
Evaluating Understanding in
Cross-modal Multi-encoder Models

Stephen Daniel Mander, BSc (Hons)

School of Computing and Communications

Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

April, 2025

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university. This thesis does not
exceed the maximum permitted word length of 80,000 words, including appendices
and footnotes, but excluding the bibliography.
Stephen (Daniel) Mander

i

Evaluating Understanding in Cross-modal Multi-encoder Models
Stephen (Daniel) Mander, BSc (Hons).

School of Computing and Communications, Lancaster University
A thesis submitted for the degree of Doctor of Philosophy. April, 2025

Abstract

Ensuring that AI benefits all, not just the anglo-phonic, nor the big companies, and
remains sustainable covers a multitude of different problems in computing. Low-
resource language is an area of NLP studying the difficulty of training models
with minimal data, annotation or resource (which can include hardware/ financial
motivation). Limits to data quantity challenge many training approaches in machine
learning, reducing models’ ability to generalise and understand text.

This thesis discusses how using multimodal models (those that can use images
AND text to learn) can provide a much-needed grounding to the issue of understanding
text. The introduction will approach this through the lens of detecting hate speech,
a problem that typically disadvantages low-resource domains. After establishing
the merits of using autoencoder approaches, the main body of work will focus on
a training paradigm to bring the large-scale approaches to be replicable. In the
subsequent chapters, alternative perspectives are considered, looking at the viability
of the assignment assumptions that are being made to further boost gradients.

This thesis addresses some of these problems by exploring some of the deeper rules
underlying these generative methods. Learning low-resource languages is explored
in this work as a challenge of scale: A paradigm is presented for training in an
ecologically feasible and academically affordable manner. By reengineering previous
methods, scale is addressed and a new algorithm for efficient training is presented. By
altering the calculations and demonstrating how to add an additional encoder, this
work provides a stepping stone to a greener, academically viable, and open model
for low-resource domains. By addressing novel approaches to training low-resource
language, this thesis also explores a different way to view training as an assignment
problem, which can be abstracted, approximated and provide efficiency improvements
to the more general training frameworks for both NLP and computer vision.

ii

Publications

The following publications are derived from my PhD research:
Stephen Mander, Scott Piao, and Hossein Rahmani. “Contrastive Training with more
data”. In: The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023,
Kigali, Rwanda, May 5, 2023. Ed. by Krystal Maughan, Rosanne Liu, and Thomas
F. Burns. OpenReview.net, 2023. url: https://openreview.net/forum?id=

ZTp85mW5nFy

Stephen Mander and Jesse Phillips. “LiSAScore: Exploring Linear Sum Assignment
on BertScore”. In: Natural Language Processing and Information Systems. Ed. by
Amon Rapp, Luigi Di Caro, Farid Meziane, and Vijayan Sugumaran. Cham: Springer
Nature Switzerland, 2024, pp. 249–257. isbn: 978-3-031-70242-6

iii

https://openreview.net/forum?id=ZTp85mW5nFy
https://openreview.net/forum?id=ZTp85mW5nFy

Contents

1 Introduction 1
1.1 Defining of Terms . 3
1.2 Research Goals . 4
1.3 Research Objectives and Questions 4
1.4 Thesis Structure . 5

2 Background 7
2.1 Background . 7

2.1.1 Word2Vec and Transformers 7
2.1.2 How Computer Vision Understands 8
2.1.3 How to Define Representational Robustness 9
2.1.4 Understanding in Low-Resource Languages 10
2.1.5 How CLIP Works . 11

2.2 Related Works . 15
2.2.1 Related works in Low resource domains 17
2.2.2 Related Analysis Methods . 17
2.2.3 Related Works for n-dimensional Training 19
2.2.4 Related Works for Linear Sum Assignment 21

2.3 Exploring the Robustness of Embeddings 22
2.3.1 Mask Prediction from 512 Space 23
2.3.2 Relation Extraction . 26
2.3.3 Object Detection Using 2-stage Detectors 28
2.3.4 Conclusions . 30
2.3.5 Section Acknowledgements . 31

3 Visual Grounding 32
3.1 Teaching an Encoder with Visual Grounding 32

3.1.1 Objective . 32
3.1.2 Goals . 32
3.1.3 Hypothesis . 32

iv

3.1.4 Experiment Definition . 33
3.1.5 Method . 33
3.1.6 Dataset . 35
3.1.7 Logit comparison . 35
3.1.8 Results . 36
3.1.9 Sweep results . 36
3.1.10 Findings . 42

3.2 Whole Model Training . 43
3.2.1 Tokenization . 43
3.2.2 Proof-of-concept : Locating the EOT token 47
3.2.3 Evaluation Methods . 50
3.2.4 Section Findings . 51
3.2.5 Improvements . 53
3.2.6 Final Hyperparameter sweep 57

3.3 Conclusion . 60
3.3.1 Future Work . 60

4 Analysis Methods 62
4.1 CKA . 63

4.1.1 Accuracy of New Methods . 67
4.1.2 CKA for Model Analysis . 68

4.1.2.1 Hypothesis . 68
4.1.2.2 Methodology . 69
4.1.2.3 Results . 69

4.1.3 Improving CKA on CLIP Models 70
4.1.3.1 Revised Hypothesis 70
4.1.3.2 Initial Results . 71

4.1.4 Further Experiment . 71
4.1.5 CKA Conclusion . 73

4.2 Linear Probes . 74
4.2.1 Zero-shot Linear Probes . 75
4.2.2 Linear Probe setup . 76

4.3 Evaluating Point Distribution . 76
4.3.1 Hypothesis . 77
4.3.2 Methodology . 77

4.4 Vector Location Analysis . 80
4.4.1 Similarity Tracking . 83

4.5 Token Meta Analysis . 89
4.5.0.1 Hypothesis . 89
4.5.0.2 Token comparison 89

v

4.5.0.3 Discussion . 90
4.5.0.4 Token Set Exploration 90

4.5.1 Token Analysis Summary . 92
4.6 Chapter Summary . 92

5 Exploring the Limits 94
5.1 Research Objective . 95
5.2 Base Method - CE loss pairs . 95
5.3 Scaling Laws . 96
5.4 Scaling Structures to n > 2 . 97

5.4.1 Defining the Regions of n > 2 97
5.4.2 Exploring How Batch Size Effects the Number of Regions . . . 100

5.5 Similarity Calculation . 102
5.5.1 Einsum Approximation . 104
5.5.2 Methods . 105

5.5.2.1 SST Distance . 106
5.5.3 Methods . 108

5.6 Linear Scaling test . 112
5.6.1 Hypothesis . 112
5.6.2 Proof of Concept Method . 112
5.6.3 Proof of Concept Results . 113

5.7 Exploring Labels and Loss in n > 2 113
5.7.1 Changes to Implementation 115
5.7.2 Limits of the Function . 116
5.7.3 Label Smoothing . 118
5.7.4 Labels Exploration . 120
5.7.5 Prototyping Modalities with Projections 123

5.8 Evaluating Regions of n-dimension Loss 125
5.8.1 n = 4 Dimensional Comparisons 128

5.9 Training Results . 128
5.9.1 6-Dimension training . 130

5.9.1.1 Analysis . 132
5.9.2 CKA Analysis . 138
5.9.3 Comparison of Top Runs . 139

5.10 Importance of Hyperparameters . 144
5.10.1 Similarity Evaluation and Region Masking 146

5.11 James-Stein Estimators . 149
5.11.1 Results of JSE . 150
5.11.2 Future Tests . 150

5.11.2.1 Applying JSE to Specific Mean Calculation 150

vi

5.11.2.2 Method Discussion 151
5.12 Chapter Summary . 151

6 Linear Sum Assignment 153
6.1 Introduction to Linear Sum Assignment 154
6.2 Summary for Computer Vision . 154

6.2.1 Acceleration and Limited Precision 155
6.2.2 Alternatives in Specific Applications 155
6.2.3 Background: Precise Method with Branching 156
6.2.4 Background - Hungarian Matcher 157

6.3 Metrics . 157
6.3.1 Metrics for Evaluating Linear Sum Assignment Methods . . . 157
6.3.2 Assignment Error . 158
6.3.3 Error Definition . 159
6.3.4 F1 score . 159
6.3.5 Scaling with Matrix Size . 160

6.4 LSA Improvements . 162
6.4.1 Computer Vision Specific Optimisations 162
6.4.2 Approximation with Batch . 162
6.4.3 General Approximations . 164

6.4.3.1 Reimplementation for Accelerators 164
6.4.3.2 Recursive Approximation Enabling Descent 164

6.4.4 Method 1 - Dimensional Extension 165
6.4.5 Method 2 - Indexed Insertion 165

6.4.5.1 Optimal Step Count 166
6.4.6 Method 3 - Probablistic Approach with Gumbel Softmax . . . 168

6.4.6.1 Conflicts of Argmax 168
6.4.7 LSA Approximations . 169

6.4.7.1 Experiment Definition 169
6.4.7.2 Method . 169
6.4.7.3 Training Results . 170

6.4.8 Method Performance . 175
6.5 Precision in Non-Continuous Contexts 175

6.5.1 Why Precision Matters . 175
6.5.2 Hypothesis . 178
6.5.3 Approximations . 179
6.5.4 Method . 179
6.5.5 Evaluation . 180
6.5.6 Accelerator Approximation . 181
6.5.7 LSA Argmax Approximation 182

vii

6.5.8 DETR Improvement . 184
6.5.9 Conclusion . 186
6.5.10 Future Improvements . 187
6.5.11 Precision Limitations . 187

6.6 Practical Applications . 187
6.6.1 Loss Scaling . 187
6.6.2 LiSAScore . 188
6.6.3 Computer Vision . 188
6.6.4 Bridging Computer Vision Applications 189

6.7 An Exploration of LSA for Loss . 190
6.7.1 Properties of Random LSA . 190

6.7.1.1 Gradient . 191
6.7.1.2 Using LSA Loss . 194
6.7.1.3 Using Expectations as Gradient 195
6.7.1.4 Testing Experimental Probabilities 196
6.7.1.5 Increasing Gradient Accuracy 196

6.7.2 Explanation and Comparison to CELoss 198
6.7.3 LSA Loss Comparison During Training 198
6.7.4 Expectation . 203
6.7.5 Result Explanation . 205

6.8 Chapter Summary . 205

7 Conclusions 207
7.1 Research Objectives Achieved and Questions Answered 207
7.2 Future Directions of Research . 209

7.2.1 Future Work for n-dimensional Training 211
7.2.2 Future Work with Linear Sum Assignment 211

7.3 Final Reflections . 213

Appendix A Visualisations 214

Appendix B Top Performing runs for n = 6 216

Appendix C Visualisation for LSA 219
C.1 Methods . 220

C.1.1 My Function . 220
C.1.2 Recursive Fn . 220
C.1.3 Recursive Fn v2 . 221
C.1.4 Recursive Fn v5 . 221

Bibliography 222

viii

List of Figures

2.1 A plot of a batch of random vectors 12
2.2 A plot of a batch of random vectors 12
2.3 Cosine similarity between 2 batches 13
2.4 Cosine similarity between a single batch 13
2.5 The transpose of contrastive loss. 14
2.6 A comparison of BERTScore and CLIPScore 18
2.7 The training loss predicting a mask from caption 24
2.8 CLIP DICE Loss for mask prediction 25
2.9 Focal Loss predicting BBox from caption 25
2.10 Image Focal Loss . 26
2.11 The balance between modalities when prediction masks 26
2.12 A plot Showing relation extraction loss from CLIP 27
2.13 Contrastive loss of secondary pair-detr encoder 28
2.14 PairDETR Relation Extraction DICE Loss 29
2.15 PairDETR Relation Extraction GIOU Loss 29
2.16 Sample DETIC output from CLIP prompt embeddings 30

3.1 The architecture of 3 dimensional training 34
3.2 Evaluation on Text probes shows a very high score and effective training 36
3.3 The Loss of 3 encoders descending to minimal values after 60 steps . 37
3.4 The Negative logit value during Training 37
3.5 Negative logit value during Training 38
3.6 Mean validation similarity logits in with 3 encoders 38
3.7 3D training evaluated by text-based linear probe 39
3.8 Hyperparameter sweep of 3D training evaluated by image based probes 39
3.9 Stability of similarity in 3D training 40
3.10 The Loss between a pretrained encoder and training language encoder 40
3.11 Best Case similarity during training 41
3.12 Worst case similarity during training 41
3.13 The effect of hyperparameters on the output in 3 dimensional training. 41

ix

3.14 A diagram showing the forward pass for full model training 44
3.15 Code excerpt from CLIP (converted to psuedo code) 45
3.16 The change to an encoder model to recieve decoder outputs 45
3.17 A plot of all similaritys to the EOT token 48
3.18 A figure showing the distribution of cosine-similarity to the EOT Token. 48
3.19 psuedo code for token selection . 49
3.21 Graph showing GPU loading . 53
3.22 Compute usage in 4 Dimensions . 54
3.23 Figures showing the convergence of models 55
3.24 Compilation of Final Training Report Figures 57
3.25 Compilation of Final Training Report Figures 58
3.26 Comparison of logit method performance in 4D 58
3.27 Minimum scores during TestLoss grouped by dimensions 59
3.28 Mean Test Loss grouped by dimensions 59

4.1 An example CKA figure, showing how these plots are to be interpretted. 63
4.2 A comparison of optimized HSIC function to prior implementation . . 65
4.3 Final optimized code for CKA computation 66
4.4 Original method test code used in Figure 4.5 66
4.5 Sample evaluation of different CKA methods 67
4.6 Comparison of Clip Vit -L/14 layers using CKA. 70
4.7 Permutation affect on CLIP . 71
4.8 An example Linear probe sweep . 75
4.9 Einsum approximations converge quickly over few epochs 78
4.10 The distribution of features for a given input throughout 6D training 81
4.11 A graph showing the change between epochs of a single embedding . 82
4.12 The change across validation epochs by batch 84
4.13 The change across validation epochs by batch 85
4.14 Distribution of all embedding values 86
4.15 Similarity measure between different batches 87
4.16 Similarity measure in-batch similarity during validation 88
4.17 Correlation between TokenScore and Validation Loss in 2 dimentions 91
4.18 A Plot of Token score against image probes in 2 dimensions 91
4.19 A Plot of Token score against text probes in 6 dimensions 92
4.20 A Plot of Token score against image probes in 6 dimensions 92

5.1 A plot of logits in n = 3 dimensions 97
5.2 Visible regions in n = 4 . 99
5.3 Proportion of space split between regions 100
5.4 Maximum proportion of logits for values of n, where B = 10 101
5.5 Maximum proportion of logits for values of n, for B < 14 101

x

5.6 Mean maximum proportion of logits for values of n 102
5.7 Code showing the approximation of Cosine similarity for 2 dimensions, 105
5.8 Cartesian Distance against Cosine Similarity for Gaussian vectors . . 106
5.9 A Table showing the different similarity measures explored in this work 109
5.11 Method performance in each value of n 114
5.12 Difference between using example Loss and generated labels 117
5.13 The Distribution of labels for B=4, N=6 119
5.14 A graph showing the training loss . 130
5.15 A Figure showing the mean loss metric throughout training 130
5.16 The average logits in the stock method during Validation 131
5.17 Mean projection Value . 131
5.18 Improvement of logit scale during training 131
5.19 A figure showing parameter importance for n = 6 145
5.20 Parameter importance to the Text probe 146
5.21 Parameter importance to the Image probe 146
5.22 Parameter Importance for many values of n 147
5.23 Relation between Similarity formula and Image performance 148
5.24 Relation between Similarity formula and Text performance 148

6.1 The steps involved in recursive selection for LSA 165
6.2 The construction of recursive LSA and intermediate state 166
6.3 Main function for Recursive Method 2 167
6.4 A plot of correct (Purple) vs negative (Yellow) assignment per step . 167
6.5 A plot of accuracy against step count for differing step magnitudes . . 167
6.6 Psuedo code for using Gumbel softmax in Linear sum assignment . . 168
6.7 F1 score by LSA Approach . 170
6.8 Precision of algorithms in FP32 . 171
6.9 Recall of Algorithms in FP32 . 171
6.10 F1 Score across algorithms in FP8-E5M2 172
6.12 F1 Score across algorithms in FP8-E4M3 173
6.13 F1 compared to MSE loss during LSA training 173
6.14 Distribution of F1 scores by model 174
6.15 Comparison of No reduction in precision to FP8 174
6.16 Relation between PRF . 174
6.17 Expressable values in 8 bit precision 177
6.18 LSA matrix value distribution during training 178
6.19 The Histogram plot of matrix values early in DETR training 178
6.20 The distribution of similarities between LLM Latent embeddings . . . 189
6.21 A plot of probabilities of loop size k given 0 < k < n 191
6.23 A comparison of LSA attribution . 199

xi

6.24 Upscaled LSA Loss on a 10x10 matrix 200
6.25 Baseline demonstration of optimum output using CELoss 201

A.1 Screenshot of visualisation for n = 12 and F = 2 214
A.2 Screenshot of a close clustering where n = 12 and F = 2 215

C.1 Interface for trialling LSA algorithms with different precision 219

xii

List of Tables

2.1 A table of probabilities and significances for cosine similarity 15

3.1 Comparison of different intermediate token gradient conversion 46
3.2 Benchmark results for initial training 51

4.1 The CKA activations from different elements of the cross-modal network 72
4.2 Run outlier agreement score, σ, by dimension 90

5.1 A table of regions and dimensions . 98
5.2 Cosine similarity gradient in higher dimensions 111
5.3 Distribution of labels by region when using exact labels 122
5.4 A table describing the projection hyperparameter 125
5.5 A table showing the proportional loss by region 126
5.6 n = 4 case example . 129
5.7 Run Details . 130
5.8 Figures showing the proportion of loss per region 133
5.9 Loss by region . 134
5.10 A table of figures showing the training heuristics 135
5.11 Configuration Parameters . 136
5.12 Results Table . 137
5.13 CKA Plots from training runs . 138
5.14 Training Metrics . 139
5.15 A set of metrics for the top runs . 140
5.16 A table of plots from the top 10 runs 140
5.17 Loss plotted by region . 142
5.18 The comparative losses by regions with no matches 143
5.19 The loss by region plotted as a proportion of all loss 144
5.20 Table showing the importance of learning rate to key metrics 145

6.1 LSA Error by matrix size . 161
6.2 Assignment Matrices solutions by method 176

xiii

6.3 Error introduced as precision decreases 179
6.4 F1LSA approximation with the presented algorithm 182
6.5 F1LSA performance with different matrices dimensions 183
6.6 F1LSA performance with the SubApprox method 184
6.7 The slight optimization has a slight impact on speed on a P100 vs

A5000 showing which methods converge 185
6.8 Performance comparison after 90 Epochs on an RTX 3090 185
6.9 Loss methodologies that incorporate LSA calculations 202
6.10 The functions in [86], tested for effectiveness in Loss 203
6.11 A Table showing sample outputs and loss curves from LSA approxima-

tions . 204

A.1 Table of useful statistics used in visualisations 215

xiv

Chapter 1

Introduction

‘Machine Learning’ and ‘AI’ have rapidly become buzz-terms in recent years,
signifying a system that uses complex mathematical approximations of problems to
intelligently learn a problem space, with complex rules that cannot be readily coded or
written. Natural Language Processing (NLP) and Computer Vision (CV) are 2 major
areas within machine learning. Many of the popular methods underlying these areas
need significant quantities of data to effectively model specific tasks or domains as
complicated as language or vision. As these terms captivate the public imagination, it
is important to verify the breakthroughs and gain a better awareness of the capabilities
these systems exhibit, which is summed up in this work as ‘understanding’.

This thesis explores how well computationally generated embeddings truly un-
derstand what they represent. The thesis demonstrates the performance of multiple
encoders to improve the economies of training available in low-resource contexts, in
the data and hardware domains. Subsequent chapters outline the performance of
different methods in higher-dimensional contrastive training, as well as offer a cursory
exploration of the myriad applications of this work.

To begin this body of work, it is worth discussing the fundamentals of why
certain tasks remain difficult in the machine learning space, even with increasingly
complicated LLMs available.

The journey behind this thesis began with the task of hate speech detection.
Making the internet a welcoming, inclusive space involves trawling through trillions
of words, and removing anything that may cause offense. The noble goal of being
able to isolate negative speech is quickly hindered by the myriad complexities of
processing such quantities of data, identifying or defining hate speech, and being
able to remove it. The detection task simply tackles the problem of identifying it.
Even for such a simple task, a definition for hate speech must be agreed upon. The
definition must take into account many different factors: Language (not just English
and how this varies by person and context); Context within the flow of conversation;

1

Chapter 1. Introduction

and subject area that the words are spoken to. There are many comical examples of
filters naively removing words from the lexicon of users to the detriment of innocent
conversations. (Removing the word ‘bone’ as a euphemism can be deeply detrimental
to a paleontology conference)

In this work, the challenge of what words mean is isolated and considered as a
deeper problem; it is not so simple as just a classification or word embedding problem.
Dictionary curation is slow, requiring much human effort and scales poorly to web-
scale data and is insensitive to context. A system is needed that can spot the changing
meanings and contexts of words.

Equal critique can be applied to how computers use language in a generative
context. Some sequences of generated text may seem intrinsically insincere. In such a
case, it highlights why semantic and epistemological understanding of language is so
difficult; the meaning to be conveyed often betrays the meaning of individual words.
An example would be a generated string of text confirming the flight of the first pigs.
A reader may spot the semantic parallel to historical metaphors and hyperbole around
flying pigs and would naturally assume insincerity. More prosaically, an AI writing
about whether a deity exists (and in so doing selecting a belief system), is naturally
assumed to be data bias or nonsense – yet enforcing that a model shouldn’t have a
belief system seems laughable if there’s no chance of it occurring naturally. In the
semantic parallels of language appearing questionable upon application, illustrate the
domain of semantics, or the examination of word meanings.

Investigating the study of what words mean is an indicative factor in understanding
why there is so little annotated information for detecting hate-speech. It seems a
simple task: processing a natural language input and making a determination. In
actuality, hate (and its detection) is a subjective concept - it relies on an individual
taking offense. If a system is only observing what is written, one cannot know that
no other reader will perceive offense, nor necessarily whether offense was meant in the
first place. This perhaps belies why there are relatively few datasets claiming gold
standard annotation for this task.

To demonstrate the focus of this thesis, a statement like ‘you’re a banana’ is worth
considering. It is a phrase that many in a western audience may have even heard
growing up, indicating the silliness or absurdity of one’s actions. However, to other
audiences, this phrase may be dripping with malice, the inflammatory accusation
being that someone is ‘white on the inside’.

That implicit understanding of why something may be inflammatory in some
contexts and not others is a complicated reasoning task, which several approaches
attempt in supervised ways, using annotated associations and connections [93];
however, the understanding and connection that something may be offensive is a
problem that extends beyond the domain of Natural Language Processing (NLP).

The thousands of properties that every object has make the combinatorics

2

Chapter 1. Introduction 1.1. Defining of Terms

and reasoning implicit to metaphors incredibly difficult to annotate for in labelled
examples. Recent philosophers such as Heidegger to as far back as Plato have
understood objects as having near-infinite properties.

This work therefore will largely neglect supervised approaches and explore
unsupervised learning to attempt to learn the myriad properties that surpass
annotation. Unsupervised learning is a paradigm where a model does not learn from
human labels; instead, it learns the salient features of the input to determine how
to represent the concept in latent space. Conceptually, the idea of a distribution
of embeddings across high dimensions allows a similarly infinite number of values
a word can be encoded into. Thus, it allows us to approximate and query the
infinite permutations and properties of objects. However, just because something
can be queried, does not guarantee the model used is encapsulating all the potential
properties, uses, or abilities of objects. This thesis shall explore whether all the
encapsulation of properties can be measured.

1.1 Defining of Terms

There will be many terms used in this body of work that span disciplines or might be
used in natural language with an imprecise computational meaning. For the purposes
of this document, the following simple definitions will be adhered to:

• Semantics: The study of what a token represents or means, often used in
relation to NLP discussing the meaning of individual words, or in CV as to the
prototypical class of an object.

• Semiotics: The study of meaning, which transcends individual tokens to convey
concepts or meaning beyond the sum of tokens.

• Knowledge: A stored statement of justifiable truth.

• Human / humanistic: A reference to the typical human experience, both in
having normative ‘average’ intelligence and ‘average’ potential to learn.

• Understanding: The ability to create robust representations of a concept
that capture the important features as pertains to context which behaves
conceptually as the base concept.

• Reasoning: The ability to apply logic to both the observed, and the
respresentations of, concepts with the goal of a predicted outcome or behaviour.

• Model: An approximation of a system. In Computing models typically require
training to adjust their behaviour and properties towards an optimal behaviour,
often relying on hidden representations and to process an input.

3

Chapter 1. Introduction 1.2. Research Goals

1.2 Research Goals

The motivation for this research stems from the increasing complexity and opacity
of modern machine learning models, particularly those involving encoders in vision-
language tasks. While existing encoder models have demonstrated impressive
performance, there is a critical gap in their ability to form truly holistic and
interpretable embeddings that align with human understanding. This gap raises a
pivotal question within limited resource contexts: to what extent can we ensure that
these models comprehend the underlying semantic structure of the data they process?
Consequently, this thesis aims to investigate how we can better understand, evaluate,
and improve these models to achieve more robust and interpretable embeddings.
Specifically, by addressing the challenge of defining and measuring semantic awareness
in model embeddings (RO.1), as well as evaluating models in the absence of clear
ground truths (RO.2). Additionally, we examine the practical limits of scaling these
models within constrained computational resources, which is crucial for ensuring
academic replicability (RO.3). Each of these objectives directly ties to a central
question of how to effectively create, measure, and scale models that not only
perform well but also offer meaningful, interpretable outputs. This inquiry is
foundational to answering several critical research questions, including: how we can
isolate specific elements of knowledge within machine learning models (RQ.1), how
to facilitate model training and replication within limited computational resources
(RQ.2), and how annotation assignment can improve model performance on both
micro and macro scales (RQ.3). Furthermore, we will explore the impacts of noisy
approximations on grounding and assignment within models, as these issues are crucial
to understanding the limits of a model’s comprehension and its ability to exhibit
true semantic awareness (RQ.4). Together, these objectives and questions form a
cohesive framework for evaluating the effectiveness of encoder models and advancing
their interpretability in real-world applications.

1.3 Research Objectives and Questions

RO.1 Present a training paradigm that is not tied to a domain prediction but can
create meaningful embeddings. The embeddings generated in the vision-language
space should have a depth of understanding that users can trust is fully aware and
comprehending of concepts. The goal is to create and define a methodology for a
semantic and semiotic awareness to an embedding space. Given the tendency of
models to be re-used on downstream applications, it is imperative our tests show a
robust, dataset-independent method for verifying training and learning of concepts.

RO.2 Show evaluation methods available where there is no clear holistic ground
truth for what the model should have learned. Models in the encoding-only space offer

4

Chapter 1. Introduction 1.4. Thesis Structure

novelty in training: they consume data without predicting an output. Challenges
are presented in evaluating such a model without inferring assumptions such as
a downstream distribution. Different evaluation metrics are available and will be
deployed during training, but this research will show simple methods afforded to
some training paradigms that do not require separate, distinct evaluation workflows.
By deploying several metrics, the performance of metrics can be identified partially
by consensus.

RO.3 Demonstrate the limits of scaling within the limits of 24GPUHours, and
the projected performance increase for future work. Core to the remit of this work is
the confines to university scaling. At its conception, the maximum available allocation
was 12GPUHours. During that limit, the SOTA approach in this domain was used
on 512GPUs for 19 days. This poses significant academic concerns over the lack of
reproducibility and replicability. This work therefore seeks to understand the scaling
rules present by batch size and how that is felt at different training scales.

The following research questions (RQs) which will be answered in each chapter:

RQ.1 How can elements of knowledge be isolated within a machine learning
model? This will be answered in Chapter 3, looking at how low-resource language
tasks can be effectively taught.

RQ.2 Many state-of-the-art models exist beyond the training capabilities of
academic replication. How can model training be reinvented to facilitate replication
at a smaller scale of compute AND data? Chapters 5 will answer where the limits are
for such models and, moreover, how we can prove the effectiveness at different scales,
focusing on replication within the limits of 24 GPU-Hours.

RQ.3 There are many advantages available to models that use weak and
pairwise supervision to learn the relevant associations. Can annotation assignment
have improvements on a micro scale with performance gains comparable to weak
supervision on a macro scale? Chapter 6 will look at other methods that use similar
assignment-based metrics and will use the supporting publication track to isolate
performance benefits associated with modifying the assignment criteria.

RQ.4 Many of the semiotic studies that underpin RO.1 point to grounding and
assignment as fundamentals in attributing to a model ‘understanding’. What are the
impacts of approximating these assignments or using noisy approximations?

1.4 Thesis Structure

This document will begin with a deeper discussion of some of the background and
related methods to this body of work. Latter chapters will present an AI approach

5

Chapter 1. Introduction 1.4. Thesis Structure

that can surpass the limitations of supervised and granular annotations and exhibit
capabilities that demonstrate higher-order knowledge.

In Chapter 2, the background and context of this work are discussed and explored.
The problem space is addressed, and some benchmarks are presented. The first
chapter seeks to demonstrate the way these models work, presenting an intuitive
guide to why semantic embeddings do not have the same mathematical relations as
simpler embedding spaces that may be more familiar to readers.

Chapter 3 begins to explore the applications for low-resource languages. Experi-
ments are outlined for how these multi-modal models can improve training for low-
resource languages by providing alignment.

Chapter 4 defines the challenges of evaluating training. Some of the model
components presented in this research may present a novelty in not returning a natural
embedding in a form that is readable. This chapter, therefore, discusses which metrics
can be used and how they combine to guide training paradigms.

The penultimate chapter details the limits of scaling contrastive training, extend-
ing the training methods presented in Chapter 3. Novel calculations are presented to
address some of the mathematical curiosities, and the labels for these algorithms are
explored.

In the final section, Chapter 6, another way of improving low-resource training is
explored: treating training as an assignment problem. Existing methods are improved
with application-specific optimisations, and the performance profiles of inputs are
explored, which present opportunities for optimisation in other contexts.

6

Chapter 2

Background and Related work

2.1 Background

This thesis explores how well computationally generated embeddings truly understand
what they represent. But an introduction to standard techniques is imperative to
explain the state-of-the-art models built upon. Machine learning (ML) is a well-
established technique for predicting language output from a wide variety of modalities.
It is now well established that the context of an image provides valuable information
to inform and improve object predictions. The thesis demonstrates the performance
of multiple encoders to improve the economies of training available in low-resource
contexts, in the data and hardware domains. Subsequent chapters outline the
performance of different methods in higher-dimensional contrastive training, as well
as offer a cursory exploration of the myriad applications of this work.

2.1.1 Word2Vec and Transformers

One of the early approaches to understanding language was the idea that a word can
be defined by the company it keeps. The approach was to split a sentence up into
tuples, or (a set of tokens) often called n-grams where ‘n’ is an integer referring to
the spacing of the word. These pairs are then encoded as a set of one-hot vectors, the
index of ‘1’ in the location corresponding to the word. By projecting these vectors into
an embedding space, the size of each vector is reduced from the size of the vocabulary,
down to a more computationally efficient number (like 512 or 128). This causes words
that have similar meanings, (and likely a similar context) to tend to cluster together.

Subsequently, models have increased in size and complexity, culminating in LLMs,
which power the majority of popular models. LLMs are predicated on a transformer
architecture, popularised by BERT [120], but exist at a significantly larger scale,
and now use more complex training techniques including mix-of-expert approaches

7

Chapter 2. Background 2.1. Background

and reinforcement learning. However, the core technological advancement of the
architecture is the use of attention [116], allowing tokens in a sequence to bi-
directionally affect the meaning of other tokens. Crucially, the representations of
each token are modified by the others.

2.1.2 How Computer Vision Understands

The wider task of this thesis is to explore the way that model representations
understand, or rather, generate holistically queriable representations. Traditionally,
the task of computer vision is to receive an input image and classify it. Many examples
might use a simple set of classes like ‘Cat’ and ‘Dog’, and typically, every image is
exclusively a cat or dog. This task can readily be expanded to having an ‘Other’
category to perform as a detector, or have some architectural changes to be able to
draw a bounding box around the cats or dogs.

The challenge for this body of work is to take a simple example like this and
question whether it really understands the concepts beneath the classification ‘cat’ or
‘dog’? Most classification tasks do not concern themselves with explaining the learned
concept, but rather present a confidence score of whether the image fits within the
training set of cats, or belongs closer to the training set of dogs.

Because no concepts are codified, the problem of classification scales poorly
with the number of classes. This is partially because there are multiple clusters
in an embedding space for points to move between, and the balance of data must
be accounted for. However, a cornerstone paper [37] used Deep Visual Semantic
Embeddings (DeViSE) to scale effortlessly from 1k to 21k classes. Scaling to so many
classes with few-shot learning was achieved by assuming that the classes would relate
to each other in the same way that the labels for each class do. The model used the
geometry of GloVe [101] embeddings (the previously discussed W2V model trained
on web-scale data).

This was arguably one of the first effective attempts at ensuring a computer vision
framework had some knowledge of what was being classified or predicted: the class
name affects classification.

DeViSE paved the way for a plethora of other models, with architectural
similarities seen in more modern DETR [138, 61] and DETIC [137] models that use
transformers for class comprehension and computer vision.

This work will continue the approach of using language embeddings as a basis for
building holistic representations. The test, however, will have to be in a zero-shot
context, as this eliminates the ability of a model to be reliant on the training set.

8

Chapter 2. Background 2.1. Background

2.1.3 How to Define Representational Robustness

The goal of this research is to show how cross-modal tasks (using linguistic and visual
domains) are the key to better representations that can be said to ‘understand’.
The use of cross-modal training is to remove the abstraction that all learning is a
classification task. Fundamentally, to know a model is building a correct, robust
representation, the model must be queriable against an open domain. (I.E. not task
limited)

Prior work includes GloVE, a generation of ‘universal’ embeddings that are said
to carry this property. It relies on the assumption that web-scale datasets are a good
source of definitions. Comparatively, DeViSE assumes definitions that are implicit
in embedding space geometry, have been tried and tested on enough data they must
be correct and precise. However, there is little literature on why such wide samples
of data can simply be aggregated during training. The definition of ‘web-scale’ now
is significantly larger and changes more dynamically than over a decade ago when
those methods were proposed. The rapidly changing and evolving space heralds new
challenges in NLP around words that may not have warranted dictionary definitions,
or have niche, specialist, or contextual meanings. W2V approaches are inaccurate in
these cases where contexts have unique languages or dialects. In such cases, building
a representation from such infrequent tokens is problematic.

The challenge of robustness to context also applies to computer vision, where
traditional class-based approaches can struggle to be queried for anything other than
labels. There are very few open-set (where there is no limit to the number of classes)
challenges, and using small datasets to represent a robust space, such as can be aligned
to a vector space as in the GloVE or DeViSE paper, has only been realized in work
contemporary with this thesis, in the form of DETIC, which relies on downstream
training from the work presented.

An alternative perspective on this domain is provided in the study of semiotics:
the study of signs and symbols and their use or interpretation. Semiotics suggests that
tokens often refer to an object by a set of properties or multiple names, which allows
us to communicate meaning. Referring to a table as ‘a flat surface’ or ‘desk’ conveys
the desire to work - either by the property that facilitates work, or by the primary
use of the object. This is a challenge to computer vision that relies on clustering
because the set of objects that receive the classification ‘desk’ may be different but
overlap with ‘table’ and ‘flat surface’. The set of properties that a particular class
has is usually referred to as a homeostatic property cluster: No one property defines
the class, but the presence of enough of them is indicative of the vocabulary used to
describe an object.

In the classic example of a car missing wheels, a car is still a car if it is missing a
component, even when these are a critical part of the functionality. This example is
offered to emphasise that the computer vision approach to understanding this scene is

9

Chapter 2. Background 2.1. Background

complex: it predicates on having a sufficient understanding of an object to understand
the purpose or potential of an object even if critical components are missing. Holistic
representations are therefore critical to contexts, where a car missing wheels might be
a critical detail depending on where it is observed.

Representations of an image, and the contents, need to be sufficient that for open-
set works, objects can have myriad descriptors that can match any visible object.
In other words, that objects in the space can be queried or predictably found based
on sets of properties [71]. Typically this can be considered as the embedding space
preserving orders of knowledge. This can be demonstrated in the classic word2vec
example that ‘Man’ is to ‘Woman’ as ‘King’ is to ‘Queen’. In the example, the
relation between 2 points can be considered a single order of knowledge. That it
pertains to another pair is second-order knowledge, realizing that this relates to other
like properties is a third order and so on.

A way of enforcing orders of knowledge, modern transformer architectures use
Attention : that tokens can be projected as a Query, Key, Value tuple, and used
to create a representation of a value according to Query and Key. This view of a
representation and stepped attention over it is akin to building a tool to consider
where it belongs in an embedding space and viewing a point as a function of the
clusters it sits in. The only caveat is that where philosophically every object has a near
infinite set of properties, models constrain the dimensions of hidden representations
to finite numbers (usually integer powers of 2).

2.1.4 Understanding in Low-Resource Languages

The preceding section discussed the use of representations as an encoding of
information about a visual concept. In a computer vision context, building
representations as capable of conveying all queryable information in a scene is critical.
To avoid the trappings of a large number of classes, an open domain must be
used. However, given limitations to the scale of this research, understanding must
be viewed through the lens of low-resource language. Languages are considered
low-resource whenever a language is lacking large monolingual or parallel corpora
and/or manually crafted linguistic resources sufficient for building statistical NLP
applications; it is considered a low-resource language. In a computer science context,
this definition extends to including languages with only a limited number of gold-
standard annotations or the (un)availability of wider corpus. From such small samples,
gaining a good understanding of the language is problematic without prior knowledge.

LLMs exhibit excellent ability to learn low-resource languages with prompting
and examples [13], due to wider world knowledge. Therefore, what may be deemed
as ‘understanding’ goes beyond the standard data extraction used in old NLP; it no
longer suffices to apply data science to POS tags or extract key words because without

10

Chapter 2. Background 2.1. Background

correct interpretation and white-box systems, they are meaningless. Even with the
grammar, structure, and objective definition of words, the nuance of language may
still be lost. Modern approaches with such methods often resolve meaning through
LLMs to associate generated labels with more fitting and interpretable labels. As
the user skill/interpretability threshold is reduced, the risk of poor design and poor
usability in our models increases. There is an ever-growing laundry list of models that
fail to meet real-world standards: Idioms, metaphors, and hyperbole regularly escape
researchers’ ambitions of ‘solving’ language. This is part of the reason that open-set
language remains difficult - for the affirmative case, there are 100s of different methods
of expressing it, and using word-level and token-level loss is no longer adequate when
sentence-level meanings are needed. This also rejects the issues that confront low-
resource languages, where not only is the amount of data available so low that models
are difficult to train, but the prevalence of LLMs that provide shaky translation
pollutes the space.

In recent years, UNITER [20], CLIP [103] and many other cross-modal approaches
[79] show that open-set language is solved - especially as these have become the SOTA
backbone for other methods like DETIC [138], Flamingo [4], DALLE [73] and many
more. It is worth a consideration of scale - these methods require training measured
in GPU/TPU years. The concept of some languages being solved is a question of
scale, application, and data: the 3 things that this work lacked at conception.

The breakthroughs discussed in computer vision previously that stem from aligning
classification with language are almost entirely anglo-phonic. There are very few
datasets or works that exist in other languages that use richly annotated datasets
in other languages. This is why this work seeks to explore training paradigms that
can leverage vision-language grounding to improve the representations curated in low-
resource contexts.

2.1.5 How CLIP Works

In the last 2 years, CLIP has radically altered the Machine Learning space. Each
component of the CLIP model is nothing new, but the combination of 2 encoders
projected to a shared space is an entirely novel phenomenon. The shared encoding
space, enabling the presence of both visual and text modalities to be projected
together, has been a crucial building block for tools like Dalle, StableDiffusion, Dalle2
and many more generative models.

The CLIP algorithm works by contrastively training samples in an effectively
unsupervised manner. During training, a batch of items consists of image and text
components I and T , respectively. These are then encoded separately, and loss is
calculated by comparing each encoder’s output with cosine similarity and maximizing
the similarity for corresponding items with cross-Entropy Loss.

11

Chapter 2. Background 2.1. Background

Pairing items in batches may seem obfuscated. So here is the flow of data: Imagine
2 auto-encoders that, given a batched input, create an output of uniform random
features.

When plotted on a graph, these features appear as follows.

Figure 2.1: This plot shows what a
single batch of normalised vectors in
an example input may look like when
overlayed

Figure 2.2: This plot shows what
a second batch of normalised vectors
in an example input may look like
when overlayed, notably different from
Figure 2.1

These may be difficult to distinguish to the human eye, but when compared by
multiplying, they produce a set of logits (a batched form of cosine similarity). for
comparison, when we produce the same graph using identical inputs, the result is as
follows: shown in Figure 2.4.

The distinct spikes indicate the cosine similarity of every item in the first batch,
corresponding identically to that in the second batch.

Notably, the minor deviations in peak heights are not smoothed by averaging
with the transpose of the logits but rather are a reflection that the inputs are non-
linear. In the case of dual encoders, it follows that items in the first encoder are
independent of items in the second encoder and vice versa. This symmetry is largely
only found in identical inputs; in real-world data, it is unlikely. This can be stated
as: P (Ai|Bj) ̸= P (Bi|Aj) unless Ai = Bi and Aj = Bj)

One novelty of this training methodology is the scaling: contrastive training
requires a batch size greater than 2 to function. Furthermore, the greater the batch
size, the greater the number of in-batch negatives. This has been largely criticised
because it solidly places AI research and validation in the hands of large companies
or organisations with huge training resources. The original model took some 33GPU
years to train. Aside from the ecological impact, this is a prohibitive time scale unless
performed at enterprise scales.

12

Chapter 2. Background 2.1. Background

Figure 2.3: The comparative similarity
of each item in a batch to every other
item (note the x-axis change in scale).

Figure 2.4: A plot showing the
comparative similarity when the 2
batches match each other, each line
has its own distinctive peak which
corresponds to order within the batch.

The subsequent work aims to reduce that. Tying into the introduction, considering
understanding and embedding spaces in high dimensions, instead of confining
individual points by 2 projections, allowing them to move accordingly, this work
explores using greater numbers of dimensions.

The goal here is to introduce additional data to add additional dimensional
constraints. We consider what happens when a batch consists of I, T0, T..., Tn .
Naturally, such a set might undergo different encoder architectures depending on the
modality. However, for the sake of proof of concept, we train the ′theta′T parameters
by guiding the representations of all inputs T0, ...Tn. However, in contrast to training
these samples, we create an n-dimensional loss table. This shows far better scaling
for training for a given batch size.

f unc t i on make Logits (I , C1) :
Normalize image and text f e a t u r e s
I = I / norm(I , dimension=−1, keep dimension=True)
C1 = C1 / norm(C1 , dimension=−1, keep dimension=True)

Calcu la te l o g i t s
l o g i t s p e r imag e = dot product (I , t ranspose (C1))
l o g i t s p e r t e x t = dot product (C1 , t ranspose (I))

Calcu la te l o s s and return the r e s u l t
r e turn l o g i t s p e r imag e ∗ exponent i a l (l o g i t s c a l e) , ←↩

l o g i t s p e r t e x t ∗ exponent i a l (l o g i t s c a l e)

13

Chapter 2. Background 2.1. Background

Figure 2.5: A graph showing the similarity with each batch transposed, bearing
identical shape to Figure 2.4, thus proving the matrix multiplication of these batches
will preserve a gradient in both directions

A good way to understand the effects of contrastive training in high-dimensional
vectors is to ascertain the significance level of 2 vectors of the same magnitude having
a good Cosine Similarity.

In 2 dimensions, we have the simultaneous equations:

v1 = (x1, y1), v2 = (x2, y2)√
x21 + y21 = 1√
x22 + y22 = 1

x1.x2 + y1.y2 > 0.5

The value of 0.5 has been picked here because it is easily recognizable geometrically.
To simplify the problem and plot the values on a graph that satisfy this equation,

choose a simple value of (v2) that simplifies the above equation: where

v2 = (0, 1)

x1.0 + y1.1 > 0.5

simplifies to y1 > 0.5 These means can be mathematically calculated with the identity
of v1 = (x1, y1) where

√
x21 + y21 = 1. Or, on a graph, we can say that the angle at

which the threshold is at v2 is θ where arccos(0.5) = θ
When we use a threshold of 0.5, as the number of dimensions of our vector,n,

increases, we find that the significance level for a cosine similarity ≥ 0.5 becomes 0.5
follows 1/n+ 1.

14

Chapter 2. Background 2.2. Related Works

θ Cosine Similarity n = 2 n = 3 n = 4 n = 5
π 0 0.5 0.5 0.5 0.5

1.47063 0.1 0.46870 0.45000 0.43607 0.42097
1.36944 0.2 0.43609 0.39992 0.37329 0.35009
1.26610 0.3 0.40323 0.35006 0.31185 0.28078
1.15928 0.4 0.36906 0.30002 0.25228 0.21549
1.04720 0.5 0.33333 0.25003 0.19551 0.15554
0.92730 0.6 0.29499 0.19996 0.14243 0.10421
0.79540 0.7 0.25456 0.15024 0.09414 0.06091
0.64350 0.8 0.20500 0.10007 0.05210 0.02820
0.45103 0.9 0.14397 0.05018 0.01873 0.00739

Table 2.1: For an n-dimensional sphere, this table shows θ, an angle at the centre,
compared to the volume, (or equally surface area), contained within the angle. The
experimental approximations of these volume of n-dimensional sphere for different
threshold values of cosine similarity rounded to 5.S.F. This shows the decrease in
probability as n increases, showing why this method is especially effective in high-
dimensions

2.2 Related Works

As will hopefully be well known to any researcher in this or adjacent fields, 2020-
present has been a turbulent and exciting time seeing a rise from machine learning to
advanced deep-learning systems. Beneath the confusion and controversy, AI has been
obfuscated by the myriad systems claiming to be AI; there are well-coded databases,
distributed models each with radically different domains, and the others all claiming
the illusive goal of intelligence. Against this backdrop, cataloguing the contemporary
works that claim novelty, even down to those being based off the same model,CLIP
[105], is a near impossible feat. It has been cited over 26,000 times and is considered
foundational to many differing domains and applications.

There are many works that seek to improve, use and replicate CLIP, even offering
enhanced refinement of the training pipeline by reintroducing supervision via region
selection with an RPN component [136]. Approaches like this emphasize the computer
vision application over the holistic language capability. There are other works
[24], that emphasize similar capabilities in less supervised fashions, representing
semantic masks with embeddings. However, such works and others gently neglect
how hierarchical object detection works.

One key advancement in the field, published 2 years after the main body of
research, is Llip [70], which uses the same training paradigm of multiple captions
per image to significantly improve the zero-shot capability. They focus on combining

15

Chapter 2. Background 2.2. Related Works

captions with visual tokens with cross attention across each caption. Then they used
the output through a more traditional clip-style contrastive loss. While the results
are impressive and show potential, it should still be noted that CommonCrawl [15]
datasets were used, which are far larger than this work can manage: 2.5 Billion
image-caption pairs, pre-trained on a larger 12.8B pairs. Compared to the original
512 GPUs, they only used 128 and 256 larger A100s for a bigger batch size in their
experiments. That work not only validates the premise of this thesis, but also proves
that it scales unquestionably to bigger training pipelines.

