξ) = I + (z − ξ)jKL(z, ξ),
because evaluated at integers, they give

j1Mn(z, ξ)j1 = B(n, ξ)−1B(n, z), j1 =
(

−1 0
0 1

)
. (1.18)
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Thus, the matrices ML serve as a linear interpolation for the matrices Mn, which were studied
before in studies of universality. In spectral theory the linear interpolation (1.17) has been used for
KL(ξ, ξ) in subordinacy theory for Jacobi matrices [18, 19].

For the continuous family of kernels KL, we prove that universality at the scale

τξ(L) = tr KL(ξ, ξ) (1.19)

is equivalent to a local condition: the existence of a normal limit of m at ξ. We also point out some
other equivalent criteria.

Theorem 1.6. Let µ obey Hypothesis 1.1 and fix a compact J ⊂ R. The following are equivalent:
(i) m has a normal limit uniformly on J , i.e., (1.13) holds for some η : J → C+.

(ii) For some H : J → Mat(2,C), uniformly in ξ ∈ J ,

lim
n→∞

1
τξ(n)Kn(ξ, ξ) = H(ξ).

(iii) For some M : J × C → SL(2,C), uniformly on compact subsets of (ξ, z) ∈ J × C,

lim
L→∞

ML(ξ + z/τξ(L), ξ) = M(ξ, z).

(iv) For some K : J × C × C → Mat(2,C), uniformly on compact subsets of (ξ, z, w) ∈ J × C × C,

lim
L→∞

1
τξ(L)KL(ξ + z/τξ(L), ξ + w/τξ(L)) = K(ξ, z, w).

Moreover, in this case, H(ξ) = H̊η(ξ), M(ξ, z) = M̊η(ξ)(z), and K(ξ, z, w) = K̊η(ξ)(z, w).

The equivalence of (ii) and (iv) in Theorem 1.6 can be compared with a second approach of
Lubinsky [27, 29]. Lubinsky proves that for a measure µ with ξ /∈ suppµs and C−1 ≤ fµ ≤ C in a
neighborhood of ξ, a bulk universality limit holds for all z, w if and only if it holds on the diagonal
z = w. Our equivalence of (ii) and (iv) shows with no prior assumptions that the matrix bulk
universality limit holds for all z, w if and only if it holds at the center z = w = 0.

Breuer, Last and Simon [6] showed that under the assumption that ξ is a Lebesgue point and m
has a finite normal limit at ξ, bulk universality at scale n of the CD kernel implies bulk universality
at scale n of the matrix CD kernel. Recently, Breuer [5] showed that under the same assumptions,
bulk universality with scale n is equivalent to convergence of B(n, ξ)−1B(n, ξ+ z/n). These results
follow effortlessly from Theorem 1.6; namely, a finite normal limit for m already gives a bulk
universality limit at scale τξ(n), and it implies by (1.16) that the scales Kn(ξ, ξ) and τξ(n) are
proportional. Thus, one of those scales is proportional to n if and only if the other is.

In fact, our results naturally take place in a more general setting, with transfer matrices con-
sidered as the basic object. This will explain why our approach does not need compact support of
the measure. Moreover, this approach is to some extent model-independent and applies to other
self-adjoint settings with 2×2 transfer matrix formalisms such as Schrödinger and Dirac operators;
we note however that it does not automatically apply to orthogonal polynomials on the unit circle,
due to their unitary nature.

To state this general setting, we redefine all the basic objects; we will do so while reusing notation,
and in Section 2 we will explain the compatibility of the definitions above and below.

Hypothesis 1.7. Consider matrix-valued functions A,B : [0,∞) → Mat(2,C) which are locally
integrable in the sense that their entries are in L1([0, x]) for all x < ∞, and have the property that
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A(x) ≥ 0, B(x)∗ = B(x), and tr(A(x)j) = tr(B(x)j) = 0 for Lebesgue-a.e. x, with j defined by
(1.12). Let T : [0,∞) × C → Mat(2,C) be the solution of the initial value problem

j∂xT (x, z) = (−zA(x) +B(x))T (x, z), T (0, z) = I2 (1.20)
and assume that (limit point case)

tr
∫ ∞

0
T (x, 0)∗A(x)T (x, 0)dx = ∞. (1.21)

The condition tr(A(x)j) = tr(B(x)j) = 0 could equivalently be stated as A,B : [0,∞) →
Mat(2,R). We chose the former formulation, since it is uniform for different signature matrices j.

Initial value problems of the form (1.20) are called canonical systems or Hamiltonian systems
[2, 21]. The solutions T (x, z) are jointly continuous, entire in z for each x, and detT (x, z) = 1 for
all x, z. We define the corresponding kernels by

KL(z, w) =
∫ L

0
T (x,w)∗A(x)T (x, z) dx. (1.22)

Moreover, the solutions T (x, z) have the j-monotonic property in the upper half-plane
T (x2, z)∗jT (x2, z) − T (x1, z)∗jT (x1, z)

i
≤ 0, z ∈ C+, 0 ≤ x1 ≤ x2 (1.23)

and the j-unitary property on the real line,
T (x, z)∗jT (x, z) − j

i
= 0, z ∈ R, x ≥ 0. (1.24)

The condition (1.24) is equivalent to T (x, z) ∈ SL(2,R) for z ∈ R.
Due to (1.23), Weyl disks can be introduced in this setting. By a standard abuse of notation, we

will use the same notation for an SL(2,C) matrix and for the Möbius transformation it generates
on the Riemann sphere Ĉ, with the standard projective identification of w ∈ C with the coset of(

w
1
)

and ∞ with the coset of
(1

0
)
. We denote C+ = C+ ∪ R ∪ {∞}. With this notation in mind, for

any z ∈ C+, the Weyl disks are defined by
D(x, z) = {w ∈ Ĉ | T (x, z)w ∈ C+}

Due to (1.23), the Weyl disks are nested, D(x2, z) ⊂ D(x1, z) for x1 ≤ x2. Thus, for each z ∈ C+,
the intersection ∩xD(x, z) is a disk or a point. It is a point if and only if (1.21) holds, and in this
case, the Weyl disks define an analytic map m : C+ → C+ by

{m(z)} =
⋂
x≥0

D(x, z). (1.25)

Theorem 1.8. Let T (x, z) be as in Hypothesis 1.7. Let m be the corresponding m-function (1.25),
KL the corresponding kernels (1.22), and τξ(L) the scaling factors (1.19). The following are equiv-
alent:

(i) m has a normal limit uniformly on J , i.e., (1.13) holds for some η : J → C+.
(ii) For some H : J → Mat(2,C), uniformly in ξ ∈ J ,

lim
L→∞

1
τξ(L)KL(ξ, ξ) = H(ξ).

(iii) For some M : J × C → SL(2,C), uniformly on compact subsets of (ξ, z) ∈ J × C,
lim

L→∞
T (L, ξ)−1T (L, ξ + z/τξ(L)). = M(ξ, z)
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(iv) For some K : J × C × C → Mat(2,C), uniformly on compact subsets of (ξ, z, w) ∈ J × C × C,

lim
L→∞

1
τξ(L)KL(ξ + z/τξ(L), ξ + w/τξ(L)) = K(ξ, z, w).

Moreover, in this case, H(ξ) = H̊η(ξ), M(ξ, z) = M̊η(ξ)(z), and K(ξ, z, w) = K̊η(ξ)(z, w).

