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INCOMPLETENESS OF SINCLAIR-TYPE CONTINUUM FLEXIBLE
BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE SIMULATIONS

JULIAN BRAUN AND MACIEJ BUZE

Abstract. The elastic field around a crack opening is known to be described by continuum
linearised elasticity in leading order. In this work, we explicitly develop the next term in the
atomistic asymptotic expansion in the case of a Mode III crack in anti-plane geometry. The
aim of such an expansion is twofold. First, we show that the well-known flexible boundary
condition ansatz due to Sinclair is incomplete, meaning that, in principle, employing it in
atomistic fracture simulations is no better than using boundary conditions from continuum
linearised elasticity. And secondly, the higher order far-field expansion can be employed as a
boundary condition for high-accuracy atomistic simulations. To obtain our results, we develop
an asymptotic expansion of the associated lattice Green’s function. In an interesting departure
from the recently developed theory for spatially homogeneous cases, this includes a novel notion
of a discrete geometry predictor, which accounts for the peculiar discrete geometry near the
crack tip.

1. Introduction

Fracture mechanics has long been a cornerstone in the understanding of material failure,
providing essential insight into the initiation and propagation of cracks in diverse structural
components [18, 27]. On length scales where continuum fracture mechanics ceases to accurately
describe matter, atomistic modelling techniques, particularly molecular dynamics (MD) simu-
lations, have emerged as powerful tools for investigating atomistic fracture processes [4]. The
accuracy of these simulations crucially depends on the appropriate specification of boundary
conditions, which describe the state of the material and its surroundings outside of the core
region of interest, e.g. the crack tip.

Traditional atomistic simulations often employ periodic boundary conditions (PBC) to miti-
gate finite-size effects and mimic an infinite material [14]. While PBCs have proven to be very
effective for systems naturally permitting a periodic setup (e.g. localised defects), their use in
the modelling of fracture is limited, since a half-infinite crack breaks the translational symmetry
of the system. Trying to mitigate that while retaining a periodic setup may introduce artificial
constraints that limit the realism of the simulated fracture process [4].

An alternative commonly employed is to prescribe boundary conditions from continuum frac-
ture mechanics, either simply from linear elasticity or from an asymptotic expansion that is
based on the continuum theory (the so-called flexible boundary conditions due to Sinclair and
co-authors [25, 23, 24]). Such an approach has been employed in a number of recent atomistic
studies of fracture [20, 2, 15, 17, 28, 29]. As recognised in a growing recent mathematical liter-
ature on this topic [13, 5, 6, 7, 21], for such an approach to be convergent, that is to not lead to
a build-up of numerical artefacts near the boundary of the computational domain, one needs to
ensure that the prescribed boundary condition exhibit atomistic asymptotic consistency up to
a certain minimal order. This condition is called an approximate equilibrium in [13]. Moreover,
prescribing boundary conditions with higher order atomistic asymptotic consistency leads to a
corresponding quantifiable increase in the accuracy of the resulting numerical method.

Unlike for dislocations and point defects, in the case of fracture, it follows from a simple
Taylor expansion argument (see [9, Section 3.]) that the zero order boundary condition, that
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2 JULIAN BRAUN AND MACIEJ BUZE

is the linearised continuum elasticity boundary condition, is only convergent for simplified anti-
plane mode III models [9]. It thus raises the question whether the higher-order terms in the
continuum-theory-based asymptotic expansion proposed by Sinclair can lead to atomistic as-
ymptotic consistency.

In the present work, we focus on the simplified anti-plane mode III model first analysed in
[9, 10] and rigorously develop the next order in the atomistic asymptotic expansion. While the
known zero order boundary condition (coming from continuum linearised elasticity) is given, in
polar coordinates x = r(cos θ, sin θ), by

Kr1/2 sin(θ/2),

where K ≥ 0 is the (rescaled) stress intensity factor, we prove that the next order is given by

C1(K)r−1/2 sin(−θ/2)︸ ︷︷ ︸
(S)

+
C2K

3

64
r−1/2

(
log r sin θ

2 +
1

6
sin 5θ

2

)
︸ ︷︷ ︸

(NL)

,

where C1(K) is a real constant depending on K and C2 is a real constant depending on the
interatomic potential. The first term (S) corresponds to the aforementioned ansatz by Sinclair
(see [23, Appendix 2] and Remark 2.5), which in this case predicts the first order boundary
condition to be simply of the form

C1(K)r−1/2 sin(−θ/2).

We thus show that this ansatz is incomplete, as it misses the part (NL). As we will see in all
detail in Section 7.1 this term comes from the nonlinearity and can be seen as a solution to the
corrector equation (7.3). The striking generic conclusion is that atomistic fracture simulations
employing continuum-theory based flexible boundary conditions are only as accurate as the ones
employing the zero order boundary condition. We note that such agnosticism of continuum
fracture theories to atomistic effects and nonlinearities has recently been studied numerically in
[17].

A further result of our analysis here is a full characterisation of the constants C1 and C2. While
C2 is simple and explicit, C1 depends non-trivially on the precise discrete behaviour around the
crack tip. While the precise characterisation of C1 we give here is a lot more involved, this is in
line with the discrete nature of the defect dipole tensors for point defects, see [6, 7].

To obtain our results, we follow the atomistic asymptotic expansion framework developed
in [6] for the spatially homogeneous case (e.g. for point defects and screw dislocations). The
first step is a Taylor expansion of the energy around the reference configuration, followed by
approximating finite differences with continuum differential operators and a grouping of terms
according their far-field decay. This allows us to define a linear PDE to which (NL) is an explicit
solution. The term (S) is an analogue of the multipole expansion from [6], however the precise
structure is much more complicated, because the lattice Green’s function is not spatially homo-
geneous. As a result, to find the right constant C1(K) in (S), a higher order expansion of the
lattice Green’s function in the anti-plane crack geometry is first established. In an intriguing
and non-trivial departure from the homogeneous case, this requires an introduction of the novel
notion of a discrete geometry predictor, which accounts for the fact that near the crack tip, the
complex square root mapping, present in the definition of zero-order Green’s function predictor,
distorts the lattice too much for that predictor to correctly capture the discrete effects there.
This predictor is truly discrete, in the sense that it is defined as solving a linear discrete PDE.
Our result in particular provides an explicit example of the extra complexity of trying to include
the spatially inhomogenous cases in this theory.

Outline of the paper. The paper is organised as follows. Section 2 is devoted to the presen-
tation of the main results. We introduce the atomistic model in Section 2.1 and recall what
is already known about it. Section 2.2 is devoted to establishing results about the first order
asymptotic expansion for the equilibrium crack displacement. In Section 2.3 the corresponding



INCOMPLETENESS OF CONTINUUM FLEX BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE 3

results for the Green’s function are gathered. Section 3 is devoted to finite-domain approxima-
tion – we establish a convergence rate result and, based on that, present a numerical simulations
confirming the veracity of the expansion. This is followed by conclusions in Section 4. The
proofs are gathered in the last three sections.

2. Main results

2.1. The atomistic model. The setup closely follows the one studied in [9]. We consider the
two dimensional square lattice

Λ := {m−
(
1
2 ,

1
2

)
| m ∈ Z2},

with a crack opening along
Γ0 := {(x1, 0) | x1 ≤ 0}

and the origin of the coordinate system coinciding with the crack tip. We distinguish the atoms
lying on the crack surface as

Γ := Γ+ ∪ Γ−, Γ± := {m ∈ Λ | m1 < 0, m2 = ±1
2}.

The atoms are assumed interact with its nearest neighbours, which, in a homogeneous lattice,
gives the set of interaction stencils

R := {e1, e2,−e1,−e2},
and in a cracked crystal we have, for any m ∈ Λ,

R(m) :=

{
R for m ̸∈ Γ,

R \ {∓e2} for m ∈ Γ±.

Given an anti-plane displacement u : Λ → R, the usual finite difference operator is
Dρu(m) := u(m+ ρ)− u(m) and, reflecting the definition of the interaction stencils, the dis-
crete gradient Du(m) ∈ RR is given by

(Du(m))ρ :=

{
Dρu(m) if ρ ∈ R(m),

0 if ρ ̸∈ R(m).
(2.1)

This allows us to define the discrete Sobolev space

Ḣ1 := {u : Λ → R | Du ∈ ℓ2(Λ)}, ∥u∥Ḣ1 := ∥Du∥ℓ2(Λ) =

(∑
m∈Λ

|Du(m)|2
)1/2

Note that ∥ · ∥Ḣ1 defines a semi-norm. One can use equivalence based on constant shifts or
specify the value at a specific atom when a norm is required.

The primary object of our study is the energy difference functional E : Ḣ1 → R given by

E(u) :=
∑
m∈Λ

V (Dû0(m) +Du(m))− V (Dû0(m)), (2.2)

where V : RR → R is an interatomic potential, which in our case takes the form

V (Du(m) =
∑
ρ∈R

ϕ ((Du(m))ρ) ,

where ϕ ∈ Ck(R) for k ≥ 6 is assumed to satisfy anti-plane mirror symmetry [5, Section 2.2].
The function û0 in (2.2) is the continuum linearised elasticity predictor given by

û0(m) = Kω2(m), (2.3)

where K ≥ 0 is the stress intensity factor and acts as a loading parameter, and ω : R2 \Γ0 → R2

is the complex square root mapping given, in polar coordinates x = r(cos θ, sin θ), by

ω(x) = (ω1(x), ω2(x)) :=
√
r(cos θ

2 , sin
θ
2). (2.4)

The following results hold in this zero-order case [9, Theorem 2.1, Theorem 2.2].
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Theorem 2.1. The energy difference E is well-defined on Ḣ1 and k-times continuously differ-
entiable.

Theorem 2.2. If K ≥ 0 is small enough, then there exist a locally unique ū0 ∈ Ḣ1 minimiser
of E which depends linearly on K and is strongly stable, that is there exists λ > 0 such that, for
all v ∈ Ḣ1,

δ2E(ū0)[v, v] ≥ λ∥v∥2Ḣ1 .

Furthermore, ū0 satisfies
|Dū0(ℓ)| ≲ C(K)|ℓ|−3/2+δ, (2.5)

for an arbitrarily small δ > 0 and a constant C that depends on K.

Remark 2.3. We note that while it is claimed in [9] that the dependence in K is linear, this only
applies to the small-loading regime, i.e. when K is assumed to be small enough.

2.2. Higher order predictors and the improved decay of the atomistic corrector. In
the present work, we succeed in developing the full equilibrium displacement field u = û0 + ū0
from Theorem 2.2 into an expansion

u = û0 + ū0 (2.6a)
= û0 + û1 + ū1 (2.6b)
= û0 + û1 + û2 + ū2, (2.6c)

where the predictors û1 and û2 have explicit functional forms, satisfy, for i = 1, 2,

|Dûi(ℓ)| ≲ |ℓ|−3/2 log |l|,
and, crucially, fully capture the behaviour of u at this order, in the sense that the following is
true.

Theorem 2.4. The corrector ū2 ∈ Ḣ1, defined in (2.6), satisfies

|Dū2(s)| ≲ |s|−2+δ,

for an arbitrarily small δ > 0.

For proof, see Section 7. For now we merely state the formulae for û1 and û2 and defer the
discussion on the derivation to the proof. In polar coordinates x = r(cos θ, sin θ), the predictor
û1 is given by

û1(x) := −K3

64
ϕ(iv)(0)r−1/2

(
log r sin θ

2 +
1

6
sin 5θ

2

)
(2.7)

û2(x) = C
ω2(x)

|x|
= Cr−1/2 sin θ

2 , (2.8)

where C is a specific constant obtained from a summation over the whole lattice of terms related
to a higher-order expansion of the lattice Green’s function, which we will discuss in Section 2.3.
The precise formula for û2 is given in (7.8).

Remark 2.5. A flexible boundary approach to atomistic modelling of fracture, as introduced by
Sinclair in [23] and also discussed in [24] (Section II.C, the Flex-S approach) concerns dividing the
computational domain into a core atomistic region, where atoms are free to vary and a transition
and a far-field region, in which atoms are prescribed to follow a displacement determined by a
truncated series of higher-order continuum expansion. In our case of an anti-plane model with
a pair potential (thus ensuring isotropy), this expansion, as presented in [26], is given by, for
x = r(cos θ, sin θ) and the corresponding complex number z = r cos θ + ir sin θ,

N∑
j=0

cjImag(z(
1
2
−j)) =

N∑
i=0

cjr
( 1
2
−j) sin

(
(1− 2j)θ

2

)
,

The incompatibility of forces in the transition region is resolved by finding optimal prefactors ci
which minimise the generalised forces, which are the variations with respect to the coefficients of
atoms in the transition region. For this approach to be accurate, it is crucial that the expansion



INCOMPLETENESS OF CONTINUUM FLEX BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE 5

correctly captures the asymptotic behaviour of the equilibrium displacement. In particular in
the Sinclair’s ansatz, the second term in the expansion, with behaviour of order O(r−1/2), is
given by c1r

−1/2 sin(−θ/2) and the third, capturing O(r−3/2) behaviour, by c2r
−3/2 sin(−3θ/2).