On a smaller scale, the works focus on very fine-grained detection rather than
semantic comprehension in open-vocabulary contexts [126]. This builds on prior work
using a 2-stage detector aligned with a multi-modal transformer that receives both
image and text tokens. However, this test is still constrained to the classification
of nouns rather than the true open set testing. It does not demonstrate semantic
capability or nuance in a way that might theoretically be present.

In the last year, SigLIP has been proposed [128], suggesting the use of sigmoid loss
over cross entropy for loss. The key advantages of this approach are rapidity in scaling
and batching, allowing scaling across multiple devices asynchronously. The work
validates several key contributions of this work: that the exact activation function
is not strictly relevant and that scaling rules are a key factor in model training and
overall efficacy. Although the sigmoid loss performs equally well and faster than
stock CLIP (though not compared on the same hardware), by removing the reliance
on contrastive training on logits, it may affect training. It is unclear due to other
training differences whether this removal of the graph is significant in its impact on
training and downstream applications. Specifically, it can be argued that because the
gradient for a given logit is not only being minimised or maximised, it is not clear
in which direction it will move: contrastive training would ensure it moves towards a
single point and away from B other points. The counterargument is that when B is
large enough, this is not a relevant concern.

An alternative approach to increasing batch size despite hardware limitations is
to investigate the use of pre-computed values that are detached from their gradients
[39]. Normally, calculate m mini-batches per batch and aggregate the m2 gradients to
approximate the batch between devices. This is similar to the abstraction that occurs
in transformer heads to accelerate transformer operations. Precalculating features
and, therefore, gradients requires a significant RAM footprint and execution time
overhead. The work is notable for being at a scale similar to this work, but lacking
in training details or scale, and therefore, even though there is a marginal speed
overhead, it is unclear whether the synthetic batch sizes achieved are meaningful.

Many other works have attempted to replicate CLIP at various scales [80],
including attempts to alter how multiple GPUs are used in training, or using simpler
approximations of loss. Such attempts are contemporary with this work.

16

Chapter 2. Background 2.2. Related Works

2.2.1 Related works in Low resource domains

In recent years, LLMs (GPT-x [82], BERT [30], ELECTRA [22], LLama [115], to name
a few) have boasted phenomenal zero-shot and few-shot performance in low-resource
domains. Even approaches that rely on only altering a few layers with finetuning have
shown exceptional results [59]. However, the difficulty for the extreme cases of low-
resource languages is that many underserved languages share minimal philological
heritage with others - meaning the structure, syntax and form of the languages
are fundamentally different. Consequently, structures, grammars, phonemes, and
characters are used in significantly different manners and represent barriers to models
being adapted readily across languages. It is widely held that the intermediate layers
of a network enable the performance of reasoning and meaning extraction from the
text, processing the input domain to an output domain, whether that be instruction
following or masked language modeling. These intermediate layers, with attention
mechanisms sculpted by positional embeddings pertaining to a specific language, have
no reason to be transferable across contexts.

There are epistemological issues with assuming that many of these languages
share any common structures or ideas with those that fit well with LLMs. Many
of the problem areas for detecting hate speech or metaphor-infused language can
be derived from a lack of visual grounding. Idioms, emotive and visual language
are largely cultural and vary massively across cultures, languages, and even dialects.
It is the goal of this chapter to attempt a visual grounding approach to teaching
low-resource language, to maintain this grounding. This can be shown by the work
translating CLIP into other languages [14], that the visual domain does not have the
same parallels to a purely linguistic one, but rather the geometric constraints are not
all subjective.

The underlying assumption that languages occupy a subset of universal language
must be challenged. If this were true, it would be fair to assume that there was a set
of rules that govern the geometric transformation of one text to another. Instead, the
use of Computer Vision as a grounding domain will improve translation through the
use of weak-noisy labels. The concept of visual grounding means that the captions
do not have to agree but are likely to have semantic similarities, which is sufficient to
train from. This approach, akin to many NMT (Neural Machine Translation) ideas
[112], abstracts away from the traditional word-to-word or sentence-piece approaches
that dominate the literature. A BERTScore [132],[54] like approach is needed: to aim
for a semiotic match, not token conversion.

2.2.2 Related Analysis Methods

Approaches like BERTScore work on the assumption that intermediate representa-
tions point to single, comparable tokens. The approach underlying BERTScore [132,

17

Chapter 2. Background 2.2. Related Works

54] assumes that there is a permuted one-to-one mapping of tokens with comparable
semantics. As discussed earlier, the attribution of language as being a sum of its parts
is to ignore the semiotics and meaning inferred. Therefore, analysis of translation or
language tasks ought not to rely on equivalency between sets of tokens. Such methods
can be further discounted because of the clip architecture that uses [EOS] (End Of
Sequence) token as a semantic summarization, referred to as CLIPScore. However, in
testing for LiSAScore, a work culminating from this chapter and Chapter 6, this was
shown to be a good approximation to BERTScore, as shown in Figure 2.6, showing
the correlation between them, using a dataset that only some of the trialed models
were trained on, to profile the correlation of the metrics across a range of performance.

(a) Model scores over the WMT dataset
measures with BERTScore

(b) Model scores over the WMT dataset
measures with CLIPScore

Figure 2.6: A figure showing that CLIPScore and BERTScore produce very similar
results across language models on the WMT dataset

Figure 2.6 shows how there is a strong correlation between the 2 metrics, where
one is a significantly smaller calculation. In this chapter, other evaluation metrics will
be explored for evaluating how training can be measured in low-resource contexts.

Prior training to visual grounding of the embeddings could theoretically yield false
positives: captions that are semantically apart but might describe the same image.
This explains the use of cosine similarity as a non-directional proximity metric.

Works like BERTScore can be applied to intermediate layers too. However, these
modes of operation have also been discounted due to computational complexity and
disparity between encoder architectures between modalities. Such works show the
potency of intermediate layers for accurate comparison. In this chapter, optimizations
are presented to metrics that can apply to heterogeneous architectures.

18

Chapter 2. Background 2.2. Related Works

2.2.3 Related Works for n-dimensional Training

In recent years, much work has been done on distilling LMs for efficiency and to
reduce the overhead associated with fine-tuning large models [17][5][48]. It is clear
from the body of existing research that grounding language in a visual domain is a
very important component of understanding and is key to capabilities like concept
referencing and visual and spatial reasoning. In the low-resource language domain,
there is a wide body of work looking to use pre-trained models to rapidly demonstrate
viable translation models. NMT-based approaches [112] seek to build embedding
spaces from context embeddings, stating that they have a similar topology to which
a small set of samples can anchor to the target domain. There are other approaches
based on fine-tuning that attempt to alter the projection of a space onto another.
This has been frequently and successfully applied to CLIP-based systems as a way
of very quickly tailoring models to a new language, even by just fine-tuning a single
projection or encoder [14].

There are also works that replicate these findings in spoken linguistic sources,
although these are not direct parallels for the implications due to the addition of
voicing, tonality, and intonation. The significance of Dalmia et al. [27]’s LegoNN is
to demonstrate not only an interchangeable intermediate embedding space, but one
that models can be trained to directly. This poses significant ramifications for our
approach, seeking to replicate a similar result at smaller scales in an encoder-only
model.

If the goal here was to emphasise the importance of simply finding an intermediate
embedding space, the emphasis would be training translation models using a
BERTScore-style metric. However, there are many practical limitations, such as the
additional overhead of a whole extra model on a system that presents millions of
parameters to track gradients through. If the code were sufficiently adapted to add a
contrastive loss, which would favour sequences that had varying semantics of tokens,
which fits the majority of cases.

The limitations of these works are that they do not appreciate the nuances of
language that impact grammar, emphasis, or cultural norms that pull out different
features, especially in smaller sequences. As a result of these problems, the presented
system is trained from scratch, as very few LMs exist in a pre-trained form to deal
with short sequences with visual grounding like captions. CLIP is a baseline, but there
is little experimental evidence that the visual embedding space shares topography
between languages.

It is also especially evident when considering the magnitude of existing work that
the required hardware and scale, using web-scale data, 1000 +GPUHours per run
and collaborative teams, are not a suitable goal for the remit of a single thesis.
Optimisations are needed given very limited run times: minimise the model overhead
and loss overhead of using a metric like BERTScore. Running BERTScore on any

19

Chapter 2. Background 2.2. Related Works

meaningful dataset is beyond most run-time capabilities in the university. Running
it to govern training in an RL approach is almost unthinkable!

This work also projects all languages through the same encoder, assuming them to
be the same, and thus that the tokenisation schemes and embedding spaces suitably
model a set of all languages. Shared embedding spaces can be problematic in languages
that do not share scripts or grammatical syntaxes, as exhibited in the Thai language
or Chinese, where the typical word separation on whitespace rarely applies.

In the landscape of training enhancements for CLIP, several studies have explored
the potential of gradient caching to mitigate the constraints imposed by limited
hardware resources. These methods primarily focus on optimising the use of
available memory and computational power by storing gradients from previous mini-
batches and reusing them in subsequent training steps. This approach aims to
increase the effective batch size without requiring proportional increases in hardware
capacity. Despite these efforts, the scalability of such techniques often faces significant
challenges. Issues such as the staleness of cached gradients and the overhead
of managing cached data can degrade training efficiency and model performance,
particularly in complex downstream tasks. Therefore, while gradient caching presents
a promising avenue for hardware optimisation, its practical implementation requires
careful consideration of these trade-offs to truly enhance the training process of models
like CLIP. They still suffer from the same scaling issues that are present around limited
data shapes and cannot overcome this difference in hardware and training scales.

After this research was carried out, Llip was presented, by [70] sponsored by FAIR,
indicating the advantages that variety in captions presents. The approach they use
is similar to that in models like BART [75], Flamingo [4] and others, using cross-
attention between caption and visual tokens to improve the image encoder prior to
the final contrastive loss. Using this cross attention is an elegant approach to ensuring
that the image can be queried by all captions; comparatively, our implementation
assumes all captions agree on the visual semantics of the image and focus on the same
thing. Llip, on the contrary, shows that variance in captions improves comprehension,
and integrating this approach into the training pipeline could be very promising for
future endeavors.

The improvement offered by Llip would be high, as the variance between captions
is the cause of much instability in regions of the n-dim training: when captions focus
on different ideas that may cross into relevance for other in-batch samples. Therefore,
by querying each caption against the image first, a latent embedding is created that
should be unique, which aligns to a specific visual token in the transformer.

20

Chapter 2. Background 2.2. Related Works

2.2.4 Related Works for Linear Sum Assignment

Numerous attempts exist to create LSA-capable networks Aironi et al. [2] document
many of the approaches that have been put forward for mathematically complete
approaches (where the input domain is any real number, ℜ). However, other
approaches have been trialled for approximation using neural networks, such as
bidirectional LSTMs, allowing rows and columns to be aware of each other as shown
by Nguyen and Kim [97] offering good approximation results, with the added positive
that being gradient-based approaches, they can carry a gradient, allowing the inputs
(outputs from other models) to be trained to a specific assignment. However, other
approaches look to use the computational graph itself for this differentiation, similar
to the differentiation used in methods like gumbel softmax, where an assignment can
be differentiated as if a softmax output. This is seen in graph approaches as proposed
by Aironi et al. [1]. The most interesting aspect in approaching the problem as a DNN
is the assumption that neurons can implicitly learn the assignment as a function of
their activations as offered by Lee et al. [72]: not dissimilar from the assertion of VAE
approaches elsewhere in this work. These paint a picture of numerous architectures
used to implement LSA approximations; all are acceleration-capable, and my function
of being neural networks is intrinsically capable of gradient carrying.

From these works, there is a clear benchmark of precision 70%. This is not to
be confused with the assignment score. The score totals the selected assignments,
where the precision reflects whether the row of the permutation matrix is correct. A
precision score of 80% does not mean an 80% score. This is a very powerful approach
for evaluating against ground truth: it is more sensitive to teach the optimum and
only the optimum solution.

The precision is mathematically defined as the operation

α =
tr(Y T

gt)

tr((Ygt)T · Ygt)

where tr(·) returns the trace of a given matrix, and · denotes a matrix multiplication.
The result is a similar measure to the graph produced in Figure 6.4.

The significant drawback is that there are a large count of matrix configurations
that can have multiple solutions, precision is indifferent to the assignment score, and
can therefore be unfairly low for an equal score. In further tests, continuous values
are used to avoid these conflicts, with enough tests used so that any introduced error
is statistically insignificant.

For use as a metric during training, Y is transposed so that the smallest dimension
is the last. This ensures that, for the loss, every column has an assignment.
Retrospectively, an auxiliary metric is used, which, based on similar metrics, will
be called the Recall. Recall performs the same operation on the transpose of the

21

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

matrix, where columns or rows can have null assignments. Recall therefore measures
the algorithm’s ability to assign only the values it should.

For training a DNN, the formula for α is modified to offer just the confusion matrix
of:

L = CELoss(Y TY gt, I)

In this formula, I represents an Identity matrix, signifying each row and column only
matches itself.

Using CELoss here rather than the CELoss on the logits directly, is inspired by
the prior use of contrastive training, with the hope of a persistent gradient that is row
and column sensitive compared to doing an operation as L = CELoss(Y, Y gt) The
latter approach is curiously preferred in literature alongside a set of inputs that take
only integer values with L2 normalisation and loss, giving Precision as an evaluation
metric.

2.3 Exploring the Robustness of Embeddings

The term ‘robustness’ in the literature tends to approximately mean that the
embeddings or encodings encapsulate a sufficient set of properties to perform well
in many down-stream tasks. Quite counterintuitively, the resultant set of tasks
invariably descends to linear probes. Even at conception, CLIP was tested by linear
regressions at various depths to ensure distinctions. This demonstrates the power of
high-dimensional (512) feature spaces in which linear transformations can be applied
to solve myriad tasks. This shows that properties are preserved, but not always that
they can be expressly targeted other than finding tasks for which a certain property
or knowledge is uniquely required.

For this reason, the following tests are devised using standard datasets (COCO,
VisGenome) to expressly evaluate CLIP, and ultimately, versions trained within this
work on specific knowledge. This is used for modeling as the best way to provide a
broad, but small dataset that appears in the literature despite the work to show the
importance of contrast and variance [125].

The questions answered by this are several, with myriad applications:

• How effectively do CLIP encoders predict class entities from the text in a
supervised manner rather than top-k retrieval?

• How effectively does CLIP verify knowledge triples of entity-relation-entity in a
cross-modal manner?

• Can CLIP predict object masks within an image, and which encoding is best?

22

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

• Can CLIP embeddings perform relation extraction from images where multiple
objects exist?

Unsurprisingly, all of these tasks seek explicit formalized grammars for the entity
relation tuples. Whilst useful for verification, it misses the point of such complex
approaches. Tools like DETIC, which utilize 2 stage detectors to semantically label
objectness, are more significant for their open-set capability. Indeed, many works
focusing on relation extraction emphasize a very specific scale - training sets often
have objects with similar sizes in relation to whole images. It is almost impossible to
label everything in an image. It would be ludicrous for an annotator to select each
grain of hay in a haystack; there are so many that the act is almost meaningless.
However, part of the core understanding needed to isolate the visual object of a
‘haystack’ is knowing that it is made up of many component parts. There are several
approaches to help encoder models like CLIP isolate such bits of information, such as
contrastive counterfactuals and linear probes. Linear probes are much stronger and
have applications in many computer vision spaces, such as dealing with adversarial
attacks [91].

Nevertheless, trialling these approaches is key to understanding the style of
semantics embodied within the geometry of CLIP embeddings in 512-space.

2.3.1 Mask Prediction from 512 Space

Black-box thinking often assumes that if the model is capable of a function and
humans would break these tasks into subfunctions, then a model must be capable
of the subfunction too. This glosses over the complexities and assertions beneath
approximations with models.

Such thinking can be dangerous. In the case of CLIP, if the function of the model
is considered as querying the contents of an image, a subfunction might be sensing a
fixed element at a location within the image. Such thinking would be to assert that
if CLIP can query images for objects, surely the locations are knowable. Practically
speaking, the probability bounds produced are insufficient for a production model
based solely on the CLIP architecture.

Beyond the well-established need for global embeddings from early works like
GloVE [101] Works like DALLE ([28]), DALLE2 ([73]), stable diffusion methods,
and especially NERF approaches ([38, 123]) all point to extreme capabilities of the
embeddings learnt from contrastive training of encoders to encapsulate semantic
information including localisation to specific object geometry. Latent embeddings
are especially key in conveying semantic ideas that often span novel token sets. A
common misconception is that 512 spaces simply encode detection information within
an image. To highlight that this is not how it is working, and CLIP instead has a good
semantic knowledge, it can be demonstrated that the embeddings do not encapsulate

23

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

the information of entity masks. This means that instead of training these methods are
not rebuilding an image but rather understanding the gist of an image and capturing
salient semantics while understanding the role and expectation of forms within the
image.

The following experiment shows that using the loss metrics available to DETIC
[138] frameworks to calculate masks using DICE loss, does not meaningfully converge
on CLIP - partially because the areas in question are so large in the image that
masking is meaningless.

DICE loss is used because it is one of the few loss metrics available for pixel-by-
pixel loss.

Figure 2.7: This plot demonstrates a hyperparameter sweep that reflects the problems
that arise from assuming that semantic embeddings carry visual information. A
transformer architecture does not converge in a hyperparameter sweep to being able
to predict a rough mask from a caption, across many varied sizes, shapes and other
hyperparameters

This figure shows the convergence down to a plateau in most cases: printed samples
show full mask cover indicating the issue with pixel-wise prediction: each pixel path
through the network receives the same input. As a theoretical experiment, this is
where diffusion-based methodologies triumph by introducing sufficient noise levels
that neighboring pixels are disambiguated.

Figures 2.9 and 2.10 show how the embeddings from Images and Captions are able
to predict the masks: both were trialled because ostensibly they result in the same
value in the embedding space (or at least within a linear projection of each other).
They show that both are very unstable and result in high mean error. The error in
each case is remarkably similar to the fraction of the image covered by the annotated
mask which is consistent with the generated images’ masks being full. A key heuristic

24

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Figure 2.8: A Graph plotting a hyper parameter sweep of transformer models
rebuilding object masks from CLIP prompts. Notably, no models converged and
the loss is unstable.

Figure 2.9: This plot shows the error when predicting bounding boxes from captions,
the fluctuations are caused by an unpredictable number of boxes between images and
therefore batches, and not converging across a hyperparameter sweep

to consider when looking at any training, is stability. If the assumption that the image
and caption embeddings were similar held true, it can be expected that they are both
equal predictors of mask. In an attempt to put a numerical value on this balance, a
weighting factor is used for both inputs’ respective losses: (α×L1)+((1−α)×L2) = L.

25

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Figure 2.10: A graph showing the loss when predicting boxes from the image
embedding across a hyperparameter sweep, showing the same fluctuations and issues
as the model using captions, which is indicative of a very well trained underlying CLIP
model, with very well aligned captions and images within the VisGenome dataset

Figure 2.11: This graph plots the alpha factor which balances the prediction based
on visual and textual domain. The negative value across all hyperparameters reflects
training instability

2.3.2 Relation Extraction

For Visual Relation Extraction, the CLIP embeddings are interrogated using an-
notations known to be in the image to indicate whether they can either generate
or validate predicted entities. The underlying test here is that models like DETR
naturally use the generated embeddings to govern class prediction, though this is

26

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

initially demonstrated using object names (and other nouns in general).
Given that CLIP is famous for capturing semantic information in a way hitherto

unheard of. A rudimentary experiment is performed using the data in the Visual
Genome dataset [68] which annotates a proportion of the visual relations present
in an image. During data collation,bounding boxes are aggregated and basic NLP
tricks are used to encapsulate the annotation in a pseudo-natural language sequence
to generate a CLIP embedding, then pass the aggregated box and caption to CLIP
to be fed into the DETR model [64, 139] to learn using the masks generated from the
DETIC model to train from.

The following set of graphs is the result. The loss graphs show a large number of

Figure 2.12: The VRE Loss here is derived from the combined bounding box and
caption generated by combining boxes predicted by DETIC and generating a prompt
to combine items. That the model does not converge indicates that the visual semantic
does not contain information on any single prevalent visual entities. This graph has
a logarithmic scale because several hyperparameters tried involve scaling the losses
being agregated across orders of magnitude

unstable training runs: even though the loss slightly improves, which is inconsistent
with the published training profile, indicating that the embeddings are not queriable
by a stage detector in this way.

Contrastive loss in this setting is a means of making the model parameters converge
in a more stable manner. PairDETR [60] uses a pair of encoders which each use the
backbone features as inputs. The assumption is that in using contrastive loss between
the produced logits, it forces the salient features to be emphasized and encourages the
2 encoders to learn from each other during training. The reason why 2 encoders are
used is to ensure they capture complementary features and are often fed annotations
that differ on where they center on an object. Figure 2.13 compares the logits that

27

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Figure 2.13: A graph showing that pair-DETR frameworks contrastive loss for
relations not converging when given a long-distance relation, they are lower because
of the architecture of pair-DETR uses the centre of the image for comparison on the
final encoder, allowing each to have separate, complimentary losses

are decomposed into box localization. The difference in how the loss is calculated
is why the latter is significantly more stable. The DETR variant model fails to
converge meaningfully here due to two main factors: firstly, 2-stage detectors prioritize
objectness before labeling, filtering out boxes with multiple objects, which hinders
the model’s function; secondly, CLIP embeddings are trained with weak image-level
supervision, differing from the target domain of smaller sub-image box predictions.

2.3.3 Object Detection Using 2-stage Detectors

From the literature underneath two stage detectors [33], it is clear that this is a
practical approach to many computer vision applications [35]: the exact nature and
interactions of an object are meaningless if all that’s needed is to avoid it. Figure
2.16 shows a prototypical training step for the tested pair-DETR [60] framework.
Many individual parts of the image are isolated and (mostly) correctly labelled, but
the relations are not detected. The nouns show some awareness of purpose, but
it is unclear whether that is intentional or just a remnant of verbose labelling. In
this image, an understanding of why relation extraction, annotating, evaluation, or
comparison is a difficult task is demonstrated in this image: from both an annotation
and algorithmic standpoint. The reader is invited here to consider every pair of items
and how their relation might be annotated, described, and listed in an efficient data
structure. During this task, it will become apparent how interconnected, redundant,
and intricate many of the relations are. This observation governs the latter chapters,

28

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Figure 2.14: DICE loss during training. DICE is calculated with a Cross Entropy
Loss at a pixel level

Figure 2.15: This graph best demonstrates the weakness of PairDETR, that the
bounding boxes do not correctly converge onto relations of items

29

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Figure 2.16: This figure shows the annotations generated by DETIC, which relies
on a set of engineered prompts through the CLIP model is excellent at predicting
segmentations for entities with high ‘objectness’. This is the tool used to generate
captions and bounding boxes that combine pairs of objects

emphasising encoder systems that encapsulate such information without requiring
such information to be annotated so verbosely.

2.3.4 Conclusions

Thus far, a lot has been said on how CLIP works, and the similarities to other works
in the NLP space are that the advancement that CLIP makes over prior work is the
implicit inclusion of in-batch negatives in an unsupervised manner.

Against the background of semiotics, it is clear that this offers the underlying
semantic embedding space access to 2 + orders of knowledge. An ability to group
entries such as separate from other clusters.

In an academic context, there are many issues with this methodology.

1. Researchers cannot replicate models at this scale

2. The quantity of data is unreasonable for any researcher to verify, interrogate or
compete with

3. Academic institutions are reliant on a private company for insight and access

30

Chapter 2. Background 2.3. Exploring the Robustness of Embeddings

Therefore, replication should be a significant priority. This work hypothesises that
the extreme efficacy of CLIP in both vision and language domains comes from these
additional orders of knowledge, and that the scaling of this with batch size is due to
the multiple logits per item in each training step.

We therefore seek to exploit this scaling with the addition of extra dimensions.

2.3.5 Section Acknowledgements

The benchmark and demonstration experiments in this section were greatly aided
by the provision of hardware, time, supervision, and equipment by the SPARC 2023
workshop.

31

Chapter 3

Using Additional Dimensions for
Teaching with Visual Grounding

In this chapter, the focus is on RO.1 and RQ.1:
RO.1 Present a training paradigm that is not tied to a domain prediction but

can create meaningful embeddings. RQ.1 Demonstrate where and how elements of
knowledge can be isolated within a machine learning model.

3.1 Teaching an Encoder with Visual Grounding

3.1.1 Objective

The goal of this work is to train a visually grounded language model encoder using a
data source comparable to that available for many low-resource languages.

3.1.2 Goals

• The work will show that it gains a reasonable understanding of a toy language
compared to an MLM training approach.

• Catalogue the scaling implications of new methods on the accepted scaling
paradigms of CLIP.

3.1.3 Hypothesis

The work produced by CLIP was revolutionary in the creation of zero-shot perfor-
mance encapsulated in a single embedding space. Therefore, this work proposes the
use of CLIP encoders of both image and language to train a tertiary encoder.

32

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

There are also merits to fine-tuning pre-trained encoders with these additional
languages, as much research has latterly been focused on the differences in reasoning
and world-view that is inherent to different philological views; however, it is likely
that this would require a magnitude of knowledge, by definition, not available to
characteristically low resource languages. The idea of training two encoders to
replicate CLIP training must be quickly discarded despite its effectiveness. Training
cannot be replicated on academic scales of hardware and data.

Therefore, our experiments will focus on the impact of training on the tertiary
encoder, infusing teacher-student training with an additional teacher to instil visual
grounding. The hypothesis is that by obeying the scaling available in the contrastive
method, a model can be trained with visual grounding requiring significantly fewer
samples.

3.1.4 Experiment Definition

To aid understanding of a toy language space by adding visual grounding. By
replicating the success of CLIP’s text encoder at a smaller scale, the usefulness of this
work to low-resource domains will be demonstrated. Given CLIP’s ability to use large-
scale noisy data, this experiment shows a proof-of-concept architecture for learning
from social media where images have noisy captions and may feature incomplete input
sets.

To achieve this goal, a text encoder will be trained alongside the pretrained CLIP
Vision encoder, allowing the text to be supervised both by the comparative learning
of the text components but enforcing an embedding space to carry the constraints of
visual semantics.

The test will include 3 encoders. 2 will be pre-trained, and the final encoder will
be trained from scratch, converting an unseen language to CLIP-space as guided by
the 2 pretrained CLIP encoders.

A benchmark will be an MLM training approach. The encoder-decoder model
will be trained with the same masked captions as the original model with the same
number of iterations.

Comparison will be performed by freezing the weights to the encoders and training
a decoder to the encoder.

3.1.5 Method

This experiment is going to add an extra encoder, as shown in Figure 3.1. A
contrastive loss consisting of 3 sets of logits is used. The goal is to maximize the
case where the i-th item in each set matches. By exploring different combinations
of 3 sets of logits, there is a comparison of how each scales comparatively to the

33

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Image Text 1 Text 2

Vision Encoder Text Encoder 1 Text Encoder 2

Projection Head

3D Similarity Measure

Loss

Figure 3.1: The flow of forward gradient during training. An image, accompanied by
2 captions is encoded, and then a 3D similarity measure used.

34

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

CLIP model. The merit of this case is to allow for a hybrid capability where, in
some instances, 2 modalities may match and be trained accordingly. Positive and
negative logits are monitored to show any significant variance in bad logits, showing
the conflicting cases.

3.1.6 Dataset

Retrospectively, teaching an encoder a language is difficult from such a limited sample
as a few hundred captions [10]. Therefore, the exact choice of low-resource language
here is a secondary concern to the work as a proof of concept. To demonstrate the
work in this chapter, both a toy Spanish dataset generated using MSCOCOES [42]
and some MSCOCOCN [78] datasets are trialled. The latter being applied because
it has human annotations from another cultural perspective, rather than machine
generated language. This makes the MSCOCOCN a far more fitting choice to tie
back to the RO.1. For future experiments and exploring the limits of these methods
in subsequent chapters, this work defaults to English as a toy language due to available
data. It is hoped that this work will aid in calls for data in more interesting shapes.

For emulation of a few thousand samples that may be the upper limit of any low-
resource language, the splits of MSCOCO are taken. This gives short-form sentences
that each reference an image. The choice of the five captions gives the added benefit
of emulating a slightly larger language choice available to each encoder but is still
highly comparable to the quantity of gold-standard annotations in many low-resource
languages.

3.1.7 Logit comparison

There are many problems with the 3-way generation of a similarity matrix as is
described and glossed over in Figure 3.1. Deeper analysis of the problem description
can be found Mander, Piao, et al. [88]. However, it is sufficient to consider the issues
surrounding scaling cosine similarity to more than 2 vectors. In this chapter, and the
next, new algorithms are presented that are computationally viable at small scale and
handle multiple terms better.

This work presents numerous different approaches to compare logits through a
contrastive method, while attempting to optimize the scaling affordances that are
present.

Each method can be found later in this work along with approximation functions
and other methods that can be efficient within more limited circumstances.

However, fundamental to the method here is the assumption that CLIP, UNITER
[19], and other referenced VL models excel over traditional NLP approaches due to
the inclusion of in-batch negatives in a way that many prior NLP works aim to include

35

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

with manual supervision, which classifies rather than clusters points according to a
label: a subtle difference - but it has a large impact where attention is applied to a
series of representations.

3.1.8 Results

In initial tests, the loss curve descends quickly and in line with what is found with
CLIP, within the space of just a couple of hours on a single GPU. The graphs
demonstrate how the training of an encoder in a fine-tuned setting produces a set
of embeddings that carries the properties of the encoder model, even though the
activation function that may be associated with the gradient of the space is different.

Figure 3.2: Using the Linear Probes discussed in the original tuning of CLIP, and in
later chapters, this graph shows how effectively the embeddings in our model improve.
This shows that from early in training the probes perform well, and their performance
is improved by training, even over a short period.

3.1.9 Sweep results

The wider training report across a sweep shows some interesting emergent behaviors
which demonstrate the limitations of the approach. In the subsequent results, training
runs with unfrozen pre-trained encoders are included, and runs where no pretraining
has occurred. It is reasonable to hypothesize that given the orders of magnitude extra
training the pre-trained model had and the comparatively reduced size (indicating
model distillation), the untrained model will not converge during our training. This
is the contributing factor in the runs that have a linear probe score that stays static
at a value around 0.2.

36

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Figure 3.3: This graph shows how training loss descends to minimal values very
quickly. Our proof of concept demonstrates the ability for this training to rapidly tune
language models with a pretrained visual encoder.Tracking the loss during training
shows when the model has mostly converged. Intermittent peaks demonstrates where
the model is not generalising well, so notable that the magnitude of peaks also
diminishes

Figure 3.4: Tracking negative logit value during Training to be minimised relative to
the positive value. The plateauing of the curve shows the model quickly converging
in < 200 steps

37

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Figure 3.5: Negative logit value during Training

Figure 3.6: This graph shows that the similarity values mean is relatively stable
throughout training, across many different hyperparameters. The plateauing indicates
the logits that are being maximized are commenserate to those being minimized,
indicating a stable training paradigm

38

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Figure 3.7: This graph shows how many
runs converge to a very high classification
score for text probes against class, which
has been synthetically generated to a
top score is unlikely. Descending runs
reflect the sweep parameters where a high
learning rate is used, or an untrained
visual encoder

Figure 3.8: This graph shows the training
of a Image-based linear probe, from
similarity with 3 inputs, notable some
of the runs from an untrained visual
model grow and are runs where the text
probe initially drops in performance. This
indicates that both models need to learn
together to create to optimum latent
distribution

Figure 3.7 shows how a caption can be matched to an instance within the image.
Albeit a trivial task for most NLP models against COCO captions, this is zero-shot.
In particular, many models have very high performance in 5k steps! Some arrive even
earlier.

Compared to textual probes, the vision encoder is significantly slower to converge,
where some are immediately high performers, while others take many more training
steps. There are several factors that dictate this behaviour. First, only a single loss
permutation influences the visual domain; there are fewer unique samples to train
from, and there is no pre-trained domain teacher in the combination of encoders. This
suggests that image probes will be a better indicator of performance for domains with
reduced data or annotation. As the classification is a reduction of the COCO instance
annotations, even rudimentary NLP approaches would score well, while curating a
visual embedding that encapsulates the semantic information is a far more complex
task. Grounding in the visual domain over the textual domain is the dominant metric
to estimate performance. To confirm the system’s accuracy by decreasing similarity
for incorrect cases and increasing for correct ones, Figure 3.6 includes a heuristic:
mean similarity per batch. This plot ensures logits remain stable and align with
their respective metrics. In 2 dimensions, this is simply the mean of the dot-products
of each possible pairing. This should remain relatively stable as the values deviate,
but as the number of batched inputs increases, it is expected the ratio of different
behaviours to cause increased instability in the mean throughout training. Figure

39

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Figure 3.9: Within the validation set,
this graph plots the mean similarity score
which tracks how stable the training
is. The stability of the score varies
by both similarity metric, and can be
adversely affected by other extreme values
in the hyperparameters (like a learning
rate that’s too high)

Figure 3.10: Using the cosine similarity we
compare our latent space to the pretrained
vision model. There are many out-lying
runs where the loss increases reflecting a
different set of embeddings. Many runs
however, are stable with a loss ≤ 1,
indicating good training in a majority of
cases

3.10 is used for tracking how the overall set of logits is behaving per algorithm, and
we can immediately see that whilst the majority are stable in early training, some of
the algorithms trialled move the logits to a positive or negative value very quickly,
suggesting the models do not converge to the same space, but rather a similarly
semantically charged space that requires other metrics to investigate.

What is notable is that the mean projection values in Figure 3.10 remain fixed,
indicating a minor, if any, change when there are pre-trained encoders. The projection
is set as a parameter to adjust during training. This shows that the projection isn’t
doing much, if any, of the heavy lifting around semantics, nor is it being used to correct
encoder values, when multiple may be combining. If it were becoming extremely
positive or negative, it would reflect training instability, or a mathematical issue with
the output of an encoder, which is perhaps already being removed by the presence of
normalisation, activations, and soft-maxes during penultimate modules. This shows
the instability in some algorithms, where the value can suddenly jump, drop, or
plunge during training, reflecting that in such a small sample set, minor changes
to topology can have a severe impact, especially when considering the working of
attention mechanisms. The blue line in this graph and its changing direction is a
symptom of the at least B2 ratio of (maximized : minimized) logits, which first
incentivizes the reduction of all logits, before some can be maximized. Performance
against stock cosine similarity is also a good metric to consider. In both cases, the
validation loss did not converge, which reinforces the hypothesis of other training
graphs that the algorithms for measuring the comparative distance of 3 vectors do not

40

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

Figure 3.11: This graphs the logit at the
0-th position in each dimension, which
should always be maximised compared to
the others.

Figure 3.12: This graphs the logit at the
worst position in each dimension, which
should always be minimised compared to
the others.

behave equivalently to cosine similarity and are not transferable in their embedding
geometry. It seems derivative of the lack of supervision or label in VAE-style training.
In particular, apart from a few standout poor cases, no individual parameter directly

Figure 3.13: The effect of hyperparameters on the output in 3 dimensional training.

correlates to significant or poor performance. During the compilation of this report,
other variables were also included, which were analogous to the version of the code,
ensuring that any changes in the code did not have a significant effect on training,
either causing significantly better or worse training, which would be indicative of errors
in methodology. As version indicators were even less significant than minor changes,
such as small increments in batch size or Learning Rate, it is assumed that version
revisions have had no substantial impact on training effectiveness. The unexpected
conclusion to this work is that the many algorithms that are defined in this thesis
for n-dimensional vector comparison are not substantially distinct from each other in
behaviour, and produce largely comparable results in this training paradigm. With
more data, later chapters will explore whether the difference may become significant,
but full training and evaluation are beyond the remit and capabilities afforded at this
scale.

41

Chapter 3. Visual Grounding 3.1. Teaching an Encoder with Visual Grounding

3.1.10 Findings

The experiments so far have demonstrated highly successful teacher-student training
of low-resource languages when paired with a shared embedding space, even when
alternate metrics are used. This section has demonstrated the viability of using
contrastive training and answered the RQ.1, demonstrating the effectiveness of
training low-resource languages contrastively.

However, many translation models on HuggingFace and other libraries are not like
the encoder previously trained. They have a decoder to allow for sequence-to-sequence
translation. The subsequent section attempts to enhance the method presented so far
to include a decoder for sequence-to-sequence training and evaluation.

42

Chapter 3. Visual Grounding 3.2. Whole Model Training

3.2 Training a Whole Model with Visual Ground-

ing

The previous experiment highlights the merit of using multiple teachers with an
additional modality. However, in only teaching an encoder, decoder training is further
required, which, with a lack of training data, presents many challenges. The question
is therefore whether an entire model can be trained effectively in this method.

The significant goal is to add the decoding of embeddings in training. The goal
can be achieved easily because there is already a teacher model that exists to translate
the target language into embeddings. So the forward pass diagram looks as follows:

A translation model - a basic transformer - which translates to English, then goes
through a pre-trained encoder, alongside the pre-trained encoder of CLIP and image
encoder. This still requires the same input tuple of the low-resource-language, English
and an image. But training will be for an entire translation model. The assumption
here is to use the extra dimensions to enforce the model learning embeddings with
multiple orders of knowledge by having in-batch negatives that scale better than the
1:B scaling of CLIP.

3.2.1 Tokenization

When introducing new models in NLP, it is important to consider how language
is broken into tokens. As previously looked over, CLIP uses a bespoke tokenizer
to address issues around locating the [EOT] token, which is used to generate a
summarisation of semantics at the end of a sequence. To do this efficiently, they
take the maximum token in the sequence, which defaults to the BOS token if not
found, which is usually a good subsequent candidate for summarisation. In any case,
this unique scheme is unlikely to comply with a translation model. This is why
a marianmt MariaNMT model is chosen, a translation model with customisable
embedding sizes at either end.

Under the hood, MarianMT uses a single linear layer to generate token logits
(probably adequate for sentence/word piece tokenization schemes but less likely to
perform well with CLIP).

Continuation of the gradient between a translation model and the pre-trained
encoder is not available in the standard models. Most off-the-shelf encoders take
token ids, and the initial stage of the encoder passes the ids through an embedding
space. The nature of this embedding lookup loses any associated backward gradient.

This work requires the assertion of equivalence between linear layers with respect
to the transpose of weights of embedding layers. This is demonstrably true in Pytorch.

This allows the conversion of a CLIP text encoder to take a one-hot vector as input
rather than a character index. In turn, output of the final layers of the translation

43

Chapter 3. Visual Grounding 3.2. Whole Model Training

Image Text 1 Text 2

Vision
Encoder

Pretrained
Encoder

Low
Resource
Language
Encoder

Projection
Head

3D
Similarity
Measure

Loss

Low
Resource
Language
Decoder

Language
Head

Figure 3.14: A diagram showing the forward pass for full model training

44

Chapter 3. Visual Grounding 3.2. Whole Model Training

f unc t i on encode text (text) :

Step 1 : Apply token embedding to the input text
x = token embedding (text)

Step 2 : Add po s i t i o n a l embedding to the token embeddings
x = x + pos i t i ona l embedd ing

. . .

Step 3 : S e l e c t e lements from x based on the maximum token index in each sequence
s e l e c t e d i n d i c e s = argmax (text , dimension=−1)
x = x [range (0 , number of rows (x)) , s e l e c t e d i n d i c e s]

Step 4 : Return the f i n a l encoded text
return x

Figure 3.15: Code excerpt from CLIP (converted to psuedo code)

f unc t i on en cod e t r an s l a t ed t ex t (text) :

Step 1 : Convert the input text to one−hot encoding and apply token embedding weights
x = one hot encod ing (text) ∗ token embedding weights

Step 2 : Add po s i t i o n a l embedding to the one−hot encoded embeddings
x = x + pos i t i ona l embedd ing

. . .

Step 3 : S e l e c t e lements from x based on the maximum token index in each sequence
s e l e c t e d i n d i c e s = argmax (text , dimension=−1)
x = x [range (0 , number of rows (x)) , s e l e c t e d i n d i c e s]

Step 4 : Return the f i n a l encoded text
return x

Figure 3.16: The change to an encoder model to recieve decoder outputs

model is modified to, instead of taking an argmax of probabilities, convert them
accordingly.

There are 3 options for this design choice:
The ultimate softmax activation in the translation model could enable the

translation model to forward partial tokens to the encoder; however, as this is the
human-interpretable output of the trained model, it seems more prudent to force a
token choice where possible. Unlike the usual beam search methodology used in many
LLMs. It can be asserted that the CLIP encoder has a good enough distribution to
enforce a similar fullness of our embedding space. Initial experiments with this direct
conversion of probabilities had very promising loss curves, but failed to produce any
intelligible training output. A similar result is found when models exclusively train on
generated content [41] or why prompt engineering is difficult, where models attempt
to maximize a given output at the expense of legibility.

An alternate solution of a Gumbel softmax layer, which probabilistically converts
probabilities to a one-hot output. Enabling the linear layer to exactly approximate
the embedding layer while receiving an input according to the probabilities on the
final layer of the translation model.

45

Chapter 3. Visual Grounding 3.2. Whole Model Training

Format Tensor
Shape

Advantages Disadvantages

No
language
head or
embed-
ding

N/a This allows clean separa-
tion of the pretrained and
trained model with minimal
overhead

There is no human in-
terpretability of the out-
put. The output domain of
the translation model being
trained is identical to the
context of the pre-trained
model and the model will
be suitably biased to this
domain.

Linear
Layer

BxSxD

10×80×512

This approach minimises
additional consumption of
VRAM whilst allowing a
linear fit of the output of
one model to the other.
There could be some in-
terpretability if the linear
weights are topologically
comparable to the CLIP or
other domain appropriate
token embedding model.

The disadvantage to this
approach is that there is
now a linear layer that can
obfuscate the teaching of
the translation model.

Language
head one-
hot with
activa-
tion

one-hot:
BxSxV
10 × 80 ×
60, 000

Using Gumbel softmax to
create a human-readable to-
ken choice while maintain-
ing gradient calculation

There is a large chunk
of gradients lost to low-
precision and sparse vec-
tors. Memory consumption
means that this cannot be
run at present scale.

Table 3.1: Comparison of different intermediate token gradient conversion

46

Chapter 3. Visual Grounding 3.2. Whole Model Training

Given that the penultimate translation model layers have a resulting tensor size
of (B, S,D) where B,S,D represent batch, sequence length, and embedding size,
respectively, and the post-embedding layers of CLIP expect a [B,S,D] input, this
shortcut can be made, removing the requirement for the additional BV parameters.
The issue here is that the output of this model is unconfined to a natural language
output - skipping the language head.

The assumption here is that because an architecture can be trained to a behaviour
in an MLM paradigm, it will learn the equivalent behaviour in this new paradigm using
a fraction of the data. The hope being that the pre-trained language encoder provides
a suitably robust gradient for this operation. Because embedding layers can be treated
as linear layers with an indexed rather than one-hot input. Taking the final LM-head
linear layer, the identity can be used that any number of adjacent linear layers without
intermediate activation can be abstracted to a single layer. Thus, splicing is fine for
continuing a gradient between models, with the only real question being whether the
model state at this location is useful for later training to a token output.

Work showing that the penultimate CLIP layers are still good for linear regression
on output is a good indicator that the assumptions posed thus far are correct. The
issue arises in the specific scenario of CLIP sequence summarization training, as it
relies on the positional identification of the [EOT] token. In a broader context, it
necessitates the fitting of a linear layer, which can be easily accomplished using a
linear regression probe and a few translations in a validation set.

3.2.2 Proof-of-concept : Locating the EOT token

A proof-of-concept experiment must demonstrate that there are memory-efficient
equivalences to a linear layer and the gumbel / argmax and argmax layers to locate
the candidate EOT token space. Our assumptions:

• The EOT token is irreplaceable. It must be in the sequence.

• The embedding for it is likely to be very distinctive, which can be checked by
finding the comparison of the weight to others.

• The removal of the quantisation of values when converted into tokens will
improve the fit of the model.

• If a Linear layer, L, is initialised with the transposed weights of an embedding
space, there is an equivalence for a given input, I:

onehot(I) · Embeddingweight = Embedding(i) = L(onehot(I))

where · represents a matrix multiplication.

47

Chapter 3. Visual Grounding 3.2. Whole Model Training

Figure 3.17: A plot of all similaritys to the EOT token by token index, showing each
token sequentially along the x-axis, and similarity on the y-axis.

Figure 3.18: A figure showing the distribution of cosine-similarity to the EOT Token.

• Traditional token-loss paradigms insert [EOT] tokens under different strategies
as a linear function of the embedding state, which the argmax may not learn,
but Gumbel softmax might.

The underlying assumptions above can be quickly plotted by showing the cosine
similarity of the token embeddings and the distribution of logits. That nearly
all indexes are perpendicular in high-dimensional space, shown by the Figure 3.17,
suggests that the EOT token’s embedding sits prominently in a single dimension: the
hypotenuse of the vector is very close to an axis of the space. This reinforces the
hypothesis that the embedding can be used directly to locate the best EOT token
while maintaining a gradient.

A similar conclusion can be drawn more clearly from the distribution plot in Figure

48

Chapter 3. Visual Grounding 3.2. Whole Model Training

f unc t i on EOT finder (x) :

Step 1 : Get the End−Of−Token (EOT) embedding and move i t to the dev i ce
eot = detach (EOT embedding) . to (dev i ce)

Step 2 : Compute the dot product between x and the EOT embedding , then f i nd the index o f ←↩
the maximum value

s e l e c t e d i n d i c e s = argmax (dot product (x , eot) , dimension=−1)

Step 3 : S e l e c t and return elements from x based on the maximum index
return x [range (0 , number of rows (x)) , s e l e c t e d i n d i c e s]

f unc t i on EOT finder2 (x) :

Step 1 : Get the End−Of−Token (EOT) embedding and move i t to the dev i ce
eot = detach (EOT embedding) . to (dev i ce)

Step 2 : Apply Gumbel Softmax to the dot product o f x and the EOT embedding , then mult ip ly ←↩
by x

gumbel output = gumbel softmax (dot product (x , eot) , dimension=−1, hard=True)
x = x ∗ gumbel output . unsqueeze (−1)

Step 3 : Sum over the f i r s t dimension o f x and return the r e s u l t
re turn sum(x , dimension=1)

Figure 3.19: This code excerpt shows the difference between selecting the correct
token to evaluate from a pre-trained model, compared to trying to learn the correct
positioning of the EOT token. The issue in the latter case is that there is not
necessarily a correct position in a semantic-based system.

3.18. There is only one token with a high similarity. Notably, this does not have a
similarity score of 1. This is caused by errors introduced in a low-precision setting.
(There are optimisations that account for this in training [29]). The salient conclusion
here is that the [EOT] token is very distinctive and can therefore be used to query
directly by output using cosine similarity and matrix multiplication.
Test Cases:

• Check assumptions - equivalence of weights to input format

• Can I use a pretrained weight to query model output

• Best way to teach the translation model is either gumbel or argmax layers.

Figures ?? show that selecting the closest EOT token is a valid way to find the
best location. It may not work from a random initial state where the tokens are not
close. Especially as it may lead to a false descent, given CLIP’s tokenization scheme
where in lieu of the [EOT] token, the [SOT] is used, which may lead the model to
very quickly start giving many [SOT] tokens in the same scheme as the default input
ids. As such, a gradient descent using Gumbel softmax is used to find the best token,
allowing a residual gradient to generalise to which token is best suited to the role.