In this setting it also makes sense to extract the scalar kernel

KL(z, w) =
(

1
0

)∗

KL(z, w)
(

1
0

)
(1.26)

and explicitly state the corresponding version of Theorem 1.2:

Theorem 1.9. Let T (x, z) be as in Hypothesis 1.7. Let m be the corresponding m-function (1.25)
and KL the corresponding kernels given by (1.22), (1.26). Fix a compact J ⊂ R and assume that
for some 0 < α < π/2, (1.3) holds uniformly in ξ ∈ J . Then uniformly on compact regions of
(ξ, z, w) ∈ J × C × C,

lim
L→∞

KL

(
ξ + z

fµ(ξ)KL(ξ,ξ) , ξ + w
fµ(ξ)KL(ξ,ξ)

)
KL(ξ, ξ) = sin(π(w − z))

π(w − z) . (1.27)

These results have immediate applications to the Schrödinger equation

−∂2
xy(x, z) + V (x)y(x, z) = zy(x, z), (1.28)

with real-valued function V such that V ∈ L1([0, x]) for all x < ∞; universality limits for
Schrödinger operators were previously considered in a special case in [33]. To account for a boundary
condition

cosβf(0) + sin βf ′(0) = 0 (1.29)
at the regular endpoint at 0, we fix β ∈ [0, π) and consider the eigensolutions ϕ(x, z), θ(x, z) at
energy z, with initial conditions(

∂xϕ(0, z) ∂xθ(0, z)
ϕ(0, z) θ(0, z)

)
= R−1

β , Rβ =
(

cosβ − sin β
sin β cosβ

)
(for β = 0, these are the Dirichlet and Neumann solutions, respectively). These give rise to the
transfer matrices

T (x, z) = Rβ

(
∂xϕ(x, z) ∂xθ(x, z)
ϕ(x, z) θ(x, z)

)
which obey an equation of the form (1.20) (see Section 2). As we will explain, a calculation gives

KL(z, w) =
(∫ L

0 ϕ(x, z)ϕ(x,w) dx
∫ L

0 θ(x, z)ϕ(x,w) dx∫ L

0 ϕ(x, z)θ(x,w) dx
∫ L

0 θ(x, z)θ(x,w) dx

)
. (1.30)

Its (1, 1)-entry

KL(z, w) =
∫ L

0
ϕ(x, z)ϕ(x,w)dx (1.31)

gives reproducing kernels for subspaces in the spectral representation of the Schrödinger operator.
In particular, Theorems 1.8, 1.9 immediately apply to any half-line Schrödinger operator in the
limit point case at ∞. For concreteness, we state the corresponding version of Theorem 1.9:
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Theorem 1.10. Consider a real-valued potential V with V ∈ L1([0, x]) for all x < ∞ which is
limit point at ∞. Fix β ∈ [0, π) and consider the operator HV,β = − d2

dx2 + V on L2([0,∞)) with
domain
D(HV,β) = {f ∈ L2([0,∞)) |f, f ′ ∈ AC([0, x]) ∀x < ∞,−f ′′ + V f ∈ L2([0,∞)), (1.29) holds}.

Let m(z) be its Weyl m-function. Let J ⊂ R and assume that for some 0 < α < π/2, the limit
(1.3) converges uniformly in ξ ∈ J and 0 < fµ(ξ) < ∞. Then uniformly on compact regions of
(ξ, z, w) ∈ J × C × C, the kernel (1.31) obeys (1.27).

For a probability measure µ on the unit circle ∂D whose support is not a finite set, orthonormal
polynomials on the unit circle (OPUC) are denoted by φn(z) and once again defined by the Gram–
Schmidt process applied to the sequence {zn}∞

n=0. The reflected polynomials are

φ∗
n(z) = znφn(1/z)

and the Christoffel–Darboux kernel for OPUC is given by the formula

kn(z, w) = φ∗
n(z)φ∗

n(w) − φn(z)φn(w)
1 − zw

, (1.32)

see, e.g, [42]. As before, there are different conventions resulting in n+1 instead of n in this formula,
and different conventions for placement of the complex conjugate.

The Carathéodory function corresponding to µ is defined by

F (z) =
∫

∂D

eiθ + z

eiθ − z
dµ(eiθ), z ∈ D.

We prove the following:

Theorem 1.11. Fix a compact set J ⊂ R. Assume that for some 0 < α < π/2,
gµ(ξ) := lim

z→eiξ

−α≤arg(1−ze−iξ)≤α

ReF (z) (1.33)

holds uniformly in ξ ∈ J with 0 < gµ(ξ) < ∞ for ξ ∈ J . Then uniformly on compact regions of
(ξ, z, w) ∈ J × C × C,

lim
n→∞

e
−in z−w

2gµ(ξ)kn(eiξ,eiξ) kn

(
e

i(ξ+ z

gµ(ξ)kn(eiξ,eiξ)
)
, e

i(ξ+ w

gµ(ξ)kn(eiξ,eiξ)
))

kn(eiξ, eiξ) =
sin( 1

2 (w − z))
1
2 (w − z)

(1.34)

The exponential prefactor can be traced back to an asymmetry in the setup: the kernel (1.32)
is the reproducing kernel for span{zj | j = 0, 1, . . . , n − 1}. If the result was written in terms of
reproducing kernels for span{zj−⌊n⌋/2 | j = 0, 1, . . . , n − 1}, which would be related to the CMV
basis, this factor would not be needed. Of course, this prefactor can be simplified in cases when
kn(eiξ, eiξ)/n has a limit, as is the case in prior results [15, 24, 32, 41]. The linear behavior of the
Christoffel function is studied in great generality in [49]. For an OPUC analog of the result of [16],
see [3, 40].

As on the real line, it is well known [39] that (1.33) is the density of µ with respect to Lebesgue
measure on R, and that its pointwise existence is implied by Lebesgue point conditions.

Let us now outline our approach. Matrices ML(z, ξ) = T (L, ξ)−1T (L, z) have been used before
in considerations of universality. They can be motivated by variation of parameters; more substan-
tially, since T (L, ξ) ∈ SL(2,R) and ML(ξ, ξ) = I2, they can be viewed as a gauge transformation
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of a j-inner entire function T (L, z) into the Potapov–de Branges gauge. If for the purpose of this
motivation we assume that ξ = 0, then this is exactly in the setting of de Branges canonical systems
[8, 37], which are initial value problems of the form

j∂xM(x, z) = −zH(x)M(x, z) M(0, z) = I2, (1.35)

with entries of H locally integrable, H(x) ≥ 0 and tr(Hj) = 0. We review elements of this theory
in Section 2.

Canonical systems are very natural objects from the perspective of inverse spectral theory. The
main reason for this is the de Branges correspondence, which can be seen as a (more sophisticated)
analog of Favard’s theorem for canonical systems. That is, up to some normalizations discussed
in Section 2, for any Herglotz function there exists a unique associated canonical system. In
his foundational paper [28], Lubinsky developed the idea to conclude from convergence on the
diagonal, convergence off the diagonal by comparing it with a reference measure and using an
inequality between reproducing kernels called Lubinky’s inequality. In this approach, it is necessary
to construct a new measure which dominates both, the original measure and the reference measure.
Due to Favard’s theorem this is a powerful tool for orthogonal polynomials and has been used by
several authors [43, 48]. However, for classes of differential operators without Favard’s theorem, this
approach causes difficulties, whereas our theorems automatically apply. In Section 3 we describe
the homeomorphisms which are derived from the de Branges correspondence.

Besides the de Branges correspondence, our paper relies on the flexibility of canonical systems
to perform operations which would not be possible within the setting of orthogonal polynomials.

The proof of Theorem 1.8 relies on a rescaling trick at the level of the canonical systems. Namely,
the action of rescaling the spectral parameter z in the m function is explicitly linked to a rescaling
of the x-variable for a trace-normalized canonical system. The scaling trick was initally found by
Kasahara [20] for Krein strings and used by Eckhardt–Kostenko–Teschl [14] and Langer–Pruckner–
Woracek [23] for canonical systems to investigate large energy asymptotics of the m-function. Our
realization is that this can also be used in the other direction to prove matrix universality, by
“zooming in” towards ξ ∈ R instead of out towards ∞. Also, whereas they use the rescaling trick to
conclude properties of the m-function, we use the m-function to conclude universality limits. This
will be presented in Section 4.