Our result shows that, up to log terms, the O(r−1/2) behaviour includes two extra terms that
are missing from the Sinclair ansatz, namely

c1,2

(
r−1/2 log r sin θ

2 + r−1/2 1
6 sin

5θ
2

)
.

They arise from the nonlinearity of the interaction potentials. We have thus established that
the Sinclair-type approach to flexible boundary conditions is incomplete. To fix it, one should
also optimise the prefactor c1,2.

2.3. Higher order expansion of the Green’s function. To prove Theorem 2.4, a higher-
order development for the associated lattice Green’s function is also needed. We recall from [9]
that the lattice Green’s function

G : Λ× Λ → R
corresponding to the model described in Section 2.1 is defined as the solution to the pointwise
discrete PDE

−DivDG(m, s) = δ(m, s), G(m, s) = G(s,m), (2.9)

where the discrete divergence, which, for g : Λ → RR, is defined as

−Div g(m) :=
∑
ρ∈R

gρ(m− ρ)− gρ(m), (2.10)

and the gradient are both applied with respect to m. Note that if g = Du for some u : Λ → R,
then the discrete divergence operator naturally respects the structure of D defined in (2.1), in
the sense that, for u, v compactly supported, summation by parts holds, that is∑

m∈Λ
(−DivDu(m))v(m) =

∑
m∈Λ

Du(m) ·Dv(m) =
∑
m∈Λ

∑
ρ∈R(m)

Dρu(m)Dρv(m).

The following is already known.

Theorem 2.6 (adapted from [9]). There exists G satisfying (2.9), such that, for any δ > 0,

|D1D2G(m, s)| ≲ (1 + |ω(m)||ω(s)||ω(m)− ω(s)|2−δ)−1, (2.11)

where ω is the complex square root mapping defined in (2.4). In particular, it admits a decom-
position

G = Ĝ0 + Ḡ0, (2.12)

where

Ĝ0(m, s) = F (−ω(m) + ω(s)) + F (−ω(m) + ω∗(s)), F (x) = − 1

4π
log |x| (2.13)

and Ḡ0(·, s) ∈ Ḣ1 (and hence, due to variable symmetry, in the other variable too).

We note that Ĝ0 satisfies the decay rate in (2.11) with δ = 0. Establishing the same rate
of decay, up to an arbitrarily small δ > 0, for Ḡ0 is the main technical achievement of [9] and
follows from a rather involved argument bearing resemblance to arguments in the regularity
theory for elliptic PDEs [3].

In the present work, we rely on this zero-order analysis and refine it by realising that the
far-field predictor Ĝ0 is not enough to obtain a corrector which decays faster everywhere away
from the source point s. In fact, as part of our analysis, we will show that the decay rate in
(2.11), with δ = 0, is sharp for Ḡ0 when m ∈ B |s|

8

(0).

To remedy this, we introduce the novel notion of a discrete geometry predictor, Ĝ1, which
accounts for the fact that near the crack tip, the complex square root mapping ω, present in
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the definition of Ĝ0, distorts the lattice too much for Ĝ0 to correctly capture the discrete effects
there. In particular, we decompose the full lattice Green’s function G from Theorem 2.6 as

G = Ĝ0 + Ḡ0

= Ĝ0 + Ĝ1 + Ḡ1,

noting that in other words we have Ḡ0 = Ĝ1 + Ḡ1.

Definition 2.7 (Discrete geometry corrector Ĝ1). A function Ĝ1 : Λ × Λ → R is called the
discrete geometry corrector if, for all m, s ∈ Λ,

−DivDĜ1(m, s) =
−2ω2(s)

|s|
DivDω2(m),

where, again, we recall that ω2 is the second component of the complex square root mapping
(2.4), and furthermore, for any s ∈ Λ, it holds that Ĝ1(·, s) ∈ Ḣ1.

To motivate this definition, we recall the explicit formula for Ĝ0 given in (2.13) and Taylor
expand both terms in F around ω(s) to obtain

−DivD[Ĝ0+ Ĝ1](m, s) = −DivDĜ1(m, s)−DivDω(m) · (∇F (−ω(s)) + F (−ω∗(s)))+O(|s|−1).

Noting that

∇F (−ω(s)) + F (−ω∗(s)) = [0, 2∇2F (−ω(s))]T and 2 (∇F (−ω(s)))2 =
−2ω2(s)

|s|

and that we would like the lowest order term to cancel out with −DivDĜ1(m, s), we arrive at
the equation in Definition 2.7. Note that the problem of finding Ĝ1 is non-trivial since ω2 ̸∈ Ḣ1.

We prove the following.

Proposition 2.8. There exists a discrete geometry predictor Ĝ1 : Λ × Λ → R in the sense of
Definition 2.7 and it admits a decomposition

Ĝ1(m, s) = Ĝm
1 (m)Ĝs

1(s), (2.14)

where Ĝs
1(s) =

−2ω2(s)
|s| and Gm

1 ∈ Ḣ1 satisfies

|DiĜm
1 (ℓ)| ≲ |ℓ|−1/2−i+δ

for i = 0, 1.

The proof will be presented in Section 6.3.
As the name implies, the discrete geometry corrector is specifically important when |m| is

small and thus close to the crack tip. To account for that we additional introduce a cutoff
function µ (see (6.5) for a precise definition) and adjust Ĝ1 to

Ĝ1,µ(m, s) = µ(m, s)Ĝm
1 (m)Ĝs

1(s). (2.15)

In particular, we then have the remainder Ḡ1,µ(m, s) defined by

G = Ĝ0 + Ĝ1,µ + Ḡ1,µ. (2.16)

This does indeed allow us to resolve the terms on order O(|s|−3/2) as we state in the following
theorem.

Theorem 2.9. It holds that

|D1D2Ḡ1,µ(ℓ, s)| ≲ |s|−2+δ|ℓ|−1/2 (2.17)

for |ℓ| ≤ |s|/16.

See Section 6 for the proof.
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3. Numerical approximation

In this section we discuss numerical approximations to the infinite lattice problem from Theo-
rem 2.2 and present how the results of Section 2.2 can be used to supply more accurate boundary
conditions for numerical simulations. The setup largely mimics the one presented in [5, 9] and
is as follows.

We introduce a generalised energy difference functional

E(u(i)pred, u) :=
∑
m∈Λ

∑
ρ∈R(m)

ϕ(Dρu
(i)
pred(m) + u(m))− ϕ(Dρû0(m)),

where u
(i)
pred :=

∑i
k=0 ûk and we will directly compare the cases when i = 0, 1, 2. It is immediate

that finding
ūi ∈ argmin{E(u(i)pred, u) | u ∈ Ḣ1} (3.1)

is equivalent to finding argminu∈Ḣ1E(u) defined in (2.2) via the the expansion (2.6).
The object of our study in this section is a supercell approximation to (3.1) constrained to a

finite domain ΛR := BR ∩ Λ and with u
(i)
pred prescribed as a boundary condition on Λ \ ΛR. It

can be written as a Galerkin approximation given by

ūRi ∈ argmin{E(u(i)pred, u) | u ∈ H0(ΛR)}, (3.2)

where
H0(ΛR) := {v : Λ → R | v = 0 in Λ \ ΛR}.

The following result is an immediate consequence of Theorem 2.4, with the proof as in [5,
Theorem 3.1], which in itself in a concise restatement of a corresponding result in [13].

Theorem 3.1. Let ū2 be a strongly stable solution to (3.1), meaning that there exists some
C > 0 such that

δ2uE(u
(i)
pred, u)[v, v] ≥ C∥v∥2Ḣ1 ,

for all v with compact support. Then there exist C,R0 > 0, such that for all R > R0 there exists
a stable solution ūRi to (3.2) satisfying

∥ūR2 − ū2∥Ḣ1 ≲ R−1.

This is a significant improvement upon the known convergence rate ∥ūR0 − ū0∥Ḣ1 ≲ R−1/2+β ,
where β > 0 is arbitrarily small, as established in [9, Theorem 2.8].

3.1. Numerical tests. Based on the presented numerical approximation framework, we now
discuss numerical tests we have conducted, through which we numerically verify the result of
Theorem 2.4. We also do a slightly broader comparison in which the boundary conditions are
set to be given by (i) û0, (ii) û0 + û1 and (iii) û0 + û1 + û2.

In particular, we consider a finite domain Λ ∩ BR with R = 256, resulting in 200772 atoms
being simulated and focus on the case where the pair potential is given by

ϕ(r) =
1

6

(
1− exp(−3r2)

)
,

as considered in [9, 10, 11]. We further prescribe the stress intensity factor K, which enters as
a prefactor in û0 (c.f. (2.3)) and in û1 (c.f. (2.7)), to be K = 0.4, which is below the critical
KG ≈ 0.49 reported in [11, Table 1], thus ensuring the crack remains at the centre of the domain.

To prescribe the full first order predictor u
(2)
pred = û0 + û1 + û2, we need to compute the

constant entering as a prefactor in the formula for û2 in (2.8). We obtain it with a bisection
approach, which is sufficient for our purposes, but it is certainly the aim to make this procedure
automated, e.g. by combining it with the NCFlex scheme from [11] and treating this constant
as an extended variable of the system.

To find correctors ūi we, we employ the Julia library Optim.jl [19] with their implementation
of the Conjugate-Gradient algorithm with line searches, terminating at ℓ∞-residual of 10−8.



8 JULIAN BRAUN AND MACIEJ BUZE

To elucidate the intermediate impact of introducing the predictor û1, not only do we present
the decay of the corrector |Dūi|, but also of the forces when atoms are displaced according to
u = u

(i)
pred, which is given by |Div∇V (Du

(i)
pred)|, where we use the concise notation

V (Du(m)) =
∑
ρ∈R

ϕ((Du(m))ρ).

Finally, we also plot the decay of the linear residual |Div∇2V (0)Dūi(m)|, where we note that
since ϕ′′(0) = 1, we have ∇2V (0) = Id. The results are presented in Figure 1.
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Figure 1. Top row: the decay of |Dūi(m)| for i = 0, 1, 2 (left to right). Middle row: the
decay of forces |Div∇V (Du

(i)
pred)| for i = 0, 1, 2 (left to right). Bottom row: the decay of the

linear residual |Div∇2V (0)Dūi(m)| for i = 0, 1, 2 (left to right). We can clearly see that while
prescribing u

(1)
pred = ū0 + ū1 as a boundary condition improves the decay of forces (middle row)

and the linear residual (bottom row), it fails to improve the decay of |Dū1(m)| and additionally
û2 is needed.
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We note that while Theorem 2.4 suggests that, up to log terms, we have |Dū2(m)| ≲ |m|−2,
we in fact observe an improved rate

|Dū2(m)| ≲ |m|−5/2.

We are at present unsure whether this is generic behaviour to be expected (akin to how con-
sidering mirror symmetry in [5] led to proving an improved decay, which was first numerically
observed in [16]), or whether it is a numerical artefact of our finite-domain approximation. We
hope to address this issue in future work. In any case, the simulations confirm that û0+ û1+ û2
exactly captures the far-field ∼ |m|−3/2 behaviour, which was our primary aim. Note however,
that to prove such an improved decay result, new non-trivial ideas seem to be needed.

4. Conclusions and outlook

We have fully developed the first order correction term in the atomistic asymptotic expansion
of the elastic field around a Mode III crack in anti-plane geometry. As a result the well-known
flexible boundary condition ansatz due to Sinclair and co-authors has been proven to be in-
complete, which can have far-reaching consequences for the atomistic simulations of fracture.
To obtain our rigorous proofs, we have also succeeded in providing a higher order description
of the associated lattice Green’s function. In the process, we have thus shown a first explicit
example of how to expand the theory developed in [6] to more complex geometries that can no
longer rely on the homogeneous lattice Green’s function but has to account for genuine spatial
inhomogeneity.

In the future, we aim to use the ideas developed here to heuristically derive a correct atomistic
asymptotic expansion for a variety of fracture models, including for Mode I vectorial models and
combine this ansatz with numerical continuation tools developed in [11].

5. Proofs: Setup, prerequisites, and tools

5.1. Cut-offs.

Definition 5.1 (Cut-off functions). Consider a generic scalar cut-off function η̂ : [0,∞] → R
satisfying η̂(x) = 1 on

[
0, 12
]

and η̂(x) = 0 for x ∈ [1,∞) and smooth and decreasing in-between.
The class of lattice cut-off function we will employ are η : Λ → R defined as

η(m) := η̂
(
|m−l|
c|s|

)
, (5.1)

where the constant c and two lattice points ℓ, s ∈ Λ will always be specified. As a result, Dη is
only non-zero in an annulus that scales like |s| and in particular |Djη(x)| ≲ |s|−j .

Lemma 5.2. Suppose u, v, η : Λ → R and η is compactly supported. Then∑
m∈Λ

Du(m) ·D[vη](m) =
∑
m∈Λ

D[uη](m) ·Dv(m)

+
∑
m∈Λ

v(m) (Dη(m) ·Du(m))− u(m) (Dη ·Dv(m)) .