Training for a specific set of tokens is not ideal, but rather aiming for the
generalized rule - thus sufficient quantities of varied data are needed.

49

Chapter 3. Visual Grounding 3.2. Whole Model Training

In lieu of token-level loss, it is worth considering how the final hidden state of
the EOT token is able to adequately summarise the semantics of a sequence: That
attention must successfully be used to encapsulate every other token’s meaning.
However, there are obvious shortcomings to this method, as the ordering of tokens
is lost, allowing non-sensical structures and grammars. In practice, the real cause
of training difficulties is the lack of beamforming. Beamforming is a technique for
generating a sequence of text-tokens with the optimum combination of the next n-
tokens such that it maximises the score of the output and each token. Unfortunately,
beamforming is often relegated from the training stage of a model because of the
complexities involved in preserving a residual gradient without intricate reinforcement
learning techniques that would push this technique beyond the scope of this work.
But, it means that relatively poor results can be anticipated and expected.

3.2.3 Evaluation Methods

Beyond the methodologies presented in previous sections, the following experiments
aiming at sequence-to-sequence translation offer some additional evaluation chal-
lenges. First, tokens are in a human-legible form; with such limited sample sizes,
finding the optimal assignment for some tokens across a linguistic border is a nuanced
issue and is best described as an imbalanced classification task: there is so little data,
inferring grammar for long sequence forms with such a limited size is difficult when
not using a pretrained decoder.

The tensors used for the training regime presented are all in 512-space, which
does not readily convert to an evaluatable form against an input or output of tokens.
Therefore, in our test step, a single linear layer is trained according to the MarianMT
[66] model for machine translation.

The available training framework and the hardware limits have meant that the
loss from the linear layer is aggregated for each batch in the test epoch. This should
give a curve at each epoch. This curve is defined by the batch loss minimum (best),
maximum (worst), and mean value. BERTScore [133] at the validation and test stage
is then calculated in the output throughout the test epoch, as the linear layer is
training. This means that the initial values are going to be poor (near random)
and the final values are likely to be near perfect. This makes this metric not
directly comparable to other literature, but rather it is a good way of combating
the overinflatedness of BERTScore, and the tracking of the mean value will reward
rapid convergence to an optimum over a fixed number of steps.

50

Chapter 3. Visual Grounding 3.2. Whole Model Training

Mean Test Loss 5.10
Min Test Loss 1.79
Max Test Loss 10.1

BertScore on Test Batch 0.497

Table 3.2: Benchmark results for initial training. Tracking of the mean loss, shows
that in the benchline the model improved linearly with time

3.2.4 Section Findings

This subsection will explore the results from an initial experiment using the contrastive
loss across all pairs of encoder outputs simultaneously. The input to each step is
a single image and caption pair from the COCOCN dataset. (So this includes the
image embeddings from CLIP; the intermediate translation embeddings and the CLIP
encoding of the MarianMT model output). As previously discussed in the earlier
Method section, the expectation is that the CLIP text encoding of loss will be sufficient
to teach a grammar or structure to the outputs.

The function of this experiment is to determine whether, without a Ground truth
annotation, the image encoder is strong enough in the representations to accurately
train a language model. If this test is successful, it conveys that the created encodings
are of such potency that token sequences’ meaning can be inferred by their relation
to each other, considering the images’ relation to each other.

Importantly, this baseline result shown in Table 3.2 shows that the training of an
LM head is not effective at such small epochs and steps. (A BERTScore of 0.5 can be
easily achieved by most translation models and even custom weights, as demonstrated
in the publication [87]). The log of the mean, minimum, and maximum test loss
indicates a roughly linear descent throughout training, though the absolute values are
still very high.

The conclusion of this work is that the model didn’t adequately converge.
Manually inspecting outputs that were incoherent and had repeated words rapidly
confirmed this metric-based hypothesis. There are several and myriad prognoses:

• Train the language head slower and better - possible from the pretrained weights
of CLIP

• Longer training with more steps to better optimize past the initial descent
fluctuations (the spikes at 100,120,140 steps, characteristic of contrastive loss
descent with too high LR)

• The relatively high plateau of training loss may also reflect that more layers are
needed - this method uses 3, atypically low for a translation model.

51

Chapter 3. Visual Grounding 3.2. Whole Model Training

(a) Value of the negative Logit (b) Train Loss

Figure 3.20

The training loss in this run also very quickly descends to a point where it is well
predicting the optimum assignment, further training is to ensure the space is free
from conflict as things are contrastively sorted. The fluctuations in the Bad logit
value represent where vectors that should be different are similar. Relative instability
after 100 steps is likely a hint at overfitting to the training batch, or that there is
an imbalance in the decoder from the translation model. Such emergent behaviour is
a logical deduction when comparing this output to the prior experiment, especially
considering the anticipated issues passing a gradient between models.

Figure 3.21 has been included to show the engineering that must still go into
such approaches for each experiment to maximize available hardware. The loading
of a single GPU during training is a good indicator of how efficiently the available
compute is used. Throughout this work, the experiments shown are subject to strict
compute limits, and many compromises are made for them to run. Ensuring the
maximum utilization of available tools is critical to such small scale work. During the
baseline, there are a lot of excess latency spikes in loading, which reflects that the
loading of data is not well synced with the execution. Drops in utilization, memory
allocation, and power usage show that the batch size can be increased to make better
use of available hardware. Increasing the batch size has a quadratic impact on the
number of logits tracked and the increase in the efficacy of training. This graph is

52

Chapter 3. Visual Grounding 3.2. Whole Model Training

Figure 3.21: GPU loading during training shows very efficient compute making high
usage of the GPU, but not completely using hardware indication either memory or
compute bottlenecks

generated with a batch size of 14. A batch size of 24 gets an increase of 25% in GPU
memory and a utilization near 100%. However, correctly utilizing the accelerator here
reduces the number of steps per epoch. An increase in LR and/or Epochs can rectify
this.

3.2.5 Hyperparameter tuning and Improvements

In subsequent training cycles, the following changes were made:

• Reduce the number of batches to aggregate gradient over. From 16 to 4.
This change is to increase the number of steps per data input. This lets the
convergence happen quicker in the training time period.

• Increase the layers of the MarianMT model. From 3 to 6. This should have the
effect of improving model efficacy

• Increase Batch size to maximum per device. From 14 to 32. Increases efficiency

53

Chapter 3. Visual Grounding 3.2. Whole Model Training

(a) GPU Power Usage
(b) Memory Allocated During 4D train-
ing

Figure 3.22: A Figures showing the final heuristics for compute usage, reflecting more
stable and complete utilization of available hardware

of contrastive training, and allows more epochs for a given dataset. This also
balances the additional number of steps introduced.

• Increase the learning rate of the language model head. This should significantly
improve BERTScore.

Figure 3.22b shows that the model learns very quickly with the associated
improvements; however, there is a notable ‘elbow‘ in the training graphs. This is
likely caused by an optimum arrangement being found and potentially represents
a saturation point to which the data set is fit. It would be logical, therefore, to
increase the batch size here to enable greater contrastive comparison within the
dataset. Subsequent training from these improvements results in the following figures,
showing a marked improvement in utilisation and performance, with the difference
between the positive and negative cases (tracked by the positive Logit and negative
Logit graphs respectively) only increasing.

Counter to prediction, the increase in batch size has smoothed out the elbow in
training loss and moved it from occurring at 60 steps on to around 110 steps even
though the monitor for Bad logit value does still show descent at that point. This

54

Chapter 3. Visual Grounding 3.2. Whole Model Training

(a) (b)

(c) (d)

Figure 3.23

55

Chapter 3. Visual Grounding 3.2. Whole Model Training

answers RO.3, showing that batch size drastically improves training stability and
points to the need for an even higher batch size, or at least a comparison of more
points during this training.

56

Chapter 3. Visual Grounding 3.2. Whole Model Training

3.2.6 Final Hyperparameter sweep

(a) (b) (c) (d)

Figure 3.24: Compilation of Final Training Report Figures

Table 3.24 shows the marked improvement in training formats for translation
tasks. The logits descend well and quickly learn low-resource languages. It is
worth remembering during comparison to other works that each of these occurred
at academic scales, in very limited runtimes on single GPUs.

To ensure the validity of this training, the test loss was calculated using cross-
entropy loss on the tokens against a human translation, The plots shown in table
3.25 are showing the plots of the min, max and mean values, demonstrating that the
models descend very quickly to a near-optimum token prediction case. It is worth
understanding that in the core implementation for the marian model, the language
head is a single linear layer, which, for the purposes of encoder-only systems, is trained
during the training epoch. Therefore, there is some natural error compared to more
sophisticated token prediction techniques used in current LLMs. However, simply
printing the result of these tokens is not a fair or meaningful comparison in this
context. Least because the chosen low-resource language is not one the author is
fluent in, but also because at this scale any good or bad samples would be trivial to
bias in sampling. Therefore, all datapoints are instead available via the Weights and
Biases interface.

When put through a hyperparameter sweep, the results of this methodology for
training are a clear indicator that using additional dimensions to contrastive loss is a
clear improvement on existing methods and has clear application for training models
in low resource languages.

Most interestingly though, for translation-based tasks, the following graphs
compare how this occurs in multiple dimensions.

Understanding Figures 3.27 and 3.28 is helped by considering the distribution
of values that results in the mean. It is also prudent to note that the trainings
were aborted if the value increased. Thus, the mean as a percentage increase in
the minimum value reflects how fast the training converged to an optimal solution.
Despite promising training heuristics, inspection of ”translated” sequences from

57

Chapter 3. Visual Grounding 3.2. Whole Model Training

(a) (b)

(c) (d)

Figure 3.25: Compilation of Final Training Report Figures

Figure 3.26: Comparison of logit method performance in 4D

the encoder demonstrates the problems with unsupervised training at small scale.
Following this result, it is apparent that the literature around PGD attacks offers a
glimpse of how sensitive the representations that models learn can be, as imperceptible
changes can significantly alter even simple classification tasks. In this sense, the same
is true in language, where local maxima can occur in token selection, causing sequences
of tokens to align improperly. If deployed at scale, this finding may have limited
impact, as previously mentioned techniques like beamforming reduce the likelihood
of this occurrence.

This highlights that the gradient function and the encoder that emphasizes
semantic over token choice struggle to prioritize any single token over others. If token
choice were a contributory to the loss function, then argmax would rapidly solve this
issue. However, as an intermediate component, the loss of a gradient here would be a
critical issue. A way of navigating this choice whilst preserving a gradient is to instead
use a Gumbel softmax. This function, typically used for peak prediction in forecasting

58

Chapter 3. Visual Grounding 3.2. Whole Model Training

Figure 3.27: Minimum scores during
TestLoss grouped by dimensions

Figure 3.28: Mean Test Loss grouped
by dimensions

models, allows a probabilistic one-hot selection that maintains gradient; however, in
testing, it showed to introduce too much noise for convergence, and ranking parameter
importance indicated that not using it led to stronger runs.

59

Chapter 3. Visual Grounding 3.3. Conclusion

3.3 Conclusion on High Dimensional Loss to Guide

Translation Tasks

Subscribers to universal language theory would suggest that all language tasks can be
split into several subtasks: defining the language space and traversing the space. The
theory of a universal language suggests that every language is a distinct subset of all
languages. This theory elegantly explains the issues of loan words and native speakers
being able to easily interchange languages. It also links nicely to subjective language
models as needed for hate speech detection tasks. However, many multimodal models
suggest that the visual (or physical domain) is merely a projection away from this
domain; naturally, cross-modal guidance from this space can be extrapolated, using
learned weights from pre-trained models to calculate gradients.

The idea is that where there are shortcomings in the ability of language models
to get varied representations well grounded onto other domains.

In recent years, models like BERT have become prolific for grading generated
language and guiding beam searches for generation. The general idea of this is to use
a model that will be sensitive to nonsensical tokens. It will have an interpretation of
all tokens within the context of a semantic rather than as a set problem. Practically,
however, this means feeding the ground truth into BERTScore as tokens, relying on
hidden layers and performing a loss metric between the BERT latent representations
of the prediction and of the ground truth.

For an initial experiment, this flow is altered to instead take a picture as ground
truth, comparing via pre-trained weights the visual encoding and the encoded text.
There are several drawbacks to this approach - BERT is semantically sensitive, where
a visual grounding is more likely to be sensitive towards practical elements and less
so around word order. BERTScore also relies on a multilingual model that is trained
and fine-tuned in many domains. Conversely, CLIP (at the time of writing) is suited
to just caption-image pairs of web-scraped data, not to long prose that may be found
in translation tasks. However, retraining would be possible at a later point.

3.3.1 Future Work

Thus far, it can be seen that having multiple teachers in a student-teacher pipeline can
be a very effective way to teach a model, especially in a low-resource context where pre-
trained weights can be transferred across domains. Later, this work has not just been
modified to receive a low-resource language, but there are also many applications, each
of which would be worth their own thesis. One of the big adaptations to this code base
is the ability to take truly n-dimensional inputs that can vary across batches: meaning
that at inference, different encoders could be used. Historically, this may have been
applied to polyglot methods reliant on individual encoders for language families, but

60

Chapter 3. Visual Grounding 3.3. Conclusion

may have more use where style differs in nuanced ways. A primary example would
be social media comprehension, where the medium of a post, text, and comments
may all be in the same language, but splitting by encoders, even across the OP and
comments, would be very sensible due to differing language limitations and stylings.

61

Chapter 4

Analysis with CKA and Other
Methods

Comparing the efficacy of the training methodologies proposed in this work with
other methods is not easy. Multiencoder methods, with myriad downstream (and
upstream) applications, do not lend themselves to evaluation for lack of first-order
knowledge outputs. As discussed in the Background Chapter, first-order knowledge
is the direct attribution of a property - the crux of most evaluation metrics. However,
as prior work has shown, systems training single encoders exhibit multiple orders of
knowledge. Evaluation on datasets that the model has seen is insufficient to know
whether the model has encapsulated generalisable knowledge; exhibited by correctly
clustering locations, the clusters must be assessed against unseen categories. In this
chapter, RO.2 is achieved: exploring the methods of evaluation available for such
models.

A further challenge to an academically rigorous analysis of the models that
underpin this work, and the benchmarks used, is that the methods introduced are
novel and contemporary to this work. Many mathematical methods have yet to
be explored or applied to these models, which have different workings from many
other applications, so few apply. It cannot be understated that the model, CLIP,
which subsequent chapters are based on, has already got over 20,000 citations since
its publication early in the creation of this document. Therefore, blind spots in
publications and literature are inevitable, but every effort has been made to ensure
the novelty of this work and find any comparative studies.

62

Chapter 4. Analysis Methods 4.1. CKA

Figure 4.1: This Figure, a replication of prior work, [98], reveals the significance of
layers at each depth of a neural network with a specific dataset. The horizontal
repitions demonstrate the homogenous properties of intermediate ResNet layers
compared to a ViT architecture

4.1 CKA

However, this does not prohibit the benchmarking of this new approach. Our training
performed within a day, if resulting in weights similar to other works that take longer,
is still a hugely significant contribution, especially when considered in conjunction
with movements for cleaner AI. This method is often used to compare models and
will be used in this work to compare a random model with one of the known good
weights.

Therefore, a comparison is made to investigate the model weights with existing
off-the-shelf weights. As a means to compare models, the Centralised Kernel
Alignment (CKA) method is commonly used, primarily for comparison between model
architectures, showing how layers tend to certain weights.

The original formula from [23] presents CKA, a representation similarity metric
that is widely used to understand the representations learnt within neural networks.

63

Chapter 4. Analysis Methods 4.1. CKA

Specifically, CKA takes two features X and Y as input and computes normalised
similarity (in terms of the Hilbert-Schmidt Independence Criterion (HSIC)) as:

CKA(K,L) =
HSIC0(K,L)

HSIC0(K,K)×HSIC0(L,L)

However, in this instance, K and L are both 3-dimensional matrices of the layer
representations across an entire data set, computed for each layer of the models. For
an entire model, storing such vast matrices does not scale well enough to be used
meaningfully for low-resource contexts or computationally limited applications.

To optimize for low-memory contexts, there is a derivation to calculate in mini-
batches which reduces the storage and computational requirement. Subsequent
calculation and evaluation use the equivalency that follows:

CKAminibatch =
1
k

∑k
i=1HSIC1(XiX

T
i , Yi, Y

T
i)√

1
k

∑k
i=1HSIC1(XiXT

i , Xi, XT
i)×

√
1
k

∑k
i=1HSIC1(YiY T

i , Yi, Y
T
i)

This is more computationally efficient because the sum operation can be greedily
executed rather than waiting for all components. The equivalence to the notation
used elsewhere shows this can be rewritten by removing the linear factor, and sum as
an average of the HSIC calculation.

CKAminibatch =
¯HSIC1(X@XT , Y@Y T)√

¯HSIC1(X@XT , X@XT)×
√

¯HSIC1(Y@Y T , Y@Y T)

The prior notation, on a fixed k on a given epoch, the terms 1
k
and 1

n(n−3)
cancel out

of the final CKA formula and can be removed. It must be ensured that a last batch
of differing size can be dropped. In actuality, out of a particular dataset comprised
of over 106 samples, the probability that the final sub-batch represents a sufficient
quantity of outliers to expose a discrepancy in model activations sufficient to impact
the average calculation is so minute it can be safely ignored.

Here, HSIC1 is defined as:

HSIC1(X, Y) =
1

n(n− 3)
(tr(X̄Ȳ) +

1T X̄11T Ȳ 1

(n− 1)(n− 2)
− 2

n− 2
1T X̄Ȳ 1)

It might be worth noting that with some especially large batches, these are important
scaling factors to aid with precision, which are not applicable for the encoders being
trained at small scale.

64

Chapter 4. Analysis Methods 4.1. CKA

def HSIC (K, L) :
N = K. shape [0]
ones = torch . ones (N, 1)
r e s u l t = torch . t r a c e (K @ L)
r e s u l t += ((ones . t () @ K @ ones @ ones←↩

. t () @ L @ ones) / ((N − 1) ∗ (N −←↩
2))) . item ()

r e s u l t −= ((ones . t () @ K @ L @ ones) ∗←↩
2 / (N − 2)) . item ()

return (1 / (N ∗ (N − 3)) ∗ r e s u l t) .←↩
item ()

de f HSICv1 (K, L) :
N = K. shape [0]
r e s u l t = (torch . sum(K) ∗ torch . sum(L))←↩

/ (N − 1)
r e s u l t=torch . sub (r e su l t , (torch . sum(K @←↩

L) ∗ 2))
r e s u l t= r e s u l t / (N − 2)
r e s u l t= r e s u l t + torch . t r a c e (K @ L)
return r e s u l t

Figure 4.2: The figure shows the improved implementation of HSIC used for this work
to reduce the computational overhead achieving 100% speed improvement

Despite the concise mathematical notation, it is further optimized via substitution
which is possible in the case whereX = Y such that the calculation is forHSIC1(Y, Y)
where the return is the average of the matrix Y against itself.

The formula expressed as

HSIC1(X, Y) = tr(X̄Ȳ) +
1T X̄11T Ȳ 1

(n− 1)(n− 2)
− 2

n− 2
1T X̄Ȳ 1

The formula for HSIC1(X, Y) can be rewritten with substitution for the case with
a single term, showing how this can be simplified when computed. For this purpose,
a new function is written in the released code due to the terms that can be simplified
in the following using the sum to notate stepping through the 3-dimensional matrix:

HSIC2(Y, Y)
k∑

i=1

(tr(¯(Yi@Y T
i) ¯(Yi@Y T

i))+
1T . ¯(Yi@Y T

i)11T ¯(Yi@Y T
i).1

(Yi@Y T
i)

− 2

n− 2
.1T ¯(Yi@Y T

i) ¯(Yi@Y T
i).1)

The original paper used the identity of a matrix operation with an array of 1s
as an equivalence with the sum operation, using transposes of the array of ones to
preallocate memory and govern the dimension of the sum operation. When this is
converted to code, the standard implementation based on the affiliated library is as

Figure 4.2 shows the numerous optimizations made to reduce the overhead of
the CKA evaluation metric to be reproducible at a smaller scale. This includes
removing the “.item()“ calls, cause a summation of a computational graph and costly
transfer to CPU memory and Python literals. Removal of the unnecessary creation
of additional arrays of 1s is also necessary, which can be problematic to different
pipelining techniques, and unstable where GPU memory is fully utilized at a time.
The removal of these arrays has an extra optimization benefit of removing costly
matrix ops, where sum is more efficient. Matrix ops are mathematically equal but
implementations are written assuming multiple dimensions, where sum is a special
case.

65

Chapter 4. Analysis Methods 4.1. CKA

def orig HSIC (K, L) :
b=torch . sum(torch . sum(K, dim=0)∗ torch . sum(L , dim=1))
c=torch . sub (torch . sum(K) ∗ torch . sum(L) /(K. shape [0] − 1) , b , alpha=2)
d=torch . div (c , (K. shape [0] − 2))
output=torch . add (d , torch . sum(K∗L . t ()))
re turn output

Figure 4.3: The final function for calculating the CKA return for minibatches.
Emphasis is on a minimal number of optimizable operations. Theoretically, a
computational graph may is preserved through the execution but exploitation for
learning is a experiment reserved for future work.

def ORRIG HSIC(K, L) :
N = K. shape [0]
ones = torch . ones (N, 1)
re turn torch . add (torch . t r a c e (K @ L) ,
(((ones . t ()@K@ones@ ones . t ()@L@ones) /
(N−1)) −
((ones . t ()@K@L@ones) ∗2)) / (N−2))

de f ORIG HSICA(K, L) :

N=K. shape [0]
re turn torch . add (torch . t r a c e (K@L) ,
torch . div (torch . sum(K) ∗ torch . sum(L) /(N−1) ←↩

−
(torch . sum(K@L) ∗2) ,
(N − 2)))

Figure 4.4: These code exerpts show the difference that code optimization makes,
both in simplicity and preserving computational graph

After remedying these errors and removing the final line as previously discussed,
the refined version is shown in Figure 4.3.

This modification makes the process almost twice as fast, dropping from 64ms
to 38ms on an input of size (20, 512). Though more consistent timing is generated
during runs. A further reduction in time is achieved by replacing the trace with an
equivalent and faster torch.sum(K ∗ L.T) producing the code seen in Figure 4.3.

Repeated calls to a function, however well written, will always be slow when
performed in excess of 50000 times. As such, this code is still suboptimal and modifies
the above to facilitate the batched inputs and the additional simplifications available
in the special case where K = L. It is also notable that, in the original code, the
calculations for each HSIC are stacked and summed, but in this code implementation,
they are aggregated in place within the respective minibatches first to reduce the
memory footprint.

The result of the aforementioned optimisations is a method that can run within
the prescribed limits of available hardware, without reducing the number of potential
epochs. Figure 4.4 shows the side-by-side comparison for evaluating the output space
of CKA and our improved version; notably, the experiments with the improved CKA
show computing timing improvements and benchmark any reduction of accuracy
resulting from PyTorch’s non-determinism.

One of the core improvements that is common to engineering efficient machine
learning code is the understanding that array operations are significantly faster than
iterating over an array because code can be optimized close to the hardware level.

66

Chapter 4. Analysis Methods 4.1. CKA

(a) Modified original
method: 6086 Seconds

(b) Original method in Py-
Torch: 6819 seconds

(c) Batched method: 346
seconds

Figure 4.5: This figure shows side by side the comparitive differences in the CKA
measure between the a replication of the stock code (Centre), the modified code for
a single datapoint (Left) and the method that takes a batch (Right). Clipped or null
values from extreme dissimilarity result in the white squares - the Figure (c) indicates
a more stable computation when results are aggregated by minibatches. Though they
each are clearer in showing the relative similarity between early intermediate layers
of the trained model which bare no resemblance to later layers of the model.

In MLOps, these optimizations often manifest in how batches of data are collated.
The HSIC calculations are such that across all layers the calculation is repeated,
and therefore making an extra dimension to each array results in similar speed ups
found in batch calculation. Calculating all layers at once, rather than sequentially, is
implemented to deploy this code. 1

The minimal impact of this can be seen in both the precision (through removal of
repeated “.item()” calls) and the speed. Using an identical dataset, Figure 4.5 shows
the output over a minimal sample of 150 images resized with the standard CLIP
preprocessing.

The conclusion from Figure 4.5 is to observe the noise and peak values present in
CKA when adding individual steps. PyTorch operations are non-associative. They
cannot be guaranteed to have the same output should order be changed, irrespective
of theoretical equivalence using algebraic derivations. Without the ’.item()’ calls, the
result is faster, albeit significantly noisier for having more race conditions.

4.1.1 Accuracy of New Methods

Curiously, during the above derivations, an error is introduced. Let the original
formula be defined as HSIC0(X, Y) and the derivation as HSIC1(X, Y). Despite
HSIC1 being equivalent to HSIC0 such that mathematically (ignoring linear factors)
HSIC0(X, Y) = HSIC1(X, Y), when run, the resultant sum of HSIC0(X, Y) −
HSIC1(X, Y) is occasionally non-zero, taking values around + − 1e−7. A couple

1Code available at https://ww.github.com/st7ma784/6DIMCOCO

67

Chapter 4. Analysis Methods 4.1. CKA

of theories exist for this. Firstly, the difference in the number of steps at certain
precisions creates minuscule errors. More likely, is that in using torch functions,
‘torch.div‘ introduces an epsilon value. This mitigates ’divide by zero’ errors, and as
the default value is set to 1e−8, this is trivial to most applications but introduces a
minor inequality.

4.1.2 CKA for Model Analysis

4.1.2.1 Hypothesis

CKA and foundational prior work assume a holistic pipeline: gradients calculated
from the ground truth data with fixed annotations. The lack of first-order knowledge
points or supervision in the training being evaluated presents a novel domain. The
training paradigm presented in this work is not widely explored with CKA because
the network architectures differ significantly across domains. The neural networks
do not geometrically converge to certain output patterns, nor are the comparisons
necessarily meaningful between a set of tokens and patches of an image. Therefore, in
this section, the question is asked whether CKA is a viable evaluation measure given
the aforementioned challenges. The conclusion will inform RO.2 and subsequent
evaluation.

The output of CKA gives insight about where similarity occurs within a pair of
models. Testing is performed against a pretrained CLIP model. A model trained
with various methods in this work is used as a comparative model. Given each figure
is expected to vary as parameters like similarity metric are changed: The hypothesis
to test is that there will be 2 observations that are pertinent. The first observation
is because of how layers may have to be repeated to increase/reduce the values to
yield differing distributions of values in each 512-space vector. These deviations would
manifest as seeing horizontal and vertical lines of peak values. Figure 4.6 shows clearly
a line of peak values at the bottom and right of the graph. This indicates how the
last layer of the CLIP VIT L/14 model has very distinct activations compared to each
other layer: enabling a characterisation of the model layers. The upper left corner and
lower right also have a different pattern, reflecting comparative differences in these
parts of the network, suggesting that the first 11 layers are relatively homogenous, as
are the next 11, with the final layers being very distinct.

The second hypothesised observation is that by using an off-the-shelf set of
pretrained weights, there is likely to be a stronger set of activations as the model
performance increases that correlates with other performance metrics.

68

Chapter 4. Analysis Methods 4.1. CKA

4.1.2.2 Methodology

CKA methodology for evaluation can apply to encoder systems; all training is
monitored following the derivation in the beginning of Section 4.1 with the batched
implementation during validation stages.

To ensure that our hypothesis is appropriate, and demonstrate that unsupervised
training can still be monitored with CKA, an ablative study is used. In the ablative
study, a random permutation of the features is applied to one of the networks, having
the effect of shuffling the orders of activations. The shuffled features show if the
method is order sensitive, or its activation must be in the same order to matter.
Inserting permutations at each layer showed no geometric constraint. The counter-
intuitive nature of this result caused investigation which revealed that in the original
methodology, the feature matrix is multiplied by its own transpose. The multiplication
produces a consistently [B × B] shaped matrix, which mitigates this permutation
of features; exitingly, this step means that it is easy to modify the workflow to
accept tokened inputs by repeating the matrix multiply step for sequential inputs,
or flattening, and for networks of differing architectures and modalities, the approach
can still apply. For example, a convolutional network with a sliding window over
an input with a fixed target will constrain activations to parts of the kernel. Even
transformers have significant constraints placed on final layers, with training resulting
in nearly one-hot encodings. By contrast, in the case of autoencoders, the inherent
lack of geometric constraint during training, except that found by the curation of
second-order knowledge, limits the efficacy of CKA as a comparative evaluation with
even similar networks.

4.1.2.3 Results

Almost all CLIP experiments result in a plain graph, and the results with the shuffled
CKA input show that the problem is actually dimensional order independent. Many
of the experiments result in a plain graph. To verify that this is, in fact, correct,
intermediate calculations of HSIC and Eigen values were analysed, revealing that
CLIP has several activations that are 0, ’inf’ or ’nan’ that get collected, which have
a large, adverse effect on the clarity of CKA measures. One observation from this
analysis is that CLIP is trained at a scale where model size is unlikely to be a limiting
factor, and the released model has undergone distillation, reducing the number of
parameters.

When filtering for these values at every stage, replacing each with a float in the
domain (-1,1), produces more meaningful graphs.

To further improve the clarity of these graphs, only MLP and linear layers are
monitored, which removes blocks of intermediate layers that get filtered by the nan-
to-num process. Figure 4.6 shows the results of the CLIP ViT L/14 model. The

69

Chapter 4. Analysis Methods 4.1. CKA

Figure 4.6: This plot shows the activations through CLIP’s vision transformer on
a single dataset. The start contrast of black and white blocks shows that there is
a significant sparse portion of some layers, unactivated by the dataset. The upper
right componennt of this figure having a larger white areas demonstrates that the
input players of the model are sparser, with richer activations later. There is also a
significant change in the final layers, whose activations show a differing structure

interpretation here is that the distinction between the top left and bottom right parts
of the graph shows the unique split in the characteristics of the activations mid-way
through the model. This has implications for later work in BERTScore.

4.1.3 Improving CKA on CLIP Models

4.1.3.1 Revised Hypothesis

It is a reasonable expectation then that CLIP-style text encoders are incompatible
with CKA methods based on their reliance on the attention mechanisms’ effect on a
single token, namely the EOT Token. In a traditional CKA approach, all inputs
are tested and compared by monitoring all values of the HSIC calculations. In
practice, CLIP deviates substantially from other NLP approaches by summarising
sequences on the [EOT] token. Consequently, many graphs produced are largely
redundant for monitoring posterior layers which have minimal interaction with the
latent representation at the EOT location. Therefore, a comparison is made of just
the CKA matrix as present at the [EOT] location.

It is therefore reasonable to measure CKA on just the EOT token’s representation
across the network output. The hypothesis is that this will produce a clearer result.

70

Chapter 4. Analysis Methods 4.1. CKA

(a) CLIP pretrained models ”ViT-
B/16” and ”ViT-B/32” with permu-
tations

(b) CLIP pretrained models ”ViT-
B/16” and ”ViT-B/32” without per-
mutations

Figure 4.7: A figure showing that CLIP models are indifferent to permutations of
input

4.1.3.2 Initial Results

The results of a plain visual encoder with the CKA analysis over 100 images are the
following comparatively blank graphs. In Figure 4.7a suggests that the models are
either completely not activating, or that their activations are so sparse that the cross
product is overwhelmingly zero.

4.1.4 Further Experiment

Figure 4.7a and Figure 4.7b are generated with random data and exhibit very few high
values: It is impossible that for random data, clip does not sufficiently activate. Given
the miniscule probability of cosine similarity occurring randomly in high dimensions,
as previously outlined in this work, this evaluation method is very sensitive to how
effectively the model can understand an input.

Experiments with the input of MSCOCO instead of random, and the limitation
of layers to the direct output of MLP components and layer norms (a good snapshot
of activations through the transformer) offer the following results, which are cross-
referenced to the inputs of the text encoder.

Table 4.1 shows the comparison of 5 different ways of combining model features.
Whether comparing the intermediate features of vision; the whole layers of the text
encoder; just the embeddings in the EOT position in the text encoder; the projection
of those embeddings; or the projection of just the EOT locations.

The Table 4.1 shows the importance of understanding where the model is

71

Chapter 4. Analysis Methods 4.1. CKA

Vision Text Text EOT Text proj Text EOT
Proj

Vision

Text

Text
EOT

Text
Projec-
tion

Text
EOT
Projec-
tion

Table 4.1: The CKA activations from different elements of the cross-modal network

72

Chapter 4. Analysis Methods 4.1. CKA

activating. The notable shapes to observe in the table are the cross shape, and
the location of it compared to Figure 4.6. From both the vision and text components,
there is a marked change on either side of layer 10 deep, suggesting that this marks
the transition between input comprehension and generating the final layers. This
suggests that 10 layers is the upper limit for data saturation even at web scale.

4.1.5 CKA Conclusion

Throughout all subsequent experiments, each trained encoder monitored the CKA
during each validation stage. There is a significant optimization of the existing
replication libraries to significantly reduce the overheads incurred when using this
as a metric for small-scale experiments.

In the small experiments, as shown in Table 4.1, the activations are consistent
with the original methods, showing consistent deviations in the model about a third
of the way through. Therefore, it can be concluded that CKA can effectively inform
the shape of the model’s intermediate state, and that the optimisations have been
effective at allowing this methodology to be used at a smaller scale. Answering RQ.1,
the usual performance of CLIP when applied through CKA isolated behaviours and
made this algorithm accessible and effective at academic scales.

73

Chapter 4. Analysis Methods 4.2. Linear Probes

4.2 Linear Probes

The optimisations of CKA are very effective, but still require expert knowledge for
interpretation and do not demonstrate high-order knowledge. They show that the
activations are similar, which can be a remarkable indicator among existing models,
but cannot evaluate a model for the stated goals of showing high-order knowledge
without an existing model.

Another way of exploring the embedding space and affordances of the second-
order representations is to use Linear Probes (or Linear Regression Probes). Linear
probes have previously been used in many works, including the original CLIP paper, to
demonstrate aptitude on a certain line. Essentially, these test second-order knowledge,
whether clusters appear together in the embedding space. A linear probe is a fully
connected linear layer with sigmoid activation on a single output. This is applied at
both varying depths and at various stages of training in the network. Assessment of
characteristics like depth, width, and training saturation has all been done this way.

For the experiments implementation, the scikit-learn library is used [100].
Linear probes, [3] are used when a class is known. Generally, prior work assumes

that the model training is a supervised learning framework and was designed for
computer vision applications as an assessment of class comprehension: ensuring
intermediate layers are encapsulating concepts and storing useful features. However,
the methodology of many language models is remarkably similar, where the main
transformer blocks provide the majority of model functionality which is only converted
back to a token-based output at the final minute. Therefore, a linear probe can
be viewed as akin to the language head of Marian models used previously - but
dynamically applied throughout the model to show that the transformer blocks are
learning increasingly effective representations.

In experiments with MSCOCO, emphasis is placed on the ability to classify the
image from both a textual and a visual encoder. During the validation epoch, at the
start, the classifier is fitted to the stored features. At each step, the loss is calculated
and the latest features and labels are stored for the next epoch. Whilst this does mean
the validation lags an epoch, in training itself on the last training epoch’s features,
it minimizes the need to iterate over the dataset, making it feasible within available
hardware limits.

Linear probes in this work are not a direct training metric. They show that the
embeddings encapsulate useful information, but they do not approximate useful values
themselves. Across a number of random runs, the plot of tracking accuracy against
the number of steps can be seen in Figure 4.8.

The plateauing of Linear probes, as seen in Figure 4.8, shows how eventually
the points stabilize in training, either reaching semantic limits or clustering limits.
Semantic limitations can be that distinct clusters are so close together that a linear

74

Chapter 4. Analysis Methods 4.2. Linear Probes

Figure 4.8: This graph shows how a simple MLP improbes through training. The
linear probe refits the classes to the projected points, which as training improves, the
points becomes more effective

classifier cannot draw a line between them, or that the points do not separate into
distinct clusters at all. The latter is unusual and difficult to replicate unless using
random values because of the zero-shot properties of the models in question. There
is good reason to suspect poor clustering over shape-of-cluster issues: Contrastive
training emphasized space between clusters, and the classification labels are taken
noisily from MSCOCO: taking the first annotated object, which may not be the
salient one, and meaning a single representation could belong to several different
classifications. This means it is more likely that a probe cannot linearly fit between
2 classes, which can be considered a clustering limit. Under the experimental limits
imposed, CLIP’s off-the-shelf performance drops an average of 32.8%.

4.2.1 Zero-shot Linear Probes

One of the core tenets of this work is to prove that extra dimensions are not only a
practical way of reducing training overheads and potentially incorporating new inputs.
It is also to show the capabilities of the model reflect similar capabilities of the original
CLIP model’s performance, which are a result of the multi-modal grounding.

A key benchmark used in the paper is zero-shot linear probes, which utilize data
not previously used in training. The core conclusion of Figure 4.8, is that even the
smallest model can curate a small embedding space and achieve some performance
in the problem domain when trained with the classifications given. Therefore, to

75

Chapter 4. Analysis Methods 4.3. Evaluating Point Distribution

test whether a trained model is actually picking up multiple orders of knowledge and
correctly learning world knowledge, unseen images are used. The only way they can
be clustered and know that a random subset is well represented in the model is if
there are layers of parallels as per the prior discussion on orders of knowledge. A
good conceptual understanding of the generic objects shown and the semantics, even
though they have not been seen, means the model has learned well. Therefore, for
evaluation, the imagenet dataset is used: fitting to it using both the text and the image
outputs. Using both encoders allows us to test whether each correctly represents the
information of that modality (with the knowledge that the image classifications are
likely to be noisier)

4.2.2 Using Linear Probes for Small Scale Evaluation

A limit of the number of training steps is needed to balance precision with limitations
of available hardware. The number 1000 was selected after observing that most runs
have plateaued before that. If there were no limit on practical runtimes, experiments
would have been performed testing intermediate layers of the trained models; however,
the models are sufficiently small that it is unlikely compared to the original papers
that any similar depth analysis would be achieved: There is no point in experimenting
on something that cannot be empirically tested.

In our subsequent models, novel methods are tested: The expectation of the
theoretical concepts would be a significant jump in performance from prior work.
Therefore, the performance profile is unknown. In many cases, this will mean that
the linear probes fitted to the model during validation are likely to have an immediate
high performance, which at first may appear to be a code error. Those unfamiliar
with the training setup may believe that this is erroneous. However, understanding
the conceptual leap in the work of [122] where zero-shot models are seen to have
their performance rapidly decrease with domain overfitting shows parabolic curves
away from optimal domain performance. This is not observed in any experiments:
instead, gradually increasing linear probes are seen constantly. This indicates that
the contrastive approach is not reaching limits and networks are not data saturated.
The limiting factor is therefore the scale of the data used and the domain limitations.

4.3 Evaluating Point Distribution

While linear probes work very effectively at converting an embedding space to a
classification problem, it is unclear why an attention-based model would necessarily
create points so neatly, especially in open-set conditions. Not to mention that in
cases where a model performs poorly, there are multiple critical factors, which are

76

Chapter 4. Analysis Methods 4.3. Evaluating Point Distribution

impossible to disambiguate from the performance metric. It might be more prudent
to evaluate against the orders of knowledge expected within the model.

4.3.1 Hypothesis

The aim of this set of approaches is to improve the scaling laws and show that the 2nd
and higher orders of knowledge are preserved. During training the approximation of a
sentence develops: first, to a location reflecting a basic understanding, and secondly,
to a near grouping. For this section, it is hypothesised that the distribution of points
is predictably converging as training progresses. An advantage of multiple encoders is
the natural plurality of points between modalities. Given each input from a single data
sample is semantically correlated (at a minimum) the expectation is that a prominent
consequence of 2+ inputs for a modality is multiple, comparable data points. For a
given sample, multiple points in the same modality should be closer together than any
other. Training could be monitored for this property, but given the direct relation
between cosine similarity and proximity, it would be unfair to use this as a direct
assessment over the training domain. However, there are other approaches that are
not dependent on a redundant input in a modality.

4.3.2 Methodology

To check this, for each iteration of training, validation sets are monitored, checking
that the embeddings move consistently, stabilize their values, and then finally ensure
points end up near each other.

To achieve successful views of model effectiveness, the following metrics are used:

• The comparative distribution of all embeddings by epochs

• The movement of each embedding per epoch

• Cluster size between points that should converge monitored with both cartesian
distance and cosine similarity to demonstrate the model is correctly grouping
similar semantics

• The divergence of dissimilar semantics by ensuring that the cosine similarity
between points and the cartesian distance is increasing.

During training with einsum estimation, as shown in Figure 4.9, a single vector
embedding moves rapidly between consecutive epochs, which isolates performance
characteristics without being task-oriented.

Figure 4.9 shows that the embedding value is rather unstable: The amount and
direction of the distribution change does not tend to 0. The significant change

77

Chapter 4. Analysis Methods 4.3. Evaluating Point Distribution

Figure 4.9: This plot shows how each epoch, or ‘version’ of logits, has a different
amount of movement, by tracking the mean cartesian distance between embeddings
before and after the gradient step. The plot shows model convergence by each
bell curve becoming increasingly close to each other. The vectors are plotted
pre-normalisation, to demonstrate the presence of comparatively large values (thus
movement can appear large, but have minimal effect on the similarity metric).

78

Chapter 4. Analysis Methods 4.3. Evaluating Point Distribution

each epoch in magnitude indicates instability and significant gradient steps. The
behaviour of non-convergence suggests that the similarity measure is poor. From the
discussion in latter chapters, einsum has fundamental issues with handling multiples
of negative numbers, which affects model convergence. It has been previously shown
in the introduction that autoencoders tend towards sparse states, which is likely to
be the most unstable for this method as the difference between positive and negative
is minimized at 0. From this Figure, therefore, it can be considered a good metric for
this training, as a known issue with a particular approximation has been shown as a
property of the graph.

It is important to also interpret this graph as a rough indicator of centrality,
rather than similarity; it represents the distribution of values in each axis, but not
in what order. The rolling delta of the same point between successive epochs is
also plotted. The expectation is the same distribution, with a reduction in variance
through training. A notable feature of Figure 4.9 is that the lines of adjacent steps are
not adjacent, meaning that even the distribution of values often moves and returns,
suggesting the need for gradient methods that are less sensitive for individual values,
likely caused by the sign errors present in the Einsum approximations.

By observing these relative movements, a measure can be made of how the
convergence of a model suitably protects these spatial affordances. Whilst temptingly
trivial to plot these over the entire validation set or work out a cumulative sum, the
reality is that this would obfuscate and hide any problematic points such as cases
where the mean distance between points is significantly non-zero, or 0.

79

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

4.4 Vector Location Analysis

A quirky design feature for monitoring training with additional loss terms is multiple
items per modality that are meant to converge. The underlying assumption that has
preceded this work is that captions generated for the same image have largely the
same semantics. It therefore seems prudent to assume that these will converge to
each other during training when everything else should diverge.

It is therefore important to check during training that captions from the same text
item in fact converge on each other.

Figure 4.10 shows how a single data point moves each epoch. The initial epochs
are given a slight negative skew, but the distribution has insignificant deviations
between epochs. This suggests that the embedding space is well defined by this
method in particular and training is stable within it. An observer familiar with the
usual domain of cosine similarity will note that the range here is exceptional for being
(−4, 4), these values have yet to be normalised. Normalising these values ensures
(as previously stated) that the hypothenuse to the mean is of size 1. This means
that the final, normalised version of this graph will have a range smaller than (-1,1),
which could only be achieved with multiple 1-hot encodings which would massively
diminish the expressability of the network. Most of the values will be within the range
(1√

512
,− 1√

512
) (approximately < 0.05). This highlights another flaw with einsum

approximations, doing the n-way dot product: that multiplying such small numbers
results in something inexpressable in low precision, highlighting another limit to that
approach.

The graph in Figure 4.11 shows how the embedding of a single data point moves
in a Cartesian space during training. To calculate the delta, unnormalised vectors
are used. If movements were random and epochs were unstable, the maximum delta
would be ± the range of the embeddings, representing a full swing along an axis.
Most of the values are moving ±4, suggesting that this represents the movement of
the peak values rather than random.

A key observation from Figure 4.11 is that during training, the shape, style, and
magnitude of the deltas change. This is not a linear correction: In the initial epochs,
most changes occur in a range of magnitudes up to 2. Considering the graph produced
in Figure 4.10, the overall distribution is the same, suggesting that the Cartesian
coordinates are changing, or more accurately, that this individual point is rotating
around the Cartesian/polar space. This is a positive indicator that the underlying
theory behind having n dimensions and improved scaling is correct: This movement is
violent and drastic between epochs, which reinforces the implied scaling that governs
this machine learning approach.

The 3rd and 4th epochs are fascinating; the plotted distributions have less
deviation from a Gaussian distribution, indicating very subtle changes in the

80

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.10: Plotting the pre-norm values of a vector of a random datapoint
throughout training shows the stability throughout training and the comparative
movement of all parts of the vector through training. As every colour is visible on
this graph somewhere (assuming this generalised), there are statistical methods that
would allow us to predict the epoch by a given vector, indicating the limited data
is not sufficient for stable convergence, but that the model is accurately learning the
contrastive distribution around the space

81

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.11: A graph showing the change between epochs of a single embedding

embeddings (despite still having the same overall distribution). It is important to
consider that these are still unnormalized, suggesting that these changes have a smaller
effect on the overall placement of this point relative to other clusters of points in this
space.

If training had finished after this small number of epochs, against the initial
hypothesis, it would be reasonable to conclude that the achieved embedding space
was stable and the model had stopped moving this particular point. However, the
final epochs having much bigger variance points indicates a suboptimal solution and
has a few explanations:

• Firstly, a single point out of 6 is tracked: the others may be moving more relative
to other locations, and our comparatively low batch size results in this set of 6
points having only been compared to 24 others at this moment in training. The
result being that this is still comparable to the first step of the base method.

82

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

However, this method would scale in a way that is not a relevant time concern.

• Secondly, the cluster of 6 points is moving to a new location: its possible within
the space that clusters of embeddings are very volatile, and pre-normalisation,
it can take just a single large change to radically alter where a cluster lies in the
space. This could indicate that the model is learning how second (and higher)
orders of knowledge work, which is a key function of this work.

• It is entirely possible that this training methodology has a learning rate that
is too high and becomes unstable near the perfect case. However, Figure 4.10
suggests that as the embedding overall distribution is incredibly stable, this is
unlikely to be true.

The graph in Figure 4.10 is strengthened by seeing that the aggregate across a
validation batch is largely the same as seen in Figure 4.14. This shows that this
is not a unique case for a single set of values but that each value tracks this perfect
case across all epochs.

The further consideration of Figure 4.13 shows that the deltas across all
distributions follow almost identical distributions, indicating that the total movement
is consistent. The aggregate plotted in this graph encapsulates other graphs such as
the one in Figure 4.11. This means that the variance in Figure 4.11 is equally offset by
other samples having roughly equal and opposite sums. This supports the hypothesis
that the movements are unique to smaller clusters of embeddings relocating and having
small finite adjustments, and that this delta happens in a way that when normalised
represents a rotational movement (otherwise causing a different distribution of values).