We also emphasize that although the matrix CD kernel leads to particularly elegant results, the
results for the scalar CD kernel are substantially stronger, because the imaginary part of a Herglotz
function has substantially better boundary behavior than the real part; for instance, even for purely
a.c. measures with continuous density, Rem doesn’t necessarily have finite normal limits. Thus,
removing the influence of Rem was of great interest to us. In order to achieve this, we had to find
a new shifted rescaling trick with a shift in the value of m, which is presented in Section 5.

The application to orthogonal polynomials on the unit circle requires some additional arguments;
this is presented in Section 6.

Acknowledgements. We are grateful to Harald Woracek and Peter Yuditskii for very helpful
discussions.
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2. Canonical systems and Christoffel–Darboux kernels

2.1. Christoffel–Darboux kernels and Weyl disks. Let us start in the setting of Hypothe-
sis 1.7. The solution T (x, z) is considered in the sense of the integral equation

T (L, z) = I2 −
∫ L

0
j(−zA(x) +B(x))T (x, z) dx.

In particular, T is locally absolutely continuous in x for each z, jointly continuous in x and z, and
entire in z for each x. Jacobi’s formula for the derivative of the determinant shows detT (x, z) = 1.

Differentiating the form T (x,w)∗jT (x, z) with respect to x yields

T (L,w)∗jT (L, z) − j = (w − z)
∫ L

0
T (x,w)∗A(x)T (x, z) dx. (2.1)

With kernels defined by (1.22), this gives an analog of the Christoffel–Darboux formula,

KL(z, w) = T (L,w)∗jT (L, z) − j

w − z
. (2.2)

Moreover, the case w = z ∈ R in (2.1) shows the j-unitary property (1.24), i.e., T (L, z) ∈ SL(2,R)
for z ∈ R, and the case w = z ∈ C+ shows the j-monotonic property (1.23) which leads to the Weyl
disk formalism.

The j-monotonic family {T (L, z)} parametrized by L ∈ [0,∞) is subject to a gauge transforma-
tion [2]

{T (L, z)} 7→ {U(L)T (L, z)}

where U(L) ∈ SL(2,R) for each L. Recall that U(L) ∈ SL(2,R) is equivalent to U(L)∗jU(L) = j,
so gauge transformations don’t affect j-monotonicity, the Weyl disks, m-function, or matrix CD
kernels. In particular, choosing U(L) = T (L, 0)−1 leads to a new j-monotonic family

M(L, z) = T (L, 0)−1T (L, z) (2.3)

which is in the Potapov–de Branges gauge

M(x, 0) = I2, ∀x. (2.4)

A direct computation then shows that M(x, z) solves

j∂xM(x, z) = −zH(x)M(x, z), H(x) := T (x, 0)∗A(x)T (x, 0). (2.5)

This reduces an arbitrary Hamiltonian system to a canonical system of the type (1.35). It is also
notable that the antiderivative of H appears in the kernel: directly from (1.22) it follows that∫ L

0
H(x) dx =

∫ L

0
T (x, 0)∗A(x)T (x, 0) dx = KL(0, 0).

Although we use 0 as a special reference point in this section, later in our work, transformations
of the form (2.3) will be preceded by an affine transformation in the spectral parameter; instead of
considering a family T (L, z), we will study the families T (L, ξ + z/r), where ξ ∈ R and r > 0 is a
scaling parameter. Taking the limit as r → ∞ will correspond to universality at the point ξ.
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2.2. Canonical systems and de Branges theorem. The case B = 0 corresponds to the impor-
tant special case of de Branges canonical systems; in this case we will follow the notation (1.35).
It is also common to refer to H as a Hamiltonian. Throughout we only consider canonical systems
on an interval [0, L0), where L0 ∈ (0,∞], with the property∫ L0

0
trH(x) dx = ∞. (2.6)

This property precisely corresponds to the limit point case [37], i.e., the case in which Weyl disks
shrink to a point as x → L0, thereby defining the m-function or Weyl function of the canonical
system by (1.25). Comparing (2.6) with (2.5) explains why we could use (1.21) as a characterization
of the limit point case in Hypothesis 1.7.

It is very convenient to pass to trace-normalized canonical systems, i.e., impose
trH = 1

Lebesgue-a.e.. To help notationally distinguish the settings, we will denote the parameter by t or
T when discussing trace-normalized canonical systems. Due to the limit point assumption (2.6),
we always consider trace normalized Hamiltonians on the full half line [0,∞).

An inverse theory of canonical systems was studied by Potapov and de Branges [8, 36]. In
particular, if we restrict to trace-normalized canonical systems and consider as equal Hamiltonians
which agree Lebesgue-a.e., there is a remarkable bijective correspondence due to de Branges:
Theorem 2.1 (de Branges [8]; see also [37, Theorem 5.1]). Each Herglotz function is the m-function
of a unique trace-normalized canonical system (1.35).

Any canonical system can be reduced to the trace-normalized case by a reparametrization of the
interval, and this doesn’t affect the m-function of the canonical system:
Lemma 2.2 ([38, Proposition 1]). Let H̃ be the Hamiltonian of a limit-point canonical system on
[0, L̃0) and M̃ the solution. Then

a(L) =
∫ L

0
tr H̃(x)dx

defines an increasing, locally absolutely continuous surjection a : [0, L̃0) → [0,∞), a function M is
uniquely defined by

M̃(x, z) = M(a(x), z), (2.7)
and M(t, z) is the solution of a trace-normalized canonical system with the Hamiltonian H obeying

H̃(x) = H(a(x))a′(x). (2.8)
The two canonical systems have the same Weyl m-function.
2.3. Jacobi recursion. Let us consider the setting of Hypothesis 1.1 and recall how it relates to
canonical systems. Let {B(n, z)}∞

n=0 be the family of Jacobi transfer matrices (1.9). Then the
matrices

T (n, z) = j1B(n, z)j1, j1 =
(

−1 0
0 1

)
form a j-monotonic family whose Weyl function is the same function m(z) obtained as the Stieltjes
transform (1.2) of the orthogonality measure µ [44, Section 3.2]. By a direct calculation starting
from (1.9), matrices M(n, z) defined by (2.3) obey

M(n+ 1, z) = M(n, z) + zT (n, 0)−1NT (n, 0)M(n, z), N =
(

0 0
1 0

)
.
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This can be extended to a solution of a canonical system by linear interpolation: define for x ≥ 0
M(x, z) = M(⌊x⌋, z) + (x− ⌊x⌋)(M(⌊x⌋ + 1, z) −M(⌊x⌋, z)).

This is the solution of a canonical system (1.35) with piecewise constant Hamiltonian
H(x) = −jT (⌊x⌋, 0)−1NT (⌊x⌋, 0) = e⌊x⌋(0)∗e⌊x⌋(0), en(z) =

(
pn(z) qn(z)

)
,

as is seen by a direct verification; linear interpolation works because T (n, 0)−1NT (n, 0) is nilpotent.
Moreover, from (1.35) and HjH = 0 we see that on intervals [n, n+ 1],

M(L,w)∗H(L)M(L, z) = M(n,w)∗H(n)M(n, z), L ∈ [n, n+ 1]
and a direct calculation gives

M(n,w)∗H(n)M(n, z) = en(w)∗en(z) (2.9)
so if we follow the general definition of matrix CD kernels from (1.22), (2.9) shows that they are
linearly interpolated,

KL(z, w) = Kn(z, w) + (L− n)en(w)∗en(z), L ∈ [n, n+ 1]. (2.10)
Iterating this on intervals of length 1 recovers the formula (1.10), and (1.17) is immediate; thus, this
explains that the general definition (1.22) of the matrix CD kernel is compatible with the definition
we gave for the orthogonal polynomial setting (1.10), (1.17).

