
Models, Reflective Mechanisms and Family-based
Systems to Support Dynamic Configuration

Bencomo N., Blair G., and Grace P.
Lancaster University

Comp. Dep., InfoLab21,
Lancaster, UK, LA1 4WA

{nelly, gordon, gracep}@comp.lancs.ac.uk

ABSTRACT
Middleware platforms must satisfy an increasingly broad and
variable set of requirements arising from the needs of both
applications and underlying systems deployed in dynamically
changing environments such as environment monitoring and
disaster management. To meet these requirements, middleware
platforms must offer a high degree of configurability at
deployment time and runtime. At Lancaster we use reflection,
components and component frameworks, and middleware families
as the basis of our approach to develop dynamically configurable
middleware platforms. In our approach, components and
component frameworks provide structure, and reflection provides
support for dynamic configuration and extensibility for run-time
evolution and adaptation. This approach however has contributed
to make the development and operation of middleware platforms
even more complex. Middleware developers deal with a large
number of variability decisions when planning (re)configurations
and adaptations. This paper examines how Model-Driven
Engineering (MDE), Domain Specific Languages (DSLs) and
System Family Engineering can be used to improve the
development of middleware families, systematically generating
middleware configurations from high level descriptions. We
present Genie, a DSL-based prototype development-tool that
supports the specification, validation and generation of artefacts
for component-based reflective middleware. In particular, this
paper describes how the Genie toolkit improves the development
of the Gridkit middleware through the modelling and automated
generation of middleware policies; that remove the complexity of
handling large number of runtime adaptation policies.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.13 [Software
Engineering]: Reusable Software - Reuse models; D.4.7
[Operating Systems]: Organization and Design – Distributed
Systems.

General Terms: Design

Keywords: Reflective Middleware, Grid Computing, MDE,

DSL, System Families

1. INTRODUCTION
Middleware platforms must satisfy an increasingly broad and
variable set of requirements arising from the needs of both
applications and underlying systems deployed in dynamically
changing environments such as environment monitoring and
disaster management. Even more, such platforms must embrace
both heterogeneous networks and heterogeneous devices: from
embedded devices in wireless ad-hoc networks to high-power
computers in the Internet. To meet these requirements,
middleware platforms must offer a high degree of configurability
at deployment time and at runtime time. Significant advances
have been made in recent years in the general area of dynamic
reconfiguration [1, 12, 22, 24, 26, 27, 31].

At Lancaster we use reflection, components and component
frameworks, and middleware families as the basis of our approach
to develop dynamically configurable middleware platforms. We
have successfully developed several experimental reflective
middleware platforms and applications [15-17, 21]. In our
approach, components and component frameworks provide
extendable structure and functionality, and reflection offers the
essential support for dynamic configuration and extensibility for
run-time evolution and adaptation. Currently, middleware
developers deal with a large number of variability decisions when
planning (re)configurations and adaptations. This approach
however has contributed to make the development and operation
of middleware platforms even more complex. Middleware
developers deal with a large number of variability decisions when
planning (re)configurations and adaptations. This large number
makes it error prone to manually guarantee that all the decisions
are consistent. Such ad hoc approaches do not offer formal
foundations for verification that the middleware will offer the
required functionality [5, 6]. We strongly believe that
dynamically reconfigurable middleware platforms require new
software development and operational paradigms to support
systematic and automated checking of both functional and non
functional properties.

In this paper, we describe our experience of how Model-
Driven Engineering (MDE), and specifically Domain Specific
Languages (DSLs), and System Family Engineering can be used
to improve the development of middleware families,
systematically generating middleware configurations from high
level descriptions. To demonstrate our approach we describe how
the Gridkit middleware[10, 15] development is improved by the
Genie tool [3]. Genie is a prototype development-tool platform
that offers a Domain Specific Language for the specification,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MODDM '06, November 27-December 1, 2006 Melbourne ,Australia
Copyright 2006 ACM 1-59593-423-5/06/11... $5.00".

validation and generation of artefacts for component-based
reflective middleware. Gridkit is an experimental reflective
middleware for grid computing, which supports adaptive grid and
pervasive applications by dynamically combining middleware
behaviour (composed as component frameworks) based on
application requirements and changing environmental context.
Specifically, we illustrate how the Genie toolkit improves the
development of the Gridkit middleware through the modelling
and automated generation of middleware policies; that remove the
complexity of handling large number of adaptive policies.

The paper is organized as follows. In Section 2 the Gridkit
middleware is introduced. Section 3 discusses how Model Driven
Engineering can be applied to improve the development of
middleware families by systematically and automatically
generating the middleware families. Section 4 introduces Genie
and in particular, describes how Genie can be used to support
configurability and re-configurability of one particular adaptive
(and reflective) technology, i.e. the Gridkit. In section 5, we
discuss our approach in the context of related work. Section 6
provides a summary and outlook.

2. GRIDKIT MIDDLEWARE
Gridkit is one of the dynamically configurable middleware
families that have been developed using the OpenCOM
component model [8]. A key feature of Gridkit is its ability to
handle diversity i.e. it can be dynamically configured to meet
different application requirements in different environmental
settings; hence, different middleware services are tailored to the
current domain. For example, Gridkit can offer a publish-
subscribe service in an ad-hoc network, or it can be an Object
Request Broker in the fixed network. This high-level of
variability makes it an ideal candidate for model driven
development techniques.