4.4.1 Similarity Tracking

Denoting F as the set of features for a batch such that F has a shape of [B,D], the
graph should show convergence over

F@F t

B2
− 1

B

. The term 1
B
removes the comparison of the elements to themselves. From Chapter 3,

it is clear that the similarity of vectors is not 1 due to the limitations of computational
accuracy. The operation to calculate the exact value is unnecessary and represents an
additional computational cost compared to a fixed constant. Using this value is more
transparent to the reader, and allows the graph axis to maintain meaningful limits.
The value is plotted throughout the training to show that the annotations of each
item are converging.

83

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.12: This figure shows how the movement of particular encoded points occurs
between epochs. It is typically gaussian, emphasising the movement of embeddings is
primarily centred around 0, with the occassional extreme value, which is localized to
a single feature.

The same score is used, but to measure the first item annotation from each item.
By the same metric, the expectation is to see them diverge further away across
training.

Understanding the comparative rates at which samples converge and diverge
during training is a key insight into how similarity metrics work.

Figure 4.15 shows the F̄ produced by the above formula, using the first vector
of every batch of captions. A conscious experiment design decision was made to
illustrate this using the textual domain features rather than visual ones because,
for some experiments with a pre-trained model, the visual features may lead to a
misleading result.

84

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.13: The mean plot of all movement deltas across all batches, showing a
distinct similarity to Figure 4.11, showing that it is consistent with other items in
batch. This graph shows the movement having a higher variance, similar to Figure
4.11, for early epochs.

Figure 4.15 shows a gradual decay in similarity throughout the epochs, indicating
that most unrelated batches are moving away from each other throughout the epochs.
This shows that training is constantly improving across this number of epochs and
results in a cosine similarity near 0, which is synonymous with no correlation between
vectors. This characteristic is actually a contributory statistic to other training
metrics, but serves as a practical illustration between batches to show that the
method holds intra-batch as well as per each step. Figure 4.15 is also instrumental
in showing the limitation of even the introduced scaling rules: showing that after
several epochs, multiple days on a P100, training is still very far from converging.
A P100 is orders of magnitude slower than even the original training GPUs over 4

85

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.14: Monitoring the distributions of all embedding features, shows that
although the embeddings are moving around latent space, they maintain the same
value distribution.

years earlier, yet is still beyond academic provision for many. This should serve as
a practical warning that even with years of optimization, better support is needed!
For the purposes of analysing runs, these graphs provide very intrinsic, tangible, and
understandable tracking of vectors. They represent a modest overhead of memory
to store batch vectors across epochs, so have had to be largely scaled back from full
deployment saturation due to the limits of available hardware (a running theme!).
But enough runs have been achieved that these demonstrate a workable sample to
indicate hyperparameter configurations that produce runs where the graphs generated
are not congruent with the ones demonstrated.

Compared to Figure 4.15, Figure 4.16 compares the average similarity between
items in the same batch, which conceptually should all share near-identical embed-

86

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.15: Similarity measure between different batches

dings. It is reasonable to expect that the noise created by different annotators can be
mapped onto a Gaussian distribution centred around a mean point, but how this
abstraction scales to 512-space is not always clear. As a conceptual model, the
variance associated is nonzero, meaning the similarity within this cluster of points
is also anticipated to be small. An underlying assumption of the original CLIP
model manifesting multiple orders of knowledge in a method consistent with other
theoretical models is that the clusters of points are smaller than the distance between
clusters. The comparison between Figure 4.16 and 4.15 is a very strong indicator
that the assumption that the cluster size is smaller than the distance between clusters
is experimentally correct. When the assumption is made that a semantic cluster
follows a normal distribution, an implied property is that a single value taken from
that distribution is the best estimator of the mean of the distribution. Therefore,
it can be asserted that the graph in 4.15 generated by taking the first caption from

87

Chapter 4. Analysis Methods 4.4. Vector Location Analysis

Figure 4.16: Similarity measure in-batch similarity during validation

each annotation is a very strong approximator of the graph for comparing the cosine
similarity for the central point of each cluster. If the clusters were closer to each other
than the points within each cluster, the values of cosine similarity would be large,
because the angle at the origin would be smaller. The training loss would also be
unlikely to converge because there would be significant overlap between neighbouring
clusters. It can therefore be asserted that the theoretical model is true. However,
it must be noted that the matrix used to determine F̄ may have high variance, and
some vectors may be very close together: therefore, F is calculated throughout the
validation epoch, ensuring that every cluster is counted equally and that the matrix
is sufficiently large so that a one-hot enumeration of samples could not outperform
the resultant graph to minimise cosine similarity.

Figure 4.16 shows a gradual decay in similarity during training. Assuming this
is linear (which there is no reason to) would suggest that the intersection would be

88

Chapter 4. Analysis Methods 4.5. Token Meta Analysis

around 20 epochs into training. However, the loss is largely at the same proportional
rate as the comparative similarities graph between batches shown in Figure 4.15.
The proportional rates being approximately the same is a good indicator that the
geometries of the embedding space are being preserved.

4.5 Token Meta Analysis

Introduced in the first chapter was the concept of orders of knowledge, which manifests
in the geometry of embeddings. The geometric topology of the generated embeddings
was key to capturing holistic representations. However, a key constraint of this work
is the scale limitation. The notion of this is that there is an objectively correct
arrangement that a perfect training will reach. The testing of hyperparameters can be
considered distortions on this perfect case, but should not affect the entire distribution
of points.

However, given the significant quantity of tests, even with limited movement, a
significant amount can be learnt from aggregated training. Given the distribution
of image vectors, it is reasonable to assume that the values comprising the vectors
are on a normal distribution. The tokens are monitored during training. The
embeddings are initialized evenly around an embedding space, so the movement
of the tokens should reflect the visual significance in a well-trained model. The
machinations of attention mechanisms would infer that the farther the embedding,
the more semantically charged the token. This is reinforced by considering context
and semantic embedding, where orders of knowledge result in natural clusters. The
outer and innermost (relative to origin using Cartesian distance) part of each cluster
would reflect semantically unique words.

4.5.0.1 Hypothesis

The expectation is therefore that tokens furthest away are either unique within
individual captions and therefore good identifiers, and the innermost are likely to
be meaningless against visual grounding.

4.5.0.2 Methodology for Comparing Tokens

With additional parameters and trials, the token lists change size arbitrarily based
on dataset, sampling method and how many inputs. This makes the intersection of
sets, which should be distinct, in a stable environment a good potential metric for
stability. Even though models are non-deterministic, defining knowledge as a series of
parallels between points creates natural formations of clusters in an embedding space.

89

Chapter 4. Analysis Methods 4.5. Token Meta Analysis

Dimensions 2 3 3.5 4 6
Instability Score σ 0.64348 0.054274 0.42334 0.32875 0.011394

Runs N 127 1233 1015 1298 1152

Table 4.2: This Table shows the Stability scores between a key variable like number
of dimensions, which significantly changes the experiment set up.

Using a measure of the outer set of close and far tokens divided by the inner set, the
correlation of these sets within training runs across a sweep will be examined.

To test this, each training dimension will be rated with a stability factor. Given
the set of all far tokens, temporarily denoted as ψ and close tokens, ω, the stability
σ in experiments N can be written using set notation to convey the intersection and
union of these sets as:

Nσ =
|ψ∆ω|
|ψ ∩ ω|

Using this factor, the breadth of learning that occurs within a sweep can be
measured by assessing the agreement score of the models trained within that particular
parameter.

4.5.0.3 Discussion

Table 4.2 demonstrates the different scores that correlate with each dimension.
Dimensions of size 3 and 6 appear to be the most unstable, which partially reflects
that both experimental setups have highly irregular sweeps. As can be seen in the
code base, the tests with 3 dimensions predominantly had 2 teacher models, and
could therefore use a relatively high initial learning rate, unlike the other tests. This
metric is can therefore be said to be very sensitive to inconsistent data orders, where a
model may marginally overfit or be affected by a relatively small sample size yielded in
differing orders. Future work may investigate whether a lower learning rate smooths
this metric, and therefore whether σ is a good indicator of optimum learning rate.
The other significant outlier in the table is D = 6 where the majority of runs vary by
how they calculate similarity, which is a significant factor in where embeddings are
placed, and therefore the Stability score being low is to be expected, especially given
the use of methods that have discussed flaws such as Einsum approximation.

4.5.0.4 Token Set Exploration

Although these sets are gathered across the entire set of experiments, notably across
all scales, there were no tokens that appeared in the set of closest tokens, which
also appeared in the outermost tokens. This is a significant finding because it

90

Chapter 4. Analysis Methods 4.5. Token Meta Analysis

shows that the model methodology is working consistentlyand provides an additional
unsupervised methodology to observe poor training paradigms.

Using these aggregated token lists provides a further metric for training by looking
for statistical overlap per run.

The congruence of token lists with vision-based evaluation metrics. Define the
token score T as the product of the intersection sizes of the closest and the farthest
sets.

A core limitation to the exploration of this method is that analysis has occurred
on logged data after a significant portion of the experimentation has occurred. To
ensure verbosity and significance, it should be repeated, and a significant improvement
would be to use either a fixed fraction of tokens or a cutoff for what comprises
near- and far-clusters in 512-space. Such improvements create a more meaningful
comparison of the learnt space and improve the fidelity of such a score to measure
the congruence of training. There are arguments to be made that such approaches
could be applied to using a comparison of embedding weights, and monitoring their
movements, but a large body of work would need to be implemented to ground this
against the semantics of individual tokens and dataset entries, there are also problems
where the embedding space is not topologically constrained by outputs resulting in
false negatives. However, applying this set theory approach produces a granular, but
readily interpretable metric, leveraged on cartesian distance that allows a topological
freedom of embeddings.

Using 2 dimensional loss, the baseline runs, across different parameter sets, the
following graphs are generated:

Figure 4.17: Correlation between
TokenScore and Validation Loss in 2
dimentions

Figure 4.18: A Plot of Token score
against image probes in 2 dimensions

Notable from the above figures is that ignoring the outliers (caused primarily where
NaNs result from poor logging) shows that the Token score correlates strongly to the

91

Chapter 4. Analysis Methods 4.6. Chapter Summary

Figure 4.19: A Plot of Token score
against text probes in 6 dimensions

Figure 4.20: A Plot of Token score
against image probes in 6 dimensions

other key metrics, is domain and corpus irrelevant, and aligns to both Text and image
probes and can be calculated through training. In this work implementation, the
tokens were decoded to provide a direct human-interpretable output to spot further
patterns; the process does not require decoding.

4.5.1 Token Analysis Summary

The plots in Figures 4.17-4.20 show how Token analysis correlates to other metrics.
Ignoring outliers where Text Probes or Token score is zero, there’s a correlation to
training heuristics like linear probes, but it is very weak. Compared to prior work’s
methodology, there is no meaningful correlation. This suggests that this analysis is
not a meaningful metric compared to the prior similarity score.

4.6 Chapter Summary

Concluding this chapter’s work investigating RO.2, various evaluation methods have
been presented which innovate on prior work for evaluating the performance of
autoencoders whilst adding minimally to computational overhead. CKA is presented
as a useful metric for model evaluation, enabling comparison of layers, both to
neighbouring and distant intermediate layers, showing different regions of a model
and how they interact and compare. CKA has been reengineered in this work to be
several times more efficient as a major contribution in reducing footprint. A drastic
improvement to the existing implementation of CKA has been offered and has been
shown to be correlated with good training cases.

Building upon the methods presented in prior and subsequent work, the training

92

Chapter 4. Analysis Methods 4.6. Chapter Summary

methodology has been explored to show how tracking correlated data points can
provide significant insight to model performance. Logging the latent embeddings
demonstrates that the methodologies presented in this work scale, and can be applied
across modalities, which is significant for the upscaling of this work as it impacts
industry. The methods discussed build upon the principles of the underlying models
and the pre-requisite assumptions that similar inputs should result in similar outputs.
Having stated these training heuristics, and demonstrated they are still consistent in
n > 3 training, a method is available for assessing the efficacy of models proposed in
Chapter 5.

A novel inter-training scheme has also been shown, which while limited in this
context with weak supervision, is a good candidate approach for training heuristics
in rapid prototyping and black-box domains, especially given the rate of growth of
the AI industry, where company strategy may call for lavish experimentation because
the cost of delays is less than that of excess computation. Alongside these novel
methods, they have been shown to have good fidelity to model performance in the
training paradigms used in this work, and will be used going forward to evaluate
understanding in such systems.

93

Chapter 5

Methods of n-dimensional loss

In previous chapters, Contrastive loss has been explored, showing its significance
at higher dimensions, and the capabilities for rapid teacher-student training of an
encoder, especially in a poorly resourced domain where a well-trained teacher model
is invaluable for instilling general knowledge.

As previously discussed, a core component of the CLIP model is the comparative
locations across vectors. This is performed as a high-dimensional cosine similarity.
Cosine similarity between two vectors is performed by normalizing the values across
the vectors to be in the range −1, 1, with a hypotenuse length 1, which are then
multiplied element-wise and averaged. This provides a value for the similarity between
-1 for opposites and 1 for a perfect copy, respectively.

In this chapter, the research presented achieves the following:

• Several methods are presented and compared for measuring similarity of n
vectors

• Efficient computation of loss is explored for more dimensions

• Model performance is compared using each different method.

These will be achieved by firstly demonstrating the scaling laws present, and
exploring the hypothesis that there are economies of scale to be gained. This task
is broken up into smaller steps: addressing the mathematics of n > 2 as a data
structure; finding the practical upper limit for n in a machine learning pipeline and
finally profiling the performance of similarity metrics.

Using contrastive training for supervision so far has been promising. It can
be fairly assumed that with greater scale and the multimodal capabilities that
come with Scale as in the case of CLIP, this will be a low-cost way of training a
transformer encoder to a low-resource domain using the teacher models to infuse a
visual grounding.

94

Chapter 5. Exploring the Limits 5.1. Research Objective

5.1 Research Objective

So far, the discussion has highlighted the many advantages available to models that
use weak and pairwise supervision to learn the relevant associations. So far, it has been
shown to be very effective to use tertiary encoders to increase the potency of limited
data and to utilise better scaling ratios. In this chapter, RO.1 will be continued and
RO.3 will be explored in the form of RQ.2. The efficacy of the contrastive method
is often attributed to multi-modal encoders co-learning useful representations. The
subsequent research question would be how to adapt the CLIP methodology to see
how multiple encoders learn simultaneously across multiple modalities. How does
the efficacy of training improve (data permitting) with multiple encoders learning
simultaneously, and what are the limits in numbers of dimensions? This chapter
investigates the scaling laws that govern the efficacy of CLIP training, and investigates
whether that relation extends beyond 2 encoders, and therefore whether the efficacy
is related to the number of encoders, or a quantity of data. Continuing from the
conclusion of the previous chapters in answering RQ.2; this chapter will answer
whether there is an upper bound to this scaling between different methods.

5.2 Base Method - CE loss pairs

The most efficient way to bridge modalities with additional dimensions is to iterate
over pairs of dimensions. We consider that the dimensions give us a tensor stack of
shape [n,B, F]. We want to multiply these matrices [B,F]@[F,B] = [B,B]. We want
to scale this up to be a batched multiplication between [n,B, F][n,B, F] to get a sum
over n.

To perform a baseline of this method in an academic setting, the methodology
is optimised, to perform a matrices multiplication similar to an einsum with
[n, b, f].[n, b, f]− > [n, n, b, b]. The result is reshaped to get a stack of [B,B, n × n],
which can be used to perform traditional CE loss.

Performing cosine similarity with multiple terms is nontrivial, as explored in the
published paper which lays an accepted foundation for this chapter. The operator for
Batch Matrix multiplication only accepts two operands. In this section, the aim is
to explore effective scaling with additional streams of information. During iterated
pairwise training, the outputs, O, where Oi is the i

th output if it can be paired. There
are therefore i2−i

2
or iC2 operations per step, which removes any advantage of scaling,

as the number of datapoints in the dataset increases.
Alternatively, some work exists around the base methods to aggregate batches,

creating a grid of shape NB×NB. This hits the same limitations as CLIP, in scaling
poorly with Batch size, splitting the calculation in a similar way to attention heads
would split the QKV formulation in transformers. It also involves a significant amount

95

Chapter 5. Exploring the Limits 5.3. Scaling Laws

of calculation pre-reduction, though it could readily be applied with techniques like
gradient caching. We also hit scaling issues as N or B increases, especially as the
batches that begin and end within the logit grid must be monitored in order to
aggregate at the end. The goal of finding an algorithm that uses additional dimensions
is the trade-off in logits.

CLIP training took 512 GPUs for 19 days. Although the synthetic batch size
was some 2048, it is reasonable to look at implementations that suggest the gradient
calculation used batch size was 64, subsequently aggregated between devices. This
means that the logit available for the loss computations was 642 or 4096. If we take
a conservative estimate of our function, assuming that it will take a batch size of 8
across 6 dimensions, this gives 262144 logits, a factor of 64 × better. This means that
we might expect this algorithm to be competitive with just 8 GPUs in 19 days. If we
can increase batch size to 10, resulting in 106 logits, the runtime can be effectively
quartered to 2 GPUs in 19 days. If a batch size of 12 is achievable, the same logic
dictates that only 13.3 GPU hours are required.

To formalise this criteria, the following checklist outlines the goals explored in this
chapter:

• Returns a measure of vector similarity for N terms, where N > 2

• Has no false minima that are independent of inputs.

• Can be calculable within the confines of a single GPU

• Competitive with CLIP after 16 hours.

• Unaffected by the polarity of vectors.

5.3 Scaling Laws

There are many variations and rationales available for high-dimensional loss, with
different merits and behaviors. However, the rationale remains the same. If the model
proposed training is abstracted and compared to CLIP, with the same number of
parameters present, the training limit on a single device is equivalent to the maximum
value of B gradients for each encoder. The efficacy of each gradient is a function of B
because the ratio of in-batch negatives can be expressed as 1 : B, it is unclear how this
may scale with training, whether there will be diminishing returns as B increases, or
whether B will improve training by orders of n. However, other factors like memory
limits exist: for training n data inputs, B must be n times smaller for each encoder,
but the volume of in-batch negatives scales as B

n

n
. Substituting in the ratio of batch

negatives into the formula as Bn−1

nn . In summary, this is the ratio of in-batch negatives

96

Chapter 5. Exploring the Limits 5.4. Scaling Structures to n > 2

Figure 5.1: A plot of logits in n = 3 dimensions, showing how in n > 2 dimensions,
there are more than 2 distinct values in a best case

over the trade-off of a limited batch size. Given that n is fixed for a given architecture
and training style, the effect of B is significantly greater! To demonstrate the reason
this is significant, in the following, the dimensions n = 6 are used, where B = 8 is
achievable with 16GB VRAM. On the same device with n = 2, B = 48. The in-batch
negative ratio of 1:32768 vastly dwarfs 1:48, which would require 683 steps over the
same data (assuming batch shuffling) to compare. Doing equivalent ratio training
with n = 2 is simply not achievable with anything short of 100’s GPUs, which still
takes significantly longer due to the requirements of gradient and batch aggregation
across devices.

5.4 Scaling Structures to n > 2

In this chapter, the working hypothesis is that the additional affordances of having
more than 2 dimensions to contrastive training improve performance. To establish an
empirical test, and explore the effects that this approach has on training, these extra
affordances must be defined and quantified.

5.4.1 Defining the Regions of n > 2

Firstly, one of the core problems of the increasing number of logits is the arrangement.
A simple calculation of similarity values now produces a shape as seen in Figure 5.1.

97

Chapter 5. Exploring the Limits 5.4. Scaling Structures to n > 2

n 1 2 3 4 45 5 6 7 8 9 10 11
Number of Regions 1 2 3 5 7 11 15 22 30 42 56 77

Table 5.1: A table showing how the number of distinct regions scales with n

In Figure 5.1, the important aspects is the diagonal where the coordinates in the
cube exist on the plane x == y == z, all white in the plot, showing the desired values
there are at the maximum similarity value (1). This corresponds to the desire for
batched outputs to relate to their corresponding batch outputs from other encoders.

Notably within Figure 5.1, the slightly lighter diagonals reflect a quirk of 2+
dimensions where there are points with coordinates that are neither the same nor
entirely unique. This means that parts of our n-dimensional cube will naturally be
higher than others. These can either be ignored, supposing that the unique indexes
need to be far enough removed to maintain a poor overall similarity value. However,
the alternative approach for a more stable gradient is to model this pattern into the
loss metric. In the example of Figure 5.1, it is clear that there are 3 distinct regions,
each with different behaviours.

In cases where n > 3, a way of selecting behaviours by region is needed. Given
that in the region that a particular coordinate belongs to is related to the relation
between coordinates, a formula can be engineered.

When n = 2, or n = 3, the number of distinct regions is linear: all coordinates
are the same, all are different, or (as in the case of n = 3) some may be the same.
Beyond n > 3, the number of regions becomes non-linear, which are shown in Table
5.1.

Tracking all the combinations requires the construction of a cube, c, such that the
value at location can be expressed as cijk = (i, j, k) where 0 < i, j, k < B for n = 3,
using more coordinates as needed. In this cube, this can be reduced to give c′ the
counts of each unique value in each cell such that the total is n for each position in
c. However, to make the distributions unique, the value placed on each region is as
follows:

MaskValue =
B∑
i=0

c′
m
i (5.1)

Calculated over the whole cube, this gives a cube of where any locations that share
the same value ought to have the same behavior during training.

Figure 5.2 shows how more regions may appear when projected onto a 2D graph.
In Figure 5.1 these can be seen as the three different shades, but in larger dimensions,
more distinct regions are visible. The flat projection of this graph is generated with

#Generated with :
l o g i t s . f l a t t e n () . un f l a t t en (0 , (B∗B,B∗B)

98

Chapter 5. Exploring the Limits 5.4. Scaling Structures to n > 2

Figure 5.2: A demonstration of the 5 distinct patterns the perfect case for n = 4

Initially, when masks are calculated, an identifier, m, is used for each region. m
is given the value of the sum of the counts of each coordinate squared. For a small
number of dimensions (n < 6), this is fine and results in unique values, but at n = 6,
there are conflicts where multiple sets have the same mask.

The initial experiments used m = 2 until unusual results were observed, due to
a set of coordinates (MaskValue = 12) having the same mask value as a different
configuration. For m = 2, 3 pairs of matching coordinates (0, 0, 1, 1, 2, 2) have
the same mask as a set of 3 matching coordinates (0, 0, 0, 1, 2, 3). There is also
a conflict at m = 18 with a set of 4 matching or 2 sets of 3, such as sets
(0, 0, 0, 0, 1, 2) and (0, 0, 0, 1, 1, 1). When considering whether this would impact the
experiments and separation of behaviors, it would not make fair subsequent tests.
Manually reassigning these masks is possible, but detrimental to deploy during
training due to the branching introduced. Instead, it is computationally simpler to
increase the exponent. The first value for the exponent across all tests of n is m = 6.
This value was settled on as demonstrably stable for the scope of this work, though
it is expected for future works that further investigation is warranted in larger scales.

By masking the loss for select regions, the loss component is demonstrably affected
by the relative scale of each region. Therefore, each region is scaled by relative density
when comparing multiple regions.

When properly optimized, the mask can be calculated very efficiently using the
following code:

99

Chapter 5. Exploring the Limits 5.4. Scaling Structures to n > 2

Figure 5.3: A figure showing the proportions of a logit cube attributed to each mask
value as B increases for n = 6

I n i t i a l i z e batch s i z e and N
B = s e l f . hparams . ba t ch s i z e
N = 6

Create a tensor Views with va lues based on batch s i z e B
Views = diagona l matrix o f s i z e (N, N) where each d iagona l element i s B−1, then add 1

Compute bincounts2 us ing one−hot encoding and summing the r e s u l t s
Bincounts = sum of a l l one−hot encoded t en so r s generated f o r each element in Views

Calcu la te the Lossmasks as the sum of bincounts2 r a i s e d to the power o f 4 along the l a s t ←↩
dimension

Lossmasks = sum of Bincounts ˆ4 along l a s t dimension

Create the masks by f l a t t e n i n g Lossmasks and removing dup l i c a t e va lues
Masks = unique va lues from the f l a t t e n ed Lossmasks tenso r

Ensure that the l a b e l shape matches the Lossmasks shape
a s s e r t l a b e l shape == Lossmasks shape

5.4.2 Exploring How Batch Size Effects the Number of
Regions

The discussion, and calculations that form Table 5.1 suppose that the batch size is
a substantial number. There are some cases where this is not true, such as where
B ≤ n. As an intuitive edge case, when B = 1, the number of regions will always
be 1, irrespective of n. In this part, the relation will be investigated, as the size of
each region is likely to have a significant factor in determining gradient contribution
in later experiments.

Therefore, Figures 5.3, 5.4, 5.5, 5.6 are plotted to demonstrate how the relation
between regions, batch size, number of dimensions, and the proportion of the logits
that each region accounts for relates.

Figure 5.3 shows how the proportion of a given cube is attributed to each mask,
plotted for different batch sizes. From this graph, it is important to note that the
proportions become more stable with batch size and tend towards larger mask values.

100

Chapter 5. Exploring the Limits 5.4. Scaling Structures to n > 2

Figure 5.4: A figure plotting the maximum proportion of the cube occupied by a
single region as n increases

Figure 5.5: This plot shows how the maximum proportion of logits per value of n
changes across Batch size,plotted for B < 14, stabilizing beyond B = 2n

It appears from Figure 5.3 that the maximum proportion of each cube accounted
for changes in a manner that is inversely quadratic. To explore this, Figure 5.4 is
plotted to show how the maximum proportion scales with the number of regions for
each value of n. Figure 5.4 appears to have an outlier at n = 3. Given the expectation
was to have an inverse quadratic function, the overall linearity of this graph reflects
that the scale is too small to find this correlation, or more likely, that the aggregation
of samples to a ratio obfuscates the overall number of logits increasing with each step.

From Figure 5.5, it is clear that there is a significant amount of turbulence where
batch size is near n. It is interesting that beyond n = 4 there is a significant turbulence
in the graph. It seems that a similar stability may be present for n > 4, should even
greater batch sizes be plotted.

Comparing Figures 5.5 and 5.4, it is clear that Batch size has a significant
smoothing factor, but is only part of the picture. The conclusion drawn from Figure

101

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

Figure 5.6: A plot showing the mean values of region proportion across logits

5.4 was that the increasing volume obfuscates relations that rely on proportions. To
evaluate whether Batch size increase is hiding this because it exponentially increases
the volume, the mean proportions in the cube are plotted. This is the aggregated
across each value of n as

∑Number of regions Proportion of Region× Region Volume
The overall decrease in maximum proportion as batch size and n increase is

promising for the hypothesis that increasing n will lead to more effective training.
It suggests that the different interactions and differing similarity values balance as
training increases, and therefore, are all equally valuable in contributing to gradient
over residual attention in the model architecture.

For the further exploration of the RO.2, the scaling of batch size, and the
composition of the n-dimensional similarity matrix must be considered against how
loss is calculated.

5.5 Methods for Similarity in n-dimensional

In previous chapters, little discussion has been dedicated to the comparison of multiple
vectors. There are very few established methods for calculating the closeness of 3+
vectors, and whilst cosine similarity has some established modifications for 3 terms,
they are computationally expensive.

In this section, various methods are presented, each implemented and tested, based
initially on matching the correct gradient range using various approaches, including
Cartesian and polar distances, with various modifications for high-dimensional vectors
and normalising the values. The methods were proposed on the basis of several desired
points for perfect and imperfect cases and on the basis of trying to find a relatively
smooth transition between those states. There are many algorithms that needed
testing, as can be demonstrated by the above figure showing how the gradient of
similarity functions can be radically altered by the number of dimensions.

102

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

The loss of a single [B,B] logit matrix using CE loss can be expressed Log(trace(e([B,B])))
e([B,B])

,
or more formally,

Given a set of paired samples(x1, t1), (x1, t1), . . . , (xi, ti), where (x0, t0) represents
a positive pair and all other pairs (xi, tj) where i ̸= j are considered negative. For
the positive pair, the cosine similarity is given by:

Sp =
xi · ti√

(xi2)×
√

(ti
2)
.

For the negative pairs,the cosine similarity is given by:

Sn =
xi · tj√

(xi2)×
√
(tj

2)
.

LetSn denote the similarity score for the negative sample. Then:

Loss = −α log

(
eSp∑
n=0 e

Sn

)
,

To differentiate this, it must be rearranged and simplified in this expression:

Loss = −αSp + α log

(∑
n=0

eSn

)
Now, the loss function with respect to Sp in parts as

d

dSp

(−αSp) = −α

d

dSp

(
α log

(∑
n=0

eSn

))
= α · 1∑

n=0 e
Sn
· d

dSp

(∑
n=0

eSn

)
Thus:

d

dSp

(
α log

(∑
n=0

eSn

))
= α · eSp∑

n=0 e
Sn

Putting it all together, the total derivative of the loss function with respect to Sp

is:

dLoss

dSp

= α

(
eSp∑
n=0 e

Sn
− 1

)
This expression shows how the loss function changes with respect to Sp as a ratio

of positive and negative samples.

103

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

The usual notation has factors like wc which have been removed compared to the
PyTorch documentation, because in the implementation of contrastive training, all
the labels are of equal importance.

For scaling beyond n = 2 as per prior discussion, the goal at this scale is to not
increase memory consumption. The question is whether there is a similarity measure
such that our gradient (dLoss

dS
can be computed by parts, or greedily, so as to minimize

the need to instantiate the values of a computational graph over a matrix of size Bn.
For brevity, not all methods will be fully explained, as they can be derived from

others; instead, they are listed in Table 5.9.

5.5.1 Einsum Approximation

An entirely alternative way to deal with the intricacies of operations between n-batches
of high-dimensional vectors is to ignore conflicts. This assumes a low frequency
of polarity inconsistencies with cosine similarity in perfect cases where all samples
match. The underlying assumption here is that the use of multiple encoders may be
pre-trained (for example, by using pre-trained CLIP encoders). It might therefore
be reasonable to assume that these representations of inputs will be highly similar.
Therefore, concerns about polarity shifts are less likely; however, this will still cause
all features to have inconsistencies in their magnitude. Perhaps, it can be solved
by scaling the components rather than their products and adding a loss measure as
distance to magnitude one.

Pytorch has an operator that accepts any number of matrices and performs
multiplication on them by adding a dimension as instructed.

This means that for n tensors of shape B,F , and desiring a cube of shape Bn, the
command is

inputs=[image f eature s ,
c ap t i on f e a tu r e s 1 ,
c ap t i on f e a tu r e s 2 ,
c ap t i on f e a tu r e s 3 ,
c ap t i on f e a tu r e s 4 ,
c ap t i on f e a t u r e s 5]
l o g i t s=torch . einsum (”az , bz , cz , dz , ez , fz−>abcdef ” ,
∗ inputs)

The Einsum operator has many uses and can perform the vast majority of
operations required for ML models. This is poorly optimized for operations with
multiple terms; thus we decompose our operation into intermediate steps with fewer
operands.

l o s s = s e l f . l o s s (l o g s ∗ torch . einsum (”abcz , defz−>abcdef ” , torch . einsum (”az , bz , cz−>abcz” ,←↩
cache3 , cache4 , cache5) , torch . einsum (”az , bz , cz−>abcz” , cacheim , cap t i on f e a tu r e s 1 , cache2))←↩
, l a b e l s)

Using intermediate values in this fashion is significantly faster and less memory
intensive, offering speed improvements of around 23% and 10% less memory usage.

104

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

f unc t i on Ca l cu l a t eLog i t s (I , C, C1 , C2 , C3 , C4) :

Step 1 : Normalize the t en so r s I , C1 , C2 , C3 , C4
I = I / norm(I , dimension=−1, keep dimension=True)
C1 = C1 / norm(C1 , dimension=−1, keep dimension=True)
C2 = C2 / norm(C2 , dimension=−1, keep dimension=True)
C3 = C3 / norm(C3 , dimension=−1, keep dimension=True)
C4 = C4 / norm(C4 , dimension=−1, keep dimension=True)
C5 = C5 / norm(C5 , dimension=−1, keep dimension=True)

Step 2 : Compute squared norms and reshape t en so r s f o r broadcast ing
I squared = square (I)
C1 squared = square (C1)
C2 squared = square (C2)
C3 squared = square (C3)
C4 squared = square (C4)
C5 squared = square (C5)

I squared re shaped = reshape (I squared , [shape o f (I) [0] , 1 , 1 , 1 , 1 , 1 , −1])
C1 squared reshaped = reshape (C1 squared , [1 , shape o f (C1) [0] , 1 , 1 , 1 , 1 , −1])
C2 squared reshaped = reshape (C2 squared , [1 , 1 , shape o f (C2) [0] , 1 , 1 , 1 , −1])
C3 squared reshaped = reshape (C3 squared , [1 , 1 , 1 , shape o f (C3) [0] , 1 , 1 , −1])
C4 squared reshaped = reshape (C4 squared , [1 , 1 , 1 , 1 , shape o f (C4) [0] , 1 , −1])
C5 squared reshaped = reshape (C5 squared , [1 , 1 , 1 , 1 , 1 , shape o f (C5) [0] , −1])

Step 3 : Add the reshaped t en so r s element−wise
combined squared = add (I squared reshaped , C1 squared reshaped)
combined squared = add (combined squared , C2 squared reshaped)
combined squared = add (combined squared , C3 squared reshaped)
combined squared = add (combined squared , C4 squared reshaped)
combined squared = add (combined squared , C5 squared reshaped)

Step 4 : Take the square root o f the combined squared tensor
sqrt combined squared = sq r t (combined squared)

Step 5 : Compute the sum of a l l e lements in the r e s u l t
r e s u l t = sum(sqrt combined squared)

Step 6 : Return the r e s u l t
re turn r e s u l t

Figure 5.7: Code showing the approximation of Cosine similarity for 2 dimensions,

5.5.2 Euclidean Distance and Other Methods

We explore using Euclidean distance as a facsimile of Cosine Similarity between
normalised vectors. When normalised, each vector x is divided by the norm of x
as defined by norm(x) =

√∑
x2. When this has happened, most of the values in

x are in the range −0.5 < x < 0.5, this transformation of values means that the
Euclidean distance of the values becomes a good approximator of Cosine Similarity,
and Cosine Similarity between x and y may be defined as x.y when Euclidean distance
is
√

(x− y)2. In simple terms, when x and y are considered high-dimensional vectors,
this performs the Pythagorean theorem to get the length of a hypotenuse across high-
dimensional space.

Instead of treating each additional dimension in x as an additional dimension of
the Euclidean distance, we consider the distance defined by xi, yi, zi. This distance
can be considered a vector from the norm, of length, Ei =

√
x2i + y2i + z2i . In turn,

this can be considered as E2 = x2+y2+z2, which also scales to additional dimensions.
On a graph, the difference between Euclidean Distance and Cosine similarity

between the ranges of (−1, 1) for 512-dimensional vectors is as follows in Figure 5.8.

105

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

Figure 5.8: Cartesian Distance against Cosine Similarity for Gaussian vectors

Importantly, this shows that even though they can have very similar performance
in low dimensions, the outlier in the graph shows how the Cartesian distance is high
for any perpendicular vector, but lower when polar opposite.

5.5.2.1 SST Distance

Approaches that treat each feature separately within a feature space can be adversely
affected by features with a high range. In contrast, another way to measure distance
is to consider the distance to the mean. Basically replacing the similarity value, S
with S = 1− Variance facilitates the calculation of the variance to be used for loss.

There are several factors to explore, such as the objective distance and the square
distance (SST - Total Sum of Squares). The objective distance is simple; When the
mean (x̄) is calculated, we can let our sum of distances be

∑
|x− x̄|.

However, when the absolute distance from the mean is minimised, there are cases
where undesirable treatment of outliers may occur. Considering the set: 0, 0, 4, 12
the mean is 4, the sum of absolute distances is 16 but the mean square error is
24. However, there exist worse cases such as 1, 0, 2, 13 where the mean and absolute
distance are unchanged but the mean square error is now 25.

Using this formula of Mean Square error for variance where similarity, (S) is defined
as S = 1− Variance where we equate variance as the sum of normalised distances to
the mean and can be considered as

Variance =
n∑

i=0

(xi − x̄)2

Notably, This is very similar to the SSG formula and is a factor of n larger than the
common formula for Standard Deviation. This is chosen to reflect that the standard

106

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

deviation reflects the statistical distribution of single discrete variables, rather than
the distribution of vectors. The higher the value of F , our feature space, the larger
this distance should be.

Because calculating x̄ requires an n sized stack of logits from each encoder
projected into a shape Bn, this is prohibitively expensive. However, the equation
can be rewritten by expanding brackets.

Variance =
n∑

i=0

(xi
2 + x̄2 − 2xix̄)

The terms can be grouped into the following.

Variance =
n∑

i=0

(xi
2) +

n∑
i=0

(x̄2)−
n∑

i=0

(2xix̄)

and simplified down to

Variance =
n∑

i=0

(xi
2) + nx̄2 −

n∑
i=0

(2xix̄)

or

Variance =
n∑

i=0

(xi
2) +

(
∑
x)2

n
−

n∑
i=0

(2xix̄)

We can further expand the term
∑n

i=0(2xix̄) as 2x̄
∑n

i=0 xi when can also be

expressed as 2x̄nx̄. Following our previous substitution of x̄, as
∑

x
n

the final term

can be written as −2 (
∑

x)2

n
.

Which gives a final formula as

Variance =
n∑

i=0

(x2i)−
(
∑
x)2

n

f unc t i on c a l c u l a t e l o s s 3 (I , C1 , C2 , C3 , C4 , C5) :

Step 1 : Compute squared norms and reshape t en so r s f o r broadcast ing
I squared = square (I)
C1 squared = square (C1)
C2 squared = square (C2)
C3 squared = square (C3)
C4 squared = square (C4)
C5 squared = square (C5)

I squared re shaped = reshape (I squared , [shape o f (I) [0] , 1 , 1 , 1 , 1 , 1 , −1])
C1 squared reshaped = reshape (C1 squared , [1 , shape o f (C1) [0] , 1 , 1 , 1 , 1 , −1])
C2 squared reshaped = reshape (C2 squared , [1 , 1 , shape o f (C2) [0] , 1 , 1 , 1 , −1])
C3 squared reshaped = reshape (C3 squared , [1 , 1 , 1 , shape o f (C3) [0] , 1 , 1 , −1])
C4 squared reshaped = reshape (C4 squared , [1 , 1 , 1 , 1 , shape o f (C4) [0] , 1 , −1])
C5 squared reshaped = reshape (C5 squared , [1 , 1 , 1 , 1 , 1 , shape o f (C5) [0] , −1])

Step 2 : Combine squared norms
combined squared = add (I squared reshaped , C1 squared reshaped)

107

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

combined squared = add (combined squared , C2 squared reshaped)
combined squared = add (combined squared , C3 squared reshaped)
combined squared = add (combined squared , C4 squared reshaped)
combined squared = add (combined squared , C5 squared reshaped)

Step 3 : Compute combined vector
combined vector = add (I , C1)
combined vector = add (combined vector , C2)
combined vector = add (combined vector , C3)
combined vector = add (combined vector , C4)
combined vector = add (combined vector , C5)
combined vector squared = square (combined vector)

Step 4 : Compute mean squared o f the combined vector
mean squared = mean(combined vector squared , dimension=−1)

Step 5 : Compute f i n a l r e s u l t
f i n a l r e s u l t = 1 − sum(sq r t (combined squared) − mean squared)

Step 6 : Return the f i n a l r e s u l t
re turn f i n a l r e s u l t

Whilst this rewrite appears more complicated, it is worth considering that each
element of x is in fact a multi-dimensional array with size B in the ith dimension
feature size in the n+ 1th dimension. Thus,V ariance is an array of size Bn and our
training loss is calculated with cross entropy on the diagonal samples n dimensional
B. This is a significant step, not least for the n-dimensional loss, but because in
this rewrite the whole array can be calculated without instantiating an array of size
nF (Bn) in memory, thus speeding up calculations. To explore why this is impractical,
using the batch size of B = 16 or 24 and n = 4 or 22 and a feature space of F = 256 or
28, in this example which is modest by most production methods, the array size is 226
or 67 million floats being allocated just to a single term in a calculation, prohibitively
large and that is with very modest (and easy to calculate numbers). Whereas, with the
rewritten formula, the largest arrays present are a single Bn array, which means that
for the same numbers, only a quarter of the memory is used as a single operand. With
many ML library optimisations and runtime compilations to preserve a backward pass,
this calculation can happen in under 100ms when optimised with in-place operations.

5.5.3 Geometric Methods for Cosine Similarity

Cosine similarity, the function being approximated with more terms, can be considered
the dot product of individual elements between 2 normalized arrays. In this section,
the 2 arrays to be compared will be denoted as jandk. When the arrays are
normalized, the sum total should be 1 if they are identical. This is to say, if each
component of the array were plotted on perpendicular axes, such that each point had
(x,y) coordinates (ji, ki), if cosine similarity were 1, all points would lie on the line
defined by x = y.

Cosine similarity can therefore be considered a measure of deviance from this line.
In some respects, the comparison between j and k can be considered as a function of
how far ji, ki deviates from the line defined by y = x. If the array m is denoted as the
mean of j and k such thatm = j+k

2
, the distance between j and k can be considered in

108

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

Number Name Equation S =

1 S = 1− SST 1−
∑n

i=0(x
2
i)−

(
∑n

i=0 xi)
2

n

2 1-L2Norm 1−
∑n

i=0

√
((x2i)−

(
∑n

i=0 xi)
2

n
)

3 Cosine similarity
of means

x̄2√∑F
f=0 x̄

2
f

4 1−
∑F

f=0

√∑n
i=0(x

2
i)−

(
∑n

i=0
xi)

2

n

F

5 1−
√∑F

f=0

∑n
i=0(x

2
i)−

(
∑n

i=0 xi)2

n

2

6 1−
∑F

f=0

√∑n
i=0(x

2
i)

7 1−
∑F

f=0

∑n
i=0(x

2
i)−

∑n
i=0 xi

2

n

8 1−
√
|
∑F

f=0

∑n
i=0(x

2
i)−

∑n
i=0 xi

2

n
|

9 1−
∑F

f=0 |
∑n

i=0(x
2
i)−

∑n
i=0 xi

2

n
|

10 1−
∑n

i=0(x
2
i)−

∑n
i=0 xi

2

n

11
∑F

f=0

∑n
i=0 xi

2

n2

norm(
∑n

i=0 xi)

12
∑F

f=0

∑n
i=0 xi

2√∑F
f=0 (

∑n
i=0 xi)2)

13
√∑F

f=0 (
∑n

i=0
xi

n
)2

14
∑n

i=0

∑F
f=0 xi ×

∑n
j=0 xj

n√∑ ∑n
j=0

xj
2

n2

15
∑n

i=0

∑F
f=0 xi ×

∑n
j=0 xj

n
−xi∑n

j=0
xj

n
−
√∑f=F

f=0 x2
if

16
∑F

f=0

∑n
i=0 xi

n
− |
√
n× x̄2| −

√∑n
j=0 x

2
j

17
∑F

f=0

∑n
i=0(

|xi|
n
) +

√
n×

∑n
i=0(

|xi|
n
)
2
−
√∑n

i=0(x
2
i)

18 Einsum Approxi-
mation

Figure 5.9: A Table showing the different similarity measures explored in this work

109

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

terms of m as Distance =
∑
|mi− ji|+

∑
|mi− ki|. This has been written verbosely

to emphasize how this may scale in n = 3+ dimensions. In this sense, as n increases,
the formula can be rewritten as Distance =

∑
mi − Variancei

Geometrically, the difference can also be expressed as other functions such as: the
imbalance of the (ji, ki) coordinate as expressed as area relative to the mean squared;
the change in hypotenuse of ji, ki or the deviation from the mean. The comparative
gradient of this quadratic in n = 2 dimensions, but scales better to more terms than
cosine similarity. How the Volumei : Variancei ratio changes with n is easier to scale
than cosine similarity.

Geometrically, this can be considered as the mathematical difference between
2 squares, comparing the hypothenuse of the mean2 to the hypothenuse of the
rectangle defined by (x, y), or as (m + c)(m − c). The equation itself appears to
scale to n dimensions, reliant on the mean and the norm to compute the difference in
hypothenuse of the cuboid of shape (x, y, z) and the area of the cube with an equal
sum of side lengths. In the above equation, this has been rearranged to be calculated
by mean− (norm(sides)/2−mean(sides)2) which should always be positive.

A closer approximation to the cosine similarity values is the following code that
compares the hypotenuse of a cube to that of the cuboid as a function of mean values.
f unc t i on compute z (x , y) :

Step 1 : I n i t i a l i z e an empty matrix z with the shape (x . shape [0] , y . shape [0])
z = empty matrix (x . shape [0] , y . shape [0])

Step 2 : Loop through x and y
f o r i from 0 to number of rows (x) :

f o r j from 0 to number of rows (y) :

Step 3 : Ca lcu la te the mean o f x [i] and y [j]
mean = (x [i] + y [j]) / 2

Step 4 : Ca lcu la te the norm (Eucl idean d i s t ance) o f the vector [x [i] , y [j]]
vector norm = norm(vector ([x [i] , y [j]]))

Step 5 : Ca lcu la te the square root o f 2 t imes the square o f the mean
mean squared term = sqr t (2 ∗ (meanˆ2))

Step 6 : Compute deltaH
deltaH = vector norm − mean squared term

Step 7 : Compute the value f o r z [i , j]
z [i , j] = deltaH − mean

Step 8 : Return the matrix z
return z

By not relying on the expansion of the difference of 2 squares, a phenomenon only
found in binomials, this implementation should scale better. A natural question from
this formula is why dH and mean are subtracted and not as a fraction. Firstly, the
mean is limited to less than one, so any division or multiplication may cause problems
with values approaching 0. Secondly, the upper bound of the mean is the case where
the deviation from the mean is equal to the mean, the longest hypothenuse achievable
is therefore twice the mean, an upper bound of which is 1. This means z has the
range 0 < z < 1.

In additional dimensions, the formula can be modified to work for n = 3+. This

110

Chapter 5. Exploring the Limits 5.5. Similarity Calculation

Image Source

A figure showing the plot of cosine similarity between x and
y

An alternate method generated with
f unc t i on compute z (x , y) :

Step 1 : I n i t i a l i z e empty matrix z
z = empty matrix (x . shape [0] , y . shape [0])
Step 2 : Loop through x and y
f o r i from 0 to number of rows (x) :

f o r j from 0 to number of rows (y) :
Step 3 : Ca lcu la te the mean
mean = (x [i] + y [j]) / 2
d i f f e r e n c e = abs (((x [i] ˆ2 + y [j] ˆ 2) / 2) − (meanˆ2))
Step 5 : Compute z [i , j]
z [i , j] = mean − d i f f e r e n c e

return z

A similar plot using the difference between arithmetic and
geometric mean generated by

f unc t i on compute z (x , y) :

Step 1 : I n i t i a l i z e z with shape (x . shape [0] , y . shape [0])
z = empty matrix (x . shape [0] , y . shape [0])

Step 2 : Loop through x and y
f o r i from 0 to number of rows (x) :

f o r j from 0 to number of rows (y) :
Step 3 : Ca lcu la te the mean
mean = (x [i] + y [j]) / 2
Step 4 : Ca lcu la te the norm [[x [i] , y [j]]
vector norm = norm(vector ([x [i] , y [j]]))
Step 5 : Ca lcu la te the square root o f 2 t imes the ←↩

square o f the mean
mean squared term = sqr t (2 ∗ (meanˆ2))
Step 6 : Compute deltaH
deltaH = vector norm − mean squared term
Step 7 : Compute z [i , j]
z [i , j] = deltaH − mean

return z

This plot shows how cosine similarity looks in n = 3
dimensions on the same colour scale, thus showing the need
for an approximation that scales with the same gradient
throughout as n = 2

Table 5.2: A Table showing how cosine similarity is plotted in higher dimensions,
alongside other approximations

111

Chapter 5. Exploring the Limits 5.6. Linear Scaling test

Figure 5.10: Adding an extra dimension to the cosine approx plot

modification is conducted with pythagorean formula for finding the hypothenuse in
cartesian space.