2.4. Schrödinger operators. We briefly comment on the Schrödinger equation (1.28). The
second-order eigenfunction equation gives a first-order evolution of transfer matrices,

j∂xT (x, z) = (−zA(x) +B(x))T (x, z),
where a direct calculation using R−1

β = R∗
β gives

A(x) = Rβ

(
0 0
0 1

)
R∗

β , B(x) = Rβ

(
−1 0
0 V (x)

)
R∗

β .

From here,
T (x,w)∗A(x)T (x, z) = ex(w)∗ex(z), ex(z) =

(
ϕ(x, z) θ(x, z)

)
which justifies the formula (1.30).

2.5. Constant Hamiltonians. We are particularly interested in canonical systems with constant
Hamiltonians. Constant trace-normalized Hamiltonians are parametrized by η ∈ C+, i.e., they are
of the form H(t) = H̊η for a unique η ∈ C+.

Note that H̊η is singular if η ∈ R ∪ {∞}. That is in this case we can write

H̊η = vηv
∗
η , vη = 1√

1 + η2

(
1

−η

)
, v∞ =

(
0
1

)
.

Example 2.3. Fix η ∈ C+. The canonical system with the constant Hamiltonian H(t) = H̊η,
t ∈ [0,∞) has the following properties:
(a) the solution of the canonical system is

M(t, z) = etjzH̊η (2.11)
This is also expressible as

M(t, z) =
{

cos(tzhη)I2 + sin(tzhη)
hη

jH̊η η ∈ C+

I2 + tzjHη η ∈ R ∪ {∞}
(2.12)
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(b) the m-function is a constant function, m(z) = η for all z ∈ C+.
(c) the kernel is

Kt(z, w) =
j(cos(thη(w − z)) − 1) + Hη

hη
sin(thη(w − z))

w − z
.

Proof. (a) (1.35) has a unique solution, so the first claim follows by direct verification by plugging
in (2.11) into (1.35)). Expanding (2.11) into a power series, using

(jH̊η)2 = −h2
ηI2, (2.13)

and separately summing even and odd terms, we obtain (2.12).
(b) Let us again use projective coordinates η = η1/η2. By a direct calculation,

(
η1
η2

)
is an

eigenvector of jH̊η. Thus, it is an eigenvector of M(t, z), so M(t, z)η = η ∈ C+ in the projective
sense. In other words η is in each Weyl disk. Since the canonical system is in the limit point case,
this proves that m(z) = η.

(c) follows from (2.2) and (2.12), using H̊ηjH̊η = h2
ηj. □

This explains the quantities M̊η, K̊η from the introduction; they appear from canonical systems
with constant trace-normalized Hamiltonians evaluated at t = 1.

3. Continuity properties

The de Branges bijection, recalled in Theorem 2.1, is central to our approach. To proceed, we
have to define some metric spaces.

Let X,Y be metric spaces; assume that X is not compact but has compact subsets {Sn}∞
n=1

such that Sn ⊂ intSn+1 and ∪n∈NSn = X. Then the topology of locally uniform convergence on
C(X,Y ) is metrizable, with one choice of metric given by

d(f, g) =
∞∑

n=1
2−n min{1, sup

x∈Sn

dY (f(x), g(x))}.

Let M be the set of all analytic maps C+ → C+. Note that this is the set of Herglotz functions,
enlarged by constants in R ∪ {∞}. We view M as a subset of C(C+,C+); this is the setting of
Montel’s theorem [45, Chapter 6], so M is a compact metric space.

Let H be the set of all trace-normalized Hamiltonians on [0,∞), with the topology of locally
uniform convergence of their antiderivatives, i.e., the distance between Hamiltonians H1, H2 is
given by

d(H1, H2) =
∞∑

n=1
2−n min

{
1, sup

T ∈[0,n]

∣∣∣∣∣
∫ T

0
H1(t)dt−

∫ T

0
H2(t)dt

∣∣∣∣∣
}
.

Let S be the set of all solutions M(t, z) of canonical systems with trace-normalized Hamiltonians,
viewed as functions of (t, z) ∈ [0,∞) × C, with the topology of locally uniform convergence, i.e.,
that inherited from C([0,∞) × C,Mat(2,C)).

Let K be the set of all kernels – all functions Kt(z, w), viewed as functions of (t, z, w) ∈ [0,∞) ×
C × C, with the topology of locally uniform convergence, i.e., that inherited from C([0,∞) × C ×
C,Mat(2,C)).

Let us now turn to continuity properties of the de Branges bijection between trace-normalized
Hamiltonians and m-functions.
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Theorem 3.1. Let H,Hn be trace normalized Hamiltonians on [0,∞); m,mn the corresponding m-
functions; Mn,M the fundamental solutions; and {Kn

L}L≥0, {KL}L≥0 the associated kernels. Then
the following conditions are equivalent:

(i) mn → m in M;
(ii) Hn → H in H;

(iii) Mn → M in S;
(iv) Kn → K in K.

Proof. The equivalence of (ii), (iii), and (i) is well known and presented already in [14], see also [37,
Chapter 5]. Some of these references formulate (i), (ii) with pointwise convergence, but also note
that this corresponds to the same topology by applications of the Arzelà–Ascoli theorem. Thus, it
remains to show the equivalence of (iii) and (iv).

(iii) =⇒ (iv): It suffices to prove uniform convergence

sup
(t,z,w)∈S

|Kn
t (z, w) − Kt(z, w)| → 0, n → ∞ (3.1)

on compacts of the form S = [0, T ] × S1 × S2 ⊂ [0,∞) × C × C.
Consider first a special case: if S1 ∩ S2 = ∅, (3.1) follows immediately from

Kn
t (z, w) = Mn(t, w)∗jMn(t, z) − j

w − z

by locally uniform convergence Mn → M .
Now assume that S1 ∩ S2 ̸= ∅. Choose R > 0 such that S1 ∪ S2 ⊂ BR(0) and consider S̃1 =

∂B2R(0). Since the kernels are entire functions of z, we obtain by the maximum principle that

sup
z∈S1

|Kn
t (z, w) − Kt(z, w)| ≤ sup

z∈S̃1

|Kn
t (z, w) − Kt(z, w)|

Apply to this inequality supt∈[0,T ] supw∈S2 . Then the right-hand side goes to 0 as n → ∞ by the
special case noted above, because S̃1 ∩ S2 = ∅. Thus, (3.1) holds in general.

(iv) =⇒ (iii): This follows from Mn(t, z) = I2 + zjKn
t (z, 0). □

In other words, the correspondences between M,H,S,K are homeomorphisms. Since M is a
compact metric space, so are H,S,K.

4. Universality from normal limits of m

In this section we prove Theorem 1.8 and its orthogonal polynomial consequences. The key will
be to consider a family of trace-normalized canonical systems parametrized by (ξ, r) ∈ J × [1,∞)
and investigate whether this family has a continuous extension to J × [1,∞]. Here [1,∞] is used
with the metric inherited from, say, the Riemann sphere Ĉ; it is used as a compact interval. An
abstract metric space argument relates existence of a continuous extension to uniform convergence:

Lemma 4.1. Let F : J × [1,∞] → Y be a map to some metric space Y , such that the restrictions
F |J×[1,∞) and F |J×{∞} are continuous. Then F is continuous if and only if F (ξ, r) → F (ξ,∞) as
r → ∞ uniformly in ξ.