Proof. The result follows directly from realising that we can rewrite Dρ[vη](m) as

Dρ[vη](m) = u(m+ ρ)η(m+ ρ)− v(m)η(m)

= v(m+ ρ)η(m+ ρ)−v(m)η(m+ ρ) + v(m)η(m+ ρ)︸ ︷︷ ︸
=0

−v(m)η(m)

= Dρv(m)η(m+ ρ) + v(m)Dρη(m)

□

and applying this rewrite to D[vη] on the left-hand side and to D[uη] on the right-hand side.
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5.2. Properties of the function spaces. Let us collect a few important properties of functions
in Ḣ1. Remember that we set (Du(m))ρ = 0 when the bond crosses the crack. The following
statements closely follow the full homogeneous case though, despite this difference.

Lemma 5.3 (Poincaré on sliced annulus). There are CP , RP > 0 such that for all R > 0 large
enough and all v

∥v − (v)ΣR
∥ℓ2(ΣR) ≲ R∥Dv∥ℓ2(Σ′

R),

where (v)ΣR
= 1

|ΣR|
∑

m∈ΣR
v(m) and ΣR := (Bc2R(0) \ Bc1R(0)) ∩ Λ, Σ′

R := (Bc2R+RP
(0) \

Bc1R−RP
(0)) ∩ Λ.

Proof. This is basically [12, Lemma 7.1]. Note however that we use the sliced annulus which in
our notation means Du is set to 0 for bonds that cross the crack. This does not impact the proof
in any meaningful way though, as the continuum result on the sliced annulus holds true. □

Lemma 5.4 (Density of compactly supported functions.). Hc is dense in Ḣ1 with respect to the
∥Dv∥ℓ2 semi-norm.

Proof. This is a standard consequence of Lemma 5.3 when combined with a cutoff as in Definition
5.1. Indeed on just sets vn(m) = (v(m)− (v)Σn)η(m) with η(m) = η̂( |m|

n ) and the annulus based
on c1 = 1/4, c2 = 5/4. Then one can calculate

∥Dv −Dvn∥ℓ2 ≲ ∥((Dv)ρ(1− η(m+ ρ)))ρ∈R∥ℓ2 + ∥(v(m)− (v)Σn)Dη(m)∥ℓ2

≲ ∥Dv∥ℓ2(Λ\B5n/4(0))
+

1

n
∥v − (v)Σn∥ℓ2(Σn)

≲ ∥Dv∥ℓ2(Λ\B5n/4(0))
+ ∥Dv∥ℓ2(Σ′

n)

≲ ∥Dv∥ℓ2(Λ\Bn/8(0))
.

And this last term goes to zero as n → ∞. □

Lemma 5.5 (Discrete Sobolev Embedding). If Dv ∈ ℓp for some 1 ≤ p < d = 2 then there
exists a constant v∞ such that v − v∞ ∈ ℓp

∗ where p∗ = 2p
2−p is the Sobolev conjugate.

Proof. Without the crack in the geometry, the statement can be found in [22, Prop. 12(iii)].
Note though that now Dv is set to 0 when crossing the crack Γ0.

It holds that
∥f∥Lp∗ (R2\Γ0)

≲ ∥f∥W 1,p(R2\Γ0)

for all f ∈ W 1,p(R2\Γ0) according to [1], as R2\Γ0 satisfies the cone condition. A simple rescaling
gt(x) = f(tx) for t > 0 then shows

t
1−2

p ∥f∥Lp∗ (R2\Γ0)
≲ t

−2
p ∥f∥Lp(R2\Γ0) + t

1−2
p ∥∇f∥Lp(R2\Γ0).

Dividing by t
1−2

p and sending t → ∞ reduces this to

∥f∥Lp∗ (R2\Γ0)
≲ ∥∇f∥Lp(R2\Γ0),

where we used that R2\Γ0 is preserved under the rescaling.
Now, for any discrete v ∈ Hc we can use an interpolation (e.g., the one discussed in Section

5.3) to conclude that
∥v∥ℓp∗ (Λ) ≲ ∥Dv∥ℓp(Λ).

The statement then follows from the the density of Hc, Lemma 5.4. □

Lemma 5.6. Suppose v : Λ → R satisfies

|Dv(m)| ≲ |m|−α

for some α > 1. Then there exists a constant v∞, such that

|v(m)− v∞| ≲ |m|1−α.
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Proof. Choosing any p with 2
α < p < 2 we can apply Lemma 5.5 and in particular obtain a shift

v∞ such that v − v∞ → 0 at infinity. A simple telescope sum to infinity that does not cross the
crack then proves the result. □

5.3. Interpolation of lattice functions. Given a lattice function v : Λ → R, it will be useful
to define an interpolation operator to obtain Iv : R2 \ Γ0 → R. We begin by recalling how this
was handled in [9, Section 4.2.1.], followed by necessary modifications needed for our purposes.

We begin by defining

ΩΓ :=
{
x ∈ R2 | x1 ≤ 1

2 , x2 ∈
(
−1

2 ,
1
2

)}
\ Γ0, Ω0 := ΩΓ ∩

[
−1

2 ,
1
2

]2
, Q0 := Ω0 ∩ Γ. (5.2)

The default interpolation operator I is defined as follows. On R2 \ΩΓ∪Γ0, that is away from the
discrete crack surface Γ, the squares in the lattice are carved into two right-angle triangles along
one of the two diagonals (e.g. top left to bottom right) and I is defined as the (P1) piecewise
linear interpolation operator.

We also want Iv to be well-defined on ΩΓ and continuous across Γ. Away from the crack
tip this is is achieved by extending it so that it aligns with the the values of Iv(x) for x ∈ Γ
and is constant in the normal direction. At the crack tip, inside Q0 (defined in (5.2)), we
create two new interpolation points, one precisely at the crack tip x0 := (0, 0) and the other at
x̃ := (−1

2 , 0) ∈ Γ0. We define the interpolation there, Iu(x0), as the average of the four lattice
points inside Q0 and further limx→x̃± Iv(x) = v(x̃±), where x̃± = x̃+ (0,±1

2). By construction,
the resulting P1 interpolant does not need to be continuous across Γ0.

Figure 2. The default interpolation (left) and the mirror interpolation (right). Three example
bonds b(m, ρ) are highlighted together with regions Rm,ρ associated with it.

Under this interpolation, to each bond b(m, ρ) for m ∈ Λ, ρ ∈ R(m) we can associate the
following regions. Let Um,ρ denote the union of all right-hand triangles for which the bond
b(m, ρ) is an edge; let Qm,ρ denote the union of all rectangular strips inside ΩΓ for which the
bond b(m, ρ) is an edge; and let Q0

m,ρ denote the union of all triangles inside Q0 for which
b(m, ρ) is an edge; finally leading to Rm,ρ := Um,ρ ∪ Qm,ρ ∪ Q0

m,ρ, which is the union of all
regions associated with the bond b(m, ρ).

Clearly, if b(m, ρ) ̸∈ Γ, then there are two triangles in Um,ρ, whereas Qm,ρ = Q0
m,ρ = ∅. If

b(m, ρ) ∈ Γ \Q0, then there is one triangle in Um,ρ, one rectangular strip in Qm,ρ and Q0
m,ρ = ∅.

Finally, if b(m, ρ) ⊂ Q0, then there is one triangle in Um,ρ, Qm,ρ = ∅, and there is one triangle
in Q0

m,ρ. See Figure 2 for a visual intuition.
By construction, we thus get the equality∫

R2\Γ0

∇u(x) · ∇Iv(x)dx =
1

2

∑
m∈Λ

∑
ρ∈R(m)

(∫
Rm,ρ

∇ρu(x)dx

)
Dρv(m),
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whenever the left hand-side is well defined. Note that the 1
2 prefactor enters because of the

double counting of bonds.
This is used in [9] to show that the predictor û0 satisfies∑

m∈Λ
Dû0(m) ·Dv(m) =

∑
m∈Λ

ĥ0(m) ·Dv(m), (5.3)

where ĥ0 ∈ ℓ2(Λ;R4) is given by

(ĥ0)ρ(m) =

{
Dρû0(m)−

∫
Rm,ρ

∇ρû0(x)dx, b(m, ρ) ̸⊂ Q0,

Dρû0(m)− Cm+ρ,m, b(m, ρ) ⊂ Q0.

where the formulae for the finite Cm+ρ,m are reported in [9, Section 4.2.1.]. By construction, we
also have that

b(m, ρ) ̸⊂ Γ =⇒ |(ĥ0(m))ρ| ≲ |∇3û0(m)| ≲ |m|−5/2 (5.4a)

b(m, ρ) ⊂ Γ \Q0 =⇒ |(ĥ0(m))ρ| ≲ |∇2û0(m)| ≲ |m|−3/2. (5.4b)

The estimate for ĥ0 when b(m, ρ) ⊂ Γ \ Q0 turns out to be insufficient for our purposes. The
estimate is sharp though and the way to improve the behaviour is to use the symmetrised
interpolation instead, which we will now introduce.

Building upon the default interpolation operator I, we first introduce its mirrored version
Imir, which, away from R2 \ ΩΓ, is defined via carving the squares into right-angle triangles
across the other diagonal. Inside ΩΓ we take Imir to be the same as I. Naturally this operator
has all the same properties as I itself. See Figure 2 for a visual comparison between I and Imir.

This allows us to define a symmetric interpolation operator Isym as

Isymv :=
1

2
(Iv + Imirv).

Another way of thinking about Isym is to set the function to be the average of all four corners
at the midpoint of each square and then interpolate affine on the 4 resulting triangles.

Returning to (5.3), we observe that using Isym we obtain the improved estimate∑
m∈Λ

Dû0(m) ·Dv(m) =
∑
m∈Λ

ĥsym0 (m) ·Dv(m), (5.5)

where
(ĥsym0 (m))ρ =

1

2

(
(ĥ0(m))ρ + (ĥmir

0 (m))ρ

)
,

for which we can prove the following.

Lemma 5.7. The function ĥsym0 defined in (5.5) satisfies

|ĥsym0 (m)| ≲ |m|−
5
2 . (5.6)

Proof. For b(m, ρ) ̸⊂ Γ the result follows directly from (5.4). So suppose b(m, ρ) ⊂ Γ \Q0. By
definition, we have

(ĥsym0 (m))ρ =
1

2

(
(ĥ0(m))ρ + (ĥmir

0 (m))ρ

)
= Dρû0(m)− 1

2

∫
Umρ

∇ρû0 dx− 1

2

∫
Umir
mρ

∇ρû0 dx−
∫
Qmρ

∇ρû0 dx

Taylor expanding the three integrals around their midpoints and using |∇3û| ≲ |m|−
5
2 , we find

(ĥsym0 (m))ρ = ∇ρû0(m+
1

2
ρ)− 1

4
∇ρû0(xUmρ)−

1

4
∇ρû0(xUmir

mρ
)− 1

2
∇ρû0(xQmρ) +O(|m|−

5
2 ),

where xA = 1
|A|
∫
A x dx. The terms involving ∇2û0 vanished due to these being the midpoints.

Using the same idea again, we can Taylor expand each term in the weighted sum
1

4
∇ρû0(xUmρ) +

1

4
∇ρû0(xUmir

mρ
) +

1

2
∇ρû0(xQmρ)
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around the weighted midpoint

xmρ =
1

4
xUmρ +

1

4
xUmir

mρ
+

1

2
xQmρ .

Again, the terms involving ∇2û0 cancel and we get

(ĥsym0 (m))ρ = ∇ρû0
(
m+

1

2
ρ
)
−∇ρû0(xmρ) +O(|m|−

5
2 ).

Despite the symmetrisation, these two points are still different. Direct calculations give

xQmρ = m+
1

2
ρ− 1

4
sgn(m2)e2,

1

2
xUmir

mρ
+

1

2
xUmρ = m+

1

2
ρ+

1

3
sgn(m2)e2,

and thus
xmρ = m+

1

2
ρ+

1

24
sgn(m2)e2.

In particular, we have
(xmρ)1 =

(
m+ 1

2ρ
)
1
.

With ymρ = 1
2(m+ 1

2ρ+ xmρ) = m+ 1
2ρ+

1
48 sgn(m2)e2, it follows that

(ĥsym0 (m))ρ = − 1

24
sgn(m2)∂2∇û(ymρ) +O(|m|−

5
2 ).

But now the boundary condition ∂2û0 = 0 on Γ0 implies that ∂2∂1û0((ymρ)1, 0
±) = 0. We thus

also find
|∂2∇ρû(ymρ)| = |∂2∇ρû(ymρ)− ∂2∇ρû0((ymρ)1, 0

±)| ≲ |m|−
5
2 .