5.6 Testing Method Scaling

5.6.1 Hypothesis

Thusfar, the move to n-dimensional approaches has been treated as having a linear
effect on scaling. In this section, the hypothesis that this scaling is linearly related to
n is tested.

5.6.2 Proof of Concept Method

Following discussion in Chapter 2, a simple proof of the efficacy of contrastive training
is to consider the abilities of linear probes on simple embedding spaces. The method
to test the Similarity metrics is to use these evaluation metrics as a simple model
comprised of an embedding space and 2 linear layers, with noise used in between. By
picking the embedding from a batch and adding noise per dimension, the test will
replicated correlated inputs across modalities. During validation, the model classifies

112

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

an embedding plus noise. This approach will test the above methods, including a
scaled stock method.

When interpreting this experiment, it is worth understanding that the first
methods are variations on stock contrastive training that simply stack all tensor
types into a 2D loss. This is very powerful because PyTorch supports highly efficient
processing of this in such small scales - they were able to use a batch size of the entire
sample space, so their optimum performance is little surprise.

This lightweight model will demonstrate that n = 3+ is worth further trials
with larger models. Figure 5.11 plots the method against escore to help accentuate
differences.

5.6.3 Proof of Concept Results

Figure 5.11 clearly shows that different methods that calculate the variance between
items n, some clearly favour certain values of n over other methods. (n = 4) is the
best case for Methods 10 and 16. Although 13 seems equally strong for everything
above n = 2 where it seems to be consistent with other methods, with method 7
only working for n = 3 or n = 4. The main conclusion of this graph is that the
higher values of n seem to have a minimal impact and tend to each other, which may
demonstrate the limitations of this environment.

This interpretation must be balanced with the caveat that, over an infinite number
of dimensions, this task becomes trivial because the noise averages 0. However, the
same can be said for cross-modal contrastive training that over enough modalities the
sentiment becomes clear.

5.7 Exploring Labels and Loss in n > 2

Loss and how this is calculated on a six-dimensional cube of logits are crucial to
adding additional dimensions to the calculations.

CLIP uses cross-entropy loss, allowing each slice of the logits to have a value to
maximize while minimizing the row. with labels generated as

l a b e l s=torch . arange (l en (batch))

The formula for loss is given as

l(x, y) = L = l1, l2...ln
T

where

ln = −
C∑

C=1

wclog
exp(xn,c)∑C
i=0 exp(xn,i)

yn, c

113

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

Figure 5.11: Method performance in each value of n, scored by the exponent of the
ratio between positive and negative logits. Scores near 1, represent models unable
to converge, with higher scores representing sufficient gradients able to converge.
Notably, some methods (6-9) viability differs by number of dimensions.

114

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

This formula means that for a given value of x and target y, the loss is the
logarithmic expression of the exponent of the correct class, over the sum of exponents
of all other classes, which is then balanced according to any class or output biases
and summed over the batch. However, the implementation for 2 dimensions receives
a target of indexes of type ‘torch.long’. However, in the additional dimensions, there
exist values that are not in the same row, which must still be considered for loss.
Recalling the initial figure, the front face must be considered when maximising the
value at (0, 0, 0). Thus, for n dimensions, using a class list in n − 1 dimensions is
insufficient: there are many locations where a class to maximise is misleading, and
we would only consider a single dimension. Instead, a facsimile of the initial figure is
created by diagonally embedding the ones into a cube of the correct dimensions. This
offers a more effective loss metric.

Contrastive training in 2 dimensions is capable of treating a square of logits as
a stack of classifications such that ln represents the loss for a given row where x
is the row and y the IDX of the row, and thus the desired item to calculate the
loss of. using a transpose for the calculation of P (Image|Caption) and subsequently,
PCaption|Image. However, in 3+ dimensions, the cube has additional properties.
It is no longer correct to say that for a given logit, it should either be Positive or
Negative as may be the case with Cosine Similarity.

In higher dimensions, we rotate through the dimensions. This has 2 advantages:
It does not require recalculation and every dimension occupies every position,
eliminating any error introduced by the randomness of exact labels as seen in Table
5.3.

In each loss metric, consider all encoder outputs as X where Xi is the output
of the encoder i. The plane corresponding to the batch output Xi is a Tensor
of similarities that each element of Xi matches every other encoder output. In a
six-dimensional matrices of dimensions Bn, the item at index (i, j, k, l,m, n) can be
considered probability P (X0i|X1j + X2k + X3l + X4m + X5n), bases on the original
assertion, that each view of the loss matrix, is the probability of a particular encoding,
given all others in that slice of an n-dimensional matrix. This approach represents an
upscaling of the original CLIP paper proposing each logit represents the probability
of an image, given a caption, and vise versa in the transpose.

This contrast to sigmoid loss is used for the majority of experiments due to the fact
that sigLIP was predated by some years with this implementation. However, there is
functional equivalence between the element-wise CELoss and sigmoid approach.

5.7.1 Changes to Implementation

Original code from the initial CLIP release pointed to the use of cross-entropy loss
as taking labelled entries. In additional dimensions, this compares the matrix at

115

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

that label with all others, essentially projecting a slice of a (n− 2)-dimensional space
against other slices.

This is equivalent to projecting the diagonal into each dimension in the cube,
resulting in a paradigm that seeks to maximise and minimise at different stages of
the loss gradient. The intuitive answer is to argue that if only a single transformers
gradient is considered, then it would mathematically simplify to correcting the vectors
and moving incorrect ones further away. However, it is unclear whether this is
happening in such a case; this assumes that all encoders are resolved independently,
which would require the pairwise approach that has already been discussed as being
impractical due to the adverse scaling of the combinatorics.

This becomes very pertinent as the dimensions and limits of this approach are
explored. The combinatorics in high dimensions are perplexing, but drastically
increase the chance of a given logit being maximised.

The chance of any logit being maximised by a loss function is the likelihood in a
given size B in n dimensions, that the position is the same in any dimesion.

Pmaximized = 1−
∏n

a=0max((B − a), 0)
Bn

The logic underlying this is the reason the implementation takes a set of labels of
identical shape to the input, as a way of having increased control over the logits’
training.

5.7.2 Limits of the Function

There are multiple factors to consider when reproducing this: First, in 2 dimensions,
the limit to this function is in the range -1, 1. This can be shown geometrically and
is the purpose of the dividing by the norm. In other words, the magnitude of each
vector is divided by its hypotenuse, which means that each input vector is of size 1.

An initial suggestion would be to mean the component vectors. Taking the
maximum and minimal values results in the correct range; however, there is the
possibility that the mean is 0 in magnitude. In this case, dividing by the magnitude
of the mean to get a hypothenuse of 1 is not possible.

In all this, it must also be considered that a distinct gradient descent must be
possible - There can be no false minima to the resultant function. The goal of this
work is not just about finding a function that meets the criteria of the perfect case
but also allows a sloping gradient to the minima.

Against this, we must also consider the gradient of the mathematical function; even
if we converge and have a sloping parameter gradient in a high-dimensional space, we
need to ensure that the whole space is encompassed in this slope. Several experiments
are used to isolate regions with a mask to show the effect of loss. It is easy to see

116

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

Figure 5.12: Difference between using example Loss and generated labels

how these regions vary from the corresponding labels with MSELoss, but with cross-
entropy that scales better to magnitudinal variation this requires a different approach.
Curiously, there appears a significant difference between the following graphs: Figure
5.12 shows how these perfect labels are generated and understanding the merits of this
system. In a perfect case, the logits in the regions where m < n2 or the case where
not all coordinates are the same, the similarity should be minimal. In the training
case where the logits are essentially random within the initial steps, this similarity
should also be minimal, so the training for these initial steps is negatively impacted
by the loss being averaged across these regions.

In spite of predicting huge performance boost from additional data, in initial
tests, the result was that with n = 2, the linear probes converged to around 55-
60% accuracy within 3000 steps. With the same parameters, n = 6 required 12k
steps. Understanding the impact of subregions on training yields an answer to this
behaviour.

Now that each region is isolated, 3 approaches exist: using a mask, using exact
weightings, or a learnt parameter to switch between the training paradigms as
presented in a study on robust representations where a scaling factor is used between
pre-trained and novel methods [122].

The merits of using weightings can be shown in graphs like the following. These
show the ratio of MSE Loss that each region accounts for. There are several distinct
regions in each graph, and notably that 2 graphs are inverted, corresponding to the
most varied regions, indicates two distinct behaviours, especially as these 2 regions
are the regions expected to be near-perfect at the commencement of training.

117

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

It is reasonable, therefore, to consider that the 3 stages of training are as follows:

• Maximizing matching items

• Minimizing non-matches

• Maintaining equilibrium

5.7.3 Label Smoothing

An approach found to improve teacher-student supervision-based approaches has been
the use of label smoothing on the teacher. This modifies the typical CE loss approach
to take a parameter T such that the loss is calculated on the CE loss(logits/T). As
T tends to be infinite, the loss becomes smoother, resulting in labels that are equally
nonzero for nondesired classes. In our use case, this would look like the modification
of one-hot ranges of labels over our n-dimensional cube to a similar distribution but
a near-one-hot with 0.99 and the remainder of the norm split between non-optimum
classes. This approach should be considered to have the same effect as is found in
semi-supervised approaches of altering the loss from non-desired classes to be truly
minimized rather than ultimately ignored in many cases.

The expectation of this approach to label modification is a continuation on the
previous discussions on differing loss metrics, which is to further force reductive
behaviours for non-maximal values.

A drawback of using very precise ”exact” labels generated with a perfectly identical
case is the highly improbable case where in spite of input variability, a very particular
vector is learnt. Instead of just avoiding this exploration, other cases can be explored,
such as removing any intermediate labels between extremes, which carry a large
number of values. It is worth considering the contribution to loss of these regions
with partial matches, and in many cases, they are not the main contributors. They
have the largest quantity of values and some of the least input per value and have a
high amount of instability.

There are 4 approaches trialed, which appear as ”exactlabels”, ”maskLosses”,
”normlogits” and ”Loss” respectively in later demonstrations of hyperparameter
sweeps:

• Cross Entropy Loss, using the as written implementation for n = 2 that only
maximises the diagonal

• Partially masked CE Loss, removing problematic regions, emphasising a 2-region
approach

• Scaling loss by region distance

118

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

Logit Value

Count

Figure 5.13: This plot shows the values (x-axis) and the frequency (y-axis) of different
regions where B = 4 and n = 6. This shows that although each region is distinct, the
values each should hold have high variance

• Sigmoid Loss, scaling all labels and values to the [-1,1] range

These approaches are explored in subsequent experiments. The impact these each
have on the way logits perform is demonstrated by the distributions taken from when
exact labels are used for method 8 with n = 6. Shown in Figure 5.13, the logits
collected have a distinct distribution for each parameter set.

The region corresponding to 98 is the largest to maximally enforce loss, but if this
label is reachable with a random vector in many cases, there is a low probability, and
this region will greatly contribute to loss, especially with such high variance in labels.

If it were to be masked, there are still significantly more logits available to training
that this work would still present an improvement on scaling than traditional methods.
Supposing that this could be done faster than currently implemented, a large amount
of the computational graph could be saved.

The final approach, however, is to use the density of this region to influence the
gradient step: any significant deviation from this label is arguably far more impactful
to training than either of the other label distributions, therefore weighting loss by the
mask density is a strong way to stabilise training.

When replicating the advances of sigmoid loss in SigLIP in high dimensions, there
is a comparable performance improvement.

Cross-Entropy (CE) loss factors in the exponent of every item, not just the
corresponding probability.

l(x, y) = l1, l2...lB
T

119

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

where

lb = −
C∑
c=1

wc log
expxb,c∑C
i=0 expxb,i

yb,c

In the original training, CE loss is taken in both directions, maximizing the positive
class against others, giving each encoder a loss function. These are then averaged to
represent the overall loss. On the grid of logits, this compares each item on the
diagonal to its corresponding row and column.

However, in understanding that there were only two regions in that training,
scaling that to additional dimensions presents a conundrum of calculating the loss
for each dimension.

5.7.4 Labels Exploration

Many of the above methods have varying behaviours, values and tend to different
shapes during training. In 512-space, the overall topology is what is relevant, rather
than the absolute values, as is true for Loss calculation: the length of step towards
an optimal parameter set has no bearing on the location of representations. For
many experiments, using exact labels has been exhaustively trialled: working out the
correct labels for areas of logits based on a single test case. Rather than contorting to
the arbritrary labels of a 2-region system like CLIP, we use this to demonstrate why
scaling into additional dimensions comes with overhead and difficulty.

Table 5.3 is a key tool in identifying poor algorithms that produce labels with
differing results or muddled orders. Cross-referencing with Figure 5.11 helps identify
the primary methods by their loss characteristics, and the trends as n increases become
apparent. In particular, this assumes the unique case in which all encoders output,
F identical tensors that occupy a uniform distribution across the range 0 < Fi < 1 .
This is not a given, and a Gaussian distribution would be a better predictor of labels -
this was initially discounted on the assumption that the imbalance in masked regions
might stop the model converging properly.

Instability is also caused where the regions have a relatively high variance, as
this can cause converging issues. The best explanation for this is that the labels are
affected by input value: The test to generate these labels uses random, but identical,
tensors. Thus for there to be variance in the labels reflects that the individual values
affect the output rather than the similarity to adjacent points.

Compared to SigLIP as previously discussed, many of the similarity comparisons
are not bounded between -1 and 1. For a fair comparison of this method, when sigmoid
loss is tested, the logits are scaled down to the correct range prior to calculation.
Sigmoid loss should perform well in the cases of both exact and theoretical label values.
The significant advantage of using sigmoid loss is that the values are individualy not
constrained by the logits adjacent. To preserve the effectiveness of CE training, the

120

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

Method 3 4 5 6

0

1

2

3

4

5

6

7

8

9

121

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

10

11

12

13

14

15

16

17

18

Table 5.3: Distribution of labels by region when using exact labels

122

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

logit cube is permuted so that logits are compared against each dimension. This
permutation is left for the purpose of fairness in training and not modifying the wider
framework. Comparison in this way allows the sigmoid approach to be trialled against
a variety of label and similarity approaches to show whether this method also carries
the same scaling advantages.

5.7.5 Prototyping Modalities with Projections

In this chapter, the discussion is around scaling numbers of encoders, with the
emphasis on being able to support multi-modal inputs, like many Vision-Language
models; the goal is to bridge multiple modalities. When the fundamentals of grounding
vision and textual domains are considered, it is naive to believe that both naturally
share the same semantic space given the lack of 1st-order grounding in this context.

CLIP leans on an intermediate embedding for cross-modal comparison. This
is essential as there are some sentiments in a visual domain that are difficult to
linguistically describe. Similarly, there are myriad textual expressions that have no
visual equivalent. This is the conversion between different modalities whilst preserving
the backward gradient, crucial to the ability of embedding spaces to be adapted
towards carrying information.

At a low level, this means that the function for comparing text to image, defined
as f such that f(T, I) = P (T |I) where T = TextFeatures · Projection. (Using · to
represent matrices multiplication). As the projection has the shape of that latent
space of text features, and image features, the final shape of T will be the batch
size by the image latent space, creating a unified embedding space for cross-modal
comparison.

However, since this occurs in higher dimensions, where the abstract function f(·) is
now defined as f(T1, T2, T3, T4, T5, I) = P (T1|T2, T3, T4, T5, I), T repeatedly including
the textual projections may be problematic. As discussed above, conflicts between
polarities may occur. This would be exacerbated by a n − 1 terms including the
projection in the calculation. In an ideal case where the n operands are identical, the
output of f(·) will be created by the product of features that will take one positive or
negative (+ve| − ve). Given feature ‘x’, projection for the feature (p) will also take
a Boolean positive or negative. This means that the polarity of the overall feature
is effectively f(xp, xp, xp, xp, xp, x). If we assume that f(·) can be abstracted to a
multiplication of features, on which many subsequent methods depend, the following
truth table occurs:

p / x +ve -ve
+ve +ve -ve
-ve -ve -ve

123

Chapter 5. Exploring the Limits 5.7. Exploring Labels and Loss in n > 2

This truth table shows that negative values in either a single feature, or in the text
embedding can drastically impact the output space. We test this in subsequent
experiments by naively totaling the features across training. This indicates a rough
tally of how many are negative and the general trend. The question becomes whether
any such system can learn meaningful embeddings.

Alternatively, an alternative learned array ′P that means that in 2 dimensions
f(t · P, I) = f(t, I ·′ P). Which then evaluates the function f(·) for:

I · (t · P)T = (I ·′ P) · tT

However, as this is normalised before calculation, it means that ′P must be derived
from the following :

i√∑
i2

tP√∑
tP 2

T

=
iQ√∑
(iQ2)

t√∑
(t2)

T

Derivation A: Starting with

i√∑
i2

tP√∑
tP 2

T

=
i′P√∑
(i′P 2)

t√∑
(t2)

T

We multiply each side by

(
i√∑
i2

−1 t√∑
(t2)

−1

)

Which gives

i√∑
i2

−1 i√∑
i2

tP√∑
tP 2

T t√∑
(t2)

−1

= (
i√∑
i2

−1 i′P√∑
(i′P 2)

t√∑
(t2)

T t√∑
(t2)

−1

)

This allows for:

tP√∑
tP 2

T t√∑
(t2)

−1

= (
i√∑
i2

−1 i′P√∑
(i′P 2)

T

)

This cannot be readily simplified further, so in lieu of being able to express the
image projection as a function of the text projection, we simply allow the projection
to be a similarly learnt parameter.

An alternative approach is to consider the equivalent similarity metric in the
perfect case.

T · P = I

124

Chapter 5. Exploring the Limits 5.8. Evaluating Regions of n-dimension Loss

Projection Value Definition
‘none’ No projection is used for any modality
‘inv’ Using the inverted transform on the repeated modality
‘iinv’ Using the an inverted transform on the image encoder

Table 5.4: A table describing the projection hyperparameter

This can easily become
T = I ·′ P

However, this implies that there is an inverse for P and that the similarity between
TP and I also correlates with the similarity between T and I ′P .

Interestingly, the standard projection is initialized with a standard deviation of√
F , with the majority values around 0.01e-3. This projection to smaller scales is

later corrected by multiplying the exponent of the logits, which brings the maximal
value back to around 1 ahead of the final calculation. This reduction in projection
scale stabilizes the projection while helping to avoid infinite and null values. This
scaling also enables the exponents of each logit (a key part of the loss calculation) to
stabilize to optimal values, rather than having large imbalances.

l o g i t s c a l e = torch . nn . Parameter (torch . ones ([]) ∗ np .←↩
l og (1 / 0 . 07))

In summary, as a proto-type for increasingly multimodal machine learning
applications, the experiments presented cannot afford to unfairly bias a particular
modality, nor be skewed by the repetition of one. Therefore, a hyperparameter is
introduced to experiments that takes several values.

5.8 Evaluating Regions of n-dimension Loss

To observe how this works, the table of graphs shows three very distinct stages of
training based on the regions stabilizing relative to each other.

All of these graphs were generated with loss calculated from exact labels and
the rough, one-hot mask of the diagonals. However, they did not contribute to the
gradient during training, and despite training converging, the logit delta between good
and bad that might be expected failed to grow.

Theoretically, this calculation carries the same geometry as seen in the stock
implementation of CLIP. CLIP generates one set of loss per dimension, and then to
be averaged together. Literature is lacking on the combinatorics of extra dimensions.
An assumption can be made that the scaling of additional dimensions is equivalent to
the scaling of multiple devices as seen in LLip and SigLip. The standout assumption

125

Chapter 5. Exploring the Limits 5.8. Evaluating Regions of n-dimension Loss

Table 5.5: A series of graphs showing that the smallest and largest regions occupy
inverse areas during training and are unstable initially during training but find an
equilibrium

126

Chapter 5. Exploring the Limits 5.8. Evaluating Regions of n-dimension Loss

is each work is the neccessity of every position to have been filled, and that asymetry
has no lasting bias.

An immediate change to make then is to replace the transpose of arrays with
a permute of all logits, rotating the cube around each face. We then substitute
the probabilities to be expected at each region. When we break down the loss into
regions, we do so according to the numbers of unique coordinates. That is, by the
minimum expected loss per logit. This is well modelled by the concept of using exact
probabilities calculated with n identical inputs and using the loss output as the ideal
case.

The issue with this, when factored into calculations, is to suggest the value it tends
to without necessarily solely contributing to the corresponding logits. Consider the
issue with n = 3 dimensions. Applying the loss as seen in CLIP to each diagonal, we
find points within certain regions of the cube that are never used, and this subdivides
our region mask.

This subdivision suggests that some of the masks in each region do not contribute
and should not be in higher dimensions. This suggests that instead of viewing n = 2
as the case of all or none of the coordinate matches, it is, in fact, n− similar or n− 1.
The n − 1 region is the part that scales better with batch size. Indeed in higher
dimensions, this continues to region obey the same scaling. The merit of adding
additional regions is therefore the addition of regions that have better scaling beyond
n = 4.

Another way of performing region masking in an attempt to model just using
the speed up of regions defined as masks[-2:] is to flatten the array by selecting
solely the logits defined by the masks masksm∀m . However, even when providing
probabilities to cross-entropy loss, it means that the loss is additionally calculated for
all other values, making each positive case more sensitive to other, uncorrelated, case
outcomes.

This is why a learn mask is also tried, starting as a set of ones per mask. To stop
the model minimising the regions to zero, we divide it by the norm to ensure that the
magnitude of value can never approach zero, then performing a softmax operation
to limit the weights to between 0, where it would be entirely removed, and 1 where
entirely used.

The final approach worthy of consideration is to take the square that sits along
the diagonal of the n-dimensional cube and perform loss on that. However, this would
require the creation of n − 1 losses per dimension for n dimensions. The tracking of
gradients that scales with n2 is unrealistic.

127

Chapter 5. Exploring the Limits 5.9. Training Results

5.8.1 n = 4 Dimensional Comparisons

Table 5.6 shows the different methods outlined above in a range of cases, across several
different methods, but mapped to the same colour scheme. Compared to the example
in Table 5.2, this shows how the gradient of similarity may look when compared
across Bn samples where n = 4. Projected into a flat grid, this demonstrates both
the presence of distinct regions, that follow a repeating pattern, and the relative values
each region holds in n dimensions.

To interpret the table in 5.6, consider the difference between the majority of points
in the perfect case and those in the random case, they should be roughly equivalent.
It is also worth noting that the input vectors have a L2 norm of 1. As explored
previously, scaling into additional dimensions of loss is problematic and can introduce
different behaviours. With additional dimensions, it is worth considering the extra
columns this table would have. In these representations, the colour grading maxes
the distinction between high values difficult, printing these graphs with normalisation
graph = graph/max(graph) transform means that some methods suffer and only show
a single white dot, this is not a worry considering how this manifests in use. This
distance between large values helps maintain the second-order awareness of the model.
That is, first items are as similar to first items as second items are to second items.

5.9 Training Results

In this section, the best performing runs will be presented, showing the successful
accomplishment of RO.2. In this respect: much data has not been published here,
but the following parts show a snapshot of the training which may go on to have
potential being paired with suitable decoder training for highly effective use in low-
resource or mixed-modal domains.

The following graphs should be interpreted understanding that the sets of
coordinates that should match are divided such that the sets of matches s obeys
the formula:

i=s∑
i

S6
i = MaskValue

So for a given MaskValue, a set of numbers which sum to 6 can be worked out which
when squared, then cubed, sum to the maskvalue, and represent the counts of each
unique coordinate.

128

Chapter 5. Exploring the Limits 5.9. Training Results

Method
Perfect Case
with noise

Perfect case 2/4 perfect 3/4 perfect
Random
Case

Einsum
(18)

Cartesian
Dis-
tance
squared
Logits
(2)

Cartesian
Dis-
tance
(1)

Hypothenuse
com-
par-
ison
(4)

Table 5.6: Visual analysis of unnormalized loss functions on similar colour scales

129

Chapter 5. Exploring the Limits 5.9. Training Results

5.9.1 Best Run (in sample 150) for 6 DIM training, 10
Epochs, MSCOCO

This run is representative of many runs, in the experiment set available publicly
through W&B, using a very limited number of transformer layers, selected such that
the parameters are not saturated.

n B Layers Epochs Time
6 6 3 10 15 Hrs

Table 5.7: Run Details

This particular run is highlighted, because the Linear probes, as discussed in
Chapter 6 performed within 10% of next nearest competitor, but top-k=1 Imagenet
score is over 30% better, suggesting a strong optimum case.

Figure 5.14: A graph showing the training
loss

Figure 5.15: A Figure showing the mean
loss metric throughout training

Figure 5.14 shows the training loss, which looks as expected, but notable is the
noise, even far into the training. Further, the immediate convergence to a loss below
2.5, which contributes to an impressive performance even before the end of the first
Epoch.

Figure 5.15 tracks the average value of loss in the logit comparison cube, which
should be biased in favour of logits with entropic values. The growth of this value
slowly, shows that the model is increasing the distance between all embeddings, which
is to be expected - it would be intriguing to be able to further scale this work to see
whether there are limits to this, or a point where the values exceed the limits of the
system. The mean validation logits shown in Figure 5.16 is analogous to the mean

130

Chapter 5. Exploring the Limits 5.9. Training Results

Figure 5.16: The average logits in the
stock method during Validation

Figure 5.17: Mean projection Value

loss, only it tracks the value when performing the original matrices cosine similarity,
which remains remarkably stable, showing that the poor logits are likely the driving
force in the loss operation, which is a significant result.

Comparatively, Figure 5.17 shows that the projection parameter between modali-
ties does not significantly move during training, suggesting that the model’s projection
between modalities is not a significant factor and does not carry a huge charge. Logit

Figure 5.18: Improvement of logit scale
during training

scale shown in Figure 5.18 is a measure of confidence in a model reaching a perfect
case - its rate of increase correlates to model performance, and excitingly, follows the

131

Chapter 5. Exploring the Limits 5.9. Training Results

replication of a baseline clip implementation.
The region defined as maskval = 34 is clearly a major contributor of loss, which

is when there are 2 pairs of matching values and another 2 isolated ones. The
convergence and relatively stable value suggest that this set of regions can never
be minimized and was the inspiration for trying adaptive labeling. The region
maskval = 48 contributes equally to maskval = 84. This reflects that maskval = 84
is a single set of 3, where maskval = 48 is 3 sets of 2, both challenging cases for
any clustering measure. The comparative equality achieves the research objective:
showing that multiple encoders can be efficiently combined for loss calculation.

Table 5.8 is plotting the proportion of loss that is accounted for by the area where
all the values are unique. That this decays over training suggests that while initially
these locations have a large contribution to initial embedding placement, over time,
they contribute less compared to where subsets of matches occur.

5.9.1.1 Analysis

Table 5.9 shows the comparative MSE values away from labels within the logit cube
produced in 6 dimensions. The interesting values to observe are the graphs maskval =
6 and maskval = 1296 which cover the cases where the index within the batch are all
completely different and the case where they match, respectively. The difference in
these graphs shows how in the case where they are all different. The notable features
on these graphs are the comparative scales. The case where no match is present is
initially true and does not get very large during training. Comparatively, the case
where items are meant to match becomes very high in magnitude and starts further
from the labels than maskval does. This states that the labels are far from achievable
for the model to descend to, but also that this region is responsible for the largest
gradient input. Further notable is that for all values greater than 20 (every case where
at least something matches) there is an ‘elbow’ in the graph at around 2k steps. This
suggests that this is the minimum number of samples to begin learning from. The
observation roughly corresponds to a single epoch of training. Given the training sets
are shuffled, this peak existing demonstrates the power of this method, that the model
is reevaluating the prior representation compared to the new batch of data.

The plots in Table 5.8 show that at this elbow, the regions stabilize. The
proportion of MSE loss by region becomes relatively fixed, with the closer to perfect
cases accounting for increasingly large chunks. This perhaps is to be expected by the
imbalance in size of each region within an n-dimensional cube. This imbalance being
the potential cause means that there is a subsequent hypothesis that this training
method may have an upper bound of batch size, where the scaling laws that this work
is testing may no longer apply. Unfortunately, this is beyond the bounds of what is
testable at this scale.

132

Chapter 5. Exploring the Limits 5.9. Training Results

Table 5.8: A table of figures showing the proportion of loss that each region accounts
for. Notably, the graphs appear to flip around maskval = 48, which represents 3
pairs of matching coordinates. From, which point, the regions where points cluster
together, account for the largest proportion of the gradient.

133

Chapter 5. Exploring the Limits 5.9. Training Results

Table 5.9: A table of figures showing the loss by each region. Note the changing axis
but colocated spikes

134

Chapter 5. Exploring the Limits 5.9. Training Results

Table 5.10: A table of figures showing the training heuristics

In Table 5.10, 4 metrics are used to show that the training is going well according
to the downstream applications. Firstly, the difference between good and bad logits is
tracked, with the optimal logits maintaining a significant gap to the bad logits. This
naturally suggests that this is a very stable training method and further suggests that
we have not reached the limits of this training paradigm.

Linear probes are also monitored during training. This shows how well a logistic
regression of the output can predict class. This run scores 43% zero-shot top-k = 1
on ImageNet. But the probes give a modality-specific measure throughout training.
We can see from these graphs that they are relatively stable in value as a percentage,
which suggests that during the validation stages, from the first epochs, reasonable
embeddings are learned. It needs to be considered that there is a suboptimal maximum
value to these probes by the way the ground truth is collected. We take the first
class available in the instance’s annotations, which is seldom representative of the
image, but hopefully a semi-learnable bias that will favor images with few classes
present. It also uncovers the inherent bias present in a logistic regression method
that these metrics do not start from 0. For a better understanding, it may be worth
looking at the implementation of these during validation to understand that they
are not comparable across runs, methods, or even implementations : especially with
such limited resources available. A key trade-off during the implementation here is
the limited number of steps. These models were not allowed to fully converge. An
approach considered was to train from the previous epoch as a starting point. Such
an approach has problems such as: disadvantaging the first run; not handling large
changes in embedding location, and still never fully converging.

However, these metrics all point to a successful training approach, which has
occurred in a small fraction of the resources available to large models.

This training report has shown that using the config results in the best value
shown in Table 5.11 and Table 5.12.

135

Chapter 5. Exploring the Limits 5.9. Training Results

Parameter Value
adam epsilon 0.00000001
batch size 6
dims 6
embed dim 512
exactlabels 0
JSE 0
learning rate 0.00001
logitsversion 8
logvariance false
maskLosses 0
meanloss false
normlogits false
projection ”None”
prune false
totalsteps 200,000
trainbatch size 6
transformer heads 16
transformer layers 3
transformer width 512

Table 5.11: Configuration Parameters

136

Chapter 5. Exploring the Limits 5.9. Training Results

Metric Value
BAD logit 40.648048400878906
epoch 10
first logit 82.13754272460938
ImProbe 0.3392668776371308
logit scale 17.2613468170166
maskVal=6 2,032.41259765625
maskVal=20 2,293.30419921875
maskVal=34 2,554.196044921875
maskVal=48 2,815.087890625
maskVal=84 2,815.087890625
maskVal=98 3,075.979736328125
maskVal=162 3,597.763916015625
maskVal=258 3,597.763427734375
maskVal=272 3,858.65576171875
maskVal=626 4,641.3310546875
maskVal=1296 5,792.8486328125
Mean Projection Value 0.00000971413828665391
mean validation stock logits 0.046441663056612015
meanloss 2,684.622314453125
proportionmaskVal=6 0.7570571899414062
proportionmaskVal=20 0.8542371988296509
proportionmaskVal=34 0.9514172673225404
proportionmaskVal=48 1.0485973358154297
proportionmaskVal=84 1.0485973358154297
proportionmaskVal=98 1.145777463912964
proportionmaskVal=162 1.3401378393173218
proportionmaskVal=258 1.340137600898743
proportionmaskVal=272 1.437317967414856
proportionmaskVal=626 1.7288581132888794
proportionmaskVal=1296 2.1577889919281006
TopK Imagenet 0.41128
TProbe 0.7364627285513361
train loss 1.5338046550750732
val loss-stock 0.8291866779327393

Table 5.12: Results Table

137

Chapter 5. Exploring the Limits 5.9. Training Results

5.9.2 CKA Analysis

Table 5.13: CKA plots from training runs, showing the Kernel alignment of the trained
model to the stock CLIP model

The CKA analysis captured throughout the training shows an interesting comparison
to the stock clip model. The first 2 rows, representing the activations of the training
text encoder compared to the stock implementation, show that the initial layers
learn very similar values to the stock model, which deviates over training. However,
the image encoder, (a different architecture), only has later layers with a similar
activation. The ResNet architecture at the start of this network is unlikely to find
similar activations on such a small set of images.

The first rows of Table 5.13 show how the trained text encoder compares with
the stock model under CKA analysis, as discussed in Chapter 4. The diagram shows
how the first layers of the text encoder learn very similar weights to those in the
pre-trained model. The final layers do not. There are several plausible explanations
for this phenomenon:

• Not enough training data to well train a text encoder - less than even most
Low-resource languages! This is perhaps more significant when considering the
imbalance of using the activation of a single token.

138

Chapter 5. Exploring the Limits 5.9. Training Results

• The image set is comparatively limited and uniform compared to open-set data.
This effect could equally be caused by overfitting to the set rather than aligning
with the pretrained model

• Despite the best efforts to align the similarity metrics in the model to cosine
similarity, it is highly plausible that the domain imbalance has caused a different
distribution for the final textual outputs.

Compared to the pre-trained model, the image encoder appears to have a very
strong correlation.

5.9.3 Comparison of Top Runs

To explore how each experiment affects training with high numbers of inputs, the best
runs have been plotted, with zero-shot TopK imagenet scores of 30%. This will filter
out the graphs and show the optimal behaviors in all runs.

Table 5.14: A table of training metrics, showing a consistent difference between
the first and bad logits. The training loss table has an outlier, with a high value,
representing a run which used the sum loss rather than the mean to calculate gradients.

The plots in Table 5.14 show that in all the good cases, the positive and negative
cases remain well separated, and the train loss, based on a contrastive training of the
similarity logits, is very consistent across each good case. All the training loss curves
exhibit similar descent parameters per step. Given such variance in hyperparameters,
indicates the power of the presented methods lies primarily in using more dimensions
rather than the fragility of certain hyperparameters or methods. The one outlier in
the training curve plot uses region masking which, as previously discussed, separately

139

Chapter 5. Exploring the Limits 5.9. Training Results

accumulates the loss between regions. In practice, it has a ratio between good and
bad logits that is similar to several other well performing runs.

Table 5.15: A set of metrics for the top runs

The plots in Table 5.15 all show positive improvements through training: growing
Image and Text probes, and improving logit-scale. The notable features of the linear
layers are that the lines largely occupy the same shape. Beyond the initial epochs, the
improvement and leveling off of these probes is indicative that very fast convergence is
being achieved, and that linear probes are reaching their effective limit due to either
the efficacy of the limited data available or the errors introduced by other paradigms.
The latter is favorable as an explanation as the mean similarity score is descending,
which indicates that the encodings produced are becoming more distinct and farther
spaced around 512-space. This suggests that the models are significantly moving and
the increased sparsity of vectors might be having an adverse effect on the ability of
projections.

Table 5.16: A table of plots from the top 10 runs

The validation loss stock shown in Table 5.16 of these top runs suggests the
encoders are not producing comparable embeddings. In spite of being high-performing

140

Chapter 5. Exploring the Limits 5.9. Training Results

runs by both the measures of TopK and linear probes, the validation loss increases.
The result seems counterintuitive until considering that compared to the original CLIP
paper, the breadth of classes used does not have the same breadth; thus, samples are
less likely to be well distributed in an embedding space. The observation that methods
that perform well but do not have a comparable cosine similarity suggests both a lack
of training at sufficient scale and reinforces the hypothesis that different similarity
measures naturally produce different embedding distributions. There are a plethora
of subsequent experiments that could prove this interpretation, such as observing the
embeddings deviate from a pretrained model during training. However, there are
insufficient resources in an academic setting to load both the trained and the pre-
trained models during training, compare both sets of embeddings during training,
and express the trend over a meaningful training duration.

141

Chapter 5. Exploring the Limits 5.9. Training Results

Table 5.17: The Mean Squared Error of each region in the top 10 runs.

The mask values generated during this training are interesting in comparison to the
Table 5.17 because they represent the mean square error between the regions’ values
and the ideal labels. So they are affected by the volume of the region and the label
scheme used. The differing shapes and scales of these graphs can be misleading, hence
the subsequent proportion graphs. However, when interpreting these scales, they need
balancing against the relative sizes of regions as discussed in the prior chapter(s). All
the lines follow a similar shape, suggesting that the similarity values in each position
are deviating from the optimum value somewhat. Using the variance each region
might have as explored in Figure 5.13, compared with the average parameters of
n = 6, B = 8, suggests that these summed values across whole regions reflect relatively

142

Chapter 5. Exploring the Limits 5.9. Training Results

small deviations for individual values.

Table 5.18: The comparative losses by regions with no matches

The proportional masks reveal a lot about the training parameters of the top runs.
Firstly, whereas an absolute value, the purple line is an outlier; when considered as
a proportion, it is congruent to other loss metrics, indicating that the loss may be
measured from a fixed point that is simply becoming increasingly far from where the
vectors actually are. As discussed in the analysis section, it is very unlikely that the
optimal value of 1 for cosine similarity will ever be reached. Notable in the figures
for values 6-34 is that the shapes of the lines are largely the same with some flipped.
Values ≤ 1 indicate that these regions contribute less than average to the overall loss.
Such low index values indicate that coordinates are all unique - so this is the worst
case. These being the best runs, all of them in this region diverge away from the value
1 and appear to return very quickly compared to other training runs and other works.
The logit region representing all unique values is interesting for deviating the least -
representing the case where poor similarity is present, and correctly so. This region
is also one of the more numerously populated; thus, it does not deviate much from
the perfect case. Comparatively, the regions represented by 20, where only a pair of
items match, and 34, where 2 pairs match, exhibit differing behaviors: the lines are in
different orders. The different orders in this case represent different hyperparameters
for both labeling and logitversion. The logitversion governs how the similarity is
calculated, with slightly different distributions and emphasis on pairs over large sets,
and also for how the labels (and therefore distance to best case) are calculated.

The graphs in Table 5.19 each represent the cases where there are more than
3 agreeing coordinates or where there are 3 pairs (48). The order of the lines on
the graphs is now congruent. This suggests that the difference between these top

143

Chapter 5. Exploring the Limits 5.10. Importance of Hyperparameters

functions is how a single, double, and triple pair are treated. This is perhaps most
tangible in the jump between 2 and 3 pairs, where the lines reshuffle again, but all
the shapes mirror around the value 1. Opposite shapes mean the systems where 2
pairs constituted a low percentage of loss are more affected by 3 pairs and vice versa.

Table 5.19: The loss by region plotted as a proportion of all loss

5.10 Importance of Hyperparameters

The hypothesis being tested in this chapter is that scaling laws apply in settings where
n > 2. To explore the many hyperparameters without thousands of runs.

To explore the importance of different options, a random forest is fitted to
the hyperparameters using the many different metrics, including the Linear Probes
discussed in the prior chapter. The results are shown in Figure 5.19.

Figure 5.19 shows the aggregated importance between all the metrics. The 3 most
significant factors in performance are the similarity measure used, the mask of regions,
and the learning rate. The latter result is a surprise given the relative insignificance
of parameters like layers and parameters. However, in the test sweeps, some runs had
a very high learning rate to find out whether the hypothesis that more logits allowed
a better aggregate gradient was true.

144

Chapter 5. Exploring the Limits 5.10. Importance of Hyperparameters

Figure 5.19: A figure showing parameter importance for n = 6

Using Spearman and Pearson correlation to evaluate the correlation of Learning
rate yields Table 5.20, demonstrating that there is a strong negative correlation
between learning rate and performance against all metrics. There is a small positive
correlation between logit ratio and learning rate. A high learning rate is therefore
useful in some training for quick descent, but clearly leads to high entropy and
unstable representation. This is further explained by the logarithmic scale being used
for LR parameters, which neither Spearman nor Pearson are particularly sensitive to
(recalculating the table treating LR as categorical shows an even more extreme set of
results.)

Metric Parameter Importance Pearson Spearman

Ratio between logits LR 0.2106478 0.154691 0.092788
Image Probe LR 0.069374 -0.214251 -0.140264
Text Probe LR 0.148801 -0.363536 -0.214008

Ratio between logits maskLosses 0.01924205 0.007934 0.043952
Image Probe maskLosses 0.213682 -0.251859 -0.247412
Text Probe maskLosses 0.198065 -0.300921 -0.303283

Table 5.20: Table showing the importance of learning rate to key metrics

145

Chapter 5. Exploring the Limits 5.10. Importance of Hyperparameters

5.10.1 Similarity Evaluation and Region Masking

From Figure 5.19, both the masked regions and the calculation are important. The
figure is aggregated across metrics, so it may be statistically significant how similar
Learning Rate and mask loss values are. Given the prior discussion that Learning
Rate had some extreme, poor-performing values in the hyperparameter sweep. Mask
losses must be similarly investigated given the significant impact on training.

To investigate the effect that the Regions have and the mask losses on the training
with respect to these metrics, the Spearman and Pearson rankings are repeated,
separating the logits version and masking criteria into categories based on a value
that then holds a boolean truth value, where only a single category can be true at
once. The goal is to separate out the most important approaches, showing which of
the algorithms can be trained to. The parameter importance is then multiplied by
the correlation (summed across both measures) to show how the parameter affects
performance.

Figure 5.20: The relation of HyperParam-
eters to the Text Probe

Figure 5.21: The relation of HyperParam-
eters to the Image Probe

Figures 5.21 and 5.20 show that the Similarity metric (aka logitsversion) 8 is one of
the best performing, which validates one of the peaks in Figure 5.11. To find isolate
this across values other than n = 6, the random forest is widened across different
training projects.

Evident from Figure 5.22 is that the topography, and order of importance of
parameters has changed relative to the other experiments. Figure 5.22 shows that the
number of dimensions is one of the key factors, reinforcing the experiments in Chapter
3, with poor performance in with n = 3.5, which includes re-encoding predicted
text through a minimal language head. As discussed earlier, this approach lacks
the modern sophistication of LLMs with tools like beamforming, thus resulting in
very poor performance comparative to other experiments. Experiments with n = 3

146

Chapter 5. Exploring the Limits 5.10. Importance of Hyperparameters

Figure 5.22: Parameter Importance for many values of n

147

Chapter 5. Exploring the Limits 5.10. Importance of Hyperparameters

positively impact performance, better than the stock implementation (written as n =
0).

This chapter’s exploration into n = 6 has high importance but a slight negative
correlation, so it is reported as a negative product. This is likely due to the distribution
of logits versions that are rated as having low impact, a factor that only appears with
n = 6.

The next ranked results, before batch size, or model width or layers, is the labeling
scheme used. Using exact labels is detrimental to training. Likely due to the noise
in the annotations. Further work could be to look at not only calculating across
multiple batches, or at least, homogenizing the labels by region prior to training, to
see whether the poorer performance is solely related to noise in the calculation, or
implementation-based.

Breaking this down to isolate performance of different similarity measures, Figure
5.23 and Figure 5.24 demonstrate the comparative performance of the algorithms
previously profiled.

Figure 5.23: Correlation between Sim-
ilarity metric and image classification
performance

Figure 5.24: The correlation between
Similarity metric and Text classification
performance

The best performing methods are clearly 7 and 8. There are many factors that
could cause the stronger or weaker correlations in image and text probes. From the
above figures, it can be safely concluded that the best methods for n = 6+ dimensions
are

S = 1−
F∑

f=0

n∑
i=0

(x2i)−
∑n

i=0 xi
2

n

148

Chapter 5. Exploring the Limits 5.11. James-Stein Estimators

or

S = 1−

√√√√| F∑
f=0

n∑
i=0

(x2i)−
∑n

i=0 xi
2

n
|

Which are similar to each other, differing solely by finding the root of the distance
function that is unlikely to significantly affect the topology of the function in high
dimensions. The impact on correlation between modalities typifies the difficulty with
algorithm curation - where minor seemingly insignificant factors can significantly affect
performance, especially on a small scale.

5.11 James-Stein Estimators

Something to consider in these multi-dimensional loss paradigms is the effect that
additional dimensions have.

Assuming that two random vectors are compared, it would be reasonable to assume
a normal distribution if repeated. Therefore, in effect, we have a model that works
by estimating the center of that distribution and applying it to each input item. Not
immediately, but applicable directly to a similarity measure, many of the proposed
methods work by first calculating the mean between the values of (3+) and then the
distances. If there is a better measure for where that mean should be measured, this
is significant across so many samples.

The James-Stein estimator [63] approach suggests that the mean of the distribution
is no longer the best approximator; instead, applying a shrinkage factor offers a better
predictor of the center of each distribution.

When we consider a single sample from a normal distribution, it is most likely
the mean value. Therefore, we can say that when estimating the mean of a normal
distribution from a single sample, that sample is the best estimate.

However, in n = 3+ or more dimensions, the sample is no longer the best estimator
for the mean.

While it sounds counterintuitive, James-Stein’s findings show that applying a slight
shrinkage factor to the sample improves accuracy. In simple terms, the volume of
points that are improved towards the mean outweighs the points negatively affected by
being moved away from the mean. This effect only increases in additional dimensions.

Therefore, since our method is predicated on and takes advantage of the increased
volume of additional dimensions, it is worth exploring the same shrinkage factor.

f unc t i on app ly JSE factor (c ap t i on f e a tu r e s 1 , c ap t i on f e a tu r e s 2 , c ap t i on f e a tu r e s 3 , ←↩
cap t i on f e a tu r e s 4 , c ap t i on f e a tu r e s 5 , image f eature s , g e l u f un c t i on) :

Step 1 : Stack a l l f e a tu r e t en so r s
s t a c k ed f e a t u r e s = stack (cap t i on f e a tu r e s 1 , c ap t i on f e a tu r e s 2 , c ap t i on f e a tu r e s 3 , ←↩

cap t i on f e a tu r e s 4 , c ap t i on f e a tu r e s 5 , image f ea tu r e s)

Step 2 : Compute the squared norms o f the stacked f e a t u r e s
squared norms = square (s t a c k ed f e a t u r e s)

149

Chapter 5. Exploring the Limits 5.11. James-Stein Estimators

Step 3 : Sum the squared norms along the appropr ia te dimension
summed squared norms = sum(squared norms , dimension=0)

Step 4 : Compute the JSE f a c t o r
JSEFactor = 1 − (4 / summed squared norms)

Step 5 : Apply JSE f a c t o r to c ap t i on f e a t u r e s 1
c ap t i on f e a t u r e s 1 ad j u s t ed = mult ip ly (cap t i on f e a tu r e s 1 , JSEFactor)

Step 6 : Apply GELU ac t i v a t i on func t i on
c ap t i o n f e a t u r e s 1 a c t i v a t e d = ge l u f un c t i on (c ap t i on f e a t u r e s 1 ad j u s t ed)

Step 7 : Return the adjusted and ac t i va t ed c ap t i on f e a t u r e s 1
return c ap t i o n f e a t u r e s 1 a c t i v a t e d

This approximation assumes that all the values in a calculation are equally
weighted in their value as approximations. This explains why applying a shrinkage
factor to the calculations does not improve training and is often detrimental. However,
beyond n = 4, the behaviour of certain logits is highly predictable according to their
coordinates. Further, being able to predict the variance of logits given the position in
each dimension is very precise. Given that these masks have been generated for logging
purposes anyway, applying varying shrinkage factors to different regions according to
the number of logits in each is an approach to grow or shrink values. Although this
is the same effect as scaling loss via hyperparameters.