Proof. If F is continuous, then it is uniformly continuous on the compact (in R × Ĉ) J × [1,∞].
This uniform continuity implies uniform convergence F (·, r) → F (·,∞) as r → ∞.
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For the converse, it suffices to prove continuity of F at points (ξ,∞) by proving convergence
along sequences (ξn, rn) → (ξ,∞). Note

dY (F (ξn, rn), F (ξ,∞)) ≤ dY (F (ξn, rn), F (ξn,∞)) + dY (F (ξn,∞), F (ξ,∞))

The first term is small for large n by uniform convergence (even if rn = ∞) and the second is small
for large n by continuity on J × {∞}. □

The family of canonical systems which we wish to consider can be described by their m-functions.
Starting from a function m ∈ M (which will later be chosen to be the function from the statement
of Theorem 1.8), we define

mξ,r(z) = m(ξ + z/r), (ξ, r) ∈ J × [1,∞) (4.1)

and view this as a map J × [1,∞) → M. The first observation is that if this map has a continuous
extension, that extension inevitably has constant functions at r = ∞:

Lemma 4.2. Fix m ∈ M and ξ ∈ R and consider the functions mr(z) = m(ξ+z/r) for r ∈ [1,∞).
If the functions mr converge in M as r → ∞, the limit is a constant function, i.e., mr → η for
some η ∈ C+.

Proof. Without loss of generality assume ξ = 0. Denote by f ∈ M the limit of mξ,r as r → ∞.
Then for any y > 0,

f(iy) = lim
r→∞

m(iy/r) = lim
ϵ↓0

m(iϵ),

by the change of variables ϵ = y/r. This implies that f(iy) is independent of y, so f is constant. □

We note that Lemma 4.2 would not be true sequentially: there exist m ∈ M and sequences
rn → ∞ such that mrn

converges in M to a nonconstant Herglotz function. For example, using the
branch of ln on the right half-plane with |Im ln| < π/2, we can define for z ∈ C+

m(z) = i exp
(
π/2
eπ/2 sin ln(−iz)

)
.

This is a Herglotz function because sin maps the region |Im| < π/2 into the region |Im| < eπ/2.
Moreover, since m(z/e2π) = m(z), the family of rescalings m(z/r) is compact and indexed by
log r ∈ R/(2πZ). Thus, any subsequential limit of m(·/rn) in M with rn → ∞ is of the form
m(z/r) for some r ∈ [1, e2π).

Next, we interpret the existence of a continuous extension for the family (4.1) in terms of normal
limits and nontangential limits of m:

Lemma 4.3. Let m ∈ M and let η : J → C+ be a continuous function. The following are
equivalent:
(a) The map J × [1,∞] → M given by

mξ,r(z) =
{
m(ξ + z/r) r ∈ [1,∞)
η(ξ) r = ∞

(4.2)

is continuous (with respect to the metric on M).
(b) (uniform nontangential limits) For each α ∈ (0, π/2], uniformly in ξ ∈ J , m(ξ + z) → η(ξ) as

z → 0 with α ≤ arg z ≤ π − α.
(c) (uniform normal limits) m(ξ + iy) → η(ξ) as y ↓ 0, uniformly in ξ ∈ J .
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Proof. (a) =⇒ (b): For any α > 0, the set S = {ζ = eiϕ | ϕ ∈ [α, π − α]} ⊂ C+ is compact. By
uniform continuity of mξ,r(ζ) in ζ ∈ S, letting r → ∞ with z = ζ/r, it follows with m(ξ+z) → η(ξ)
uniformly in ξ.

(b) =⇒ (c): is trivial, by taking α = π/2.
(c) =⇒ (a): it is obvious that mξ,r is continuous on J × [1,∞) and on J × {∞}. Thus, it

suffices to prove convergence along sequences (ξn, rn) → (ξ,∞) with rn ̸= ∞ for all n.
Assume first that such a sequence is chosen so that mξn,rn → f ∈ M. Evaluating, in particular,

at ζ = iy, y > 0, we get
m(ξn + iy/rn) → f(iy), n → ∞.

Meanwhile, (c) implies that m(ξn + iy/rn) → η(ξ), so we conclude f(iy) = η(ξ) for all y > 0. This
determines uniquely the Herglotz function f as f ≡ η(ξ). Thus, the constant Herglotz function
η(ξ) is the unique accumulation point along sequences (ξn, rn) → (ξ,∞) with rn ̸= ∞ for all n;
by compactness of M, this shows that mξn,rn → η(ξ) in M as n → ∞, which gives the desired
continuity. □

Let us consider trace-normalized canonical systems corresponding to mξ,r and denote the Hamil-
tonians, solutions, matrix CD kernels, and scalar CD kernels by Hξ,r,Mξ,r,Kξ,r,Kξ,r, respectively.
Since mξ,1 is constructed from m by a shift of the spectral parameter, combining the shift by ξ
with the gauge transformation (2.3) and a trace-parametrization (Lemma 2.2), it follows that∫ t

0
Hξ,1(τ) dτ = KL(ξ, ξ) (4.3)

Mξ,1(t, z) = T (L, ξ)−1T (L, ξ + z) (4.4)
(Kξ,1)t(z, w) = KL(ξ + z, ξ + w) (4.5)

where the trace-normalized parameter t is a monotone increasing function of L. By taking traces
of both sides of (4.3), we see that

t = τξ(L),
with τξ(L) = KL(ξ, ξ) as defined by (1.19).

Next, we note how scaling in r ∈ [1,∞) affects the canonical systems:

Lemma 4.4. The effect of the scaling by r in (4.1) is as follows: the Hamiltonian scales as
Hξ,r(t) = Hξ,1(rt), (4.6)

the fundamental solution is given by
Mξ,r(t, z) = Mξ,1(rt, z/r), (4.7)

and the corresponding kernel (Kξ,r)t is given by

(Kξ,r)t(z, w) = 1
r

(Kξ,1)rt(z/r, w/r). (4.8)

Proof. If we had taken (4.6) as the definition for arbitrary r, the scaling (4.7) and the scaling
mξ,r(z) = mξ,1(z/r), z ∈ C+

would follow by direct computation, see [14, Lemma 2.7]. In particular, this matches our definition
(4.1), so by bijectivity of the correspondences, this proves (4.6) and (4.7). We also have

(Kξ,r)t(z, w) = Mξ,r(t, w)∗jMξ,r(t, z) − j

w − z



AN APPROACH TO UNIVERSALITY USING WEYL m-FUNCTIONS 19

= 1
r

Mξ,1(rt, w/r)∗jMξ,1(rt, z/r) − j

w/r − z/r
= 1
r

(Kξ,1)rt(z/r, w/r). □

Due to the homeomorphisms provided by Theorem 3.1, the existence of a continuous extension of
the family {mξ,r} can equivalently be checked at the level of the associated objects Hξ,r,Mξ,r,Kξ,r.
Moreover, by Lemma 4.2 any continuous extension must correspond to constant Hamiltonian canon-
ical systems at r = ∞.

If mξ,∞(z) = η(ξ), then applying scaling formulas to the constant Hamiltonian canonical systems
from Example 2.3 and noting that H̊, M̊ , K̊ correspond to evaluation at t = 1, we obtain

Hξ,∞(t) = H̊η(ξ), Mξ,∞(t, z) = M̊η(ξ)(tz), (Kξ,∞)t(z, w) = tK̊η(ξ)(tz, tw).
The following lemma characterizes the possibility of continuous extensions in terms of Hamilto-

nians:

Lemma 4.5. The family of trace-normalized Hamiltonians Hξ,r parametrized by (ξ, r) ∈ J× [1,∞)
has a continuous extension to J × [1,∞] with constant Hamiltonians Hξ,∞(t) = H̊η(ξ) if and only if

lim
τ→∞

1
τ

∫ τ

0
Hξ,1(t)dt = H̊η(ξ) (4.9)

uniformly in ξ ∈ J .