Here, 0± denotes the continuous extension on Γ0 of û0 on the side corresponding to sgn(m2). □

6. Proofs: The lattice Green function

6.1. Setup and prerequisites.

Definition 6.1. A function Ghom : Λ → R is said to be a homogeneous lattice Green’s function
if

−DivhomDhomGhom(m− ℓ) = δ(m, ℓ),

where δ(m, l) is the Kronecker delta and Dhomu(m) := (Dρu(m))ρ∈R (i.e. with no interaction
bonds removed) and the same for Divhom.

Theorem 6.2 ([13, Section 6.2]). There exists a homogeneous lattice Green’s function Ghom : Λ → R
in the sense of Definition 6.1 and it satisfies a decay estimate

|DjGhom(m− ℓ)| ≲ (1 + |m− ℓ|j)−1.

To obtain zero-order results for the lattice Green’s function in the anti-plane crack geometry,
in [9] a discrete complex square root manifold is introduced to obtain decay results for atoms
close to the crack surface. The full account is presented in [9, Lemma 4.8, Case 2] (see also [8]
for a more in-depth discussion of this geometric framework with application to near crack-tip
plasticity). In what follows, to simplify presentation, we use a more minimal presentation, for
which the following definition is needed.

Definition 6.3 (Reflected lattice point and function). Given a lattice point m = (m1,m2) ∈ Λ,
we define its reflected counterpart as mref := (m1,−m2) ∈ Λ. Likewise, given a lattice function
u : Λ → R, its reflected counterpart uref : Λ → R is defined as, for m = (m1,m2) ∈ Λ

uref(m) :=

{
u(mref) if m1 < 0,m2 > 0

u(m) otherwise.

Finally, we also note that the symmetric interpolation introduced in Section 5.3 allows us to
retrace the proof Lemma 5.7 and arrive at the following useful result.
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Lemma 6.4. The predictor Ĝ0 from (2.13) satisfies∑
m∈Λ

DmĜ0(m, s) ·Dv(m)− v(s) =
∑
m∈Λ

ĝ0(m) ·Dv(m),

where |ĝ0(m)| ≲ |∇3Ĝ0(m, s)|.

6.2. Improved estimates for Ḡ0. In order to prove Theorem 2.9, we first need to establish
auxiliary results about Ḡ0, partially improving upon the results established in [9]. Let us start
with a suboptimal estimate for D1D1D2Ḡ0 in an annulus B5|s|/8(0) \B3|s|/8(0).

Lemma 6.5.
|D1D1D2Ḡ0(ℓ, s)|≲ |s|−3+δ (6.1)

for any ℓ ∈ B5|s|/8(0) \B3|s|/8(0).

Proof. Let ℓ ∈ B5|s|/8(0) \ B3|s|/8(0) and choose the cutoff as in Definition 5.1 with c = 1
8 . In

particular, η(m) ̸= 0 implies |s|
4 ≤ |m| ≤ 3|s|

4 . Assume without loss of generality that ℓ2 < 0.
In particular the reflected function (Ḡ0)ref , defined in Definition 6.3 with reflection only in the
first variable, satisfies

D1D2(Ḡ0)ref(ℓ, s) = D1D2Ḡ0(ℓ, s).

Further, set σ ∈ R(m). We then have

D1σD1D2Ḡ0(ℓ, s) = D1σ(D1D2(Ḡ0)ref(ℓ, s)η(ℓ))

=
∑
m∈Λ

−DivD̃Ghom(m− ℓ)D1σ(D1D2(Ḡ0)ref(m, s)η(m))

=
∑
m∈Λ

∑
ρ∈R

DρD−σGhom(m− ℓ)D1ρ(D1D2(Ḡ0)ref(m, s)η(m))

=
∑
m∈Λ

∑
ρ∈R

Dρ

(
η(m)D−σGhom(m− ℓ)

)
D1ρD1D2(Ḡ0)ref(m, s)

−
∑
m∈Λ

∑
ρ∈R

D1D2(Ḡ0)ref(m, s)Dρη(m)DρD−σGhom(m− l)

−
∑
m∈Λ

∑
ρ∈R

D−σGhom(m− l)Dρη(m)D1ρ(D1D2(Ḡ0)ref(m, s)

=: S1 + S2 + S3,

where we have used Lemma 5.2 in the last equality.
To estimate S1, we introduce short-hand notation v(m) := η(m)D−σGhom(m− l) and observe

that by using the discrete manifold construction described in [9, Section 4.3.3.],

Gref = (Ĝ0)ref + (Ḡ0)ref

satisfies a manifold equivalent of the discrete PDE given in (2.9). With the support of v bounded
away both from the origin and from the new artificial cut at m1 = 0, m2 > 0. We can thus
rewrite S1 as follows.

S1 =
∑
m∈Λ

∑
ρ∈R(m)

D1ρD1D2(Ḡ0)ref(m, s)Dρv(m)

= −
∑
m∈Λ

∑
ρ∈R(m)

D1ρD1D2(Ĝ0)ref(m, s)Dρv(m) +DDv(s) =

=
∑

b(m,ρ) ̸⊂Γ

gR11(m, ρ)Dρv(m) +
∑

b(m,ρ)⊂Γ

hR11(m, ρ)Dρv(m),

where, for m ∈ supp η, we have |gR11(m, ρ)| ≲ |s|−5 and |hR11(m, ρ)| ≲ |s|−4 are the terms obtained
from introduced a single interpolation (see Section 5.3). The decay of |Dv(m)| is thus enough
to conclude that

|S1| ≲ |s|−4.
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Note by using symmetric interpolation as described in Section 5.3, we can in fact improve
this estimate to

|S1| ≲ |s|−5 log|s|,
but this will not improve the overall result, as we are restricted by S2 and S3 anyway.

For S2 we can directly estimate all terms pointwise for m ∈ suppDη, allowing us to conclude
that

|S2| ≲
∑
m∈Λ

|Dη(m)||D2Ghom(m− ℓ)||D1D2(Ḡ0)ref(m, s)| ≲ |s|−3+δ/2.

For S3, we sum Dρ by parts to obtain

S3 = −
∑
m∈Λ

∑
ρ∈R

D−σGhom(m− l)Dρη(m)D1ρ(D1D2(Ḡ0)ref(m, s)

= −
∑
m∈Λ

−Div(D−σGhom(m− l)Dη(m))D1D2(Ḡ0)ref(m, s)

= −
∑
m∈Λ

−DivDη(m)D−σGhom(m− l)D1D2(Ḡ0)ref(m, s)

−
∑
m∈Λ

∑
ρ∈R

D−ρD−σGhom(m− l)Dρη(m− ρ)D1D2(Ḡ0)ref(m, s).

It thus follows from another direct pointwise estimate that

|S3| ≲
∑
m∈Λ

|D2η(m)||DGhom(m− ℓ)||D1D2(Ḡ0)ref(m, s)|

+
∑
m∈Λ

|Dη(m)||D2Ghom(m− ℓ)||D1D2(Ḡ0)ref(m, s)|

≲ |s|−3+δ/2

□

Using Lemma 6.5, we will now obtain an improved estimates on D1D2Ḡ0 in an annulus
B |s|

2

(0) \B |s|
4

(0).

Lemma 6.6. It holds that
|D1D2Ḡ0(ℓ, s)| ≲ |s|−3+δ. (6.2)

for |s|/4 ≤ |ℓ| ≤ |s|/2.

Proof. Set v(m) := D2G(m, l). We have

D1D2Ḡ0(ℓ, s) =
∑
m∈Λ

∑
ρ∈R(m)

D1ρD2Ḡ0(m, s)Dρv(m)

=
∑
m∈Λ

∑
ρ∈R(m)

−DρD2Ĝ0(m, s)Dρv(m)

︸ ︷︷ ︸
=:T1

+Dv(s)

︸ ︷︷ ︸
=:T2

. (6.3)

To elucidate the idea of proving this result by employing an appropriate cut-off function, followed
by summation / integration by parts, we begin by recalling Definition 5.1 and introducing a
continuum cut-off function η : R2 → R given by

η(x) := η̂

(
|x− s|
|s|/4

)
,

for which it holds that

suppDη = Bs/4(s) \Bs/8(s), η(x) ̸= 0 =⇒ 3|s|
4

< |x| < 5|s|
4

.
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This allows us to rewrite T2 as follows. We have, due to the PDE that Ĝ0 satisfies,

Dv(s) = 2

∫
R2\Γ0

(
∇(D2Ĝ0(x, s)η(x)) · ∇Iv(x)

)
dx︸ ︷︷ ︸

:=T2,1

+ 2

∫
R2\Γ0

(
∇(D2Ĝ0(x, s)(1− η(x))) · ∇Iv(x)

)
dx︸ ︷︷ ︸

:=T2,2

,

where we use the symmetric interpolation operator Isym introduced in Section 5.3, but abuse
the notation by identifying I ≡ Isym for brevity.

Let us focus on T2,1. By adding and subtracting the same term, we obtain

T2,1 = 2
∑
i=1,2

∫
R2\Γ0

∂i(D2Ĝ0(x, s)η(x)) (∂iIv(x)) dx

= 2
∑
i=1,2

∫
R2\Γ0

∂i(D2Ĝ0(x, s)η(x))

(
∂iIv

(
s+

1

2
ei

))
dx

+ 2
∑
i=1,2

∫
R2\Γ0

∂i(D2Ĝ0(x, s)η(x))

(
∂iIv(x)− ∂iIv

(
s+

1

2
ei

))
dx

:= T2,1,1 + T2,1,2.

Note that s+ 1
2ei is the midpoint of a lattice bond. We then apply integration by parts to T2,1,1

and observe that

T2,1,1 = 2
∑
i=1,2

∂iIv

(
s+

1

2
ei

)(∫
R2\Γ0

∂i(D2Ĝ0(x, s)η(x))dx

)

+ 2∂1Iv

(
s+

1

2
e1

)∫
Γ0

D2Ĝ0(x, s)η(x)dx.

Recalling the discussion in Section 5.3 about the different regions associated with the inter-
polation operators, we note that by construction and since the support of η is bounded away
from Q0, we have

T2,1,1 =
∑

b(m,ρ)⊂Γ

Dρv(s)

∫
Qm,ρ∩Γ0

D2Ĝ0(x, s)η(x)dx

and similarly

T2,1,2 =
∑
m∈Λ

∑
ρ∈R(m)

(Dρv(m)−Dρv(s))

(∫
Rm,ρ

∇ρ(D2Ĝ0(x, s)η(x))dx

)

The same reasoning applies to rewriting the other term in (6.3), namely

T1 = =
∑
m∈Λ

∑
ρ∈R(m)

−Dρ(D2Ĝ0(m, s)η(m))Dρv(m)

+
∑
m∈Λ

∑
ρ∈R(m)

−Dρ(D2Ĝ0(m, s)(1− η(m)))Dρv(m)

=: T1,1 + T1,2.
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Focusing for now on T1,1, we note that

T1,1 =
∑
m∈Λ

∑
ρ∈R(m)

−Dρ(D2Ĝ0(m, s)η(m))Dρv(s)︸ ︷︷ ︸
=:T1,1,1

+
∑
m∈Λ

∑
ρ∈R(m)

−Dρ(D2Ĝ0(m, s)η(m)) (Dρv(m)−Dρv(s))︸ ︷︷ ︸
=:T1,1,2

and further that it follows from summation by parts that

T1,1,1 =
∑

b(m,ρ)⊂Γ

−Dρv(s)D2Ĝ0(m, s)η(m).

Recalling from (6.3) that

D1D2Ḡ0(ℓ, s) = T1 + T2,

we sum together T1,1,1 and T2,1,1 to obtain

T1,1,1 + T2,1,1 =
∑

b(m,ρ)⊂Γ

−Dρv(s)

(
D2Ĝ0(m, s)η(m)−

∫
Qm,ρ∩Γ0

D2Ĝ0(x, s)η(x)dx

)
.

Since |Qm,ρ ∩ Γ0| = 1, a first order quadrature estimate ensures that

|T1,1,1 + T2,1,1| ≲
∑

b(m,ρ)⊂Γ

|Dv(s)|
(
|D1D2Ĝ0(m, s)|+ |D2Ĝ0(m, s)||Dη(m)|

)
≲ |s||s|−2

(
|s|−2 + |s|−1−1

)
= |s|−3.