5.11.1 Results of JSE

JSE as applied to the vector or logit output shows no discernible improvement. In
some cases, it caused training instability in the initial steps of a run. This is likely
due to the unpredictability of the shrinkage on negative or near-zero values.

5.11.2 Future Tests

JSE does not apply natively, as it is an approximator of the mean. It is also
problematic to assume that the error is Gaussian on a given approximation of an
encoder to any consideration of grounded or “true” value in a subjective space.
Therefore, it needs to be applied specifically somewhere where there is a proven normal
error.

5.11.2.1 Applying JSE to Specific Mean Calculation

Something to consider is how the different loss methods tried behave. In a case where
there are 2-6 vectors, we evaluate the distribution of similarities between random
vectors.

This will show whether JSE can be applied to our improved methodologies,
showing whether the above generalisation is flawed or just the implementation. This
test will show whether JSE is a transmutable operation in. (Whether it can be moved
in the order of execution).

150

Chapter 5. Exploring the Limits 5.12. Chapter Summary

5.11.2.2 Method Discussion

This could be implemented as a test flag during training, which will dictate which
mean function is served at runtime by the method factory (an architecture used
to support TPUs). As many mathematical functions actually simplify away from
neatly having a mean formula (as seen by the expanded formula in previous sections),
therefore anything that sums all vectors is considered as a multiple of the mean and,
therefore, subject to a shrinkage calculation under James-Stein estimation.

There may be further use for this method in subsequent works, though exploration
of these deep statistical methods is somewhat beyond this scale of work. Notably, in
retrospect, the best way to implement this is to re-sample distributions into a normal
distribution with the shrinkage factor applied as a difference in mean and variance,
as done with later work. This offers a cleaner computational graph, though it is still
unclear whether this would affect the overall training paradigm: There are very few
works that combine high-dimensional methods.

5.12 Chapter Summary

RQ.2 invites exploration of the advantages in scaling where multiple encoders are
introduced. It has been well established that with the correct methodology, it is
inherently possible to learn multiple modalities effectively at once using the power of n-
dimensional similarity comparison. Utilising n-dimensions has a provable performance
benefit, achieving impressive results in a very short time compared to state-of-the-art
approaches. This chapter has answered this research question by demonstrating the
effectiveness of alternative similarity measures to efficiently compare n vectors while
preserving a gradient, arriving at the conclusion that the best similarity measure to
use is:

S = 1−
F∑

f=0

n∑
i=0

(x2i)−
∑n

i=0 xi
2

n

In this chapter, training has been documented using a 6-dimensional similarity
comparison. Algorithms have been presented, derived from other existing methods,
that extend similarity measures across multiple terms, which can aid model training.
This chapter has therefore furthered the evidence that the efficacy of this methodology
comes from a direct comparison of contrastive logits, and this scales with the number
of contrastive logits rather than being any function of cosine similarity or transformers.
Because such impressive zero-shot performance has been achieved in less than 12
hours, a minuscule fraction of the closest related work, it can be concluded that the
limiting factor in reproducing these large models in an academic context is the scaling
of this training and data availability.

151

Chapter 5. Exploring the Limits 5.12. Chapter Summary

This chapter should be used as a justification for more datasets to be produced
in the form of MSCOCO with multiple candidate annotations that allow models to
make full use of all human annotations.

152

Chapter 6

Linear Sum Assignment

The underlying message of this thesis has been to explore the grounding of concepts
in a data source against multiple modalities. The exploration of grounding has
been achieved by evaluating systems that exhibit multimodal activations and exhibit
behaviors associated with multiple orders of knowledge.

The following chapter is dedicated to the study of what happens when training
supervision is similarly challenged by addressing the balance of truth in label
assignments. To answer the RQ.4, many of the semiotic studies that underpin
RO.1 point to grounding and assignment as fundamentals in attributing to a model’s
‘understanding’. What are the impacts of approximating these assignments or using
noisy approximations?

In numerical computations, using limited precision can lead to inaccuracies and
loss of information, especially when dealing with complex algorithms or large datasets.
In this Chapter, the impact that having a finite set of values in a cost matrix will be
explored for subsequent optimisations.

In relation to the wider body of work, assigning which predictions are to be
learnt from, which are to be ignored, is a core epistemological function. With
noisy, conflicting, and subjective annotations, and even in complicated computations
of attention mechanisms, selecting optimum assignments is critical throughout ML
pipelines. Tying to the prior Chapter: an attribute of contrastive training is the
implicit assignment of items within a tuple. For noisy social media data and similar
applications, it is unclear how well residual blocks that carry a gradient tolerate such
assignments when the data is noisy. Applications of the previous chapter for web-
scraping low-resource languages can be problematic due to the noise of social media
and problems with it as a language resource. Linear Sum Assignment is relevant in
such cases because it allows a quick selection of the most significantly weighted values
in a matrix. This chapter presents several ways this can be quickly discovered and
whether it can be utilized to boost or guide the gradient of a model.

153

Chapter 6. Linear Sum Assignment 6.1. Introduction to Linear Sum Assignment

6.1 Introduction to Linear Sum Assignment

The Linear Sum Assignment (LSA) problem is a combinatorial optimisation problem
that deals with finding the best assignment of a set of tasks to agents in such a way
that the total cost or benefit is minimised or maximised.

Given a cost matrix C, where cij represents the cost of assigning task i to agent
j, the goal is to find a permutation matrix P that minimizes the objective function:

minimize
n∑

i=1

n∑
j=1

cijpij

subject to the constraints that each task is assigned to exactly one agent, and each
agent is assigned to exactly one task.

6.2 Summary of Linear Sum Assignment in Com-

puter Vision

In a computer vision context, the annotations must be batched in spite of irregular
sizes and latterly assigned against batched predictions to calculate a gradient. In
simple classification and CNN-based approaches, it can be simple to predict where
the annotations’ corresponding result will be found in a pooled set of features, and
calculate residual gradients by selecting individual components to learn. However, in
recent transformer models for vision applications, the reliance on large batches, with
multiple overlapping annotations and hardware pipelining means these approaches are
not feasible on a batch level. The assignment of one set of values to another which
may not match in size and may have a sparse assignment score across a weight matrix
is a complex issue and one that does not preserve gradient for optimisation. That is,
unless there is a fixed size for both annotations and predictions above a threshold.

The primary impact of LSA is on training. In object detection tasks, a common
challenge is semantic segmentation: where objects are isolated in the image. During
training, the model predicts bounding boxes, which must be paired to the annotated
boxes. But there are problems such as differing quantities, shapes, sizes, and contents.
So Linear Sum Assignment answers the question: How to decide which bounding boxes
in a batch of annotations best fit the annotated data? Although it seems intuitive to
pick the closest match, prioritizing both class and location becomes non-trivial when
edge cases occur: conflict, duplicate candidates, or cases where no clear candidates
are proposed. To find the best solution, LSA calculates the mathematical optimum
case, such that all ground-truth boxes are assigned to a prediction to maximize the
overall score. However, it should be noted that this is irrespective of batching, so
all ground-truth annotations from B images are compared against all the predictions

154

Chapter 6. Linear Sum Assignment 6.2. Summary for Computer Vision

from all images. This can naturally cause confusion and lead to cases where the
bounding box from another image can mistakenly be assigned.

For larger boxes that may be present for multi-object relations, multi-image
confusion is more prevalent as candidate predictions may all have a non-zero overlap.
Hence, cosine similarity between the GT class and the output case is regularly factored
in to provide some measure of clarity.

6.2.1 Acceleration and Limited Precision

As transformers become more prevalent and problem sets more complex, the linear
sum assignment issue becomes important to consider, especially with the increasing
move to virtual PCIE devices that may be separated by layers of hardware and
potentially networks. This makes the hand-off between accelerator and CPU
comparatively costly compared to processing on a CPU. This logic step occurs in the
Hungarian Matcher, which means that the indices created are subsequently a crucial
part of the loss calculations on the device. In the following section, the function,
purpose, and potential approximations are evaluated.

When considering the impact that Linear Sum Assignment has on training, it
is vital to also recognize the importance of accelerators. In the recent renaissance
of ML, an increasing number of accelerators are separated across networks from
associated CPUs. In practice, this means that the cost of moving data between
the 2 devices is increasingly large compared to the computation costs. This means
that computations like linear sum assignment that might happen at comical speed on
a CPU will incur huge overhead when deployed to large-scale hardware. To this end,
it is worth comparing the performance of accelerator-based methods.

6.2.2 Alternatives in Specific Applications

In this chapter, LSA is viewed as part of a holistic framework, which can often vary the
requirements and present alternatives. In computer vision, for instance, LSA is used
for assigning boxes to the annotations so that a comparison to ground truth can be
made. In such applications, there is typically an initial gap in training between outputs
and annotations. Furthermore, transformers require a fixed number of queries that
map to a small, varying number of annotations. The answer to this disparity between
shapes is the use of LSA to assign pairings, such that some columns may be blank, but
necessary for model performance. In the desired form of relational computer vision
frameworks, a relational attribute may not have a specific or meaningful bounding
box, or long-distance relations may have a sufficiently large box that IoU is not a
relevant measure. In such contexts, alternatives to one-to-one matching can - and
should - be considered. When deployed, users may not rely on mutually exclusive or

155

Chapter 6. Linear Sum Assignment 6.2. Summary for Computer Vision

separate relations or classes to segment their images by; in many use cases, relations
may be as nebulous or specific as a difference in verbiage buried in a prompt describing
2+ entities. In a visual domain, relations, and the grounding to other modalities can
be very nuanced.

This section therefore begins with an ablative study on the hypothesis that there
are some applications where LSA is not the most efficient approach to assign a
bounding box to a query, only matching that query’s input, while mutually excluding
others.

The hypothesis devised is to use query-based offsets. The transformer outputs a
grid of proposals for each input query, which will then be offset and overlayed, so that
the box is now projected onto a set of pixels of size

PixelSpace = (ImageWidth× proposals, ImageHeight× queries)

.
The addition of class and box weights by simply combining the 2 losses. The theory

suggests essentially offsetting bounding boxes according to the GT and predicted class,
with predictions and annotations adjusted referring to a B × height and width × C
grid. With the transposition, only boxes in the correct location and class will overlap.
Most importantly, the one-hot selection of the best boxes occurs naturally in the
Non-Maximal Suppression (NMS) step that already occurs in most computer vision
pipelines. In reality, however, this subtle change has shifted from a gradient based on
Loss function where Loss = Lossbox + lossclass to Loss = Lossbox × lossclass which has
significantly altered behaviour when Loss = 0. To an extent, a backwards gradient
can be restored to class offset with a gumbel-softmax, to limited effect. The class
steps are so much greater than IOU, projecting into the same space stops the IOU
regressive convergence. Decomposing this problem into linear algebra shows that the
offset would be a fixed quantity, based on image size. A regressive model cannot
fit to this and would cause non-convergence by having a null gradient in sufficiently
incorrect cases.

In this respect, until RL approaches advance sufficiently for a non-regressive
alternative, LSA is the best approach.

6.2.3 Background: Precise Method with Branching

The idea underlying the C-implementation in the Scipy optimized version is precisely
the same as the sort method; however, as it does not benefit from the ability to quickly
do sorts, indexes are used to iterate over values. This means that in real terms, for
most sizes of the LSA task that would reasonably come up, the time taken is around
3-6 ms with several CPU-based list comprehensions before and after.

156

Chapter 6. Linear Sum Assignment 6.3. Metrics

In practice, this is fast enough that it would be largely imperceptible and not worth
the time to fix compared to the minimal compute costs it accounts for. However, in a
world where green computing is increasingly important, the advancement of being able
to shave seemingly insignificant chunks of time off algorithms is significant, especially
for such widely used algorithms in an area that consumes a significant percentage of
global compute resources.

6.2.4 Background - Hungarian Matcher

The Hungarian Matcher that is behind much of the training on open-source
implementations of DETR (see the HuggingFace Library [121]) and similar models
relies on the idea that to calculate loss, there is a one-to-one mapping. This means that
the fixed number of generated queries has to be trimmed down to the best mapping to
the annotations. Once this mapping is established, the index is then used to calculate
the gradients on the corresponding network components.

There are several underlying assumptions here: samples will space evenly between
the number of queries. That the weightings in the matcher are a good indicator of
what needs to be corrected in by the gradient.

Within the matcher, assumptions to the LSA problem are made: the bounds and
approximate distribution of the values; the rough dimensions (Queries × annotations)
and the performance of cost inputs. The assumptions mean that it is unlikely that
during fine-tuning more than n

nm
of a column in an n×m matrix will be of high value.

The fraction of the cost matrix that needs to be considered will be explored in the
approximations and is a core consideration for the stability.

6.3 Metrics

6.3.1 Metrics for Evaluating Linear Sum Assignment Meth-
ods

• Permutation Matrix: The permutation matrix is crucial in evaluating the
accuracy of assignment methods. It represents the assignment of rows to
columns and should ideally be a square matrix with only one element in each
row and column being 1, indicating a valid assignment. The permutation matrix
can always be padded to a square, but this work recognises that contrastive loss
typically occurs in a special case where the permutation matrix is a one-hot
encoding of the range function.

• Computational Load: The computational load is an important metric
because it determines the efficiency of the assignment algorithm. A lower

157

Chapter 6. Linear Sum Assignment 6.3. Metrics

computational load is desirable as it indicates faster processing and reduced
resource usage, and must be viewed through the lens of acceleration within a
machine learning pipeline. If an algorithm can occur on an accelerator card and
better preserve a residual gradient, this is to be encouraged over accuracy or
CPU time.

• Objective Score: The objective score reflects how well the assignment method
optimises the given objective function. A higher objective score indicates
a better solution, making it a key metric in evaluating the effectiveness of
the algorithm, but as previously discussed, subtle changes have a big impact,
and this should be taken to indicate absolute error away from the Hungarian
Algorithm, rather than an absolute error. A score higher than the Hungarian
Algorithm suggests that rules have not been followed.

In this section, a metric is introduced for the problem of testing LSA methods:
especially where applications might be tolerant to slight errors in score or follow
certain distributions that make score nebulous. It a small, but pernicious possibility
exists in which the permutation matrix can have equal but differing solutions. For
some domains, repeated or frequent values can occur (consider the case of NMS in CV
applications). While any error caused by this is going to be an insignificant fraction,
methods are still assumed to take continuous values, thus making the chance of this
occurrence infinitesimally small.

6.3.2 Assignment Error

In this work α denotes assignment error, which monitors the MSE between our
generated Permutation matrix P and P gt. In a random tensor of size x, Table
6.3 shows the assignment error against x. Let S() be a sort function, with the
complimentary argsort function A(), Y be an array of values. The assumption is
that as precision reduces, the approximation holds true:

A(dS(Y)) = A(S(Y))

However, plotting the resultant permutation matrix of A(dS(Y)) gives several
interesting error definitions. MSE as

MSE =
(A(dS(Y))− A(S(Y)))2

x2

.

158

Chapter 6. Linear Sum Assignment 6.3. Metrics

6.3.3 Error Definition

LSA is considered a maximisation problem, where the largest score is to be desired.
However, this is just a single way of measuring success. In this section, other metrics
are introduced that consider both the permutation and cost matrix. Considering both
reflects the importance of LSA in the wider role in an ML pipeline. Sum maximisation
is a succinct heuristic for where score is important, but the indexes generated have
more application than being reduced to a score. The boolean mask is significantly
more important within ML because the lowest scores are responsible for the largest
residual gradient, which is the opposite of relying on the sum of costs, where the
largest costs have the biggest impact on the metric.

Values that contribute relatively little to the combined sum represent boxes that
do not fit any assigned annotation. Or simply are not the best fit to a different
annotation (less likely). These provide several key functions during training. First,
they enforce the spatial embeddings passed through the transformer layers. Ensuring
that near-embeddings are not necessarily confused or learned. In other words, it is
a way to train NMS into a transformer by not allowing it to learn and correct boxes
when there are better cases available.

These poor values that contribute little to LSA also represent annotations for
which no good proposals are suggested. Assigning these poor values is vitally
important for starting to learn the visual entity described in the annotation.

6.3.4 F1 score

For this body of work, Precision α, Recall σ and finally F1LSA are defined as follows,
using · for matrices multiplication:

α =
tr(Y T · Ygt)
tr((Ygt)T · Ygt)

σ =
tr(Y · (Ygt)T)
tr(Ygt · (Ygt)T)

where tr(·) returns the trace of a given matrix. The difference between precision
and recall (α and σ respectively) is therefore, the orientation of the input matrix.
Permuting the matrix means that the precision measure, α will always have an
assignment in each dimension such that all dimensions must be matched. The same
is not true for the recall score, which may contain non-assigned slices.

Naturally, the difference between precision and recall correlates with the difference
in the dimensions of the input matrix. A high relative difference will create
a significant mismatch between precision and recall. F1LSA score is therefore
introduced, similar to BERTScore, and built upon in the published work.

159

Chapter 6. Linear Sum Assignment 6.3. Metrics

F1LSA =
2ασ

α + σ

This definition of F1LSA score seems overly complex geometrically, but serves well
for approximations which can cause columns to have multiple assignments while
maintaining the overall number. F1LSA is a good correlation with both precision
and recall, which measures not only whether the best assignment rows and columns
are selected but also whether the associated permutation matrix is correct.

Using this formula, the case of multiple viable options is not excessively penalized.
(Approximately cancels out in square matrix, which every input can be padded to.)

Therefore, this work presents the use of F1LSA in the context of benchmarking
LSA.

6.3.5 Scaling with Matrix Size

In a case where there are infinite numbers of values per column with reduced precision,
it is reasonable to assume that the delta between the largest and the next largest
value is the highest possible delta to assign. The range of values saturates the set
of expressible values. Conversely, this assumption is eroded by the case where there
are only a handful of values, and no such assumption can be made. Squared error is
used to measure the distance between the rank of the value in a given column and
the importance of the assignment based on the ranking of the delta to the value on
either side. The subsequent graphs show n regions. Each region of colour shows the
rank of S(Y)n − S(Y)n+1. In a perfect case, each region is expected to have a sharp,
uniquely situated peak density. The following table shows that the distribution of Y
and the precision are significant factors.

Notably, these graphs plot whether the rows naturally fall in the correct,
logarithmic scale. In practice, this is only the correct picture in the initial stages
of the assignment problem.

To assume that the optimal random distribution is to have a sparse matrix X, as
defined by X |N(0, 0.3)|, with which FP8 is shown to consistently outperform other
precisions at all matrix sizes for the assignment of linear sums.

Each point represents the aggregate of methods and approaches. The plot shows
that the drop-off when there is an imbalance is very high, unlike in square matrices.
The change in performance based on the ratio of sizes is because in a square matrix,
the permutation matrix is more forcing of a final assignment. The significant change in
the graph according to dimension imbalance also shows that methods’ performance is
enhanced by the final step of finding the maximum value in the row or column. As the
size of the slice relative to other dimensions changes, the number of assignments drops;
therefore, the error increases. The performance boost in the minimum dimensions is

160

Chapter 6. Linear Sum Assignment 6.3. Metrics

DETR Uniform Normal X |N(0, 0.25)|

Squared
Error

Mean
Squared
Error

Root
Mean
Squared
Error

Table 6.1: A demonstration of how approximation error varies by number of columns
in different precisions

161

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

because the probability that the maximum value in a slice being the assigned value
becomes very high, and the chance of the highest value occurring in the same position
in other slices diminishes.

Therefore, if a Cost Matrix C is defined as being of size W,H, then it can be said
that the performance of argmax-based methods is at least proportional to W 2 : H2.

It is therefore worth highlighting the importance of padding the matrices to a
square for these methods when deployed, even though significant padding allows
permutation errors to be included in the evaluation of methods. This is the
prevalent sentiment for why assessing score is such a key metric when considering
the assignments in other empirical methods, especially where dynamic sizing occurs
in a specific domain, such as in a CV context where a fixed number of candidates
applies to an unknown size of annotations. Naturally, the answer when using NN
approaches is to train on sparse data and pad to a maximum annotation size during
deployment.

6.4 LSA Improvements

6.4.1 Computer Vision Specific Optimisations

In a computer vision context, where LSA is used to assign bounding boxes, there are
some specific optimisations that can be made. These optimisations come with some
extra considerations from the placement of LSA in the whole model pipeline. LSA
usually occurs with the same steps as Non-maximal suppression and is performed
on an array separated from the computational graph. A demonstrable increase in
speed can be seen with GPU-based implementations and an enabled graph using the
following improvements:

6.4.2 Approximation with Batch

The Hungarian Matcher is the method beneath the implementations in the ‘scipy’
library. It is called on slices of a cost matrix formed with predictions in one dimension
and reference annotations in the other. Each slice represents the subset of annotations
for each image. Slicing like this requires detaching from the gradient and many
successive calls. An improvement to this order of execution is to apply the linear
sum assignment and then take the slice. There are 2 ways this can be performed:
Batch or image masking.

Image masking is the approach with the best fidelity to the stock implementation,
providing all the logic across the whole batch of logits by modifying the Hungarian
algorithm to only mask out the part of each row that corresponds to the image of

162

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

the assigned value. It also marks a distinct alteration to the logic of a permutation
matrix as values can have a repeated assignment in a row, outside specific ranges.

The alternative approach is to use batch masking. The merit of this is to allow
in-batch negatives to affect assignment where annotations from other items within
the batch can compete for the correct location.

The hypothesis here is that, in allowing queries to be misassigned in the case of
near annotations, which queries tend to attract each class may well differ. Given that
queries in DETR are typically generated by a mesh of spatial embeddings, this may
be important to help break the spatial bias.

The final improvement can be seen in these 2 examples of pseudo code.

f o r each i , c in enumerate (s p l i t (C, s i z e s , dimension=−1)) :
i n d i c e s [i] = l inear sum ass ignment (c , maximize=Fal se)

This code gets replaced by the tensor operations as follows where cdf and icdf are
distribution functions to resample the experimental normal distribution as a normal
distribution centred around 0, and C is inverted to make the LSA a maximization
task rather than minimisation.

Step 1 : Ca lcu la te the p r obab i l i t y us ing the cumulative d i s t r i b u t i o n func t i on (CDF)
prob = m. cdf (−C) # Use negat ive s i gn so that minimize LSA becomes maximize

Step 2 : Apply i nv e r s e CDF (ICDF) to p r o b a b i l i t i e s and permute dimensions
fx = i n v e r s e c d f (tgt , prob) . permute (0 , 2 , 1)

Step 3 : S e l e c t s p e c i f i c e lements us ing d iagona l lookups
fx = fx [d iagona l matr ix (o n e s l i k e (s i z e s , dtype=bool , dev i ce=C. dev i ce))

. r e p e a t i n t e r l e a v e (s i z e s , dimension=1)] . t ranspose ()

Step 4 : Create row lookups us ing d iagona l matrix and repeat i n t e r l e a v e f o r lookups
row lookups = diagona l matr ix (o n e s l i k e (s i z e s , dtype=bool , dev i ce=s i z e s . dev i ce))

. r e p e a t i n t e r l e a v e (s i z e s , dimension=0)

. r e p e a t i n t e r l e a v e (s i z e s , dimension=1)

Step 5 : Apply custom batch approximation f o r LSA
outputs = Batch MyApproxLSA(fx , row lookups=row lookups)

Step 6 : Extract i n d i c e s where non−zero outputs occur , s p l i t based on s i z e s
i n d i c e s = [non zero (o , a s t up l e=True) f o r o in s p l i t (outputs , s i z e s , dimension=1)]

Step 7 : Return the i n d i c e s
re turn i nd i c e s

func t i on Batch MyApproxLSA(Batched TruthTensor , row lookups , maximize=True , lookahead=2) :

Step 1 : I n i t i a l i z e mask and r e s u l t s t en so r s
mask = ones (shape o f (Batched TruthTensor) , dev i ce=dev i c e o f (Batched TruthTensor) , dtype=bool←↩

)
r e s u l t s = ze ro s (shape o f (Batched TruthTensor) , dev i ce=dev i c e o f (Batched TruthTensor) , dtype=←↩

bool)

Step 2 : I t e r a t e through the number o f columns in row lookups
f o r each i t e r a t i o n in range (number of rows (row lookups)) :

Step 3 : Find the column with the h ighe s t value con s i d e r i ng the mask
co l i nd ex = argmax (argmax (where (mask , Batched TruthTensor , 0) , dimension=0))

Step 4 : Find the row corresponding to the maximum value in the s e l e c t e d column
row index = argmax (Batched TruthTensor [: , c o l i nd ex] , dimension=0)

Step 5 : Update the mask to exc lude the s e l e c t e d column and a s s o c i a t ed rows
mask [: , c o l i nd ex] = False
mask [row index , row lookups [c o l i nd ex]] = False

Step 6 : Mark the s e l e c t e d (row , column) pa i r in the r e s u l t s
r e s u l t s [row index , c o l i nd ex] = True

163

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

Step 7 : Return the f i n a l r e s u l t s t enso r
return r e s u l t s

6.4.3 General Approximations

In this section different approximations are evaluated. As established previously, the
score is less important than the rules that govern the assignment. In many cases, the
largest contribution to the score is the least indicative of the best assignment. These
methods are in need of revisiting after the subsequent applications are understood.
Each application has marginally different requirements, and some will require more
stringent rules than others, so it is worth catching the nuance of how each approach
promotes different assignment geometries.

6.4.3.1 Reimplementation for Accelerators

Within this body of work, accelerator implementations have been written to
approximate LSA. Accelerators, typically mirroring a GPU architecture, allow rapid
calculation of simple arithmetic procedures. In recent years, approaches have been
trialled to significantly reduce the precision of neural networks. Such approaches
regularly use Half (16-bit) precision or even 8-bit floating point precision (FP8).
Such approaches exist to maximise the amount of parameters used or reduce the
memory footprint. It can be shown that FP8 does introduce error to the general case,
but approximations can be steadily improved if the distribution of matrix values is
resampled to a half-normal distribution.

6.4.3.2 Recursive Approximation Enabling Descent

Another way to think of the LSA problem is not as an assignment, but rather as
a transformation. Taking a set of continuous values and quantizing them so that
every row and column sums to 1. Where assigning each column and row has a fixed
number of steps (for most ML tasks equivalent to the number of annotations), the
merit of applying a gradiented function is that the number of steps may be fewer than
the number of rows. Aside from the obvious speed improvement of potentially fewer
iterations, the trade-off between time (or number of steps) and accuracy is now linear.
Not to mention that the costly indices collation stage is much faster.

The method used to generate Table 6.1 is to subtract from every value the cost
of picking it. Algorithmically, this looks like for each location (row and column)
subtracting the sum of maximum values of that row and column not including itself.
But this is done using array operations to minimize branching and loops.

164

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

Figure 6.1: A figure showing the iterative steps of recursive Linear Sum assignment.
Subtracting from every value the mean of the next highest in the row and column
and repeating results in a near-one-hot solution. Top Left is the starting Cost matrix,
stepping left to right.

6.4.4 Method 1 - Dimensional Extension

Method 1 repeats our cost matrix, C by size n. The diagonal of n is masked, and n′

taking the argmax of the result has a shape of n′×m, which represents the argmax if
every column corresponds to ignoring each value in turn when considering the argmax.

In Figure 6.2a the variable ‘remove’ is a mask, that accounts for the black diagonal
in the figure. This is an efficient way to reuse this mask many times at the expense
of memory complexity. However, this figure is repeated diagonally in both directions,
so that the resultant argmax direction results in the sum of the next largest value in
the row and columns.

6.4.5 Method 2 - Indexed Insertion

Method 2 is to realise that argmax has a very defined behavior, meaning that the
argmax of the remainder of the column will be the same as the argmax of the column
except for all values except the cases where it is instead the next largest value. The
pseudo code for this is listed in Figure 6.3, showing how the iterating step works to
slowly disambiguate values.

165

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

(a) A figure showing how the LSA matrix
is expanded

f unc t i on ca l cu l a t eTota lCos t (rewards , ←↩
remove , co s t neg) :

Step 1 : Expand the ‘ rewards ‘ t enso r ←↩
along a new l a s t dimension by ←↩
r epea t ing the l a s t dimension ←↩
va lues

weights = expand tensor (rewards , ←↩
r ep e a t a l ong l a s t d im=rewards .←↩
shape [−1])

Step 2 : Apply masking to r ep l a c e ←↩
c e r t a i n va lues (based on the ‘←↩
remove ‘ mask) with ‘ cost neg ‘

weights = mask tensor (weights , mask=←↩
remove , f i l l v a l u e=cos t neg)

Step 3 : Ca lcu la te the next h ighe s t ←↩
va lues along dimension 1 (rows)

Costs = nex t h i gh e s t f n (weights , ←↩
dimension=1) . va lues

Step 4 : Repeat the proce s s f o r ←↩
another weights tensor , permuting ←↩
the ‘ remove ‘ mask

weights2 = expand tensor (rewards , ←↩
r ep e a t a l ong l a s t d im=rewards .←↩
shape [−1])

weights2 = mask tensor (weights2 , mask=←↩
permute (remove , order =[1 , 0 , 2]) , ←↩
f i l l v a l u e=cos t neg)

Step 5 : Ca lcu la te the next h ighe s t ←↩
va lues along dimension 0 (columns)

Costs2 = nex t h i gh e s t f n (weights2 , ←↩
dimension=0) . va lues

Step 6 : Compute the t o t a l co s t by ←↩
adding Costs and the t ranspose o f ←↩
Costs2

Co s t t o t a l = add tensor s (Costs , ←↩
t ranspose (Costs2))

Step 7 : Return the t o t a l co s t
re turn Cos t t o t a l

(b) Pseudo code for applying recursive
LSA

Figure 6.2: The construction of recursive LSA and intermediate state

6.4.5.1 Optimal Step Count

The optimum number of steps to repeat over a matrix to get a one-hot permutation
matrix varies. There is a trade-off between ensuring correctness while minimizing
the number of steps taken. In Figure 6.4, no change can be seen in the latter steps.
This indicates that significant savings can be found by reducing the number of steps.
However, too few steps risk inaccuracy and conflicts.

166

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

%
funct i on reduceLinearSumAssignment v2 (rewards , maximize=False) :

Step 1 : Find the top 2 va lues and t h e i r i n d i c e s along dimension 1 (rows)
Topv , top i = top k (rewards , k=2, dimension=1, l a r g e s t=maximize)

Step 2 : Create a co s t matrix i n i t i a l i z e d with the top 1 va lues repeated ac ro s s columns
co s t s = repeat (Topv [: , 0] . unsqueeze (1) , t imes=rewards . shape [−1] , dimension=1)

Step 3 : Create a one−hot matrix i nd i c a t i n g the top 1 po s i t i o n s
one hot = c r e a t e z e r o s l i k e (rewards , dtype=bool)
one hot = s c a t t e r (one hot , i n d i c e s=top i [: , 0] . unsqueeze (1) , va lue=1, dimension=1)

Step 4 : Replace the va lues in the one−hot p o s i t i o n s with the second top value from ‘Topv ‘
c o s t s [one hot] = Topv [: , 1]

Step 5 : Find the top 2 va lues and t h e i r i n d i c e s along dimension 0 (columns)
topv2 , top i2 = top k (rewards , k=2, dimension=0, l a r g e s t=maximize)

Step 6 : Create another co s t matrix i n i t i a l i z e d with the top 1 va lues repeated ac ro s s rows
co s t s 2 = repeat (topv2 [0] . unsqueeze (0) , t imes=rewards . shape [0] , dimension=0)

Step 7 : Create a one−hot matrix i nd i c a t i n g the top 1 po s i t i o n s along the columns
one hot2 = c r e a t e z e r o s l i k e (rewards , dtype=bool)
one hot2 = s c a t t e r (one hot2 , i n d i c e s=top i2 [0] . unsqueeze (0) , va lue=1, dimension=0)

Step 8 : Replace the va lues in the one−hot p o s i t i o n s with the second top value from ‘ topv2 ‘
co s t s 2 [one hot2] = topv2 [1]

Step 9 : Compute the t o t a l co s t by adding the two cos t matr i ces
Co s t t o t a l = co s t s 2 + co s t s

Step 10 : Return the t o t a l co s t
re turn Cos t t o t a l

Figure 6.3: Main function for Recursive Method 2

Figure 6.4: A plot of correct (Purple)
vs negative (Yellow) assignment per
step

Figure 6.5: A plot of accuracy
against step count for differing step
magnitudes

167

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

6.4.6 Method 3 - Probablistic Approach with Gumbel Soft-
max

The third method presented in this section is a different view of LSA - to treat it
as a quantisation problem. Quantisation problems typify the challenge of taking
a set of continuous values and converting them to a one-hot selection. Describing
the problem this way is very similar to the discussion in Chapter 3 surrounding the
challenges of one-hot selection of vocabulary when encoders and decoders are directly
appended. The Gumbel Softmax function - originally for predicting peak values in a
series, produces a one-hot vector that maintains a gradient based on other values in
the output. It is therefore a probabilistic quantisation function: not always returning
the top value, but the error corresponds to the imbalance.

The aim is to take a Gumbel Softmax of the original distribution. Repeating this
step until there are no assignment collisions.

It can be considered that the probabilistic nature may cause a significant reduction
in accuracy and determinism. However, the hypothesis goes that this will introduce
noise to training, allowing near misses to be trained, and should not affect well-fit
models.

The advantage of this is that in the cases of well-fit models, the assignment will
be as quick as a Gumbel softmax.

f unc t i on GumbelSoftmaxLinearSumAssignment (rewards , maximize=False , f a c t o r =1) :

Step 1 : Apply Gumbel−Softmax to generate i n i t i a l assignment
i n i t i a l a s s i g nmen t = gumbel softmax (rewards , dimension=0)

Step 2 : I d en t i f y c o l l i s i o n s (mul t ip l e ass ignments to a s i n g l e row)
c o l l i s i o n s = sum(i n i t i a l a s s i g nmen t , dimension=1) > 1

Step 3 : Resolve c o l l i s i o n s by re−apply ing Gumbel−Softmax to c o l l i d e d columns
i n i t i a l a s s i g nmen t [: , c o l l i s i o n s] = gumbel softmax (i n i t i a l a s s i g nmen t [: , c o l l i s i o n s] , ←↩

dimension=1)

Step 4 : I d en t i f y f r e e columns and rows (where no ass ignments were made)
f r ee co lumns = sum(i n i t i a l a s s i g nmen t , dimension=0) == 0
f r e e r ows = sum(i n i t i a l a s s i g nmen t , dimension=1) == 0

Step 5 : Reass ign f r e e rows and columns us ing Gumbel−Softmax
i n i t i a l a s s i g nmen t [f ree co lumns , f r e e r ows] = gumbel softmax (i n i t i a l a s s i g nmen t [f ree co lumns←↩

, f r e e r ows] , dimension=0)

Step 6 : Return the i n d i c e s o f the non−zero e lements (ass ignments)
re turn non z e r o i nd i c e s (i n i t i a l a s s i g nmen t , a s t up l e=True)

Figure 6.6: Psuedo code for using Gumbel softmax in Linear sum assignment

6.4.6.1 Conflicts of Argmax

For dimensions of size 1, LSA is equivalent to argmax or argmin. This equivalence
breaks with larger sizes, though argmax will always be a reasonable approximation

168

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

where 1 dimension is vastly larger than the other. For this reason, in the work in the
Appendix for an investigation into reduced precision, the effect of matrix dimensions
on F1LSA score is considered.

6.4.7 Method 4 - NN Approximations of Linear Sum Assign-
ment

In the previous methods, LSA was shown in conjunction with methods like BERTscore
to reduce the double counting of tokens. Rather than directly implementing a
permutation matrix as loss, it is worth exploring whether LSA can be learned
intrinsically, allowing a neural network to learn the problem and be later implemented
akin to BERTscore to provide a gradient naturally. Separate training has been split
from other related works to allow for an empirical review of the method rather than
relying on the domain assumptions of prior parts.

6.4.7.1 Experiment Definition

Evaluation of the use of LSA in training presents key challenges. First, there is a finite
and discrete set of permutations that the assignment matrix (the one-hot permutation
matrix, P) can take. The discretised values mean that this may have to be applied
as a constant factor to a learning rate rather than directly contributing to a gradient
calculation.

Hypothesis: The introduction of a permutation matrix to contrastive
training can improve the initial stages of contrastive loss training.

6.4.7.2 Method

To test whether a Permutation matrix, P , can be learnt and introduced as a parameter
in a contrastive training framework, the learnability of P must be assessed with simple
metrics.

An experiment is devised to compare the previously discussed methods against a
Linear model and a transformer, with the assumption that the attention mechanism
in a transformer may provide a means of masking the performing analysis across the
bounds of the permutation matrix.

The transformer used has 3 layers, and a 512 width. Each was trained for 100
epochs, 20000 steps, using random inputs and the ground truth. The loss scales by the
largest loop and all values that have significant costs associated with them, reduced.

169

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

Figure 6.7: F1 score by LSA Approach

6.4.7.3 Training Results

Using just a number of linear layers with a transpose, the SOTA results are achieved.
In Figure 6.7, the performance of different approaches is compared. The

approaches are:

• ‘my function’, a bespoke implementation assigning the highest delta between
top values in columns or rows.

• ‘stock’, the sklearn implementation of the Hungarian algorithm implemented in
C.

• Recursive family, these all have the same primary function, which emphasises
the distance between peak and other values in the rows and columns. What
sets these apart is the usage of different final selection methods, ranging from a
matrix top-k which fails strict LSA checks, argmax, and stepped argmax.

• Linear and transformer approaches - these are trialled as the more common
ML architectures - linear because the activation function can approximate the
value boosting performed by the recursive function, and the transformer for the
assumption that an attention layer can be more discerning in finding the peak
values in the rows relative to columns

From Figure 6.7, the stock column is more revealing of the F1 score. Comparing
this method with itself, the expectation would be a perfect F1 score each time.
However, the scaling of width and height, and therefore empty columns in the F1
score, causes the decay in the stock method.

170

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

Once this is understood, the performance of the bespoke my function method
appears to be far closer to the stock implementation by the F1 score. However, it
is possible to construct cases where the novel implementation fails. This case would
be where the gradient between the smallest values is steeper, which would be the
case if the largest values were very close together. Thus, a strong emphasis on the
experimental distribution for the cases where this is to be applied because it ought to
be close to a Half-Normal distribution for optimal performance, which should be true
throughout all stages of model training.

Figure 6.8: Precision of algorithms in FP32

Figure 6.9: Recall of Algorithms in FP32

Figures 6.8 and 6.9 show that the previous statement on the F1 score breakdown
in stock models is correct, and notably, the other methods have much more

171

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

consistent profiles across both dimensions, indicating that candidate selection is
incorrect even if the comparative scores are close. Significantly, in the precision
measure, the implementation of the function on this work scores very near-perfect
performance, which, considering that many other GPU-based operators are equally
non-deterministic, is a significant result.

Figure 6.10: F1 Score across algorithms in FP8-E5M2

Figure 6.10 shows how the F1LSA is affected by reducing the precision. As
documented in the paper in the appendix, as precision is reduced, a special case exists
where values fall on a Half-normal distribution naturally, which radically improves the
performance of approximations.

At the time of the experiments, FP8 is not widely implemented for PyTorch,
though reducing the precision further to FP4 is implemented for some models.
Practical limitations existed for these experiments, meaning that the implementation
casts values to low precision but the mathematics occur in higher precision, meaning
that the recursive algorithms are inaccurate but still perform well. The stock
benchmark is reduced because the comparison is made with the actual value rather
than the LSA score on the quantised values. See the appendix for more details on
this work.

(a) Recall across algorithms in FP8-
E5M2

(b) Precision across algorithms in FP8-
E5M2

172

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

Figure 6.12: F1 Score across algorithms in FP8-E4M3

FP8 precision comes with 2 flavours as previously discussed, which affects the range
and accuracy of expressible values as previously discussed. The graph in Figure 6.12
shows that e4m3 is less effective at creating the correct distribution of values compared
to e5m2 shown in Figure 6.10. This figure contributes greatly to the hypothesis that
the value distribution is more key to approximations than precision or algorithm.

Figure 6.13: F1 compared to MSE loss during LSA training

So far, the focus has largely been on F1 score: Firstly, because it can better handle
methods that deviate from the rules of LSA, but secondly because in the context of
an ML pipeline, the assignments of the poor results are arguably as meaningful if not
more so than the others, especially when training uses gradient methods rather than
reinforcement learning. Therefore, Figure 6.13 is used to show how even though the
F1 scores are high, the MSE loss comparing the input matrix with the assignment

173

Chapter 6. Linear Sum Assignment 6.4. LSA Improvements

matrix still produces a very small loss: F1 is significantly more sensitive than MSE
as a metric for assignment scores.

Figure 6.14: Distribution of F1 scores by model

Figure 6.15: Comparison of No reduction in precision to FP8

Figures 6.15 and 6.14 show a side-by-side comparison for all the runs of F1 scores
grouped only by model and precision: the resulting graph range is the most important
and the distribution within it. Notably, the accelerator-based method is close to stock
implementation and can perform even closer in reduced precision, as detailed in the
Appendix. At the start of this section, subperfect performance for F1 scores was

Figure 6.16: Relation between PRF

explained with the calculation of the F1 score being affected by imbalanced matrix

174

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

dimensions. The plot of all recall, precision, and F1 scores (PRF) runs is shown in
the graph in Figure 6.16. In particular, the points are aligned in multiple lines, each
passing through the origin. These represent the imbalance of the matrix dimensions;
it can be seen reasonably easily here how the change in this ratio correlates to the
distribution of points, which informs the requirement of experimental distribution
listed in the Appendix.

6.4.8 Method Performance

Table 6.2 shows that only a few of the correct assignments are found in several
methods. However, in this case, the tensor is generated from uniform random,
the score error is less than 50% of the smallest assigned value (using the original
assignment). From Table 6.2, the instability of this worst-case model is seen and the
significant difference in assignments with a minimal difference in assignment score.
Which reinforces the need for precision and recall based metrics, rather than reliance
on total score. It can therefore be concluded that different optimisations have different
behaviours based on the distribution of values. Approximations must be selected
according to the values expected, as this can have an impact on training of larger
pipelines if the assignment is non-optimal. It is also worth noting that recursive
methods are generally not recommended for use with tensor accelerators as for-loops
are difficult to optimise during compilation. In this case, the ability to repeatedly
call it a fixed number of times on a static tensor is a significant boost and can be
optimised in the same way as a typical CNN. However, they can be optimised in
situations where there is a fixed or predictable number of predictions, as seen in the
original work of Pair-DETR for relation prediction.

6.5 Precision in Non-Continuous Contexts

6.5.1 Why Precision Matters

The crux of linear sum assignment problems in a mathematical sense is that they
cannot be solved by greedy algorithms. Many of the solutions rely on creating a
sparsity over the input space. Usually done by repeatedly subtracting the minimum
values, until each row and column has a 0 in it. From there, assign the locations to
any row or column with exactly a single 0, and repeat until all rows and columns have
an assignment. The required branching makes this process typically bound to compile
C code for the CPU, requiring costly moves of data across other accelerator devices.
(It should be noted that accelerator cards that postdate this work like Grace Hopper
architectures seek to remove this cost). Additionally, the mathematical solution uses
in-place manipulations for speed, something that might impede gradient calculation

175

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Image Name and Description

The random tensor for the tests to be performed, generated with
Torch.rand. Random values are representative of the most chaotic
assignment of a poorly trained network.

Plain implementation of the LSA algorithm. This is the perfect
assignment for the above set of values.

Method 1: The prediction mask generated with the main GPU-
based approximation.

Method 2: The plot using a recursive function has generated the
closest mask, and scores the highest of the approximations using
the precision metrics. Several values can be seen to directly overlap
with the ground truth.

The prediction mask generated by an alternative algorithm that
does not always result in perfect compliance with LSA. It should be
noted that it has conflicts and a different set of matches with the
benchmark, stock implementation of the scipy library.

Table 6.2: A Table of the different assignment matrices by method from a random
input

176

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Figure 6.17: A plot showing the 128 different values expressable with each FP8
encoding scheme

for computer vision or NLP token allocation. In certain scenarios, precision may not
be crucial in instances with minimal impact on the LSA score. In some situations, a
precise adherence to a one-to-one mapping of a permutation matrix is unnecessary,
especially during training phases if the model is poorly adjusted. In these cases,
approximations such as an argmax, or a more sophisticated approach may suffice.

Until this point, LSA has been viewed within the mathematical bounds of the
problem. However, with many PyTorch operations, and the non-deterministic nature
of accelerations, the context must be considered.

The performance of accelerator based methods from LiSAScore across various
precisions, specifically the 8-bit Floating Point (FP8) implementations of e5m2 and
e4m3, and their impact on functions such as MyFunction. The attached paper
demonstrates the importance of this in the context of a move to networked accelerators
such as TPUs, with significant ramifications for gradient-based operations in FP8.

Perhaps most critical is the understanding that where the error is introduced is
very telling in these contexts : Just because the score is nearly perfect, the difference
in assignment can have some very large ramifications. In many of the tests with
low precision, the model does not converge as far. This indicates that despite high
accuracy and performance in approximations, there is a core function being missed
consistently: assignment noise is incredibly costly.

Theoretically, where approximations improve in reduced precision, there are
significant gains to be made in approximating LSA on an accelerator card. In practice,
one of the issues with the manual stepped assignment is the assumption that the
values are unique. In reduced precision, the algorithm fails to assign some columns
due to excessive conflict caused by reduced precision and half-normal sampling. This
is calculated by averaging the sum of the permutation matrix divided by the shortest

177

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

dimension across a batch.

6.5.2 Hypothesis

LSA approximations perform equally well in low-precision contexts.

In practice, the assumption of randomness of the cost matrix C is not true in
computer vision settings. Although it may be for initial training steps, tracking the
distribution through a DETR [16] model shows how quickly a sparse matrix appears
during training. RQ.4 is answered with the additional capabilities presented by this
phenomenon and optimisations that arise: greedy algorithms in limited precision
contexts are better for training, minimising memory footprint. The cost matrix
generated for assignments of ground truth can be engineered for very fast performance
in FP8 contexts based on greedy implementations that perform with reduced precision.

For this work, the distribution is logged of a state-of-the-art computer vision
model, Pair-DETR and DETR, during training, shown in Figure 6.18.

Figure 6.18: The KDE plot of values
in the LSA cost matrix during Pair-
DETR training

Figure 6.19: The Histogram plot of
matrix values early in DETR training,
showing distribution of values within
the cost matrix at different steps, all
tendi towards gaussian distribution

The distribution of values shows that the frequency of smaller values in the cost
matrix is very heavily weighted to 1. The DETR sampling method is based on Figure
6.18, where the sampling matrix is represented as X − | N(0, 0.2)|. Runs of DETR
training are monitored, noting that although the distributions develop a very slight left
skew, it was not significant enough to require alterations of the supposed distribution.
In later experiments, a normal distribution, a uniform distribution, and others are
compared.