Proof. For any T ≥ 0, by the formula (4.6),
1
T

∫ T

0
Hξ,r(t)dt = 1

T

∫ T

0
Hξ,1(rt)dt = 1

rT

∫ rT

0
Hξ,1(t)dt. (4.10)

If Hξ,r → H̊η(ξ) in H as r → ∞, using T = 1 and r = τ → ∞ in (4.10) gives the uniform
convergence in (4.9). Conversely, if (4.9) holds uniformly in ξ, then for any T > 0, the integral
(4.10) extends continuously to (ξ, r) ∈ J × [1,∞]; by compactness of H, this implies continuity of
the map J × [1,∞] → H. □

By similar arguments, the scalings (4.7), (4.8) imply the following lemmas:

Lemma 4.6. This family of solutions of canonical systems Mξ,r(t, z) has a continuous extension
to a map J × [1,∞] → S with functions Mξ,∞(t, z) = M̊η(ξ)(tz) if and only if

lim
τ→∞

Mξ,1(τ, z/τ) = M̊η(ξ)(z) (4.11)

uniformly on compact subsets of (ξ, z) ∈ J × C.

Proof. If Mξ,r → Mξ,∞ in S uniformly in ξ, evaluating at t = 1 and using τ = r gives (4.11).
Conversely, if (4.11) holds, then for each t > 0, z ∈ C, the function

Mξ,r(t, z) = Mξ,1(rt, z/r) = Mξ,1(rt, (tz)/(rt))

extends continuously to J × [1,∞] with values Mξ,∞(t, z) = M̊η(ξ)(tz). Thus, by compactness of
S, Mξ,r is continuous on J × [1,∞]. □

Lemma 4.7. This family of kernels Kξ,r has a continuous extension to a map J × [1,∞] → K with
functions (Kξ,∞)t(z, w) = tK̊η(ξ)(tz, tw) if and only if

lim
τ→∞

1
τ

(Kξ,1)τ (z/τ, w/τ) = K̊η(ξ)(z, w) (4.12)

uniformly on compact subsets of (ξ, z, w) ∈ J × C × C.



AN APPROACH TO UNIVERSALITY USING WEYL m-FUNCTIONS 20

Proof. If Kξ,r → Kξ,∞ in K uniformly in ξ, evaluating these kernels at t = 1 and using τ = r gives
(4.12). Conversely, if (4.12) holds, then for each t > 0, z, w ∈ C, the function

(Kξ,r)t(z, w) = 1
r

(Kξ,1)rt(z/r, w/r) = t

rt
(Kξ,1)rt

(
tz

rt
,
tw

rt

)
extends continuously to J×[1,∞] with values (Kξ,∞)t(z, w) = tK̊η(ξ)(tz, tw). Thus, by compactness
of S, Kξ,r is continuous on J × [1,∞]. □

Until now, everything was derived from a starting function m ∈ M. By taking that to be the
Weyl function in the setting of Hypothesis 1.7 and linking the objects T (L, z), KL(z, w) to the
continuous families indexed by (ξ, r) above, we will obtain the proof of Theorem 1.8.

Proof of Theorem 1.8. Combining the lemmas above, we conclude that the following statements
are mutually equivalent:

(i’) m(ξ + iy) → η(ξ) as y ↓ 0, uniformly in ξ ∈ J ;
(ii’) there exists continuous η : J → C+ such that (4.9) holds uniformly in ξ ∈ J ;
(iii’) there exists continuous η : J → C+ such that (4.11) holds uniformly in ξ ∈ J ;
(iv’) there exists continuous η : J → C+ such that (4.12) holds uniformly in ξ ∈ J .
Moreover, the function η then must be the same in all four statements. Clearly, (i’) is precisely
Theorem 1.8(i). Let us compare the other statements to those in Theorem 1.8.

Since the family is in the limit point case, for each ξ ∈ J ,
lim

L→∞
τξ(L) = ∞.

Moreover, τξ is monotone increasing in L for each ξ, so convergence is also uniform on compact
intervals by Dini’s theorem,

lim
L→∞

inf
ξ∈J

τξ(L) = ∞. (4.13)

Thus, in the reparametrization from (ξ, L) to (ξ, t) = (ξ, τξ(L)), uniform convergence statements as
L → ∞ are equivalent to uniform convergence statements as t → ∞.

Using (4.3), (4.4), (4.5) with t = τξ(L) given by (1.19), statements (ii’), (iii’), (iv’) above turn
into statements (ii), (iii), (iv) of Theorem 1.8, and the proof is complete. □

Proof of Theorem 1.6. This is mostly just a special case of Theorem 1.8. The only difference is in
condition (ii), which is stated here over the sequence indexed by n. Obviously, if

lim
L→∞

1
τξ(L)KL(ξ, ξ) = H, (4.14)

then
lim

n→∞

1
τξ(n)Kn(ξ, ξ) = H. (4.15)

Conversely, using linearity of KL(ξ, ξ) in L ∈ [n, n+ 1] for each n,
1

τξ(L)KL(ξ, ξ) = s
1

τξ(n+ 1)Kn+1(ξ, ξ) + (1 − s) 1
τξ(n)Kn(ξ, ξ)

where
s = τξ(n+ 1)(L− n)

τξ(n+ 1)(L− n) + τξ(n)(n+ 1 − L) ∈ [0, 1],

so these are convex combinations of 1
τξ(n) Kn(ξ, ξ). Thus, (4.15) implies (4.14). □
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Proof of Theorem 1.5. This follows from the implication (i) =⇒ (iv) in Theorem 1.6. □

5. Universality from nontangential limits of Imm: rescaling and shifting

When we only have at our disposal the limit behavior of Imm, the situation is more complicated.
The following lemma reinterprets nontangential boundary limits of Imm in terms of continuity in
M, by showing that we can correct the behavior of Rem as r → ∞ by an additive action.

Lemma 5.1. Assume that for some 0 < α < π/2, (1.3) holds uniformly in ξ ∈ J and denote
cξ,r = Rem(ξ + i/r), (ξ, r) ∈ J × [1,∞).

Then mξ,r − cξ,r → iπfµ(ξ) in M as r → ∞, uniformly in ξ ∈ J .

Proof. Precomposing all the functions
m̃ξ,r = mξ,r − cξ,r

with the Cayley transform γ : D → C+ and multiplying by −i gives analytic maps
gξ,r = −im̃ξ,r ◦ γ : D → {w ∈ C | Rew > 0}.

Fix some radii 0 < R1 < R2 < 1 such that the image γ(DR2(0)) is contained in the sector {z |
α ≤ arg z ≤ π−α}. The complex Poisson representation (Schwarz integral formula) applied to the
circle of radius R2 around 0 gives

gξ,r(ζ) = i Im gξ,r(0) +
∫ 2π

0

R2e
iϕ + ζ

R2eiϕ − ζ
Re gξ,r(R2e

iϕ)dϕ2π . (5.1)

Note that Im gξ,r(0) = Remξ,r(i) − cξ,r = 0. The kernels obey

sup
ζ∈DR1 (0)

∫ 2π

0

∣∣∣∣R2e
iϕ + ζ

R2eiϕ − ζ

∣∣∣∣ dϕ2π < ∞

so for (ξn, rn) → (ξ, r), uniform convergence Re gξn,rn → Re gξ,r on the circle |ζ| = R2 implies
uniform convergence gξn,rn → gξ,r on the disk DR1(0) and therefore uniform convergence mξn,rn →
mξ,r on the compact γ(DR1(0)). By compactness of M, this implies locally uniform convergence
mξn,rn

→ mξ,r on C+. □

Lemma 5.1 paves the way for the following modification of the strategy from Section 4: let us
consider the family of m-functions indexed by (ξ, r) ∈ J × [1,∞] given by

m̃ξ,r(z) =
{
m(ξ + z/r) − cξ,r r ∈ [1,∞)
iπfµ(ξ) r = ∞

(5.2)

By Lemma 5.1 this is a continuous family. We also consider the corresponding trace normalized
canonical systems, denoting the Hamiltonians, solutions, matrix CD kernels, and scalar CD kernels
by H̃ξ,r, M̃ξ,r, K̃ξ,r, K̃ξ,r, respectively.