Similarly we can sum together T1,1,2 and T2,1,2 to obtain

T1,1,2 + T2,1,2 =
∑
m∈Λ

∑
ρ∈R(m)

((∫
Rm,ρ

∇ρ(D2Ĝ0(x, s)η(x))dx

)
(6.4)

−Dρ(D2Ĝ0(m, s)η(m))

)
(Dρv(m)−Dρv(s))

The mid-point quadrature estimate, together with the symmetrisation trick, as established in
Lemma 6.4, implies that

|T1,1,2 + T2,1,2| ≲
∑
m∈Λ

|∇3(D2Ĝ0(m, s)η(m))||Dρv(m)−Dρv(s)|

≲
∑

m∈suppη
|m− s||∇3(D2Ĝ0(m, s)η(m))| sup

m∈suppη
|D2

1D2G(m, l)|

≲ |s|−3
∑

m∈suppη
|m− s||∇3D2Ĝ0(m, s)|+ |s|−3

∑
m∈suppη

|m− s||s|−3

︸ ︷︷ ︸
≲|s|−3

.
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And we observe that

|s|−3
∑

m∈suppη
|m− s||∇3D2Ĝ0(m, s)| ≲

≲ |s|−3+δ
∑

m∈suppη
|m− s|

(
(1 + |ωm|5|ωs|1|ω−

ms|2)−1 + (1 + |ωm|3|ωs|1|ω−
ms|4)−1

)
≲ |s|−3+δ

∑
m∈suppη,m ̸=s

|m− s|
(
s−3|m− s|−2|ω+

ms|2 + s−2|m− s|−4|ω+
ms|4

)

≲ |s|−3+δ

|s|−2
∑

m∈suppη,
m ̸=s

|m− s|−1 +
∑

m∈suppη,
m ̸=s

|m− s|−3


≲ |s|−3+δ(|s|−2|s|+ 1)

≲ |s|−3+δ

Finally, we turn our attention to terms T1,2 and T2,2. Replicating the argument that allows
to arrive at (6.4), we observe that

T1,2 + T2,2 =
∑
m∈Λ

∑
ρ∈R(m)

((∫
Rm,ρ

∇ρ(D2Ĝ0(x, s)(1− η(x)))dx

)

−Dρ(D2Ĝ0(m, s)(1− η(m)))

)
Dρv(m)

and hence

|T1,2 + T2,2| ≲
∑
m∈Λ

|∇3(D2Ĝ0(m, s)(1− η(m)))||D1D2G(m, l)|

≲
∑
m∈Λ

|∇3D2Ĝ0(m, s)||(1− η(m))||D1D2G(m, l)|︸ ︷︷ ︸
=:S(m)

+|s|−4+δ,

where we have used the fact that if at least one gradient falls onto (1− η(m)), every term scales
fully with |s|, so we can take them out and add volume term to arrive at, for j = 1, 2, 3,∑

m∈Λ
|∇3−jD2Ĝ0(m, s)|∇j(1− η(m))|||D1D2G(m, l)| ≲ |s|−6+δ|suppDη| ≲ |s|−4+δ.

To estimate the remaining term, we first note that∑
m∈B|s|/8(0)

S(m) ≲
∑

m∈B|s|/8(0)

(1 + |ωm|5|ωs||ω−
ms|2)−1(1 + |ωm||ωℓ||ω−

mℓ|
2−δ)−1 ≲ |s|−3+δ

and ∑
m∈B|ℓ|/16(ℓ)

S(m) ≲ |s|−4

(
1 +

∫ |l|

ε
r−1+δdr

)
≲ |s|−4+δ.

Outside of these two regions and with the region near |s| excluded via 1− η, the remaining sum
can be estimated as ∑

m∈Λ\B|s|/8(0)∪B|ℓ|/16(ℓ)

S(m) ≲ |s|−1

∫ ∞

|s|
r(−10+δ)/2dr ≲ |s|−4+δ,

which allows to conclude that
|T1,2 + T2,2| ≲ |s|−3+δ,

thus ensuring that
|D1D2Ḡ0(l, s)| ≲ |s|−3+δ,

which is what we set out to prove. □
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We need one more small Lemma before we actually go and improve beyond Ĝ0.

Lemma 6.7. For all ℓ, s ∈ Λ, the full lattice Green’s function G = Ĝ0 + Ḡ0, defined in (2.12),
satisfies

|D1G(ℓ, s)| ≲ (1 + |ω(ℓ)||ω(ℓ)− ω(s)|1−δ)−1.

Proof. First note that this holds true (even with δ = 0) for Ĝ0 instead of G according to [9,
Lemma 4.4].

Furthermore, if |ℓ| > |s|
2 we can apply [9, Lemma 4.8] to get the same for Ḡ0 and thus conclude

|D1G(ℓ, s)| ≲ (1 + |ωℓ||ω−
ℓs|)

−1

there.
We are left with the case 2|ℓ| ≤ |s|. Consider v(s) = D1G(ℓ, s) as a function in s. Then we

know that |Dv(s)| ≲ (1 + |ω(ℓ)||ω(s)|(|ω(ℓ)− ω(s)|)2−δ)−1 according to [9, Theorem 2.6]. That
means |Dv(s)| ≲ |ℓ|−1/2|s|−3/2+δ/2 for |s| ≥ 2|ℓ|.

We can now apply Lemma 5.6 to see that v has a limit v∞ = v∞(ℓ) at infinity with

|v(s)− v∞| ≲ |ℓ|−1/2|s|−1/2+δ/2.

Note that this estimate was just based on a telescope sum to infinity and thus the constants do
not depend on ℓ. Also note that for |s| ≥ 2|ℓ| we can estimate

|ℓ|−1/2|s|−1/2+δ/2 ≤≲ (1 + |ω(ℓ)|ω(ℓ)− ω(s)|1−δ)−1.

Hence we showed that there is a v∞(ℓ) such that

|D1G(ℓ, s)− v∞(ℓ)| ≲ (1 + |ω(ℓ)|ω(ℓ)− ω(s)|1−δ)−1.

However, v∞ is just the limit limℓ→∞D1G(ℓ, s). Clearly this is 0 for Ĝ0, but we also have
D1Ḡ0(·, s) ∈ ℓ2 by definition in [9], hence v∞ = 0 overall. □

6.3. Proof of Proposition 2.8.

Proof. Using the ansatz (2.14), we see that Ĝm
1 has to satisfy the discrete PDE

−DivDĜm
1 (m) = Divω2(m).

Remarkably, this is the same pointwise discrete PDE as for ū0, when the pair-potential is qua-
dratic, that is ϕquad(r) =

1
2r

2. Thus the existence of Ĝm
1 follows directly from Theorem 2.2, as

well as the estimate
|DĜm

1 (ℓ)| ≲ |ℓ|−3/2+δ.

In particular, the quadratic nature of ϕquad ensures that, unlike for a general nonconvex ϕ as in
[9], Ĝm

1 does not need a small pre-factor in front.
As 3/2− δ > 1, we can then use Lemma 5.6 to also get the estimate

|Ĝm
1 (ℓ)| ≲ |ℓ|−1/2+δ.

after shifting Gm
1 by a constant. □

6.4. Estimates for Ḡ1. Recall that we work with a decomposition of the full lattice Green’s
function G given by

G = Ĝ0 + Ḡ0

= Ĝ0 + Ĝ1 + Ḡ1,

and our aim is to estimate |D1D2Ḡ1| in the vicinity of the crack tip. To this end, we want to
leverage the technical results of on the improved decay of Ḡ0 from Section 6.2 and the properties
of the discrete geometry predictor Ĝ1 from Proposition 2.8.

It will turn out that the following auxiliary result, which extends [9, Lemma 4.10] for the case
when m ∈ Γ, will prove useful.
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Lemma 6.8. It holds that when m ∈ Γ then

|DivDω2(m)| ≲ |∇4ω2(m)|

and, if s ̸= m,

|Div1D1D2Ĝ0(m, s)| ≲ |∇4
m∇sĜ0(m, s)|.

Proof. Let f denote either f = ω2 or f = D2Ĝ0(·, s), which in particular implies that, for each
m ∈ Λ, m ̸= s, we have ∆f(m) = 0, and further ∇f · ν = 0 on Γ0.

As established in [9, Lemma 4.10], if m ∈ ±Γ, then

DivDf(m) = 2
∑

ρ∈R(m)

Dρf(m) = ±2∇f(m) · e2 + 2∆f(m)−∇2f(m)[e2]
2 ± 1

3
∇3f(m)[e2]

3

+O(|∇4f(m)|)

We now define m0 := m∓ 1
2e2 ∈ Γ0, and Taylor-expand f around m0, namely

f(m) = f(m0) +∇f(m0) · (m−m0) +
1

2
∇2f(m)[m−m0]

2 +
1

6
∇3f(m0)[m−m0]

3 +O(|∇4f(m)|)

= f

(
m∓ 1

2
e2

)
± 1

2
∂2f

(
m∓ 1

2
e2

)
+

1

8
∂2
22f

(
m∓ 1

2
e2

)
± 1

48
∂3
222f

(
m∓ 1

2

)
+O(|∇4f(m)|)

Combining the two Taylor expansions and the PDE that f satisfies, we arrive at

−DivDf(m) = − 1

12
∂3
222f

(
m+

1

2
e2

)
+O(|∇4f(m)|).

The results thus follows from the readily verifiable fact that, in both cases, ∂3
222f(m0) = 0 for

all m0 ∈ Γ0. □

We begin by considering the residual, given by −Div1D1D2Ḡ1, where Div1 denotes the diver-
gence operator being applied with respect to the first variable. However, it turns out that the
correction Ĝ1 is only very good for small m. Because of that we introduce a cut off variant

Ĝ1,µ(m, s) := Ĝ1(m, s)µ(m, s), µ(m, s) := η̂
( |m|
|s|1/2

)
, (6.5)

where η̂ is the scalar cut-off function from Definition 5.1, which in particular implies that Ĝ1,µ

coinicides with Ĝ1 when |m| ≤ 1
2 |s|

1
2 and is identically zero for |m| ≥ |s|1/2. Note that, in

principle, instead of |s|1/2, one could choose a different cut-off radius, e.g. |s|α and optimize
over α. It turns out that α = 1

2 is optimal, see Remark 6.10 below for a sketch of the argument.
With this choice we have the following residual estimate.

Lemma 6.9. For |m| ≤ |s|
2 we have

|Div1D1D2Ḡ1,µ(m, s)| ≲
{

|m|−1/2+δ|s|−5/2, for |m| ≤ |s|1/2,
|m|−7/2|s|−3/2, for |m| > |s|1/2.

Proof. The starting point of the proof is the identity

Div1D1D2Ḡ1,µ(m, s) = −Div1D1D2Ĝ0(m, s)−Div1D1D2Ĝ1,µ(m, s). (6.6)

We recall from (2.13) that, with F (x) = −C log|x| and C = 1
4π , we have

Ĝ0(m, s) = F (ω(s)− ω(m)) + F (ω∗(s)− ω(m)).
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Taylor expansions of F around ω(s) and ω∗(s) result in

Ĝ0(m, s) = −(∇F (ω(s)) +∇F (ω∗(s))ω(m) (6.7a)

+
1

2
(∇2F (ω(s)) +∇2F (ω∗(s))[ω(m)]2 (6.7b)

− 1

2

∫ 1

0
(1− t)2(∇3F (ω(s)− tω(m)) +∇3F (ω∗(s)− tω(m)))[ω(m)]3 dt (6.7c)

Let’s take the discrete difference and look at the different terms:

−Div1D1D2Ĝ0(m, s) = T1 + T2 + T3.

First note that T1 = Div1D1D2Ĝ1(m, s). However, we have to consider µ. Let us get back to
that and consider the other two terms first.

For T2 we see that

∇2F (x)[v]2 = −C

(
|v|2

|x|2
− 2

(x · v)2

|x|4

)
.

Hence,

T2 = CDiv1D1D2

( |m|
|s|

− (ω(m) · ω(s))2

|s|2
− (ω∗(s) · ω(m))2

|s|2
)
.

Recalling that

ω(m) = |m|1/2(cos(θm/2), sin(θm/2)), ω(s) = |s|1/2(cos(θs/2), sin(θs/2)), ω∗(s) = (−ω1(s), ω2(s)),

and using the dot product formula x · v = |x||v| cos γ, where γ is the angle between x and v, we
have

(ω(m) · ω(s))2 = |m||s|(cos(θm/2) cos(θs/2) + sin(θm/2) sin(θs/2))
2

(ω(m) · ω∗(s))2 = |m||s|(− cos(θm/2) cos(θs/2) + sin(θm/2) sin(θs/2))
2.

Expanding the squares and using standard trigonometric identities, we arrive at

T2 = CDiv1D1D2
|m|
|s|

(
1− 2 cos2(θm/2) cos2(θs/2)− 2 sin2(θm/2) sin2(θs/2)

)
= −CDiv1D1D2

( |m|
|s|

cos(θm) cos(θs)
)

= −CDiv1D1D2
s1m1

|s|2
= 0,

since −Div1D1m1 = 0. Note that this remains true even if m ∈ Γ.
That leaves T3. With

Ds(∇3F (ω(s)− tω(m)) +∇3F (ω∗(s)− tω(m)))ρ

=

∫ 1

0
∇4F (ω(s+ τρ)− tω(m))[∇ω(s+ τρ)ρ] +∇4F (ω∗(s+ τρ)− tω(m))[∇ω∗(s+ τρ)ρ] dτ

:= A(m, s, t)ρ, (6.8)

we have to estimate

T3 =
1

2

∫ 1

0
(1− t)2Div1D1

(
A(m, s, t)[ω(m)]3

)
dt.

For this, we first estimate (6.8) by itself and with discrete differences in m as

|A(m, s, t)| ≲ |s|−4/2|s|−1/2 = |s|−5/2,

|D1A(m, s, t)| ≲ |s|−5/2|s|−1/2|m|−1/2 = |s|−3|m|−1/2,

|D2
1A(m, s, t)| ≲ |s|−6/2|s|−1/2|m|−2/2 = |s|−7/2|m|−1.