178

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

To apply this method in a DETR context as representative of the use case within
computer vision, the normal distribution defined as N(µ, σ) is resampled to represent
the optimal half-normal distribution. Based on the monitoring of inputs, a reasonable
estimate for these values is µ = 5.5 and σ = 2.5. Whilst this can come under critique
for being an extreme approach, with potentially mathematically complex steps, it
must be understood that this is preferable for being able to exist on an accelerator
as a batch matrices operation without branching, and that resampling is relatively
simple as a series of linear operations.

6.5.3 Approximations

For the purpose of this work and the goal of facilitating LSA approaches on dedicated
accelerator hardware as part of a CV pipeline, the approximation function used is as
defined in [86], where columns are ranked according to the cost of not selecting their
maximum value. In nearly all cases, this offers a perfect approximation and trivializes
the problem to selecting the column of the tensor with the maximum range in the
top−k = 2 values, and repeating, which can be done in place using matrix operations,
which naturally scale to batch operations, mitigating the overhead of repeated steps
during assignment.
f o r i in range (CostMatrix . shape [smal l dim]) : # number o f rows

array=torch . where (mask==0,CostMatrix , Exc l u s i onF i l t e r)
d e l t a s=torch . d i f f (torch . topk (array , lookahead , dim=bigdim , l a r g e s t=maximize) . values , n=2,dim←↩

=bigdim) . squeeze ()
c o l i nd ex=torch . argmax (torch . abs (d e l t a s))

6.5.4 Method

Precision Float 32 Half e4m3 e5m2
Assignments missed Half Normal(%) 0 1.3 25 32

Assignments missed Normal(%) 0 0.6 4 4

Table 6.3: Error introduced as precision decreases

The missed assignments mean that, below half precision, the models do not
converge. More work is needed here to ensure that the values fall in a distribution
that better fills the space. Sampling a half-normal distribution limits the runs (of a
100 × 100 matrix) to being very probable to contain conflicting values. There are
several potential improvements, such as resampling and normalising each individual
column of weights in the cost matrix; however, such approaches risk quickly increasing
the computational overhead beyond the amount saved by reducing pipeline delays.
Instead, using a normal distribution with mean 0 was trialled, allowing the full
expressibility of reduced precision. It would be possible to attempt a wider half-normal

179

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

distribution, but a normal distribution is computationally less complicated. As the
above table shows, the error is significantly reduced by the increased number of values
present, and although there is still significant error, the model does meaningfully
converge in reduced precision.

To maximise the efficacy of FP8, an accelerator-based implementation for LSA is
used to benchmark performance. The baseline method is to find the best column to
select by measuring the difference between the topk=2 value. Select the maximum
value in the column, mask the corresponding rows and columns, and repeat until all
assignments are made.

However, in the context of FP8, as shown in Figure 6.17, the difference between
adjacent expressable values is not linear, but logarithmic. Thus, the column with the
largest delta will correlate with the column with the highest value. As high values are
infrequent in a sparse matrix, using argmax as a further optimisation becomes viable.

As an analogue for future experiments in the small-scale sense. Values are cast to
8 bit precision and evaluate 3 approximations that can occur on GPU, maintaining
gradient, and show that in 8 bit precision they are closer to the true LSA value than
in 16-bit precision. Further, the cost matrix, C, is shown to have a fixed distribution,
which allows the approximations to be closer to the true value. Finally, when applied
during training, the optimisations allow for faster (wall-time) convergence during
training, enhanced by preserving the gradient. To offer a fair comparison, additional
optimisations are included that relate to the advantage of accelerator-based hardware,
such as calculating LSA concurrently across the batch.

6.5.5 Evaluation

Understanding the score can be somewhat difficult; whilst it serves well to show that
methods are not equal, the complex nature of LSA means that near scores can be
achieved by radically different permutation matrices.

For the purposes of understanding the comparison between approximations in
limited precision, a precision and recall score is used on the permutation matrix.

α =
tr(Y T · Ygt)
tr((Ygt)T · Ygt)

σ =
tr(Y · (Ygt)T)
tr(Ygt · (Ygt)T)

where tr(·) returns the trace of a given matrix, and · a matrix multiplication. The
difference between precision and recall is, therefore, the orientation of the input matrix
Y. Permuting the matrix means that precision will always have an assignment in each
dimension such that all dimensions must be matched. The same is not true for the
recall score, which may contain non-assigned slices.

180

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Naturally, the difference between α and σ correlates with the difference in the
dimensions of the input matrix. A high relative difference will create a significant
mismatch between Precision, α and Recall, σ. This is why an F1LSA score is
introduced, similar to BERTScore, defined as:

F1LSA =
2ασ

α + σ

The presented formula well evaluates the comparative assignment where not all
rules are adhered to, which penalises approaches that are not adherent to the problem.

In some settings, factoring in the Cost matrix C, into the evaluation can be simple
as defining Y as :

Y = C · P

This is rejected for existing work, due to the library incompatibility in low precision
and the disparity presented across matrix size.

For experiments going forward, F1LSA is recommended to be scaled by matrix
cost when implemented as part of wider pipelines.

6.5.6 Accelerator Approximation

The performance of each trial method is recorded and plotted with the ratio of
dimensions (matrix width / height) and the F1LSA scores. In particular, all the
graphs show that the methods perform worst when the ratio of matrix dimensions
is approaching 1. This is because as width and height become equal, the fraction
min(W,H)

WH
which governs the ratio of the size of the diagonal as a function of volume,

is at the maximum value.
Table 6.4 shows how the performance of this approximation changes with different

distributions and the imbalance of the dimensions of the matrix.
The observed imbalance serves as a clear indication that, in contexts where

precision is limited, the method exhibits significant instability, yet it demonstrates
substantial effectiveness in certain specific instances. When examining alterations
in axis scales, the half-normal distribution emerges as the most unstable. However,
considering the expressible domain of numbers previously outlined, these should be the
best-performing regions. In testing, the stage of measuring the largest gap is skipped,
justified by Figure 6.17. Figure 6.17. When applied correctly into the framework
of DETR, the results on training time can be seen in Section 6.5.8. When applied
correctly into the framework of DETR, the results on training time can be seen in
Section 6.5.8.

181

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

Table 6.4: F1LSA performance with different matrices dimensions by precision and
distribution based on MyFunction, reported in [86]

6.5.7 LSA Argmax Approximation

Compared to the previous approximation, this method can be further reduced if the
assertion can be made that the underlying distribution is non-negative; rather than
finding the difference between the top-k = 2 values in each row/column of the cost
matrix, a half-normal distribution means that the highest value has the largest delta.
Therefore, the argmax/argmin functions find that value and repeat. Future work
could even use softmax functions for gradient continuity.

Table 6.5 shows that using a simplified approximation where the top value is a
good approximation of the top delta of values is a better, more consistent estimator
of LSA than the primary approximation, which can score higher in some distributions
but is also more sensitive to the type of random used.

The performance profile is integral to ensuring predictable behavior in low-
precision computations. The approximation method offers a reduction in compu-
tational steps compared to the prior accelerator-based approach, thereby decreasing
complexity in terms of both temporal and memory resources.

Table 6.5 is replicated in Table 6.6 but instead of plotting just the difference
between the initial approximation and the one that selects the highest value.

From Table. 6.6, 16 and 32 bit precision show that the argmax stepped approach is
a better estimator of LSA. As precision reduces, a significant drop in accuracy occurs,
but is lessened by the Cost matrix being of a specific distribution aligning with the

182

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

Table 6.5: F1LSA performance with different matrices dimensions by precision and
distribution approximated taking the top value as a good approximation of the
top delta of values. This is a more consistent estimator of LSA than the primary
approximation, which can score higher in some distributions but is also more sensitive
to the type of random used.

183

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

Table 6.6: The difference in F1LSA performance with precision and distribution
using just the stepped argmax Approximation, showing that with some distributions,
performance is poorer, even though reduced preciesion still outperforms others in
some instances.

expressible values.
Sampling a Half-Normal distribution can even outperform the previous accelerator-

based approach if the matrix has roughly comparable dimensions, where W
2
< H <

2W .

6.5.8 DETR Improvement

Based on our trialled approximations, the following improvements are offered
compared to the as-written implementation in DETR:

• Using the approximation of Argmin(C) as an estimator of LSA

• Resampling to a half-normal distribution and using Argmax to just select high
values

• Using just argmin in our approximation of LSA, masking rows at each step

• Trialling a memory-efficient batching to process batches of images together

• The accelerator-based approximation to Linear Sum Assignment to minimize
transfer latency

184

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

Method Baseline Argmin Resampled
and
Argmax

Stepped
Argmax

Extra
Mem-B

Batched
method

Epoch time
P100

3:52 ✓ 3:42 ✗ 3:43 ✓ 4:10 ✓ 4:08 ✓ 4:10 ✓

Epoch time
A5000

2:50 ✓ 2:29 ✗ 2:31 ✓ 3:10 ✓ 3:06 ✓ 3:01 ✓

Table 6.7: The slight optimization has a slight impact on speed on a P100 vs A5000
showing which methods converge

Metric Baseline Improved
LSA

ApproximationResampled
with
Argmax

Epoch Time 1:49 1:55 1:51 1:43
DETR reported memory use 12431 12309 11977 11962

Loss 8.8744 8.6592 8.8146 8.8498
Class Error 29.41 26.09 27.12 14.29
Loss CE 0.4526 0.4210 0.4361 0.4240

Loss BBOX 0.2917 0.2871 0.2885 0.2942
Loss GIOU 0.6587 0.6497 0.6501 0.6074

Table 6.8: Performance comparison after 90 Epochs on an RTX 3090

Table 6.7 shows how our method is slightly slower on older hardware, which uses
HBM technology for improved transfer speed, which may also not be up to date for
complicated statistical manipulation. The experiment was repeated on an A5000,
with the same batch size to test whether this algorithmic improvement is correlated
to performance. The proportional gains and losses are more significant.

There are some methods faster than the stock implementation, but our tests
show that non-stepped methods do not converge as accurately, so they come with
a performance cost. Comparatively, the presented approximation, with comparable
accuracy, represents only 6% slowdown on conventional accelerator hardware, but
a huge optimisation on TPU’s, widely regarded as the way forward for hardware
acceleration.

Table 6.8 shows that the training is slightly improved using the linear sum
assignment, but is not statistically significant given the fluctuations per epoch. The
test system ran our approach faster: possibly due to concurrent unrelated tasks
making the data hand-off more costly for the stock scipy implementation, showing
a significant result in reducing latency introduced by CPU-based methods. It was

185

Chapter 6. Linear Sum Assignment 6.5. Precision in Non-Continuous Contexts

noticed on some multi-gpu systems that the baseline suffered disproportionately if
multiple concurrent runs were happening. The Table 6.8 has the results from a single-
gpu system. Due to limited support for FP8 implementations, the values used are
cast to FP8 and back to simulate reduced precision; the memory footprint and speed
would be further reduced in real-world implementations.

6.5.9 Conclusion

The experiments show that in 8 bit Floating Point (FP8) precision, approximations
and accelerator-based algorithms as presented in the published LiSAScore are
significantly closer to the perfect solution. However, require engineering to ensure
the input has an optimal distribution. The distribution of values in real-world
computer vision systems transforms towards the perfect case for reduced precision
implementations, making them ideal candidates. This part also demonstrated that
e5m2 can result in better performance but is less practical than e4m3, partially
answering the Research QuestionRQ.4, the linear sum assignment can be significantly
improved.

To summarise the findings for application to computer vision systems, the
optimum distribution of costs for low-precision LSA is as follows. Denoting the
proposals matrix from a computer vision network as p, and the number of annotations
as B, to correctly create the half-normal distribution, for a matrix of shape (p,B)
the following measures are recommended. It can be safely assumed that batch
annotations are typically the smaller number, which can be estimated with the product
of annotations per image and batch size. Based on the density of numbers in each
column, p should be less than 27 (128), even with a skewed sampling distribution. The
values should be limited by resampling or altering the cost metrics to the specified
half-normal distribution. Limiting the value to 128 ensures that the precision of FP8
is used to maximum effect. The expectation for the matrix can be considered as a
product of frequency and cost; and following the prescribed formula, should be 0.24,
with costs scaled suitably. To ensure saturation, the Half Normal distribution has a
variance of 0.3. This gives a 0.26% chance of a value being > 0.9. For a batch size of
10 and 200 proposals, the expectation is that 5 values in the table are > 0.9, for half
as many proposals, a slight increase to 0.32 provides the same number of expected
values > 0.9. These guidelines provide constraints for where the accelerator-based
approximations proposed will work optimally.

By removing the mathematical correctness of the function and therefore intro-
ducing an extra layer of nondeterminism, significant speedups are presented. This
section has shown that approximating Linear Sum assignment can drastically speed
up training, with minimal effect on model accuracy and convergence.

186

Chapter 6. Linear Sum Assignment 6.6. Practical Applications

6.5.10 Future Improvements

The foundational principles of LSA have been elucidated, accompanied by a series
of optimizations that sustain performance. The enhanced utilization of accelerator
hardware and the minimization of overhead constitute a pivotal finding, demonstrat-
ing substantial improvements in training speed. Additionally, albeit to a lesser extent,
this research contributes to a reduced memory footprint and less computationally
intensive operations. Further progress may be achieved by refining the cost functions
to generate a Cost matrix C that naturally aligns with a Normal or Half-Normal
distribution, thereby diminishing the dependency on resampling, a method prevalent
in the current implementation of this work.

Further work can also be done to define the resulting model error in a CV context:
how F1LSA, α and σ affect the loss and use them to scale the magnitude of the step
taken.

6.5.11 Precision Limitations

This work has included a cursory study into the optimisation of a stage of computer
vision frameworks. However, investigation has been limited by the scales currently
available. Most machine learning libraries do not support FP8 implementations, much
less as part of, and so remains largely theoretical, though with the rapid advancement
of accelerator cards, this conclusion will be quick to experimentally verify going
forward. Further work is required to investigate these phenomena and introduce
assignment error at scale and throughout a training pipeline.

6.6 Practical Applications

This chapter has emphasized the different algorithms and nuances of the issues
beneath Linear Sum assignment. The intricacies have been covered thus far in an
attempt to convey that this work is evaluating the empirical method, separate from
any latent or posterior task. As such, the following is a set of novel applications that
could have been pursued given better research capability.

6.6.1 Loss Scaling

To answer the research question about the effect of LSA on model loss in contrastive
training, it is worth considering the similar combinatorics that apply.

The properties of the permutation matrix P generated during LSA, have an
analogous data structure to a linked list. The loops within this linked list which,
in a random case, approximate B

2
. The tendency to form loops of lengths up to B is

187

Chapter 6. Linear Sum Assignment 6.6. Practical Applications

the same mathematics that belies the 100-prisoner problem, but can be considered an
opposite case to the contrastive training uses. Contrast training points to the rare case
where P is an identity matrix of size B in each dimension (and only has ones along the
diagonal). From work in combinatorics, the probability of this occurring randomly
in the 100-prisoner problem approaches 0 as the number of prisoners increases. A
limitation of this concept is that approximations as presented would have to be
restricted to those that entirely obey the rules of LSA: otherwise, the conceptual
leap to treating P as a linked list and the associative properties do not conform.

6.6.2 LiSAScore

One of the significant publications to come from this work is the careful curation of
LiSAScore, an improvement over BERTScore [86].

BERTScore suffers usability hurdles because of overinflated metrics. There is a
significant right skew to the results compared to other token-based metrics. It should
be acknowledged that token-based metrics often underreport success in well-trained
models.

The work in this area identifies that the concept of precision and recall is somewhat
nebulous when aiming at posterior embeddings rather than tokens, and this can often
result in double-counting of frequent tokens. A similar phenomenon is caused by the
special tokens added to the sequence that can easily dominate the calculation.

The use of linear sum assignment limits the counting of tokens by masking a
pattern where each row and column only has a single value in it. The surprising
result of this work is that all uses remove the right-skew, with the recursive set of
algorithms performing closest to conventional metrics. Recursive metrics emphasize
speed and optimisations over the rules of LSA, which often leads to an imbalance
between Precision and Recall compared to other methods. As such, the possibility
of the occasional error is balanced by some tokens, where poor matches are ignored
entirely. 1

In comparison to later applications in computer vision, the distribution of BERT
latent embeddings follows a Gaussian distribution:

6.6.3 Computer Vision

Computer vision applications are perhaps the most obvious avenue for this body of
work, as it is typically reliant on the Hungarian algorithm anyway.

1A report containing run details and full experiment write up used in the published paper can
be found at https://wandb.ai/st7ma784/BertCLIPScore/reports/A-comparison-of-CLIPScore-and-
Bertscore.

188

https://wandb.ai/st7ma784/BertCLIPScore/reports/A-comparison-of-CLIPScore-and-Bertscore--Vmlldzo3MTQzMzEz
https://wandb.ai/st7ma784/BertCLIPScore/reports/A-comparison-of-CLIPScore-and-Bertscore--Vmlldzo3MTQzMzEz

Chapter 6. Linear Sum Assignment 6.6. Practical Applications

Figure 6.20: The distribution of similarities between LLM Latent embeddings

It remains to be tested how effective the recursive approximations are for training,
and testing the benefits of accelerator-based approaches is beyond the remit and scales
available for this body of work. However, the associated paper shows the efficacy of
LSA applications with reduced precision and how the approximations demonstrated
on smaller tasks can have a significant performance application in computer vision for
accelerator-based approximation.

However, in lieu of demonstrable application, the bigger breakthrough of this work
is not that it incrementally moves a benchmark. Instead, it is worth considering the
ramifications of reimplementing a method that maintains a residual gradient.

Enabling a gradient allows each prediction to be assigned as before but also to be
affected by a loss. Predictions and class logits can, therefore, be increasingly sensitive
to the movement away from being candidates in the case of poor prediction, allowing
inductive biases to align with the goal of NMS.

6.6.4 Bridging Computer Vision Applications

In terms of a wider pipeline in computer vision, that the Permutation matrix P is then
applied back to C, means that subsequent loss functions are performed on CP . This
means that the application being explored in this work, or contrastive training, can be
considered as a special case of cost matrix where C = CP . Therefore, the subsequent
discussion about calculating a permutation matrix for use in loss is interesting in both
applications, because computing the Permutation matrix is effectively a null-cost - it
already exists in some forms during the wider pipeline.

189

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

6.7 An Exploration of LSA for Loss

When considering the applications and notation available for the linear sum assign-
ment, it is very quickly apparent that the assignment matrix can be considered as a
permutation matrix, which is referred to in the papers generated by this work as P . In
such a case, the case where each item maps to itself is unique and very special. It would
be entirely reasonable to consider how this case may be learnt to maximize the values
of a matrix such that the one-hot form generates this special case of P . Intrinsically,
this is the same operation as contrastive loss, but initially non-continuous.

A significant advantage of the previously introduced step algorithm is the ability to
carry a gradient. Gradient calculation enables a loss function, and it is no coincidence
that the loss calculation in previous chapters with a diagonal staggered through an
n-dimensional cube also obeys the constraints of LSA in a perfect case. This section
is dedicated to exploring this approach, as it may provide a different performance
characteristic and scaling rules than the prior implementation of contrastive training.

Although it improves the efficacy of training, using and maintaining calculations
across n-dimensions is comparatively costly when using floating points. A way of
reducing this load could be to abstract the matrix as with linear sum assignment and
create a loss method based on the result.

This section emphasises using the assignment matrix itself to enhance the
gradient step, rather than simply passing the allowing the direct consideration of
the assignment.

6.7.1 Properties of Random LSA

The way to work out the difference between a one-hot LSA compliant array and a
diagonal is to consider the array as a linked list. Treating each value as the index of
the next location to check until the start location is reached. This problem is better
known and documented as ‘The 100 prisoner problem.’

The crux of the problem is to understand that shuffling values means that the
list can be considered as a collection of loops where every location now points to
another or itself (loop size = 1). Each location must be in a loop with its own value
somewhere in that loop. The number of steps it takes to resolve this problem is to
see the worst-case as the longest loop from the start location (to find a given number,
the start location of that number must be used to ensure it is in the loop).

For loops longer than 50% of the size n, the probability that that loop is the largest
is defined as 1

k
. As the number of prisoners in the problem becomes infinite, the plot

of this tends to y = P (k is longest loop) = 1
k
with range n > k > n

2
. For the chance

of resolving our shuffle in a number of steps,

P (success) = 1− P (failiure)

190

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Figure 6.21: A plot of probabilities of loop size k given 0 < k < n

where failure is defined by a loop larger than our number of guesses.

P (success) = 1−
∫ n

k

1

k
dx

We can solve this for the case where there is a half chance that all boxes resolve as

P (failure) = 0.5 =

∫ n

k

1

k
dx

which is
ln(n)− ln(k) = 0.5

.
However, this still assumes that our steps, k, value is bound by n > k > n/2. The

general plot for the range 0 > k > n is shown in Figure 6.21, taking continuous values.
The plot in Figure 6.21 follows the general case and is plotted with continuous values.
When calculated for fixed values, the plot looks like Figure 6.22b. This presents issues
for gradient descent, where non-continuous values exist, but the expectation, the area
between lines in Figure 6.22b, can act as a linear factor for value change.

Curiously, this tends to a constant (Golomb’s constant) as size becomes infinite.

6.7.1.1 Gradient

The problem with this method of following indexes as a practical measure of resolution
distance is the distinct lack of gradient.

191

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

However, as this is a very intuitive visual problem, it is worth investigating whether
a neural network can approximate or intuit the distance value and, in so doing, create
a continuous gradient.

Loss can be expressed in terms of the number of loops existing in a sample of n
items. In the perfect case, there are n loops of length 1. In the worst case, it is one
big loop of length n.

Intuitively, this results in

loss =
r∑

i=0

R2
i

where r is the number of loops in LSA(x) and R their respective lengths.
Unfortunately, this is made of discrete values and thus has no gradient per se.

Therefore, a good approximation is loss = n(E(n)). In a random case, textloss =
E(n)2 = n2λ, and the best case is simply loss = n. This can be adjusted as standard
to account for batch size by dividing by n as necessary.

First, the probability that each length of loop exists:
Let Lk,n be the number of permutations of objects n with the longest chain k. The

following can be stated from literature [45]:

L1,n = 1

Ln,n = (n− 1)!

and
k=n∑
k=1

Lk,n = 1

The probability of the longest chain being length k as

P (k) =
Lk,n

n!

Lk,n recursively can be expressed as:

Lk,n =

n/k∑
j=1

1

j!kj
· n!

(n− kj)!

min(k−1,n−kj)∑
t=1

Lt,n−kj

such that Lk,n is a function of Lk′,n′ such that k′ < k and n′ < n.
Interestingly, the expectation, En, for a given shape as a ratio of n has a limit

of the Golomb’s constant, λ, as n− > ∞ (0.62432965....). The expectation in the
infinite case could be a significant factor in defining a continuous gradient calculation.
The continuous expectation is explored as a function of continuous values in the cost

192

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

(a) Plots of probability of longest loop ≤ k in n items

(b) A plot of the expected size of the longest loop multiplied by k

193

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

matrix and the geometry of values. Figure 6.22b demonstrates how the expectation
varies with different matrix sizes, approximating the curve in Figure 6.21.

Comparing the values provided as a plot shows the tendency of the gradients to
shift as theoretical probabilities become known. Statistically speaking, as individual
locations are checked or assigned, the problem simplifies. It is very fast computation
to check the diagonal of a permutation matrix defined previously as P . This can
change the theoretical probability of the longest loop being of size n is P (n|k) for
n in k items to quickly take a true value of P (n|k − tr(P)), where tr(·) once again
represents the diagonal of the matrix. The number of assignments that sit on the
diagonal of matrix P can be quickly ignored and used to reduce the complexity of the
longest loop detection.

This leads to hypotheses to test:

The probability of certain numbers of loops of a LSA compliant matrix is
predicted by the diagonal of the matrix sufficiently for loss.

To test this hypothesis, experiments will calculate loop size within the permutation
matrix, and linearly scale loss accordingly. Given training works to minimize this loss,
the hope is that the additive factor will allow for faster convergence in specific cases
where the model is far from correctly understanding inputs.

6.7.1.2 Using LSA Loss

The base method uses the number of loops in the LSA matrix as a scaling factor for
the logits.

Psuedo code is:

f unc t i on l i n ea r sum as s i gnment s t ep s (matrix) :

Step 1 : Apply l i n e a r sum assignment to the input matrix
[x , y] = l inear sum ass ignment (matrix)

Step 2 : Convert assignment i n d i c e s in to one−hot encoded matrix
one hot matr ix = one hot encod ing (y , num classes=number of rows (x))

Step 3 : Extract non−zero i n d i c e s (xi , i n d i c e s) from one−hot encoded matrix
[xi , i n d i c e s] = non z e r o i nd i c e s (one hot matr ix)

Step 4 : I n i t i a l i z e index , counts , and f ound s e l f t en so r s
index = c lone (i n d i c e s)
counts = z e r o s l i k e (i n d i c e s)
f ound s e l f = z e r o s l i k e (i n d i c e s)

Step 5 : I t e r a t e un t i l a l l i n d i c e s map to themse lves
whi le not a l l t r u e (f ound s e l f) :

Update the index tenso r by mapping through i t s e l f
index [:] = i nd i c e s [index]

Increment counts f o r e lements not yet found
f o r i in range (l en (counts)) :

i f not f ound s e l f [i] :
counts [i] = counts [i] + 1

Check i f the cur rent index matches the o r i g i n a l p o s i t i o n
f ound s e l f = l o g i c a l o r (f oundse l f , i n d i c e s [index] == range (0 , l ength (i n d i c e s)))

194

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Step 6 : Compute the l o s s based on the as s i gned po s i t i o n s and counts
l o s s = sum(matrix [xi , i n d i c e s] ∗ counts)

Return the f i n a l l o s s
re turn l o s s

In this way, the loss scales by the largest loop and all values that have significant
costs associated with them, reduced as they become part of smaller loops, tending
to size 1. There would even be a quotient argument for subtracting tr(x) from
Tensor[xi, indices] · counts so that the loss can become 0.

6.7.1.3 Using Expectations as Gradient

Experimentally, the ability to quickly characterize a matrix is significant in how it
affects the mathematics of the problem. There are many problems with unintuitive
answers yielded by subtle changes in experimental probability. In the famous Monty
Hall problem, the competitor is invited to switch doors after an initial selection based
on seeing another door’s negative result. The revelation of another result alters the
relative probability, so a competitor is counterintuitively better off switching the door.

Understanding how the probability of the assignments changes based on a simple,
and cheap examination, yields the ability to predict a gradient step, based on the
change in probability - the linked-list is smaller. Therefore the likelihood of a large
loop is reduced. In this use case, the probability of certain permutations alters when
self-referential values are removed. The remaining list has shape m such that m =
n−(tr(x)) where tr(x) is the number of points assigned on the diagonal of the original
LSA matrix. This affects the probabilities in 3 ways:

• kmin = 2

• kmax=m

• k ̸= (m− 1)). The final remaining object cannot point to itself.

• P (k) =
Lk,n

(n−1)!
since the number of permutations where each object cannot point

to itself is fewer.

This change in probabilities creates a gradient. Furthermore, using the sum of
softmaxed values assigned as probabilities rather than the count means that this
gradient becomes continuous. We can also calculate the likelihood and probability
changes from the integration of the graph rather than the sum of values.

195

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

6.7.1.4 Testing Experimental Probabilities

The hypothesis to test is that subtracting the sum of probabilities created by
∑
tr(x)

from the probability distribution to produce En

n
= λ (Golomb’s constant) at limit

x− > ∞ creates a continuous gradient. Let P (k) be the probability of the longest
cycle length k, dP (k) is calculated using the following formula:

dP (k) =
L′
k,m

(n− 1)!
− Lk,n

n!

where L′
k,n is the number of permutations under the new rules.

6.7.1.5 Increasing Gradient Accuracy

The values for the gradient calculation can be further calculated using the next easiest
set of loops to find: k = 2.

Where before the can be isolated and removed with tr(x) =
∑i=n

i=0 xi,i, the next
term to remove is the loops of length 2.

tr′(x) =
∑

x · LSA(x) · LSA(x)T

or

(tr′(x) =
i=n∑
i=0

j=1∑
j=−1

xi,i+j

2 This further imposes new rules on the P (k,m):

• kmin = 3

• k ̸= (m− 2)) . The final remaining object also cannot point to itself.

• P (k) =
Lk,n

(n−2)!
since there are fewer permutations in which each object cannot

point to itself or one another. This is only an approximation for the range
3 ≤ k ≤ n− 2 based on the knowledge that P (Ln,n) =

1
n
and P (Ln−1,n) =

1
n−1

,
contributing 1 to the value of En.

The expected loop size can therefore be differentiated as:

d(En)/dk =

∫ n

k=1

Lk,n −
∫ n

k=2

L′
k,n

Instead of summing the values, the integral is used to approximate the continuous
values rather than the sum of discrete parts, especially where subtracting continuous
probabilities may lead to fuzzy logic.

2Actual implementation also requires checks for array limits.

196

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Proposition 1: Integration by Parts Formula
Integrating the function y = Lk,n by parts:∫

u dv = uv −
∫
v du

This formula will be applied in the subsequent steps.

Proposition 2: Definition of u
Let u be defined as follows:

u =

n
k∑

j=1

1

j!kj
· n!

(n− kj)!

This is the choice of u for the integration by parts in Proposition 1.

Proposition 3: Definition of dv
Let the differential dv be defined as:

dv =

min(k−1,n−kj)∑
t=1

Lt,n−kj dx

This is the chosen form for dv, representing the portion of the function being
integrated with respect to x.

Proposition 4: Application of Integration by Parts
Applying the integration by parts formula (Proposition 1), obtains the following

expression for Lk,n:

Lk,n =

n
k∑

j=1

(
1

j!kj
· n!

(n− kj)!

)min(k−1,n−kj)∑
t=1

Lt,n−kj

This expression represents Lk,n as a sum involving Lt,n−kj.

Proposition 5: Derivative of u
Finally, the differential of u:

du =
d

dx

 n
k∑

j=1

1

j!kj
· n!

(n− kj)!

 dx

This derivative represents the change in u with respect to x, which is required for
the integration by parts.

197

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

By combining the results of these propositions, the final expression for Lk,n as a
sum of terms involving Lt,n−kj.

Lk,n =

n
k∑

j=1

1

j!kj
· n!

(n− kj)!

min(k−1,n−kj)∑
t=1

Lt,n−kj

6.7.2 Explanation and Comparison to CELoss

As previously outlined in the evaluation of CELoss, the gradient and shape of the
descent slope is crucial in any substitute function. In other words, how the embedding
moves in 512-space is critical, where many small increments are possible in all
directions, where there are few anchor points for first-order knowledge.

To evaluate the shape of LSA-based loss, it is worth noting the key differences
between the following cases for CE loss and LSA-based loss. Crucially, this is a
measure that builds on the similarity measure rather than replacing it.

Consider the following case:
The CEloss in Figure 6.23a seems to punitively account for the first column due

to cross-entropy loss, and the second column is also comparatively poor.
If we consider the mask that LSA generates for Figure 6.23a, it can be seen in

Figure 6.23b for a worse performing loop of 3. In either case, LSA ranks Figure 6.23a
as worse than Figure 6.23b. This also demonstrates the importance of including
the non-selected values in LSA loss and of balancing these problems across different
permutations where maximal values have to be reassigned into a new column.

6.7.3 LSA Loss Comparison During Training

To compare the LSA-based loss, and for ease of development, the experiment is limited
to the n = 2 case. For the sake of the test, the base contrastive code is used with the
LSA method as a comparison. As shown in Figure 6.24, it is reasonable to assume
that the difference in magnitude of LSA loss compared to CEloss on similarity metrics
could make this an unfair comparison. Thus, an extra hyperparameter is introduced:
a range of learning rates, which will yield insight on magnitude difference during
comparison.

To demonstrate the comparative merits, combine several implementations of loss
with the approximations and trial a small model (6 linear and activation layers).
The Adam optimiser is selected for this, due to the nebulous nature of LSA and its
non-stochastic nature.

To establish a benchmark for LSA-based loss,a network with Cross-Entropy loss
is made as a baseline; a network comprised of 6 linear layers, showing that the loss

198

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

(a) A small scale example of the gradient produced by LSALoss when the
input is complient to LSA Loss, the second row plots demonstrate the
resultant vector, minimising the 2 high values not on the diagonal

(b) Compared to (a), the input has no obvious LSA solution. The second
row plots demonstrate the resultant gradient towards LSA compliance.

Figure 6.23: A comparison between 2 matrix inputs showing how LSALoss responds
to LSA compliant matrices (a) and not compliant matrices (b)

199

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Figure 6.24: A figure showing a 10x10 plot of LSA loss, where each row may require
multiple changes for LSA calculation, resulting in a more complex resultant gradient.
However, the locations where the gradient is applied most each contribute significantly
to LSA Error

function can correctly converge to the right output. Given a random input, the cross-
entropy loss successfully converges down as shown in Figure 6.25.

This test is designed to demonstrate two things. Firstly, the outputs of a neural
network do in fact converge to the correct pattern with each loss function. Secondly,
this benchmark shows that there are some circumstances in which the network does
not intrinsically learn to maximize the correct value based on a random input. This
is reflected in the CELoss benchmark, which often plateaus at very different values.
(0.23x) where x is the number of missing values.

The expectation is that using LSA, forcing a value in that row and column, will
cause the network to converge to a state where the full diagonal is maximised.

The loss functions are summarised in Table 6.9.
These methods caused the adjustment of some approximations. The assumption

200

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Figure 6.25: A Figure showing the result if LSALoss is applied for multiple steps on
a random input, showing it converges largely towards the same resultant vector as
Cross-Entropy loss, with the caveat that in some instances, some rows do not result
in a one-hot vector

201

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Method Name Description
CE Loss the Baseline comparison using cross-entropy loss

LSABaseLoss Taking the sum of the assigned values, multiplied by the
respective loop lengths from Permutation matrix P

LSAloss v1 Using the comparative ratio of the assigned score
compared to all other candidates. (

∑
C −

∑
PC) :∑

PC assigned values. Loss is high if assigned values
are not significantly higher than assigned ones.

LSAloss v2 The Permutation matrix P is scaled according to the
size of loops, then multiplied by C. Assigned values
are punitively scored if they are not on the diagonal.
(Noting that the adaptation of this for multiple values in
each row and column means it is asymetrical, meaning
that input, C gives a different result from C.T

LSAloss v3 sum of —assigned values*counts— plus sum of
unnassigned values. Loss is high if the values arent
on the diagonal or aren’t significantly higher than the
others

CombinedLosses v{}: LSAloss v{} + CE Loss

Table 6.9: Loss methodologies that incorporate LSA calculations

202

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Method Name Description

LSAFunction GPU based masking and resampling
LSAstock The CPU-based scipy implementation of LSA
LSAv3 The recursive LSA, based on a fixed number of

reductions, and using an argmax/argmin at the end for
assignment selection. This can result in empty rows and
columns.

LSAv4 The same as LSAv3, with assignment selection using the
top-k values where k = min(shape), this is faster but
assumes best convergence and can result in duplicate
rows and empty rows, which causes our loss algorithms
to have to be adapted to use this uncertainty.

Table 6.10: The functions in [86], tested for effectiveness in Loss

that there are internal loops requires the matrix of weights to have the same height
and width. When dealing with linear sum assignment approximations, especially for
uneven matrices, just dropping empty rows is insufficient in some cases to preserve
this metric. Some approximations, especially recursive, do not guarantee a full
assignment in either dimension. Therefore, adjustments must be made. For the
counting algorithm to work, it is important that every row and column have at least
1 value. Empty rows are assigned the same values as any rows with more than 1
value. Preserving assignments and assuming minimal correction distance on errors is
successful at the cost of the accuracy of the approximation functions. More work is
needed to know if there are better solutions.

The LSA Functions tested are stated in Table 6.10.

6.7.4 Expectation

The test has been designed to demonstrate both the converging properties of LSA and
compare performance over more than a single step to the widely accepted baseline
of cross-entropy loss. Given the behaviour of LSA algorithms, and how fragile a
permutation matrix can be with respect to individual values in a cost matrix, it is
expected that the resultant graphs over several epochs are irregular, but ought to
average out over enough random cases.

The experiment that tracks how loss boosting works over several epochs is
important because it shows the cumulative direction of gradient steps towards a
goal - and how that can affect loss curves. When summing cumulative steps, it is
theoretically true that opposite gradients average out, but this is to neglect that this
is wasted time during training, and when multiple layers of parameters are concerned,

203

Chapter 6. Linear Sum Assignment 6.7. An Exploration of LSA for Loss

Loss LSAFunction LSAStock LSAv3 LSAv4

Base
LSA-
Loss

LSA
loss v1

LSA
loss v2

LSA
loss v3

CE
Loss

Combined
Losses v1

Combined
Losses v2

Combined
Losses v3

Table 6.11: A Table showing loss attribution, gradient and deescent curves from LSA
Loss on a random input 204

Chapter 6. Linear Sum Assignment 6.8. Chapter Summary

it can be damaging for optimization schemes to have steps where no meaningful
learning occurs. Therefore, the expectation of this experiment is to see that different
approximation methods, although having very similar scores as previously discussed,
have different performance when models converge. This is a key insight for deploying
such approximations into downstream tasks like computer vision pipelines where
performance in single cases does not accurately convey how model convergence is
affected by the approximations’ variance from the perfect solution.

6.7.5 Result Explanation

As previously illustrated in small scale in Figure 6.25 and Figure 6.24, the gradient
descent of the LSA-based loss is attributable to individual parts of the input array,
and this can affect the outcome over multiple steps. Thus, Table 6.11 shows the
problems with using LSA in isolation for a loss function, showing how random inputs
converge over multiple steps. In many cases, there is a very weak correlation in the
output of the small model. Such a weak output is unsuitable for effective guiding of
contrastive training given the computational expense. Whilst the loss is better for the
ideal case than random, there are still mathematically superior loss cases, resulting
in methods that minimize all logits rapidly descending.

The comparison between the CELoss cases, where gaps are frequent, and the
combined losses, especially with LSAlossv2, shows a significantly better output for
the stock and LSAv3. However, this does not pass the significance threshold, and
comparing the loss graphs, they bare a more striking resemblance to the CELoss than
the LSA components.

Both LSAlossv3 and its combined counterpart converge very quickly, resulting in
very even distributions of logits, and are invariant to the different approximations of
LSA. Comparatively, LSAlossv1 shows a promising trajectory for approximation-
based approaches, but doesn’t descend with the stock implementation, which
demonstrates the importance of using operators capable of gradient calculation. The
stock implementation also causes issues when using the base method to calculate loss.
LSAv4 also has 2 graphs, corresponding to the base method and the v2-combined
method, which descend at a gradual pace, thereby indicating that the gradient may
be obscured during computation.

6.8 Chapter Summary

The calculation of the LSA factor, compared to CELoss, does not maintain a gradient
toward the optimal value. The lack of descent slope suggests that this method may
better suit reinforcement learning methods, although this would require a lot of work.
A hypothesis for subsequent work would be to consider whether just minimizing

205

Chapter 6. Linear Sum Assignment 6.8. Chapter Summary

the selected values becomes significantly more effective, given the significance of the
special case of loss.

This chapter has shown that there are practical limits to LSA approximations with
neural networks. RQ.4 asks whether the assignment matrix can contribute towards
computational gradient. The case of the assignment matrix being able to inform
the loss criterion has been explored: it is not strong enough to solely contribute to a
gradient. The conclusion of this work is that it can inform the learning rate by adding
a multiplier to loss; it is too computationally expensive and quickly superfluous to be
meaningfully implemented in these large-scale use cases of contrastive training.

In this chapter, Linear Sum Assignment has been considered in the context of
its role in the machine learning pipeline, with several approaches presented. It has
been shown that reducing the precision changes how the problem can be approached,
reducing branching and complexity, enabling accelerator-based approaches to become
increasingly effective, reducing the overheads introduced by CPU-handoff and data
transfer that can become significant overheads in multi-tenant systems.

Against the perfect case of the stock implementation, the reimplemented function
with GPU acceleration performs the best. The slight deviation is due to the
exceptional case where the latter assignment gradient is not considered, which is
addressed in the Hungarian algorithm by assigning an adequate quantity of slices to
cover any and all zeros that appear in the matrix in each step.

As GPU acceleration is considered, it can also be shown that in reduced precision,
the comparative performance increase is not as big compared to the recursive
family of algorithms. In both cases of FP8 (e5m2, e54m3), the performance of
recursive approaches approaches the performance of the stock Hungarian algorithm
and accelerated LSA functions. As all recursive approaches can be rapidly adapted to
a fixed number of steps over a batched matrix, by rearranging the ‘for’ loops, they offer
sizeable speed advantages. Especially in the context of ML contexts where matrices
rapidly become saturated, acceleration with approximation is a very powerful and
promising advance!

Unfortunately, present high-performance compute offerings available to researchers
do not have FP8 support. So full CV benchmarks do not benefit from the same
hardware support that other frameworks benefit from, meaning the improvements in
speed and document any minor performance penalties for noisy assignment cannot be
fairly measured.

RQ.4 Has been answered by showing that the error introduced by approximating
assignments has a minimal impact due to the inconsistency of error in any given
direction. Some approaches benefit massively from the increased speed of these
approximations outweighing any associated cost for the related error.

206

Chapter 7

Conclusions

This thesis set out to address whether understanding could be tested in models that
learn hidden representations, and whether there are ways of instilling learning in
scalable ways to test understanding without web-scale apparatus. This thesis has
shown effective algorithms for scaling down representation learning, set forth metrics
for evaluating the capabilities, and then presented further advances afforded as scale
increases. The remit of the work presented has broadened to include the training of
the small scale models to demonstrate that they begin to demonstrate the emergent
properties of a system that can be said to have a good world understanding in
so much as having reliable zero-shot performance on downstream applications, and
demonstrating the properties of latent space that are expected to follow.

In this thesis, along with the novel methods presented, the breakthroughs
presented validate the previous theoretical works. How transformer representations
embody events, concepts, and prototypical entities is core to many of these theories,
and without these ideas, the presented methods would be unlikely to perform well.
The efficacy of contrast training has been shown to be proportional to the number of
guiding logits, even in noisy and weakly supervised settings.

7.1 Research Objectives Achieved and Questions

Answered

RO.1 Present a training paradigm that is not tied to a domain prediction but can
create meaningful embeddings. In curating the training paradigm that can take
multiple inputs across domains, that has been trialed on toy languages, and that
can operate with no assumption of posterior distribution, this work has successfully
presented a novel approach that can be applied to many contexts. The topology of
the latent space has been shown to encapsulate multiple orders of knowledge through

207

Chapter 7. Conclusions7.1. Research Objectives Achieved and Questions Answered

probes and zero-shot performance. The success of this method means that there will
hopefully be a renewed emphasis on multiple data points to each entry, rather than
the move to summaries and neural aggregations of human annotations. This work
has concretely shown that all annotations are useful, which has implications for many
domains like social networks and low-resource language. Though in both cases, the
contemporary arrival of LLMs presents challenges that could not have been easily
predicted and creates a new landscape for subsequent work.

RO.2 Show evaluation methods available where there is no clear holistic ground
truth for what the model should have learnt. In profiling multiple approaches, this
work has exposed several different metrics and evaluation approaches showing that
CKA, probes, and down-stream applications are largely congruent in evaluation. An
inter-training measure of token distribution has also been trialled and shown to be
effective over a sufficient number of runs in identifying outliers in performance.

RO.3 Demonstrate the limits of scaling within the limits of 24 GPUHours, and the
projected performance increase for future work. Much of this thesis has conclusions
which have been governed and restricted by the incredible lack of provision. The
levels at completion would have seemed comical even half a decade ago. However,
the methods presented offer a tangible comparison to the methods used outside
academia. This thesis has shown that through arduous re-implementation of libraries,
there are many things possible within the available provision. The amount achieved
with such limited resources offers a renewed challenge to organisations that require
large training frameworks without considering environmental costs alongside the fiscal
costs. However, it has been shown that the presented methods achieve state-of-the-
art performance in training from scratch a model with strong zero-shot performance
using a very small quantity of data and resources. This answers many of the concerns
that inform this work around academic reproducibility, even though these methods
have only received publication as a position paper: there is much prospect for future
development.

In achieving these objectives, the following RQs have also been answered.
RQ.1 Demonstrate where how elements of knowledge can be isolated within

a machine learning model. From the evaluation techniques and the studies into
assignment, it can be clearly shown that the available representations adequately
embody enough information to carry elements of semantic knowledge. The brief
discussion over triples and entity-relation tuples offers a level of granularity that may
never befit model representations while language is so semantically intangible.

RQ.2 Many state-of-the-art models exist beyond the training capabilities of
academic replication. How can model training be reinvented to facilitate replication
at a smaller scale of compute AND data? Comprehensibly and unequivocally, SOTA
models could be replicated on academic scales. Unfortunately, whether (ab)using
post-graduate research portfolios to explore this in lieu of correct funding and

208

Chapter 7. Conclusions 7.2. Future Directions of Research

provision remains a questionable practice. It is a sincere hope that, in spite of
the success of this thesis, it does not become an exemplary case of post-graduate
hyperparameter descent. This work has successfully engineered an alternative
method that can be comfortably run even in the most limited of academic contexts.
Despite the substantial personal financial commitments made by the author, it
has been profoundly disheartening to witness how, during the conception of this
groundbreaking work, several of its significant accomplishments have been eclipsed
by other contemporary endeavors operating at a vastly larger scale. The frustrating
reality is that these larger-scale projects, while glitzy, often lack the innovation and
creative problem-solving achieved here, leveraging substantial financial resources and
technological infrastructure to drive outcomes. Few of these contemporary studies
were worthy of mention in related works because no changes were made to the
implementations other than to throw more money and/or more data at the problem.

RQ.3 There are many advantages available to models that use weak and pairwise
supervision to learn the relevant associations. Can annotation assignment have
improvement on a micro scale with performance gains comparable to weak supervision
on a macro scale? This work has shown that while assignment is implicit within
contrastive methodologies, dynamic assignments do not produce an adequate gradient
for direct training and introduce too many problems. Conversely, the way assignments
are used in computer vision approaches to govern supervised annotation has been
shown to have a significant impact in training. This work and the paper in the
appendix have revealed that optimisations are available through approximation that
can massively improve training and minimise the hurdles when moving to specialised
accelerators. This work has also shown that in using assignment rules, evaluation
metrics can be improved by having edge cases removed as in the paper presented at
NLDB, LiSAScore.

RQ.4 Many of the semiotic studies that underpin RO.1 point to grounding and
assignment as fundamentals in attributing to a model ’understanding.’ What are the
impacts of approximating these assignments or using noisy approximations?

Using a noisy assignment has not been concretely tested. Whilst the theoretical
approach and code base have both been rigorously developed, profiled and tested in
this work, it remains astonishing that even computer vision approaches from years
ago cannot be implemented at these scales.

7.2 Future Directions of Research

This work was largely inspired by the challenges faced by academic institutions today.
The rate of innovation in AI, and how quickly it has captivated and accelerated
thinking, has been a great leveller in some respects, and a greater divide in many
others. The academic world has struggled to keep on top of reading, yet alone

209

Chapter 7. Conclusions 7.2. Future Directions of Research

the technological gulf that has opened between industry and what can be readily
replicated within academic spheres.