The necessary additive shift to the Weyl function can be implemented by action by a triangular
matrix. The action by a matrix A ∈ SL(2,R) at the level of the m-function by

mA(z) = A−1m(z)
(recall that we use A−1 also for the generated Möbius transformation) corresponds to

HA = A∗HA, MA = A−1MA, KA = A∗KA
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(this is a combination of several lemmas in [37] and a direct calculation for the kernel). We emphasize
that this does not preserve trace normalization. The translations like those in (5.2) are encoded by
matrices of the form

A =
(

1 a
0 1

)
, a ∈ R,

and we emphasize the observation that for such A, A
(1

0
)

=
(1

0
)

implies(
1
0

)∗

KA

(
1
0

)
=
(

1
0

)∗

K
(

1
0

)
.

This is a crucial observation: it tells us that the scalar CD kernels are unaffected by A, except for the
fact that trace-normalization changes the parametrization. Although it is possible to reparametrize
explicitly, this reparametrization is nonlinear and impractical. We will instead deal with this more
implicitly and formulate the conclusion this way: as families of functions of (z, w) ∈ C × C,

{(K̃ξ,r)t(z, w) | t ∈ [0,∞)} = {(Kξ,r)t(z, w) | t ∈ [0,∞)}

for any (ξ, r) ∈ J × [1,∞). Combining this with the previous section shows that{
1
r
KL

(
ξ + z

r
, ξ + w

r

)
| L ∈ [0,∞)

}
=
{

(K̃ξ,r)t(z, w) | t ∈ [0,∞)
}
. (5.3)

Since we wish to work at scale KL(ξ, ξ), it is important to observe that that scale is unbounded.
For orthogonal polynomials, it is a well-known fact that

∑∞
j=0 pj(ξ)2 = ∞ corresponds to a lack of

point mass in the measure and is equivalent to

lim
ε→0

ε Imm(ξ + iε) = 0. (5.4)

The same holds for canonical systems:

Lemma 5.2. Let m : C+ → C+ be the Weyl function of a canonical system. For any ξ ∈ R, (5.4)
is equivalent to

lim
L→∞

KL(ξ, ξ) = ∞. (5.5)

Proof. We first note that the claim is translation invariant, so it suffices to prove the case ξ = 0,
and that it is gauge-invariant, so it suffices to prove the case of canonical systems.

Since m ̸= ∞, there are uniquely determined a ≥ 0, b ∈ R and a measure µ such that

m(z) = az + b+
∫ ∞

−∞

(
1

ξ − z
− ξ

1 + ξ2

)
dµ(ξ),

∫ 1
1 + ξ2 dµ(ξ) < ∞.

Moreover, limε→0 ε Imm(iε) = µ({0}). This limit is zero if and only if the operator of multiplication
by ξ in L2(R, dµ(ξ)) does not have an eigenvalue at 0.

Denote the Hilbert space

L2
H =

{
f : (0,∞) → C2 :

∫ ∞

0
f∗(x)H(x)f(x)dx < ∞

}
.

The canonical system relation, with a Dirichlet boundary condition at 0, is the linear subspace
T ⊂ L2

H ⊕ L2
H defined by

T =
{

(f, g) ∈ L2
H ⊕ L2

H | f(T ) − f(0) = j

∫ T

0
H(t)g(t) dt ∀T ∈ [0,∞),

(
0 1

)
f(0) = 0

}
.
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Its kernel is the set of (f, 0) ∈ T ; elements of the kernel can only be scalar multiples of f(t) = e1 =(
1 0

)∗. To check whether these lie in the Hilbert space, note that

KL(0, 0) =
∫ L

0
e∗

1H(x)e1dx,

so T has a nontrivial kernel if and only if limL→∞ KL(0, 0) < ∞. This concludes the proof. □

The discussion so far indicates that instead of t, we would prefer to parametrize the kernels by
σξ,r(t) = (K̃ξ,r)t(0, 0).

By Lemma 5.2 and our assumption on m, the functions m̃ξ,r correspond to measures without a
point mass at 0. Thus, for each ξ, r, viewed as a function of t, σξ,r : [0,∞) → [0,∞) is an increasing
surjection. By Dini’s theorem,

lim
t→∞

inf
(ξ,r)∈J×[1,∞]

σξ,r(t) = ∞. (5.6)

Moreover, σξ,r(t) is jointly continuous in ξ, r, t, since (K̃ξ,r)t is.
However, σξ,r may not be injective, so it is not a good candidate for a parameter. This is related

to the notion of singular intervals; in the orthogonal polynomial case this noninjectivity is connected
to the possibility that pn(ξ) = 0. Thus, we will not reparametrize by s = σξ,r(t), but we will study
the set on which σξ,r(t) = 1 and proceed more indirectly:

Lemma 5.3. The set
S = {(ξ, r, t) ∈ J × [1,∞] × [0,∞) | σξ,r(t) = 1}

is a compact subset of J × [1,∞] × [0,∞).

Proof. Since σξ,r(t) is jointly continuous, the set S is closed as the inverse image of {1}. By (5.6),
the set S is contained in some compact of the form J × [1,∞] × [0, T ], T < ∞. Thus, as a closed
subset of a compact set, S is compact. □

Another necessary observation is that σξ,r are bijections for r = ∞:

Lemma 5.4. For any ξ ∈ J , there is a unique t such that (ξ,∞, t) ∈ S, and it is given by

t = 1 + π2fµ(ξ)2.

Proof. Starting from
(K̃ξ,∞)t(z, w) = tK̊iπfµ(ξ)(tz, tw)

a direct calculation gives

(K̃ξ,∞)t(z, w) =
sin
(

πfµ(ξ)
1+π2fµ(ξ)2 t(w − z)

)
πfµ(ξ)(w − z) (5.7)

and in particular
(K̃ξ,∞)t(0, 0) = t

1 + π2fµ(ξ)2 .

From this the claim is obvious. □

Now we can collect these observations and find our universality limit in the set of kernels (K̃ξ,r)t

with (ξ, r, t) ∈ S.
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Proof of Theorem 1.9. Let us set r as a function of ξ, L as

r = r(ξ, L) = KL(ξ, ξ).

By Lemma 5.2, r(ξ, L) → ∞ as L → ∞.
By (5.3) there exists t(ξ, L) such that

1
r(ξ, L)KL

(
ξ + z

r(ξ, L) , ξ + w

r(ξ, L)

)
= (K̃ξ,r(ξ,L))t(ξ,L)(z, w)

(note that t(ξ, L) is not necessarily unique). By comparing values at z = w = 0 we see that
1

r(ξ, L)KL(ξ, ξ) = (K̃ξ,r(ξ,L))t(ξ,L)(0, 0) = σξ,r(ξ,L)(t(ξ, L))

and since the left-hand side equals 1, we conclude that

(ξ, r(ξ, L), t(ξ, L)) ∈ S.