22 JULIAN BRAUN AND MACIEJ BUZE

Using a product rule for discrete difference, which holds true if one includes extra shifts, we thus
find

|T3| ≲ sup
t

∣∣∣Div1D1

(
A(m, s, t)[ω(m)]3

∣∣∣
≲ |m|−1/2 sup

t
|A|+ |m|1/2 sup

t
|D1A|+ |m|3/2 sup

t
|D2

1A|

≲ |s|−5/2|m|−1/2 + |s|−3 + |s|−7/2|m|1/2

≲ |s|−5/2|m|−1/2.

Note that this argument also works when m ∈ Γ, because in (6.7), on the left-hand side we have
Ĝ0, which satisfies ∇m0Ĝ0(m0, s) · e2 = 0 when m0 ∈ Γ0 and the same is true for the first two
terms on the right-hand side and so the same must be true for the third term. As a result, as in
Lemma 6.8, we also always have two derivatives to distribute even when m ∈ Γ.

Returning to the cut-off function µ(m, s) = η̂( m
|s|1/2 ), we consider three cases.

When |m| ≤ 1
2 |s|

1/2, then µ = 1 and in this case T1 cancels exactly with the Ĝ1 contribution
and thus, from (6.6) we obtain

|Div1D1D2Ḡ1,µ(m, s)| ≲ |m|−1/2|s|−5/2,

when |m| ≤ 1
2 |s|

1/2.
The second case is when |m| > |s|1/2, implying that µ = 0 and thus Ĝ1,µ = 0. In this case

(6.6) becomes

Div1D1D2Ḡ1,µ(m, s) = −Div1D1D2Ĝ0(m, s).

It follows from [9, Lemma 4.10] and Lemma 6.8 that, for any m ∈ Λ,

|Div1D1D2Ĝ0(m, s)| ≲ |∇4
m∇sĜ0(m, s)| ≲ |s|−3/2|m|−7/2.

That leaves the transition area |s|1/2
2 ≤ |m| ≤ |s|1/2, in which we have to additionally consider

−Div1D1D2(µĜ
m
1 Ĝs

1). We use that, for i = 0, 1,

|DiĜs
1(s)| ≲ |s|−1/2−i, |DiĜm

1 (m)| ≲ |m|−1/2−i+δ, (6.9)

where the first inequality follows from a direct estimate of the explictly defined Ĝs
1 and the

second from Proposition 2.8. We will also use that, due to Lemma 6.8,

|DivDĜm
1 (m)| = |DivDω2(m)| ≲ |m|−7/2, (6.10)

and finally that, within this transition area, the cut-off function µ satisfies, for i = 0, 1, 2,

|Di
1µ(m, s)| ≲ |s|−i/2, |Di

1D2µ(m, s)| ≲ |s|−i/2−1. (6.11)

To expand out −Div1D1D2σ[µĜ
m
1 Ĝs

1](m, s) in full, we first recall that

D[uv](m) = {(Du(m))ρv(m+ ρ) + u(m)(Dv(m))ρ}ρ∈R

and that the discrete divergence operator from (2.10) is given by

−Div g(m) =
∑
ρ∈R

gρ(m− ρ)− gρ(m).
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By adding and subtracting the same quantity, we observe that

−DivD[uv](m) =

=
∑
ρ

(Du(m− ρ))ρv(m) + u(m− ρ)(Dv(m− ρ))ρ − (Du(m))ρv(m+ ρ)− u(m)(Dv(m))ρ

=
∑
ρ

((Du(m− ρ))ρ − (Du(m))ρ)v(m) + (Du(m))ρv(m)− (Du(m))ρv(m+ ρ)

+ u(m− ρ)(Dv(m− ρ))ρ − u(m)(Dv(m− ρ))ρ − u(m)((Dv(m))ρ − (Dv(m− ρ))ρ)

= −(DivDu(m))v(m) + u(m)(−DivDv(m))

+
∑
ρ

(
(Du(m))ρ(Dv(m))ρ + (Du(m− ρ))ρ(Dv(m− ρ))ρ

)
.

For notational clarity we now introduce σ ∈ R(s) and instead of D2 consider D2σ. This allows
us to rewrite the original expression as

−Div1D1D2σ[µĜ
m
1 Ĝs

1](m, s) =

= −Div1D1[Ĝ
m
1 (m)D2σµ(m, s)Ĝs

1(s+ σ)]−Div1D1[Ĝ
m
1 (m)µ(m, s)D2σĜ

s
1(s)]

= −Ĝs
1(s+ σ)Div1D1[Ĝ

m
1 (m)D2σµ(m, s)]−D2σĜ

s
1(s)Div1D1[Ĝ

m
1 (m)µ(m, s)]

= −Ĝs
1(s+ σ)(DivDĜm

1 (m))D2σµ(m, s)− Ĝs
1(s+ σ)Ĝm

1 (m)(Div1D1D2σµ(m, s))

+ Ĝs
1(s+ σ)

∑
ρ

(
(DĜm

1 (m))ρ(D1D2σµ(m, s))ρ + (DĜm
1 (m− ρ))ρ(D1D2σµ(m− ρ, s))ρ

)
−D2σĜ

s
1(s)(DivDĜm

1 (m))µ(m, s)−D2σĜ
s
1(s)Ĝ

m
1 (m)(Div1D1µ(m, s))

+D2σĜ
s
1(s)

∑
ρ

(
(DĜm

1 (m))ρ(D1µ(m, s))ρ + (DĜm
1 (m− ρ))ρ(D1µ(m− ρ, s))ρ

)
,

which, crucially, establishes that when two derivatives fall on Ĝm
1 , we get −DivDĜm

1 , thus
ensuring that the estimate (6.10) applies. Combining this with estimates (6.9) and (6.11), we
thus arrive at

|Div1D1D2[µĜ
m
1 Ĝs

1](m, s)| ≲ |s|−1/2|m|−7/2|s|−1 + |s|−1/2|m|−1/2+δ|s|−2 + |s|−1/2|m|−3/2+δ|s|−3/2

+ |s|−3/2|m|−7/2 + |s|−3/2|m|−1/2+δ|s|−1 + |s|−3/2|m|−3/2+δ|s|−1/2

≲ |s|−5/2|m|−1/2+δ,

as |m| is comparable to |s|1/2.
□

Remark 6.10. The radius r(s) = |s|1/2 in the context of the last proof is optimal in terms of
balancing the inner and the transition area errors. Note that there always is a third term for
|m| > r(s), but we will see that it behaves better and can be discarded.

To see that the exponent 1/2 is optimal let us look at the above error terms but with r(s) =
|s|α, where α ∈ (0, 1). Let us however simplify slightly and only focus on the critical part∑

|m|≤|s|/4

|m|−1/2|Div1D1D2Ḡ1,µ(m, s)|. (6.12)

This is indeed somewhat of a simplification – see (6.13) for the full sum. However this choice is
enough to understand the choice of α and the full case behaves the same.

We first note that for the cut-off r(s) = |s|α we still have

|Div1D1D2Ḡ1,µ(m, s)| ≲
{

|m|−1/2+δ|s|−5/2, for |m| ≤ 1
2 |s|

α,

|m|−7/2|s|−3/2, for |m| > |s|α.
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A lengthy calculation similar to that presented in Lemma 6.9, reveals that in the transition area
1
2 |s|

α ≤ |m| ≤ |s|α, we have

|Div1D1D2Ḡ1,µ(m, s)| ≲ |s|−3/2|m|−7/2 + |s|−3/2−α|m|−3/2+δ + |s|−3/2−2α|m|−1/2+δ.

Separating the sum in (6.12) based on µ we find∑
|m|≤|s|/4

|m|−1/2|Div1D1D2Ḡ1,µ(m, s)| ≲

≲ |s|−5/2
∑

|m|≤ 1
2
|s|α

|m|−1

+
∑

1
2
|s|α≤|m|≤|s|α

(
|s|−3/2|m|−7/2 + |s|−3/2−α|m|−3/2+δ + |s|−3/2−2α|m|−1/2+δ

)
+ |s|−3/2

∑
|m|≥|s|α

|m|−4

≲ |s|−5/2+α + |s|−3/2−α+αδ + |s|−3/2−2α ≲ |s|−5/2+α + |s|−3/2−α+αδ

Now we optimize in α, further simplifying by ignoring δ. We obtain α = 1/2 and∑
|m|≤|s|/4

|m|−1/2|HD2Ḡ1,µ| ≲ |s|−2+δ/2.

Note that this optimization is a balance between the inner term where µ = 1 and the transition
area where 0 < µ < 1. The outer term always behaves better.

6.4.1. Proof of Theorem 2.9.

Proof of Theorem 2.9. Recalling Definition 5.1, take η(m) := η̂
(
|m|
c|s|

)
with c = 1

4 and further let
|ℓ| ≤ |s|/16 and set v(m) := DℓG(m, ℓ). Then, for any A(s) depending only on s, we have

DℓDsḠ1,µ(ℓ, s) = Dℓ

(
η(ℓ)(DsḠ1,µ(ℓ, s)−A(s))

)
=
∑
m∈Λ

Dm

(
η(m)(DsḠ1,µ(m, s)−A(s))

)
·Dv(m)

=
∑
m∈Λ

Dm(DsḠ1,µ(m, s)−A(s)) ·D(η(m)v(m))

+
∑
m∈Λ

(
Dη(m) ·Dm(DsḠ0(m, s)−A(s))

)
v(m)

+
∑
m∈Λ

(Dη(m) ·Dv(m))
(
DsḠ0(m, s)−A(s)

)
=: T1 + T2 + T3,

where the third equality follows from Lemma 5.2 and we used that Ḡ1,µ = Ḡ0 for |m| > |s|1/2.
This is fine since

suppDη ⊂ B|s|/4(0) \B|s|/8(0) =: As

and we are interested in the regime where |s| is large enough.
We begin by estimating T2 and T3, which are the boundary terms, since As is an annulus

scaling with |s|, ensuring that |s|
8 > |s|1/2.

We first notice that thus for m ∈ suppDη implies that |m− ℓ| ≥ |s|
16 ≥ |ℓ| and thus

m ∈ As =⇒ |Dη(m)| ≲ |s|−1, |DmDsḠ0(m, s)| ≲ |s|−3+δ.

Starting with T2, we also note that DmA(s) = 0 and that we have

|v(m)| ≲ |ℓ|−1/2|s|−1/2+δ/2
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according to Lemma 6.7. We can thus estimate

|T2| ≲
∑

m∈As

|s|−1|s|−3+δ|ℓ|−1/2|s|−1/2+δ/2

≲ |ℓ|−1/2|s|2−1−3+δ−1/2+δ/2

= |ℓ|−1/2|s|−5/2+3δ/2.

For T3, given by

T3 =
∑
m∈Λ

(Dη(m) ·Dv(m))
(
DsḠ0(m, s)−A(s)

)
,

we use a Cauchy-Schwarz inequality to obtain

|T3| ≤

(∑
m∈Λ

|Dη(m) ·Dv(m)|2
)1/2

∥DsḠ0(·, s)−A(s)∥ℓ2(As)

≲ (|s|2|s|−2|s|−3+2δ|ℓ|−1)1/2|s|∥DmDsḠ0(·, s)∥ℓ2(As) = |s|−1/2+δ|ℓ|−1/2∥DmDsḠ0(·, s)∥ℓ2(As),

where we used the Poincare inequality from Lemma 5.3 with A(s) = (DsḠ0(·, s))As . We sup-
pressed the slight increase in annulus width in the notation here as it does not change the
estimate. And, since

∥DmDsḠ0(·, s)∥ℓ2(As) ≲ |s|(−6+2δ+2)/2 = |s|−2+δ,

we obtain
|T3| ≲ |s|−5/2+2δ|ℓ|−1/2.

It thus remains to estimate the near-crack-tip term T1. We begin by using DmA(s) = 0 and
integrating by parts to obtain

T1 =
∑
m∈Λ

Dm(DsḠ1,µ(m, s)−A(s)) ·D(η(m)v(m))

=
∑
m∈Λ

−DivmDmDsḠ1,µ(m, s))(η(m)DℓG(m, ℓ))., (6.13)

which sets the scene for applying Lemma 6.9. Indeed, to estimate the sum we split the cases
|m| ≤ |s|1/2 and |m| > |s|1/2, denoted by T1 = T1,1 + T1,2. Also note that m can be close to ℓ,
so care must be taken there as well.

First,

|T1,1| =
∣∣∣ ∑

m∈Λ
|m|≤|s|1/2

DivmDmDsḠ1,µ(m, s))(η(m)DℓG(m, ℓ))
∣∣∣

≲
∑
m∈Λ

|m|≤|s|1/2

|m|−1/2+δ|s|−5/2|ℓ|−1/2|ω(ℓ)− ω(m)|−1+δ.