Whilst this thesis and the work within demonstrate that cutting-edge development
is possible, it is still clear that nearly half a decade on, Moore’s law has not applied
to equipment available to researchers, and 3 years of development are what is needed
in order to begin to replicate a model that is now irrevocably entrenched in industry.

It is also worth stating that in this work, there were many contributory ideas that
may once have been worthy of publication individually, and pressures academically on
available resources and management have prohibited their pursuit and publication.

The ideas that can be found in the code base for this thesis are as follows.

• An improved HSIC calculation, written natively in PyTorch which allows the
evaluation of a model nearly 100x faster than the available libraries, with GPU
acceleration.

• An algorithm for linear sum assignment on GPU architecture. This may seem
trivial, and indeed work slower, but in a datacenter or cloud-native deployment,
accelerator hardware (i.e TPU) may be on a different machine to the CPU and
branching, or requiring data transfer adds a prohibitive overhead.

• A novel way to train LLMs using only contrastive methods, allowing sentiment to
be scored higher, a goal that has seen large amounts of traction with evaluation
and loss metrics generated from BERTScore. A model that trains to new ways
of expressing an idea, may be acutely more sensitive to literary style and word
choice to convey nuanced or contextual ideas.

• The n-dimensional training remains unpublished beyond the theoretical paper,
which received very positive reviews that asked for more evidence.

• A concrete test of Pair-DETR’s methodology with extra dimensions. It is
already abundantly clear that contrastive training has myriad applications
spanning all domains and applications of machine learning. It would only be
prudent for the algorithms selected and pioneered in this work to be put to an
equally exotic set of tests across domains. During this work, code was developed
to train a Pair-DETR method using this contrastive methodologies, but was
unable to reach fruition due to hardware, time and RSE constraints.

• Reimplementation of pair-wise contrastive training that is significantly more
efficient than other available code-bases (at time of writing).

• A template for utilising scalable HPC (High Performance Compute) offerings for
machine learning workflow that has already been circulated around the N8CIR
group

210

Chapter 7. Conclusions 7.2. Future Directions of Research

Many of these individually open avenues of further exploration, but primarily, the
biggest single exploration direction from what has been presented is simply to scale
up: showing that the assertions and beliefs within this document hold true. Chapters
3 and 4 also offer many practical applications that have not been explored, both in
the domain of social media and other subjective or low-resource linguistic contexts.

7.2.1 Future Work for n-dimensional Training

A critique of the work presented in Chapter 5 is the requirement that the data
have multiplicity across domains, and the benchmarks only include a dual encoder
benchmark (not to be mistaken with 2 data inputs). Therefore, some future work may
further explore the caveats of multiple and multimodal models. Moreover, the use of
a single encoder for multiple input streams is sufficient, where the domain of each
input is the same. However, comparing domains, such as a social media caption,
description, and comments on social media, may cause problems. For different
domains, performance may be improved with unique domain projections between
feature spaces. This could be manually implemented with a single encoder, but for
schemes with varying tokenizers, the implementation would require different encoders
during training.

There are many different things to explore with this methodology: look at works
around neuron activation such as SCRFP [65]. SCRFP pruning emphasizes the
movement of neurons during training, showing that neurons that remain fixed for
the entire set of inputs are less effective than moving ones in producing an effective
set of weights. Works like this advocate for neurons to move, arguing that fixed
neurons are most effective for single-order knowledge. As this approach cannot learn
first-order knowledge, fixed neurons are of limited use and so may be pruned to
improve performance or reset to promote exploration of solution spaces. During this
work, many other avenues have been explored such as publications to CVPR around
adversarial attack, presenting the robustness that this contrastive pretraining offers
in many approaches.

7.2.2 Future Work with Linear Sum Assignment

In Chapter 6 many different approaches have been explored for both approximating
the Linear Sum Assignment problem as pertains to the computer vision applications,
and the applications directly to contrastive systems. As discussed in the applications
section, the cost of implementing the gradient boosts is still relatively unexplored,
especially where this cost matrix introduces little additional overhead.

As an evaluation metric in NLP, LiSAScore has been shown to have a better
distribution than BERTScore from a usability perspective. However, BERTScore has

211

Chapter 7. Conclusions 7.2. Future Directions of Research

latterly been applied to many different contexts and places. Future work includes
using LSA, and approximations, to explore whether supplementing BERTScore with
LiSAScore improves the performance of advanced LLM systems, by reducing the
number of tokens that can have the same activation. Whether there is a tangible
difference in downstream tasks based on the uniqueness of latent representations may
offer significant insights into the behaviour of large transformer-based systems.

The use of gradients in the LSA algorithm is a considerable advantage: Predicted
boxes and logits can be compared against annotations using cross-entropy in a single
operation. The gradient carried by LSA means that all the proposed boxes would
move according to their proximity and correctness, rather than just the assigned
ones. All boxes moving presents an area for further exploration of weakly supervised
methods with partial or whole-image annotations, and may be a redemptive measure
for 2-stage detectors when assigning non-object labels.

There is also significant room for evaluating the comparative effect of these
approaches as compared to other work around computer vision. Many code bases still
store the assignments as a list of indexes, rather than a permutation matrix that carries
a gradient. Some work has been done in this area [92] to use permutation matrices
to inform vision encoders and ensure biases are distinct in latent distributions, which
has scope to be applied wider into a contrastive learning space, and latterly into
other computer vision methodologies. A key future experiment would be to profile
the comparison between convolutional models and transformer-based approaches with
this to see if transformers are significantly more adept at learning salient features
that partially encode latent permutation matrices. This would represent a significant
reduction in training time and complexity for many code bases.

A conclusion of investigating LSA is that sparse tensors with permutation-based
solutions manifest as very sharp parameter spaces. In practice, these challenges make
gradient descent impractical without a fixed permutation matrix to descend to, as
seen in other work [92]. It could therefore be proposed that this could be used as an
LR scaling factor, F , for training purposes of wider frameworks. F can be defined as
the sum of all loop sizes squared within P . To avoid collisions in this metric, some
investigation may be needed, as previously done to discover the optimal exponent for
scaling. Locating the optimal value would balance scoring single large loops higher
than numerous smaller loops without scaling the LR too high. As this operation can
be performed asynchronously with other operations, it is highly feasible to implement
during training. Unfortunately, no time was given to explore this avenue of training on
a meaningful scale, despite the potential implications for the improvement of empirical
methods that rely on contrastive training.

For the purposes of future work, this problem has been abstracted into a
toy machine learning repository to enable future research into learnt permutation

212

Chapter 7. Conclusions 7.3. Final Reflections

matrices. 1

7.3 Final Reflections

Over this body of work, much effort has been made to define what constitutes an
appropriate scale to begin investigating emergent properties of neural networks. This
limit has largely been enforced by the capabilities available at an academic institution.
Throughout the trajectory of this extensive body of work, it has been powerfully
illustrated that small-scale research possesses the remarkable capacity to influence
expansive enterprise and corporate implementations, dramatically augmenting the
efficiency of systems once deployed. It remains utterly astonishing that competition
and investigative endeavors are often cloaked in skepticism when undertaken on
anything but a minor scale. Astonishingly, universities continue to dismiss the
exploration of these phenomena on a grander scale as a legitimate research venture.
Many opt for the safe harbor of believing it was unforeseeable and that the associated
costs are prohibitive, instead of daring to position themselves at the vanguard of
research innovation. Numerous pioneering research concepts suffer from a debilitating
lack of foresight or an appreciation for the broader vision; this deficit has led to an
alarming shortage of organically cultivated talent within higher education institutions,
consequently stifling the influx of innovation-driven funding. It is with profound hope
that the author envisions works such as this reclaiming the leadership of academic
institutions in the realm of technical innovation.

1Repository available at https://github.com/st7ma784/EnigmaDemo

213

Appendix A

Visualisations

Docker image available at :

st7ma748/demo

is a web interface allowing users to play with the algorithms mentioned.
The interface offers the ability to add points to the screen, commensurate to the

number of dimensions in play; this is then passed through the algorithms in this
thesis. (Analogous to using them with B=1). The output scores show the similarities
between points according to different outputs.

As an example, here is the output with points together, and far apart.

Figure A.1: Screenshot of visualisation for n = 12 and F = 2

214

Appendix A. Visualisations

Statistic name returns

mean (
∑n

i=1 xi

n
,
∑n

i=1 yi
n

)

l2mean (
∑n

i=1 x
2
i

n
,
∑n

i=1 y
2
i

n
)
1
2

l3mean (
∑n

i=1 x
3
i

n
,
∑n

i=1 y
3
i

n
)
1
3

dynmean (
∑n

i=1 x
n
i

n
,
∑n

i=1 y
n
i

n
)

1
n

lsqrtmean (
∑n

i=1 x
1
2
i

n
,
∑n

i=1 y
1
2
i

n
)2

std (

√∑n
i=1(xi−

∑n
i=1

xi
n

)2

n
,

√∑n
i=1(yi−

∑n
i=1

yi
n

)2

n

variance (
∑n

i=1(xi−
∑n

i=1 xi
n

)2

n
,
∑n

i=1(yi−
∑n

i=1 yi
n

)2

n

Table A.1: Table of useful statistics used in visualisations

Figure A.2: Screenshot of a close clustering where n = 12 and F = 2

The Figure A.1 and Figure A.2 show screenshots from the interface of the
aforementioned docker image. The red points may be freely moved around, showing
how each similarity measure changes in 2D space, using the ‘x’ and ‘y’ values on the
screen. This gives a very practical understanding of the outcome demonstrated in
Figure 5.8 where vectors are compared by the Cartesian and cosine distances.

215

Appendix B

Top Performing runs for n = 6

The following table records the configuration and laterly the results from the top 3
runs in 6 dimensions selected based on their zero-shot topk=1 imagenet performance.
In particular, performance in this domain is 10% higher than that of the in-domain
COCO probe. Indicating a significant error in the class selection by taking the first
annotation as indicative of the image semantics.

Other notable results include the top runs having very similar configurations in
algorithms, and this resulting in similar profiles across logit regions. By comparison,
the third run uses a different algorithm and has a contrasting (almost opposite) profile
in these regions. Interesting for 2 reasons: firstly, the region that accounts for the
average amount per region is the same! Secondly, this correlates with whether the
logits are positive or negative. Method 7 therefore likely has a different profile for
minimizing or maximizing, probably influenced by none of the runs using the exact
labels generated.

216

Appendix B. Top Performing runs for n = 6

Parameter Run1 Run2 Run3
adam epsilon 0.00000001 0.00000001 0.00000001
batch size 10 6 8
dims 6 6 6
embed dim 512 512 512
epochs 10 10 10
exactlabels 0 0 0
gumbel true true true
JSE 0 0 0
learning rate 0.0001 0.0001 0.0001
logitsversion 6 5 7
logvariance false false false
maskLosses 0 0 0
meanloss true false false
normlogits false true true
precision 32 32 32
projection ”iinv” ”iinv” ”None”
prune true false true
total steps 200,000 200,000 200,000
train batch size 10 6 8
transformer heads 16 16 16
transformer layers 5 4 6
transformer width 512 512 512
BAD logit -85.77916717529297 -59.58275604248047 115.79511260986328
epoch 10 10 10

217

Appendix B. Top Performing runs for n = 6

Metric Run1 Run2 Run3
First Logit -38.785 -20.045 164.94
ImProbe 0.38429 0.37463 0.37816
Logit Scale 34.094 57.450 36.336
MaskVal=6 6,218.9 3,913.3 10,566
MaskVal=20 5,800.3 3,640.4 11,742
MaskVal=34 5,376.1 3,372.7 12,917
MaskVal=48 4,945.3 3,110.7 14,093
MaskVal=84 5,040.1 3,109.4 14,093
MaskVal=98 4,608.4 2,853.2 15,268
MaskVal=162 3,832.4 2,358.7 17,619
MaskVal=258 3,996.2 2,355.4 17,619
MaskVal=272 3.5577× 103 2.1193× 103 1.8794× 104

MaskVal=626 2.7367× 103 1.4481× 103 2.2321× 104

MaskVal=1296 1.4472× 103 577.97 2.7863× 104

Mean Projection Value -0.00011281 0.000069266 -0.000073328
Mean Validation Stock Logits 0.073854 0.12940 0.066066
Mean Loss 5.6040× 103 3.2465× 103 1.2770× 104

Proportion MaskVal=6 1.1097 1.2054 0.82742
Proportion MaskVal=20 1.0350 1.1213 0.91946
Proportion MaskVal=34 0.95932 1.0389 1.0115
Proportion MaskVal=48 0.88245 0.95817 1.1036
Proportion MaskVal=84 0.89937 0.95777 1.1036
Proportion MaskVal=98 0.82234 0.87886 1.1956
Proportion MaskVal=162 0.68386 0.72656 1.3797
Proportion MaskVal=258 0.71310 0.72552 1.3797
Proportion MaskVal=272 0.63485 0.65282 1.4717
Proportion MaskVal=626 0.48834 0.44606 1.7479
Proportion MaskVal=1296 0.25825 0.17803 2.1819
TopK Imagenet 0.42088 0.41468 0.42021
TProbe 0.72574 0.70640 0.72396
Train Loss 1.9963 0.10135 0.26336
Trainer/Global Step 12,570 20,950 15,710
Val Loss-Stock 1.6494 1.4674 1.1438

218

Appendix C

Visualisation for LSA

Docker image available on Docker Hub as:
st7ma748/demo
The Docker image creates a web interface allowing users to play with the

algorithms mentioned.

Figure C.1: Interface for trialling LSA algorithms with different precision

This visualisation provides an interface for creating a matrix (m×n) and seeing the
return of various LSA algorithms on it. This interface allows the different approaches
to be tested on a custom matrix: showing how the assignment matrix differs with each
algorithm. Further experimentation will show that using sparse values also causes the
approximations to perform well against the ground truth.

To demonstrate the performance profiles of each method and how they differ by
dimensions, the following is a plot of all the methods’ performance with different
precisions and random distributions. Each table plots, for the given distribution and
ratio between width and height, how well each method scores.

219

Appendix C. Visualisation for LSA C.1. Methods

C.1 Methods

C.1.1 My Function

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

C.1.2 Recursive Fn

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

220

Appendix C. Visualisation for LSA C.1. Methods

C.1.3 Recursive Fn v2

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

C.1.4 Recursive Fn v5

Precision Uniform Normal DETR Half-normal(0,0.3) —X N(0,0.3)—

e4m3

e5m2

16

32

221

Bibliography

[1] Carlo Aironi, Samuele Cornell, and Stefano Squartini. “A Graph-Based Neural
Approach to Linear Sum Assignment Problems”. In: International Journal of
Neural Systems 34 (Dec. 2023). doi: 10.1142/S0129065724500114.

[2] Carlo Aironi, Samuele Cornell, and Stefano Squartini. “Tackling the Linear
Sum Assignment Problem with Graph Neural Networks”. In: Feb. 2023, pp. 90–
101. isbn: 978-3-031-24800-9. doi: 10.1007/978-3-031-24801-6_7.

[3] Guillaume Alain and Yoshua Bengio. “Understanding intermediate layers using
linear classifier probes”. In: arXiv preprint arXiv:1610.01644 (2016).

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. “Flamingo: a visual language model for few-shot learning”. In:
Advances in neural information processing systems 35 (2022), pp. 23716–23736.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. “Towards understanding ensemble, knowl-
edge distillation and self-distillation in deep learning”. In: arXiv preprint
arXiv:2012.09816 (2020).

[6] Nadja Althaus and Denis Mareschal. “Modeling cross-modal interactions
in early word learning”. In: IEEE Transactions on Autonomous Mental
Development 5.4 (2013), pp. 288–297.

[7] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C Lawrence Zitnick, and Devi Parikh. “Vqa: Visual question answering”.
In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 2425–2433.

[8] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. “VQA: Visual Question An-
swering”. In: International Conference on Computer Vision (ICCV). 2015.

[9] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and
Cordelia Schmid. “Vivit: A video vision transformer”. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2021, pp. 6836–6846.

222

https://doi.org/10.1142/S0129065724500114
https://doi.org/10.1007/978-3-031-24801-6_7

Bibliography Bibliography

[10] Ratchakrit Arreerard, Stephen Mander, and Scott SL Piao. “Survey on Thai
NLP language resources and tools”. In: Proceedings of the Thirteenth Language
Resources and Evaluation Conference. 2022, pp. 6495–6505.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014).

[12] Yoshua Bengio and Yann LeCun. “Scaling Learning Algorithms Towards AI”.
In: Large Scale Kernel Machines. MIT Press, 2007.

[13] Savita Bhat and Vasudeva Varma. “Large Language Models As Annotators:
A Preliminary Evaluation For Annotating Low-Resource Language Content”.
In: Proceedings of the 4th Workshop on Evaluation and Comparison of NLP
Systems. Ed. by Daniel Deutsch, Rotem Dror, Steffen Eger, Yang Gao,
Christoph Leiter, Juri Opitz, and Andreas Rücklé. Bali, Indonesia: Association
for Computational Linguistics, Nov. 2023, pp. 100–107. doi: 10.18653/v1/
2023.eval4nlp-1.8. url: https://aclanthology.org/2023.eval4nlp-
1.8/.

[14] Federico Bianchi, Giuseppe Attanasio, Raphael Pisoni, Silvia Terragni, Gabriele
Sarti, and Sri Lakshmi. “Contrastive language-image pre-training for the
italian language”. In: arXiv preprint arXiv:2108.08688 (2021).

[15] Christian Buck, Kenneth Heafield, and Bas Van Ooyen. “N-gram Counts and
Language Models from the Common Crawl.” In: LREC. Vol. 2. 2014, p. 4.

[16] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. “End-to-end object detection with trans-
formers”. In: European conference on computer vision. Springer. 2020, pp. 213–
229.

[17] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chan-
draker. “Learning efficient object detection models with knowledge distilla-
tion”. In: Advances in neural information processing systems 30 (2017).

[18] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan

223

https://doi.org/10.18653/v1/2023.eval4nlp-1.8
https://doi.org/10.18653/v1/2023.eval4nlp-1.8
https://aclanthology.org/2023.eval4nlp-1.8/
https://aclanthology.org/2023.eval4nlp-1.8/

Bibliography Bibliography

Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. “Evaluating Large Language Models
Trained on Code”. In: CoRR abs/2107.03374 (2021).

[19] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe
Gan, Yu Cheng, and Jingjing Liu. “Uniter: Universal image-text representation
learning”. In: European conference on computer vision. Springer. 2020, pp. 104–
120.

[20] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe
Gan, Yu Cheng, and Jingjing Liu. “UNITER: Learning UNiversal Image-TExt
Representations”. In: CoRR abs/1909.11740 (2019). arXiv: 1909.11740. url:
http://arxiv.org/abs/1909.11740.

[21] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. “Rethinking attention with performers”. In: arXiv
preprint arXiv:2009.14794 (2020).

[22] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning.
“Electra: Pre-training text encoders as discriminators rather than generators”.
In: arXiv preprint arXiv:2003.10555 (2020).

[23] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. “Algorithms for
learning kernels based on centered alignment”. In: The Journal of Machine
Learning Research 13.1 (2012), pp. 795–828.

[24] Bo Dai, Deming Ye, and Dahua Lin. “Rethinking the Form of Latent States in
Image Captioning”. In: Proceedings of the European Conference on Computer
Vision (ECCV). Sept. 2018.

[25] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. “Bridging machine
learning and logical reasoning by abductive learning”. In: Advances in Neural
Information Processing Systems 32 (2019).

[26] Siddharth Dalmia, Dmytro Okhonko, Mike Lewis, Sergey Edunov, Shinji
Watanabe, Florian Metze, Luke Zettlemoyer, and Abdelrahman Mohamed.
“LegoNN: Building Modular Encoder-Decoder Models”. In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing PP (Jan. 2023), pp. 1–15.
doi: 10.1109/TASLP.2023.3296019.

[27] Siddharth Dalmia, Dmytro Okhonko, Mike Lewis, Sergey Edunov, Shinji
Watanabe, Florian Metze, Luke Zettlemoyer, and Abdelrahman Mohamed.
“Legonn: Building modular encoder-decoder models”. In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing (2023).

224

https://arxiv.org/abs/1909.11740
http://arxiv.org/abs/1909.11740
https://doi.org/10.1109/TASLP.2023.3296019

Bibliography Bibliography

[28] Giannis Daras and Alexandros G. Dimakis. Discovering the Hidden Vocabulary
of DALLE-2. 2022. arXiv: 2206.00169 [cs.LG].

[29] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. “8-bit
optimizers via block-wise quantization”. In: arXiv preprint arXiv:2110.02861
(2021).

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url: http://arxiv.
org/abs/1810.04805.

[31] Sander Dieleman, Charlie Nash, Jesse Engel, and Karen Simonyan. “Variable-
rate discrete representation learning”. In: arXiv preprint arXiv:2103.06089
(2021).

[32] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. “Attention is not
all you need: Pure attention loses rank doubly exponentially with depth”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 2793–2803.

[33] Lixuan Du, Rongyu Zhang, and Xiaotian Wang. “Overview of two-stage object
detection algorithms”. In: Journal of Physics: Conference Series. Vol. 1544. 1.
IOP Publishing. 2020, p. 012033.

[34] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang,
and Jie Tang. All nlp tasks are generation tasks: A general pretraining
framework. 2021.

[35] Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang, and
Qi Tian. “Corner Proposal Network for Anchor-Free, Two-Stage Object
Detection”. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm. Cham: Springer International
Publishing, 2020, pp. 399–416. isbn: 978-3-030-58580-8.

[36] Dezheng Feng and Kay L O’Halloran. “Representing emotive meaning in visual
images: A social semiotic approach”. In: Journal of Pragmatics 44.14 (2012),
pp. 2067–2084.

[37] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean,
Marc’Aurelio Ranzato, and Tomas Mikolov. “Devise: A deep visual-semantic
embedding model”. In: Advances in neural information processing systems 26
(2013).

[38] Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu, and Jonathan Li.
“Nerf: Neural radiance field in 3d vision, a comprehensive review”. In: arXiv
preprint arXiv:2210.00379 (2022).

225

https://arxiv.org/abs/2206.00169
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Bibliography Bibliography

[39] Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. “Scaling Deep Con-
trastive Learning Batch Size under Memory Limited Setup”. In: Proceedings
of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021).
Online: Association for Computational Linguistics, Aug. 2021, pp. 316–321.
doi: 10.18653/v1/2021.repl4nlp-1.31. url: https://aclanthology.
org/2021.repl4nlp-1.31.

[40] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou,
Wei Zhang, Pan Lu, Conghui He, Xiangyu Yue, et al. “Llama-adapter v2:
Parameter-efficient visual instruction model”. In: arXiv preprint arXiv:2304.15010
(2023).

[41] Yifei Gao, Jiaqi Wang, Zhiyu Lin, and Jitao Sang. “AIGCs confuse AI
too: Investigating and explaining synthetic image-induced hallucinations in
large vision-language models”. In: Proceedings of the 32nd ACM International
Conference on Multimedia. 2024, pp. 9010–9018.

[42] Carlos Garćıa. MS-COCO-ES. https://github.com/carlosGarciaHe/MS-
COCO-ES. 2020.

[43] Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. “Dissect-
ing Recall of Factual Associations in Auto-Regressive Language Models”. In:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 12216–12235. doi:
10.18653/v1/2023.emnlp-main.751. url: https://aclanthology.org/
2023.emnlp-main.751.

[44] Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. “Dissect-
ing recall of factual associations in auto-regressive language models”. In: arXiv
preprint arXiv:2304.14767 (2023).

[45] SW Golomb and P Gaal. “On the number of permutations of n objects with
greatest cycle length k”. In: Probabilistic methods in discrete mathematics
(Petrozavodsk, 1996) (1997), pp. 211–218.

[46] Antônio Gomes, Ricardo Gudwin, Charbel Nino El-Hani, and João Queiroz.
“Towards the emergence of meaning processes in computers from Peircean
semiotics”. In: Mind & Society 6 (2007), pp. 173–187.

[47] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning. Vol. 1. MIT Press, 2016.

[48] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. “Knowl-
edge distillation: A survey”. In: International Journal of Computer Vision
129.6 (2021), pp. 1789–1819.

226

https://doi.org/10.18653/v1/2021.repl4nlp-1.31
https://aclanthology.org/2021.repl4nlp-1.31
https://aclanthology.org/2021.repl4nlp-1.31
https://github.com/carlosGarciaHe/MS-COCO-ES
https://github.com/carlosGarciaHe/MS-COCO-ES
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://aclanthology.org/2023.emnlp-main.751
https://aclanthology.org/2023.emnlp-main.751

Bibliography Bibliography

[49] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi
Parikh. “Making the V in VQA Matter: Elevating the Role of Image
Understanding in Visual Question Answering”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2017.

[50] Ricardo Gudwin and João Queiroz. “Towards an introduction to computational
semiotics”. In: International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, 2005. IEEE. 2005, pp. 393–398.

[51] David Ha and Jürgen Schmidhuber. “World models”. In: arXiv preprint
arXiv:1803.10122 (2018).

[52] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. “Mas-
tering atari with discrete world models”. In: arXiv preprint arXiv:2010.02193
(2020).

[53] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. “A survey on
vision transformer”. In: IEEE transactions on pattern analysis and machine
intelligence 45.1 (2022), pp. 87–110.

[54] Michael Hanna and Ondřej Bojar. “A fine-grained analysis of BERTScore”. In:
Proceedings of the Sixth Conference on Machine Translation. 2021, pp. 507–
517.

[55] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr.
“Pipetransformer: Automated elastic pipelining for distributed training of
transformers”. In: arXiv preprint arXiv:2102.03161 (2021).

[56] Geoffrey Hinton. “How to represent part-whole hierarchies in a neural net-
work”. In: Neural Computation 35.3 (2023), pp. 413–452.

[57] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. “A Fast Learning
Algorithm for Deep Belief Nets”. In: Neural Computation 18 (2006), pp. 1527–
1554.

[58] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. “Training compute-optimal large language
models”. In: arXiv preprint arXiv:2203.15556 (2022).

[59] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of
Large Language Models. 2021. arXiv: 2106.09685 [cs.CL].

227

https://arxiv.org/abs/2106.09685

Bibliography Bibliography

[60] Seyed Mehdi Iranmanesh, Sherry X Chen, and Kuo-Chin Lien. “Pair DETR:
Toward Faster Convergent DETR”. In: ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2023,
pp. 1–5.

[61] Seyed Mehdi Iranmanesh, Xiaotong Chen, and Kuo-Chin Lien. “Pair DETR:
Contrastive Learning Speeds Up DETR Training”. In: arXiv preprint arXiv:2210.16476
(2022).

[62] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,
and Joao Carreira. “Perceiver: General perception with iterative attention”. In:
International conference on machine learning. PMLR. 2021, pp. 4651–4664.

[63] William James and Charles Stein. “Estimation with quadratic loss”. In:
Breakthroughs in statistics: Foundations and basic theory. Springer, 1992,
pp. 443–460.

[64] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin,
Lei Sun, Chao Zhang, and Han Hu. “DETRs With Hybrid Matching”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2023, pp. 19702–19712.

[65] Ziping Jiang. “On Explaining Neural Network Robustness with Activation
Path”. In: The Eleventh International Conference on Learning Representa-
tions. 2023. url: https://openreview.net/forum?id=piIsx-G3Gux.

[66] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,
Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham
Fikri Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra Birch.
“Marian: Fast Neural Machine Translation in C++”. In: Proceedings of
ACL 2018, System Demonstrations. Melbourne, Australia: Association for
Computational Linguistics, July 2018, pp. 116–121. url: http://www.aclweb.
org/anthology/P18-4020.

[67] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad
Shahbaz Khan, and Mubarak Shah. “Transformers in vision: A survey”. In:
ACM computing surveys (CSUR) 54.10s (2022), pp. 1–41.

[68] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
“Visual genome: Connecting language and vision using crowdsourced dense
image annotations”. In: International journal of computer vision 123 (2017),
pp. 32–73.

228

https://openreview.net/forum?id=piIsx-G3Gux
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020

Bibliography Bibliography

[69] Tian Lan, Michalis Raptis, Leonid Sigal, and Greg Mori. “From subcategories
to visual composites: A multi-level framework for object detection”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2013,
pp. 369–376.

[70] Samuel Lavoie, Polina Kirichenko, Mark Ibrahim, Mahmoud Assran, An-
drew Gordon Wilson, Aaron Courville, and Nicolas Ballas. Modeling Caption
Diversity in Contrastive Vision-Language Pretraining. 2024. arXiv: 2405 .

00740 [cs.CV].

[71] Carlos Leandro. Categorical semiotics: Foundations for Knowledge Integration.
2024. arXiv: 2404.01526 [cs.AI]. url: https://arxiv.org/abs/2404.
01526.

[72] Mengyuan Lee, Yuanhao Xiong, Guanding Yu, and Geoffrey Li. “Deep
Neural Networks for Linear Sum Assignment Problems”. In: IEEE Wireless
Communications Letters PP (June 2018), pp. 1–1. doi: 10.1109/LWC.2018.
2843359.

[73] Sangyun Lee. “DALLE-2”. In: ().

[74] Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. “Limits
to depth efficiencies of self-attention”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 22640–22651.

[75] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. “Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension”. In: arXiv preprint arXiv:1910.13461 (2019).

[76] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. “Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models”. In: arXiv preprint arXiv:2301.12597 (2023).

[77] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. “Blip: Bootstrapping
language-image pre-training for unified vision-language understanding and
generation”. In: International Conference on Machine Learning. PMLR. 2022,
pp. 12888–12900.

[78] Xirong Li, Xiaoxu Wang, Chaoxi Xu, Weiyu Lan, Qijie Wei, Gang Yang, and
Jieping Xu. “COCO-CN for Cross-Lingual Image Tagging, Captioning and
Retrieval”. In: CoRR abs/1805.08661 (2018). arXiv: 1805.08661. url: http:
//arxiv.org/abs/1805.08661.

229

https://arxiv.org/abs/2405.00740
https://arxiv.org/abs/2405.00740
https://arxiv.org/abs/2404.01526
https://arxiv.org/abs/2404.01526
https://arxiv.org/abs/2404.01526
https://doi.org/10.1109/LWC.2018.2843359
https://doi.org/10.1109/LWC.2018.2843359
https://arxiv.org/abs/1805.08661
http://arxiv.org/abs/1805.08661
http://arxiv.org/abs/1805.08661

Bibliography Bibliography

[79] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao,
Fengwei Yu, and Junjie Yan. “Supervision Exists Everywhere: A Data
Efficient Contrastive Language-Image Pre-training Paradigm”. In: CoRR
abs/2110.05208 (2021). arXiv: 2110.05208. url: https://arxiv.org/abs/
2110.05208.

[80] Zichao Li, Cihang Xie, and Ekin Dogus Cubuk. Scaling (Down) CLIP: A
Comprehensive Analysis of Data, Architecture, and Training Strategies. 2024.
arXiv: 2404.08197 [cs.CV].

[81] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common
objects in context”. In: European conference on computer vision. Springer.
2014, pp. 740–755.

[82] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang,
and Jie Tang. “GPT understands, too”. In: AI Open (2023). issn: 2666-6510.
doi: https://doi.org/10.1016/j.aiopen.2023.08.012. url: https:
//www.sciencedirect.com/science/article/pii/S2666651023000141.

[83] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang,
and Jie Tang. “GPT understands, too”. In: AI Open (2023).

[84] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay,
Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. “The flan collection:
Designing data and methods for effective instruction tuning”. In: arXiv preprint
arXiv:2301.13688 (2023).

[85] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. “Pretrained
transformers as universal computation engines”. In: arXiv preprint arXiv:2103.05247
1 (2021).

[86] Stephen Mander and Jesse Phillips. “LiSAScore: Exploring Linear Sum
Assignment on BertScore”. In: Natural Language Processing and Information
Systems. Ed. by Amon Rapp, Luigi Di Caro, Farid Meziane, and Vijayan
Sugumaran. Cham: Springer Nature Switzerland, 2024, pp. 249–257. isbn: 978-
3-031-70242-6.

[87] Stephen Mander and Jesse Phillips. “LiSAScore: exploring the effect of
Linear Sum Assignment on BERTScore”. In: Natural Language Processing
and Information Systems - 28th International Conference on Applications of
Natural Language to Information Systems, NLDB 2024, Turin, Italy 2024,
Proceedings. Vol. 13914. Lecture Notes in Computer Science. Springer, 2024.

[88] Stephen Mander, Scott Piao, and Hossein Rahmani. Contrastive Training with
more data. 2023. url: https://openreview.net/forum?id=ZTp85mW5nFy.

230

https://arxiv.org/abs/2110.05208
https://arxiv.org/abs/2110.05208
https://arxiv.org/abs/2110.05208
https://arxiv.org/abs/2404.08197
https://doi.org/https://doi.org/10.1016/j.aiopen.2023.08.012
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://openreview.net/forum?id=ZTp85mW5nFy

Bibliography Bibliography

[89] Stephen Mander, Scott Piao, and Hossein Rahmani. “Contrastive Training
with more data”. In: The First Tiny Papers Track at ICLR 2023, Tiny
Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. Ed. by Krystal Maughan,
Rosanne Liu, and Thomas F. Burns. OpenReview.net, 2023. url: https://
openreview.net/forum?id=ZTp85mW5nFy.

[90] Lev Manovich. “Defining AI arts: Three proposals”. In: AI and dialog of
cultures” exhibition catalog. Saint-Petersburg: Hermitage Museum (2019).

[91] Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick.
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models. 2023.
arXiv: 2212.07016 [cs.CV]. url: https://arxiv.org/abs/2212.07016.

[92] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Roland Snoek.
“Learning Permutations with gradient descent and the sinkhorn operator”. In:
Proc. Int. Conf. on Learning Representations (ICLR). Vancouver, Canada.
https://openreview. net/pdf. 2018.

[93] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

[94] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal,
Hamid Palangi, and Ahmed Awadallah. Orca: Progressive Learning from
Complex Explanation Traces of GPT-4. 2023. arXiv: 2306.02707 [cs.CL].

[95] Shikhar Murty, Pang Wei Koh, and Percy Liang. “Expbert: Representa-
tion engineering with natural language explanations”. In: arXiv preprint
arXiv:2005.01932 (2020).

[96] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. “Gener-
ating images with sparse representations”. In: arXiv preprint arXiv:2103.03841
(2021).

[97] Minh Tuan Nguyen and Yong-Hwa Kim. “Bidirectional Long Short-Term
Memory Neural Networks for Linear Sum Assignment Problems”. In: Applied
Sciences 9 (Aug. 2019), p. 3470. doi: 10.3390/app9173470.

[98] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do Wide and Deep
Networks Learn the Same Things? Uncovering How Neural Network Repre-
sentations Vary with Width and Depth”. In: CoRR abs/2010.15327 (2020).
arXiv: 2010.15327. url: https://arxiv.org/abs/2010.15327.

[99] Bernardo Manzoni Palmeirim. “Stylizations of Being: Attention as an Existen-
tial Hub in Heidegger and Christian Mysticism”. In: Open Theology 6.1 (2020),
pp. 206–220.

231

https://openreview.net/forum?id=ZTp85mW5nFy
https://openreview.net/forum?id=ZTp85mW5nFy
https://arxiv.org/abs/2212.07016
https://arxiv.org/abs/2212.07016
https://arxiv.org/abs/2306.02707
https://doi.org/10.3390/app9173470
https://arxiv.org/abs/2010.15327
https://arxiv.org/abs/2010.15327

Bibliography Bibliography

[100] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[101] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543.

[102] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. “Learn, imagine
and create: Text-to-image generation from prior knowledge”. In: Advances in
neural information processing systems 32 (2019).

[103] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. “Learning transferable visual models from natural language supervision”.
In: International conference on machine learning. PMLR. 2021, pp. 8748–8763.

[104] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models
From Natural Language Supervision. 2021. doi: 10.48550/ARXIV.2103.00020.
url: https://arxiv.org/abs/2103.00020.

[105] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. “Learning Transferable Visual Models
From Natural Language Supervision”. In: CoRR abs/2103.00020 (2021). arXiv:
2103.00020. url: https://arxiv.org/abs/2103.00020.

[106] Alessandro Raganato, Yves Scherrer, and Jörg Tiedemann. “Fixed encoder
self-attention patterns in transformer-based machine translation”. In: arXiv
preprint arXiv:2002.10260 (2020).

[107] Radim Řeh̊uřek and Petr Sojka. “Software Framework for Topic Modelling
with Large Corpora”. English. In: Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks. http://is.muni.cz/publication/
884893/en. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[108] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. “Mastering atari, go, chess and shogi by planning with
a learned model”. In: Nature 588.7839 (2020), pp. 604–609.

232

https://doi.org/10.48550/ARXIV.2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Bibliography Bibliography

[109] Bin Shan, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang.
“Ernie-vil 2.0: Multi-view contrastive learning for image-text pre-training”.
In: arXiv preprint arXiv:2209.15270 (2022).

[110] Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, and
Yongfeng Zhang. “Neural logic reasoning”. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 2020,
pp. 1365–1374.

[111] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh.
“Textcaps: a dataset for image captioning with reading comprehension”.
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part II 16. Springer. 2020, pp. 742–758.

[112] Felix Stahlberg. “Neural machine translation: A review”. In: Journal of
Artificial Intelligence Research 69 (2020), pp. 343–418.

[113] Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. “A corpus of natural
language for visual reasoning”. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). 2017,
pp. 217–223.

[114] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu,
and Haifeng Wang. “Ernie 2.0: A continual pre-training framework for
language understanding”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 05. 2020, pp. 8968–8975.

[115] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. “Llama: Open and efficient foundation language models”.
In: arXiv preprint arXiv:2302.13971 (2023).

[116] A Vaswani. “Attention is all you need”. In: Advances in Neural Information
Processing Systems (2017).

[117] Alexander Visheratin. “NLLB-CLIP–train performant multilingual image re-
trieval model on a budget”. In: arXiv preprint arXiv:2309.01859 (2023).

[118] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. “Learning two-branch
neural networks for image-text matching tasks”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 41.2 (2018), pp. 394–407.

233

Bibliography Bibliography

[119] Fangyun Wei, Yue Gao, Zhirong Wu, Han Hu, and Stephen Lin. “Aligning
Pretraining for Detection via Object-Level Contrastive Learning”. In: Advances
in Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates,
Inc., 2021, pp. 22682–22694. url: https://proceedings.neurips.cc/paper_
files/paper/2021/file/bf5cd8b2509011b9502a72296edc14a0-Paper.pdf.

[120] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. “Transformers: State-of-the-art natural language processing”.
In: Proceedings of the 2020 conference on empirical methods in natural language
processing: system demonstrations. 2020, pp. 38–45.

[121] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. “HuggingFace’s Transformers: State-of-the-art
Natural Language Processing”. In: CoRR abs/1910.03771 (2019). arXiv: 1910.
03771. url: http://arxiv.org/abs/1910.03771.

[122] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Ko-
rnblith, Rebecca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, et al. “Robust fine-tuning of zero-shot models”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2022, pp. 7959–7971.

[123] Chen Henry Wu and Fernando De la Torre. “A latent space of stochastic
diffusion models for zero-shot image editing and guidance”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2023, pp. 7378–
7387.

[124] Ping Xiao, Hannu Toivonen, Oskar Gross, Amilcar Cardoso, João Correia,
Penousal Machado, Pedro Martins, Hugo Goncalo Oliveira, Rahul Sharma,
Alexandre Miguel Pinto, et al. “Conceptual representations for computational
concept creation”. In: ACM Computing Surveys (CSUR) 52.1 (2019), pp. 1–33.

[125] Hu Xu, Saining Xie, Xiaoqing Tan, Po-Yao Huang, Russell Howes, Vasu
Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph
Feichtenhofer. “Demystifying CLIP Data”. In: The Twelfth International
Conference on Learning Representations. 2024. url: https://openreview.
net/forum?id=5BCFlnfE1g.

[126] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang.
“Open-Vocabulary Object Detection Using Captions”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2021, pp. 14393–14402.

234

https://proceedings.neurips.cc/paper_files/paper/2021/file/bf5cd8b2509011b9502a72296edc14a0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bf5cd8b2509011b9502a72296edc14a0-Paper.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=5BCFlnfE1g
https://openreview.net/forum?id=5BCFlnfE1g

Bibliography Bibliography

[127] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. “Barlow
twins: Self-supervised learning via redundancy reduction”. In: International
Conference on Machine Learning. PMLR. 2021, pp. 12310–12320.

[128] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid
Loss for Language Image Pre-Training. 2023. arXiv: 2303.15343 [cs.CV].

[129] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-
attention generative adversarial networks”. In: International conference on
machine learning. PMLR. 2019, pp. 7354–7363.

[130] Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, and Devi
Parikh. “Yin and Yang: Balancing and Answering Binary Visual Questions”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[131] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, Peng Gao, and Yu Qiao. “Llama-adapter: Efficient fine-tuning of
language models with zero-init attention”. In: arXiv preprint arXiv:2303.16199
(2023).

[132] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian QWeinberger, and Yoav Artzi.
“BERTScore: Evaluating Text Generation with BERT”. In: International
Conference on Learning Representations. 2020.

[133] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. “BERTScore: Evaluating Text Generation with BERT”. In: CoRR
abs/1904.09675 (2019). arXiv: 1904.09675. url: http://arxiv.org/abs/
1904.09675.

[134] Sipeng Zheng, Shizhe Chen, and Qin Jin. “Visual Relation Detection with
Multi-Level Attention”. In: Proceedings of the 27th ACM International Con-
ference on Multimedia. MM ’19. Nice, France: Association for Computing
Machinery, 2019, pp. 121–129. isbn: 9781450368896. doi: 10.1145/3343031.
3350962. url: https://doi.org/10.1145/3343031.3350962.

[135] Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. “Can
chatgpt understand too? a comparative study on chatgpt and fine-tuned bert”.
In: arXiv preprint arXiv:2302.10198 (2023).

[136] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Li-
unian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao.
“RegionCLIP: Region-Based Language-Image Pretraining”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2022, pp. 16793–16803.

235

https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://doi.org/10.1145/3343031.3350962
https://doi.org/10.1145/3343031.3350962
https://doi.org/10.1145/3343031.3350962

Bibliography Bibliography

[137] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan
Misra. “Detecting Twenty-Thousand Classes Using Image-Level Supervision”.
In: Computer Vision – ECCV 2022. Ed. by Shai Avidan, Gabriel Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner. Cham: Springer
Nature Switzerland, 2022, pp. 350–368. isbn: 978-3-031-20077-9.

[138] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan
Misra. “Detecting twenty-thousand classes using image-level supervision”. In:
European Conference on Computer Vision. Springer. 2022, pp. 350–368.

[139] Zhuofan Zong, Guanglu Song, and Yu Liu. “DETRs with Collaborative
Hybrid Assignments Training”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). Oct. 2023, pp. 6748–6758.

236

	Introduction
	Defining of Terms
	Research Goals
	Research Objectives and Questions
	Thesis Structure

	Background
	Background
	Word2Vec and Transformers
	How Computer Vision Understands
	How to Define Representational Robustness
	Understanding in Low-Resource Languages
	How CLIP Works

	Related Works
	Related works in Low resource domains
	Related Analysis Methods
	Related Works for n-dimensional Training
	Related Works for Linear Sum Assignment

	Exploring the Robustness of Embeddings
	Mask Prediction from 512 Space
	Relation Extraction
	Object Detection Using 2-stage Detectors
	Conclusions
	Section Acknowledgements

	Visual Grounding
	Teaching an Encoder with Visual Grounding
	Objective
	Goals
	Hypothesis
	Experiment Definition
	Method
	Dataset
	Logit comparison
	Results
	Sweep results
	Findings

	Whole Model Training
	Tokenization
	Proof-of-concept : Locating the EOT token
	Evaluation Methods
	Section Findings
	Improvements
	Final Hyperparameter sweep

	Conclusion
	Future Work

	Analysis Methods
	CKA
	Accuracy of New Methods
	CKA for Model Analysis
	Hypothesis
	Methodology
	Results

	Improving CKA on CLIP Models
	Revised Hypothesis
	Initial Results

	Further Experiment
	CKA Conclusion

	Linear Probes
	Zero-shot Linear Probes
	Linear Probe setup

	Evaluating Point Distribution
	Hypothesis
	Methodology

	Vector Location Analysis
	Similarity Tracking

	Token Meta Analysis
	Hypothesis
	Token comparison
	Discussion
	Token Set Exploration

	Token Analysis Summary

	Chapter Summary

	Exploring the Limits
	Research Objective
	Base Method - CE loss pairs
	Scaling Laws
	Scaling Structures to n>2
	Defining the Regions of n>2
	Exploring How Batch Size Effects the Number of Regions

	Similarity Calculation
	Einsum Approximation
	Methods
	SST Distance

	Methods

	Linear Scaling test
	Hypothesis
	Proof of Concept Method
	Proof of Concept Results

	Exploring Labels and Loss in n>2
	Changes to Implementation
	Limits of the Function
	Label Smoothing
	Labels Exploration
	Prototyping Modalities with Projections

	Evaluating Regions of n-dimension Loss
	n=4 Dimensional Comparisons

	Training Results
	6-Dimension training
	Analysis

	CKA Analysis
	Comparison of Top Runs

	 Importance of Hyperparameters
	Similarity Evaluation and Region Masking

	James-Stein Estimators
	Results of JSE
	Future Tests
	Applying JSE to Specific Mean Calculation
	Method Discussion

	Chapter Summary

	Linear Sum Assignment
	Introduction to Linear Sum Assignment
	Summary for Computer Vision
	Acceleration and Limited Precision
	Alternatives in Specific Applications
	Background: Precise Method with Branching
	Background - Hungarian Matcher

	Metrics
	Metrics for Evaluating Linear Sum Assignment Methods
	Assignment Error
	Error Definition
	F1 score
	Scaling with Matrix Size

	LSA Improvements
	Computer Vision Specific Optimisations
	Approximation with Batch
	General Approximations
	Reimplementation for Accelerators
	Recursive Approximation Enabling Descent

	Method 1 - Dimensional Extension
	Method 2 - Indexed Insertion
	Optimal Step Count

	Method 3 - Probablistic Approach with Gumbel Softmax
	Conflicts of Argmax

	LSA Approximations
	Experiment Definition
	Method
	Training Results

	Method Performance

	Precision in Non-Continuous Contexts
	Why Precision Matters
	Hypothesis
	Approximations
	Method
	Evaluation
	Accelerator Approximation
	LSA Argmax Approximation
	DETR Improvement
	Conclusion
	Future Improvements
	Precision Limitations

	Practical Applications
	Loss Scaling
	LiSAScore
	Computer Vision
	Bridging Computer Vision Applications

	An Exploration of LSA for Loss
	Properties of Random LSA
	Gradient
	Using LSA Loss
	Using Expectations as Gradient
	Testing Experimental Probabilities
	Increasing Gradient Accuracy

	Explanation and Comparison to CELoss
	LSA Loss Comparison During Training
	Expectation
	Result Explanation

	Chapter Summary

	Conclusions
	Research Objectives Achieved and Questions Answered
	Future Directions of Research
	Future Work for n-dimensional Training
	Future Work with Linear Sum Assignment

	Final Reflections

	Appendix Visualisations
	Appendix Top Performing runs for n=6
	Appendix Visualisation for LSA
	Methods
	My Function
	Recursive Fn
	Recursive Fn v2
	Recursive Fn v5

	Bibliography