The property (ξ, r(ξ, L), t(ξ, L)) ∈ S together with r(ξ, L) → ∞ and Lemmas 5.3, 5.4 implies that

lim
L→∞

t(ξ, L) = 1 + π2fµ(ξ)2

so continuity of reproducing kernels gives

lim
L→∞

(K̃ξ,r(ξ,L))t(ξ,L)(z, w) = (K̃ξ,∞)1+π2fµ(ξ)2(z, w). (5.8)

Inserting our definition of t(ξ, L) and evaluating the right-hand side using (5.7), we have proved
that

lim
L→∞

1
r(ξ, L)KL

(
ξ + z

r(ξ, L) , ξ + w

r(ξ, L)

)
= sin(πfµ(ξ)(w − z))

πfµ(ξ)(w − z) (5.9)

and by our definition of r(ξ, L), this is the same as saying that

lim
L→∞

1
KL(ξ, ξ)KL

(
ξ + z

KL(ξ, ξ) , ξ + w

KL(ξ, ξ)

)
= sin(πfµ(ξ)(w − z))

πfµ(ξ)(w − z) (5.10)

From here, the theorem as formulated follows by a linear rescaling of z, w by a factor of fµ(ξ). □

Proof of Theorems 1.4, 1.10. Given the reductions of Jacobi matrices and Schrödinger operators
to the setting of Hamiltonian systems, these are direct corollaries of Theorem 1.9. □

Proof of Theorem 1.2. This is the special case J = {ξ} of Theorem 1.4. □

6. Orthogonal polynomials on the unit circle

Orthogonal polynomials on the unit circle obey the Szegő recursion, which gives rise to the
sequence {αn}∞

n=0 of Verblunsky coefficients αn ∈ D associated to µ. The recursion can be written
in matrix form as

S(n+ 1, z) = A(αn, z)S(n, z), A(αn, z) = 1√
1 − |αn|2

(
z −αn

−αnz 1

)
, S(0, z) = I2.

We denote by

J =
(

−1 0
0 1

)
the signature matrix corresponding to the unit disk. The crucial property of the Szegő recursion is:
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Lemma 6.1. For any αn ∈ D and z ̸= 0,
A(αn, z)∗JA(αn, z)

|z|
− J =

(
1 − |z| 0

0 |z|−1 − 1

)
which is a positive matrix for 0 < |z| ≤ 1, and a negative matrix for |z| ≥ 1.

The proof is a straightforward calculation. Note that division by |z| compensates for the fact
that detA(αn, z) = z; it effectively normalizes the matrices to unit determinant. The directions
of inequalities in Lemma 6.1 may seem opposite from what is desired; this will be rectified by
conjugating A(αn, z) and S(n, z) by the matrix

j1 =
(

0 1
1 0

)
.

We also denote by

C =
(

1 −i
1 i

)
the matrix corresponding to the Cayley transform. The Cayley transform allows us to switch
between signature matrices by

1
2C∗J C = −ij

(the factor 1/2 corresponds to det C = 2i and would vanish if we had normalized the determinant
of C). The values of the Carathéodory function F (z) are uniquely determined by(

F (z) + 1
F (z) − 1

)∗

S(n, z)∗J S(n, z)
(
F (z) + 1
F (z) − 1

)
≤ 0 ∀n ∈ N, z ∈ D

and this condition can be written (note j1J j1 = −J ) as(
iF (z)

1

)∗

C∗j1S(n, z)∗j1J j1S(n, z)j1C
(
iF (z)

1

)
≥ 0 ∀n ∈ N, z ∈ D. (6.1)

Now we are ready to transform and embed the Szegő transfer matrices into a canonical system. This
embedding is inspired by a method used by Damanik–Yuditskii [9], where comb domains related to
OPUC were mapped to comb domains periodic in the spectral parameter.

Lemma 6.2. The functions
T (n, z) = e−inz/2C−1j1S(n, eiz)j1C

are a j-monotonic family of entire j-inner functions and obey T (0, z) = I2. They have unit deter-
minant and are in the limit point case with m-function

m(z) = iF (eiz).

Proof. In terms of T (n, z), Szegő recursion rewrites as T (0, z) = I2,

T (n+ 1, z) = Ln(z)T (n, z), Ln(z) = e−iz/2C−1j1A(αn, e
iz)j1C.

Now Lemma 6.1 implies that
Ln(z)∗jLn(z) − j

i
≤ 0

for |eiz| ≤ 1, with the sign of the inequality switched for |eiz| ≥ 1. Multiplying by T (n, z)∗ from
the left and T (n, z) from the right implies the j-monotonicity.

The scalar factor e−inz/2 compensates for detS(n, eiz) = einz and ensures detT (n, z) = 1.
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Plugging in eiz in place of z in (6.1) and using C∗J C = −2ij gives(
iF (eiz)

1

)∗

T (n, z)∗(−ij)T (n, z)
(
iF (eiz)

1

)
≥ 0 ∀n ∈ N,

Since OPUC are always in the limit point case, this uniquely determines the value iF (eiz) and
allows us to read off m(z) = iF (eiz). □

To embed this in a canonical system, we note that a direct calculation gives

Ln(0)−1Ln(z) = C−1j1

(
eiz/2 0

0 e−iz/2

)
j1C = C−1j1e

−izJ /2j1C

and therefore
Ln(0)−1Ln(z) = C−1eizJ /2C = ezj/2.

Thus the matrix functions M(n, z) = T (n, 0)−1T (n, z) obey

M(n+ 1, z) = T (n, 0)−1Ln(0)−1L(n, z)T (n, z) = T (n, 0)−1ezj/2T (n, 0)M(n, z)

and they are interpolated on [n, n+ 1] by the canonical system

∂xM(x, z) = zjH(x)M(x, z), H(x) = 1
2j

−1T (⌊x⌋, 0)−1jT (⌊x⌋, 0) = 1
2T (⌊x⌋, 0)∗T (⌊x⌋, 0).

Note that H is once again a quadratic expression involving entries of the transfer matrix, which
allows to recover results from subordinacy theory from OPUC. We omit further details and turn to
the kernels in order to prove Theorem 1.11.

Now we have two kernels at our disposal: the Christoffel–Darboux kernel for OPUC given by
(1.32) and the scalar kernel obtained by the prescription for canonical systems (1.26),

Kn(z, w) =
(

1
0

)∗
T (n,w)∗jT (n, z) − j

w − z

(
1
0

)
.

The two are closely related:

Lemma 6.3. For all z, w ∈ C,

e−in(z−w)/2kn(eiz, eiw) = 2i(w − z)
1 − ei(z−w)Kn(z, w). (6.2)

Proof. In terms of orthonormal polynomials φn, second kind orthonormal polynomials ψn, and the
reflected polynomials φ∗

n and ψ∗
n(z) = znψn(1/z), the Szegő transfer matrices are of the form

S(n, z) =
( 1

2 (φn(z) + ψn(z)) 1
2 (φn(z) − ψn(z))

1
2 (φ∗

n(z) − ψ∗
n(z)) 1

2 (φ∗
n(z) + ψ∗

n(z))

)
.

A direct calculation gives

Tn(z)
(

1
0

)
= e−inz/2C−1

(
φ∗

n(eiz)
φn(eiz)

)
,

so using (C−1)∗jC−1 = i
2 J , we obtain

Kn(z, w) = − i

2
e−in(z−w)/2

w − z

(
φ∗

n(eiz)φ∗
n(eiw) − φn(eiz)φn(eiw)

)
.

Comparing this with (1.32) gives (6.2). □
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Proof of Theorem 1.11. A limit of ReF along a sector implies a limit of Imm(z) = ReF (eiz) along
a suitable sector. Thus we obtain for some 0 < β < π/2,

lim
z→ξ

β≤arg(z−ξ)≤π−β

Imm(z) = gµ(ξ).

Comparing this to (1.3) gives fµ(ξ) = gµ(ξ)/π. Moreover, by (6.2),

kn(eiξ, eiξ) = 2Kn(ξ, ξ).

Now substituting ξ+ z/kn(eiξ, eiξ), ξ+w/kn(eiξ, eiξ) in (6.2) instead of z, w, we conclude that the
left-hand side of (1.34) is equal to

lim
n→∞

Kn(ξ + z
2πfµ(ξ)Kn(ξ,ξ) , ξ + w

2πfµ(ξ)Kn(ξ,ξ) )
Kn(ξ, ξ) .

Using the conclusion of Theorem 1.9 and rescaling z, w by a factor of 2π completes the proof. □
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