If |ℓ| ≥ 2|s|1/2, then |ω(ℓ)− ω(m)| ∼ |ℓ|1/2 and we find

|T1,1| ≲ |ℓ|−1+δ/2|s|−7/4+δ/2 ≲ |ℓ|−1/2|s|−2+δ

Otherwise we have |ℓ| < 2|s|1/2 but we have to compare m and ℓ in more detail. To do so, let
us disjointedly split

Λ = {m ∈ Λ | 4|m| ≤ |ℓ|} ∪ {m ∈ Λ | 4|ω(m)− ω(ℓ)| ≤ |ℓ|1/2} ∪ S3 =: S1 ∪ S2 ∪ S3.

It is readily verifiable that, by construction, for m ∈ S1 ∪ S3, we have |ω(ℓ)− ω(m)| ∼ |ℓ|1/2.
The situation when m ∈ S2 is a bit more delicate as S2 is the pre-image of a ball under ω and

does not cross the crack. As

ω(ℓ) + ω(m) = 2ω(ℓ)− (ω(ℓ)− ω(m)),
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with |ω(ℓ)| = |ℓ|1/2 and |ω(ℓ)− ω(m)| ≤ |ℓ|1/2/4, we find
7

4
|ℓ|1/2 ≤ |ω(ℓ) + ω(m)| ≤ 9

4
|ℓ|1/2.

In particular, we obtain

|ω(ℓ)− ω(m)| = |ℓ−m|
|ω(ℓ) + ω(m)|

∼ |ℓ−m|
|ℓ|1/2

.

While S2 is not a ball itself, it is contained in one, with a radius nicely scaling with ℓ:

|ℓ−m| = |ω(ℓ)− ω(m)||ω(ℓ) + ω(m)| ≤ 9

16
|ℓ|.

Finally, for notational convenience we introduce the ball B := B
|s|

1
2
(0).

Thus prepared, we estimate T1,1 as follows.

|T1,1| ≲
∑
m∈B

|m|−1/2+δ|s|−5/2|ℓ|−1/2|ω(ℓ)− ω(m)|−1+δ

≲
∑

m∈S1∩B
|m|−1/2+δ|s|−5/2|ℓ|−1+δ/2

+
∑

m∈S2∩B
|m|−1/2+δ|s|−5/2|ℓ|−δ/2|ℓ−m|−1+δ

+
∑

m∈S3∩B
|m|−1+2δ|s|−5/2|ℓ|−1/2

≲ |s|−5/2|ℓ|1/2+3δ/2

+
∑
m∈B

|m−ℓ|≤ 9
16

|ℓ|

|ℓ|−1/2+δ/2|s|−5/2|ℓ−m|−1+δ

+
∑
m∈B

|m|−1+2δ|s|−5/2|ℓ|−1/2

≲ |s|−5/2|ℓ|1/2+3δ/2 + |s|−5/2|ℓ|1/2+3δ/2 + |s|−2+δ|ℓ|−1/2

≲ |s|−2+δ|ℓ|−1/2

The sum outside the squareroot region, T1,2, can be estimated in the same way. We actually
get slightly better estimates here though we make no use of that directly. We start with

|T1,2| =
∣∣∣ ∑

m∈Λ
|m|>|s|1/2

Div1D1DsḠ1,µ(m, s))(η(m)DℓG(m, ℓ))
∣∣∣

≲
∑
m∈B2

|m|−7/2|s|−3/2|ℓ|−1/2|ω(ℓ)− ω(m)|−1+δ,

where B2 := B |s|
4

(0) \B
|s|

1
2
(0), which follows from the support of the cut-off function η.

Again, we can first consider the case where ℓ is bounded away from the region, 2|ℓ| ≤ |s|1/2.
In that case |ω(ℓ)− ω(m)| ∼ |m|1/2 and we find

|T1,2| ≲
∑

m:|s|1/2<|m|≤|s|

|m|−7/2|s|−3/2|ℓ|−1/2|ω(ℓ)− ω(m)|−1+δ

≲
∑

m:|s|1/2<|m|

|m|−4+δ/2|s|−3/2|ℓ|−1/2

≲ |s|−5/2+δ/4|ℓ|−1/2

≲ |s|−2+δ|ℓ|−1/2.

Otherwise we have 2|ℓ| > |s|1/2 and again, need to take more care with comparing m and ℓ.



INCOMPLETENESS OF CONTINUUM FLEX BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE 27

We again split Λ = S1 ∪ S2 ∪ S3 and estimate

|T1,2| ≲
∑
m∈B2

|m|−7/2|s|−3/2|ℓ|−1/2|ω(ℓ)− ω(m)|−1+δ

≲
∑

m∈S1∩B2

|m|−7/2|s|−3/2|ℓ|−1+δ/2

+
∑

m∈S2∩B2

|m|−7/2|s|−3/2|ℓ|−δ/2|ℓ−m|−1+δ

+
∑

m∈S3∩B2

|m|−4+δ|s|−3/2|ℓ|−1/2

≲ |s|−9/4|ℓ|−1+δ/2 +
∑
m∈B2

|m−ℓ|≤3|ℓ|/8

|ℓ|−7/2−δ/2|s|−3/2|ℓ−m|−1+δ +
∑
m∈B2

|ℓ|/4<|m|

|m|−4+δ|s|−3/2|ℓ|−1/2

≲ |s|−9/4|ℓ|−1+δ/2 + |ℓ|−5/2+δ/2|s|−3/2 + |ℓ|−5/2+δ|s|−3/2

≲ |s|−9/4|ℓ|−1+δ/2 + |ℓ|−3/2+δ|s|−2 ≲ |s|−2+δ|ℓ|−1/2.

That concludes all cases for both T1,1 and T1,2. Overall we have shown

|T1| ≲ |s|−2+δ|ℓ|−1/2,

which is what we set out to prove. □

7. Proofs: atomistic model

7.1. Higher order predictors. We begin by proving an auxiliary result removing the arbi-
trarily small δ > 0 from the decay estimate for ū0 established in [9].

Lemma 7.1. It holds that
|Dū0(s)| ≲ |s|−3/2 log |s|.

Proof. We have
Dū0(s) =

∑
m∈Λ

g0(m) ·Dv(m), (7.1)

where |g0(m)| ≲ |m|−3/2 and Dv(m) = D1D2G(m, s). We first estimate this sum for |m| ≥ |s|
16

and split G = Ĝ0 + Ḡ0. We know that, for all m, s ∈ Λ,

|D1D2Ĝ0(m, s)| ≲ (1 + |ω(m)||ω(s)||ω(m)− ω(s)|2)−1

from which one can infer (c.f. proof of [9, Theorem 2.8]) that∑
|m|≥ |s|

16

|g0(m) ·D1D2Ĝ0(m, s)| ≲ |s|−3/2 log |s|.

Turning to Ḡ0, by adjusting the constant prefactors defining regions of interest in [9, Lemma 4.9],
that for |s|

16 ≤ |m| ≤ 17|s|
16 (crucially including when m is close to s),

|D1D2Ḡ0(m, s)| ≲ (1 + |ω(m)||ω(s)||ω(m)− ω(s)|2)−1.

We can thus conclude that∑
17|s|
16 ≥|m|≥ |s|

16

|g0(m) ·D1D2Ḡ0(m, s)| ≲ |s|−3/2 log |s|,

by the same argument as for Ĝ0.
Finally, by adjusting the constant prefactors in [9, Lemma 4.12], we can conclude that

∥D1D2Ḡ0(·, s)∥ℓ2(Ω2(s)) ≲ |s|−3/2,
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where Ω2(s) = {m ∈ Λ | |m| ≥ 17|s|
16 }. This implies that∑

|m|≥17|s|
16

g0(m) ·D1D2Ḡ0(m, s) ≲ ∥g0∥ℓ2(Ω2(s))︸ ︷︷ ︸
≲|s|−1/2

∥D1D2Ḡ0(·, s)∥ℓ2(Ω2(s)) ≲ |s|−2.

It thus remains to show the estimate∑
|m|≤ |s|

16

g0(m) ·Dv(m) =
∑

|m|≤ |s|
16

g0(m) ·D1D2(Ĝ0 + Ĝ1,µ)(m, s)

︸ ︷︷ ︸
:=S1

+
∑

|m|≤ |s|
16

g0(m) ·D1D2Ḡ1,µ(m, s)

︸ ︷︷ ︸
=:S2

.

Using Theorem 2.9, we can conclude that

S2 ≲ |s|−2+δ log |s|.

To estimate S1, we Taylor expand Ĝ0 for |m| ≤ |s|/16 to obtain

D1D2Ĝ0(m, s) = D1D2 (−(∇F (ω(s)) +∇F (ω∗(s))ω(m))︸ ︷︷ ︸
D1D2Ĝs

1(s)ω2(m)

+D1D2

(∫ 1

0
(1− t)(∇2F (ω(s)− t(ω(m)) +∇2F (ω∗(s)− tω(m)))[ω(m)]2dt

)
︸ ︷︷ ︸

=:α(m,s)

.

where |D1D2α(m, s)| = O(|s|−2) uniformly in m. As a result∑
|m|≤ |s|

16

|g0(m) ·D1D2α(m, s)| ≲ |s|−3/2.

Similarly, ∑
|m|≤ |s|

16

|g0(m) ·D1D2Ĝ
s
1(s)(ω2(m) + Ĝm

1 (m))| ≲ |s|−3/2,

thus it remains to show that the introduction of the cut-off µ does not affect the overall result.
We find that

|Dū0(s)| ≲ |s|−3/2 log |s|+
∣∣∣ ∑
|m|≤|s|/16

g0(m)D1D2

(
(1− µ(m, s))Ĝm

1 (m)Ĝs
1(s)

)∣∣∣.
For the remaining term we expand out the discrete derivatives as in Lemma 5.2 and observe
that

D1τD2σ((1− µ)(m, s) + Ĝm
1 (m)Ĝs

1(s)) = (D1τD2σ(1− µ)(m, s))Ĝs
1(s)Ĝ

m
1 (m+ τ)

+ (D2σ(1− µ)(m, s))Ĝs
1(s)(Dτ Ĝ

m
1 (m))

+ (D2σĜ
s
1(s))(D1τ (1− µ)(m, s))Ĝm

1 (m+ τ)

+ (DσĜ
s
1(s))(1− µ)(m, s)(Dτ Ĝ

m
1 (m))

=: T1 + T2 + T3 + T4. (7.2)

We note that terms T1, T2, T3 are only non-zero for 1
2 |s|

1/2 ≤ |m| ≤ |s|1/2 since at least one
derivative falls on the cut-off function µ. Using the known decay of all the functions (c.f.
(6.9),(6.10), (6.11)), we can thus estimate∑
|m|≤ |s|

16

|g0(m)||T1+T2+T3| ≲
∑

1
2
|s|1/2≤|m|≤|s|1/2

|m|−3/2(|s|−2|m|−1/2+δ+|s|−3/2|m|−3/2+δ) ≲ |s|−2+δ/2.

Finally, since (1− µ) is only non-zero for |m| ≥ 1
2 |s|

1/2, we also have∑
|m|≤ |s|

16

|g0(m)||T4| ≲ |s|−3/2
∑

1
2
|s|1/2≤|m|≤ |s|

16

|m|−3+δ ≲ |s|−2+δ/2.
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It thus follows that∣∣∣ ∑
|m|≤|s|/16

g0(m)D1D2

(
(1− µ(m, s))Ĝm

1 (m)Ĝs
1(s)

)∣∣∣ ≲ |s|−2+δ/2.

We have thus estimated all the terms involved in (7.1) and we are able to conclude that indeed

|Dū0(s)| ≲ |s|−3/2 log |s|,

which is what we set out to prove. □

We next describe the next order predictor, û1, which was given in (2.7). As will soon become
clear, we require that û1 satisfies the following PDE.

−∆û1 = divH in R2 \ Γ0

∇û1 · ν = 0, on Γ0, (7.3)

where

H =
1

6
ϕ(iv)(0)

(
(∂1û0)

3

(∂2û0)
3

)
, divH =

1

2
ϕ(iv)(0)

(
(∂1û0)

2∂2
11û0 + (∂2û0)

2∂2
22û0

)
.

We prove the following.

Lemma 7.2. The equation 7.3 admits the explicit solution

û1(x) := − 1

64
ϕ(iv)(0)K3r−1/2

x

(
log rx sin

θx
2 +

1

6
sin 5θx

2

)
. (7.4)

Remark 7.3. We do not claim uniqueness. In fact, we will look at the homogeneous part below
with û2.

Proof. Remember that û0 = Kω2(x), where ω is the complex square-root. Or in polar coordi-
nates, û0(r cos θ, r sin θ) = v̂0(r, θ) := Kr1/2 sin θ

2 . For the derivatives we get

∂1û0 = ∂rv̂0 cos θ −
1

r
∂θv̂0 sin θ

=
K

2
r−1/2

(
sin θ

2 cos θ − cos θ
2 sin θ

)
= −K

2
r−1/2 sin θ

2

∂2û0 = ∂rv̂0 sin θ +
1

r
∂θv̂0 cos θ

=
K

2
r−1/2

(
sin θ

2 sin θ + cos θ
2 cos θ

)
=

K

2
r−1/2 cos θ

2 .

Let us use that to express the entire non-linearity in polar coordinates.
First, let use define

Gr(r, θ) = H(r cos θ, r sin θ) ·
(
cos θ
sin θ

)
Gθ(r, θ) = H(r cos θ, r sin θ) ·

(
− sin θ
cos θ

)
Calculating the derivatives we find the (standard) formula for the divergence in polar coordi-

nates

divH(x) = ∂rGr(rx, θx) +
1

r
∂θGθ(rx, θx) +

1

r
Gr(rx, θx). (7.5)
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In our case,

Gr(r, θ) =
1

6
ϕ(iv)(0)

(
(∂1û0)

3 cos θ + (∂2û0)
3 sin θ

)
=

1

48
ϕ(iv)(0)K3r−3/2

(
− sin3 θ

2 cos θ + cos3 θ
2 sin θ

)
=

1

192
ϕ(iv)(0)K3r−3/2

(
3 sin θ

2 + sin 5θ
2

)
and

Gθ(r, θ) =
1

6
ϕ(iv)(0)

(
− (∂1û0)

3 sin θ + (∂2û0)
3 cos θ

)
=

1

48
ϕ(iv)(0)K3r−3/2

(
sin3 θ

2 sin θ + cos3 θ
2 cos θ

)
=

1

192
ϕ(iv)(0)K3r−3/2

(
3 cos θ

2 + cos 5θ
2

)
.

Now we can insert these expressions into (7.5) to obtain

divH(r cos θ, r sin θ) = ∂rGr(r, θ) +
1

r
∂θGθ(r, θ) +

1

r
Gr(r, θ)

=
1

192
ϕ(iv)(0)K3r−5/2

(
(1− 3/2)(3 sin θ

2 + sin 5θ
2 ) + (−3/2 sin θ

2 − 5/2 sin 5θ
2 )
)

= − 1

64
ϕ(iv)(0)K3r−5/2(sin θ

2 + sin 5θ
2 ).

Let us also remember that the Laplace in polar coordinates is given as

∆û1 = ∂2
r v̂1 +

1

r
∂rv̂1 +

1

r2
∂2
θ v̂1,

where we now also write û1(r cos θ, r sin θ) = v̂1(r, θ). Overall, equation (7.3) becomes

−∂2
r v̂1 −

1

r
∂rv̂1 −

1

r2
∂2
θ v̂1 = − 1

64
ϕ(iv)(0)K3r−5/2(sin θ

2 + sin 5θ
2 ) in (0,∞)× (−π, π)

∂θv̂1 = 0, for θ = ±π, (7.6)

in polar coordinates. Now we can insert our function v̂1 = c1r
−1/2 log r sin θ

2 + c2r
−1/2 sin 5θ

2 . As

(r−1/2 log r)′ = r−3/2(1− 1/2 log r)

and
(r−1/2 log r)′′ = r−5/2(−2 + 3/4 log r),

for the sin θ
2 coefficient we need to satisfy

c1(2− 3/4 log r − 1 + 1/2 log r + 1/4 log r)r−5/2 = − 1

64
ϕ(iv)(0)K3r−5/2,

which in fact just simplifies to

c1 = − 1

64
ϕ(iv)(0)K3.

For sin 5θ
2 we get

c2(−3/4 + 1/2 + 25/4)r−5/2 = − 1

64
ϕ(iv)(0)K3r−5/2

or
c2 = −1

6

1

64
ϕ(iv)(0)K3.

□

The next lemma concerns the effect that the introduction of û1 has on
∑

m∈ΛDū1(m) ·Dv(m)
for v ∈ Hc, as compared to the known equality for ū0, given by∑

m∈Λ
Dū0(m) ·Dv(m) =

∑
m∈Λ

g0(m) ·Dv(m),

where |g0(m)| ≲ |m|−3/2. The following is true instead for ū1.
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Lemma 7.4. There is a g1 ∈ ℓ2(Λ;R2) such that for all v ∈ Hc it holds that∑
m∈Λ

Dū1(m) ·Dv(m) =
∑
m∈Λ

g1(m) ·Dv(m).

Furthermore, |g1(m)| ≲ |m|−5/2 log |m|.

Proof. Recall that u = û0 + û1 + ū1. Consider∑
Λ

Dū1 ·Dv = −
∑
m∈Λ

Dû0(m) ·Dv(m)

−
∑
m∈Λ

∑
ρ∈R(m)

(
Dρû1(m) +

1

6
ϕ(iv)(0)(Dρû0(m))3

)
Dρv(m)

−
∑
m∈Λ

∑
ρ∈R(m)

(
ϕ′(Dρu(m))−Dρu(m)− 1

6
ϕ(iv)(0)(Dρû0(m))3

)
Dρv(m)

=: T1 + T2 + T3

for any v ∈ Hc. In the following we will show that, for any i ∈ {1, 2, 3},

Ti =
∑
m∈Λ

fi(m) ·Dv(m),

for some fi, as well as the estimates |fi(m)| ≲ |m|−5/2, for i = 1, 2, and |f3(m)| ≲ |m|−5/2 log |m|.
The assertion holds for T3 thanks to Lemma 7.1 and a direct Taylor expansion of terms in

the bracket. Similarly, the assertion for T1 holds due to Lemma 5.7. We now apply a similar
argument to estimate T2.

Let us start by rewriting the PDE that û1 satisfies, given by (7.3), in weak form by testing
with Iv, where I is the standard interpolation of lattice functions, as discussed in Section 5.3.
For compactly supported v we obtain

J := 2

∫
R2\Γ0

∇û1 · ∇Iv +H · ∇Iv dx = 0,

without any boundary term due to the boundary condition for û1 and the fact that H
∣∣
θ=±π

= 0,
which follows from the boundary condition that û0 satisfies. We multiplied by CΛ = 2 for direct
comparison with the lattice sums where each part of the domain will be used once for each
direction of the bond.

As discussed in Section 5.3, we can rewrite J as

J =
1

2

∑
m∈Λ

∑
ρ∈R(m)

(∫
Rm,ρ

(∇ρû1 +H · ρ)dx

)
Dρv(m).

Subtracting J = 0 from T2, we get

T2 =−
∑
m∈Λ

∑
ρ∈R(m)

(
Dρû1(m)−

∫
Rm,ρ

∇ρû1(x)dx

)
Dρv(m)

−
∑
m∈Λ

∑
ρ∈R(m)

(
1

6
ϕ(iv)(0)(Dρû0(m))3 −

∫
Rm,ρ

1

6
ϕ(iv)(0)(∇ρû0(x))

3dx

)
Dρv(m)

=:T2,1 + T2,2,

where we have used the fact that we can write H(x) · ρ = 1
6ϕ

(iv)(0)(∂ρû0(x))
3. By retracing the

argument in Section 5.3, we thus arrive at

T2,1 =
∑
m∈Λ

ĥ1(m) ·Dv(m),
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where ĥ1 ∈ ℓ2(Λ;R4) is given by

(ĥ1)ρ(m) =

{
Dρû1(m)−

∫
Rm,ρ

∇ρû1(x)dx, b(m, ρ) ̸⊂ Q0,

Dρû1(m)− Cm+ρ,m, b(m, ρ) ⊂ Q0.

where the formulae for the finite Cm+ρ,m can be readily obtained, similarly to the argument in
[9, Section 4.2.1.]. By construction, we also have that

b(m, ρ) ̸⊂ Γ =⇒ |(ĥ1(m))ρ| ≲ |∇3û1(m)| ≲ |m|−7/2 log |m|

b(m, ρ) ⊂ Γ \Q0 =⇒ |(ĥ1(m))ρ| ≲ |∇2û1(m)| ≲ |m|−5/2 log |m|.

Likewise, a Taylor expansion of Dρû0(m) and a first order quadrature estimate we get

T2,2 =
∑
m∈Λ

k(m) ·Dv(m),

where |k(m)| ≲ |m|−5/2. This allows us to establish that

T2 =
∑
m∈Λ

f̂2(m) ·Dv(m), |f̂2(m)| ≲ |m|−5/2 log |m|.

It remains to invoke the symmetrisation trick from Lemma 5.7, which concerns replacing Iv
with Isymv, to conclude that

T2 =
∑
m∈Λ

f2(m) ·Dv(m), |f2(m)| ≲ |m|−5/2.

The result of the lemma has thus been established.
□

7.2. Proof of Theorem 2.4. We are now in a position to prove the main decay result for ū2.
We note that the steps of the argument are similar to the proof of Lemma 7.1, but with two big
differences. First is the improved decay of g1 from Lemma 7.4 and the second is that we first
focus on ū1, which lead us to defining û2 as needed to obtain the ultimate result.

Proof of Theorem 2.4. First consider ū1. From Lemma 7.4 and the solution property of the
Green’s function we deduce that

Dū1(s) =
∑
m∈Λ

g1(m)D1D2G(m, s).

Lemma 7.4 also states that
|g1| ≲ |m|−5/2 log|m|.

As in Lemma 7.1, we will first estimate this sum for |m| ≥ |s|
16 and again split G = Ĝ0+Ḡ0. In

particular, retracing the steps in Lemma 7.1, but using the improved decay of g1 when compared
to g0, we immediately can conclude that∑

|m|≥ |s|
16

|g1(m) ·D1D2Ĝ0(m, s)| ≲ |s|−5/2 log |s|.

∑
17|s|
16 ≥|m|≥ |s|

16

|g1(m) ·D1D2Ḡ0(m, s)| ≲ |s|−5/2 log |s|,

and ∑
|m|≥17|s|

16

g1(m) ·D1D2Ḡ0(m, s) ≲ ∥g1∥ℓ2(Ω2(s))︸ ︷︷ ︸
≲|s|−3/2

∥D1D2Ḡ0(·, s)∥ℓ2(Ω2(s)) ≲ |s|−3.



INCOMPLETENESS OF CONTINUUM FLEX BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE 33

Therefore,

Dū1(s) =
∑

|m|≤|s|/16

g1(m) ·D1D2G(m, s) +O(|s|−5/2 log|s|)

=
∑

|m|≤|s|/16

g1(m) ·D1D2(Ĝ0 + Ĝ1,µ)(m, s) +O(|s|−2+δ)

where we used Theorem 2.9 for the second line, since∑
|m|≤|s|/16

|g1(m)||D1D2(Ḡ1,µ)(m, s)| ≲ |s|−2+δ
∑

|m|≤|s|/16

|m|−3 log |m| ≲ |s|−2+δ.

A Taylor expansion of Ĝ0 for |m| ≤ |s|/16 reveals that

D1D2Ĝ0(m, s) = D1D2 (−(∇F (ω(s)) +∇F (ω∗(s))ω(m))︸ ︷︷ ︸
D1D2Ĝs

1(s)ω2(m)

+D1D2

(∫ 1

0
(1− t)(∇2F (ω(s)− t(ω(m)) +∇2F (ω∗(s)− tω(m)))[ω(m)]2dt

)
︸ ︷︷ ︸

O(|s|−2)

.

where the O(|s|−2) is uniformly in m.
This implies that, up to the cut-off function µ, the only terms not of order O(|s|−2+δ) are

given by ∑
|m|≤ |s|

16

g1(m) ·D1D2Ĝ
s
1(s)(ω2(m) + Ĝm

1 (m)),

which motivates setting

û2(s) := −Ĝs
1(s)

∑
m

g1(m)(DĜm
1 (m) +Dω2(m)). (7.8)

Then we can combine the arguments and see what remains. We find

|Dū2(s)| ≲ |s|−2+δ +
∣∣∣ ∑
|m|≤|s|/16

g1(m)D1D2

(
(1− µ(m, s))Ĝm

1 (m)Ĝs
1(s)

)∣∣∣. (7.9)

Using (7.2) and the known decay of all the functions (c.f. (6.9), (6.10), (6.11)), we can estimate
the remaining term as∑
|m|≤ |s|

16

|g1(m)||T1 + T2 + T3| ≲
∑

1
2
|s|1/2≤|m|≤|s|1/2

|m|−5/2 log |m|(|s|−2|m|−1/2+δ + |s|−3/2|m|−3/2+δ)

≲ |s|−5/2+δ/2 log |s|.

Finally, since (1− µ) is only non-zero for |m| ≥ 1
2 |s|

1/2, we also have∑
|m|≤ |s|

16

|g1(m)||T4| ≲ |s|−3/2
∑

1
2
|s|1/2≤|m|≤ |s|

16

|m|−4+δ log |m| ≲ |s|−5/2+δ/2 log |s|.

It thus follows that∣∣∣ ∑
|m|≤|s|/16

g1(m)D1D2

(
(1− µ(m, s))Ĝm

1 (m)Ĝs
1(s)

)∣∣∣ ≲ |s|−5/2+δ/2 log |s|.

Comparing with (7.9), we have thus established that

|Dū2(s)| ≲ |s|−2+δ,

which concludes the proof.
□
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