Figure 1: The Gridkit Middleware

Fundamentally, the Gridkit architecture is composed of

component frameworks, where a component framework is a
management unit for a set of components related to a particular
domain of middleware behaviour. Like components these can be
composed and connected to build a suitable middleware for the
particular set of requirements. Figure 1 illustrates the key Gridkit
frameworks. The overlays framework supports multiple virtual
network services (e.g. multicast, ad-hoc routing) required by
higher level frameworks. Above the overlays framework is a set
of further “vertical” frameworks that provide functionality in
various orthogonal areas, and can optionally be included or not
included on. In brief, the frameworks are as follows: the

interaction framework accepts multiple interaction type plug-ins
(e.g. RPC, publish-subscribe, group communication); the resource
discovery framework accepts plug-in strategies to discover
application services (e.g. SLP, UPnP, Salutation) and resources
such as CPUs and storage (e.g. peer-to-peer search); the resource
management and resource monitoring frameworks are
respectively responsible for managing and monitoring resources;
and the security framework provides general security services for
the rest of the frameworks. These frameworks are discussed in
more detail in [11].

Figure 1 also illustrates how middleware configurations are
chosen and deployed dynamically at runtime. Frameworks are
also the unit of adaptation; policies for configuration and
reconfiguration are related to individual frameworks; that is, an
instance of the interaction framework has one set of policies,
while the overlay framework will use a different set of policies.
We advocate this approach to allow domain specific policies to be
included by different developers. These policies are declarative
XML statements written by middleware developers. The
configuration policies describe framework configurations for
meeting a given set of requirements in a given set of
environmental conditions. Typically, these policies are in the
format: for requirement set S, on condition set C, configure
component graph A. In figure 1 the interaction framework is
specialized to an event publisher personality described by the
chosen policy.

To illustrate the dynamic configurations of Gridkit, consider
the roaming of a fire fighter [9] from a part of the forest covered
by an infrastructure network, to a part served only by an ad-hoc
network. When the application is deployed in the infrastructure
network, policies for the interaction framework and overlay
framework tailor an event broker optimized for wired behaviour,
whereas when the application is deployed in the ad-hoc
environment the policies define a different event broker more
suited to ad-hoc routing behaviour.

3. MODEL_DRIVEN ENGINEERING TO
GENERATE MIDDLEWARE FAMILIES
Gridkit reflects the modern view of middleware [11, 31], that a set
of middleware capabilities needs to be tailored to classes of
problem domains that are increasingly demanding advanced
functionality such as the ability to adapt dynamically. The
disadvantage of this approach is the cost of producing different
middleware systems. The OpenCOM component model supports
this task but still entails substantial work to instantiate and
configure a given systems architecture. For example, the
Publisher framework, only includes 4 components and 5 bindings;
however the associated XML file that describes the configuration
has 64 lines. The lines of these kinds of files grow exponentially
depending on the number of components and bindings. This also
ignores the extra code required to manage change at run-time.
Therefore, an important strand of our current research is to
investigate how generating instances of middleware tailored to
specific problem domains and contexts can be achieved in a more
systematic, consistent and, if possible, automatic way.

We propose a model-driven engineering (MDE) approach
[23] to help overcome this problem. The first step in this process
involves the use of UML to specify a set of meta-models
representing the core middleware functionality and the reflective

functionality that is common to all middleware family members
regardless of their domain[5, 6]. In effect, the domain addressed
by these meta-models is the more generic one of reflective,
adaptive middleware and represents the fundamental component-
based concepts that underpin our architecture. The syntax and
semantics offered by UML are sufficient to model the OpenCOM
concepts (more details of these meta-models can be found in [6]).
However, when specifying concepts related to higher level
abstractions related to domains of application, or in our case
particular domains within the middleware itself (e.g. the
interaction domain), more specific modeling concepts are needed.
For example, a modeling language for developing and assembling
OpenCOM Grid oriented platforms should contain concepts like
overlay network frameworks, resource management frameworks,
and resource discovery frameworks; concepts clearly required to
describe valid configurations of the platform. Therefore we
advocate the development of a range of DSLs for different
application domains: OpenCOM itself, Grid computing,
Publish/Subscribe, Mobile Computing, Multimedia, etc. The
DSLs map directly on to underlying OpenCOM concepts
(components, component frameworks, etc). They are then used to
automate or semi-automate generation of artefacts (source code,
configuration descriptors, etc) related to the development,
deployment, and configuration of the different middleware
platforms.

The need of modelling run-time information
In the MDE area, research has focused mainly on using models at
design, implementation, and deployment stages of development.
These efforts have been prolific with many tools and technologies
already succeeding in the industry [7]. However, the ability of
design-time architecture models to represent run-time information
still needs research. We think that the use of model-driven
techniques for validating and monitoring run-time behaviour can
also engender substantial benefits. We particularly advocate the
combining of models at run-time with generative techniques to
produce instances of adaptive middleware (and in particular
reflective middleware). A noteworthy aspect is that these models
can accompany the software system and provide the basis for
defining and executing run-time monitoring and reconfiguration.
In the specific case of Gridkit, run-time configurations of
components associated with the different components frameworks
and its policies can be designed and validated in advance and off-
line. This allows middleware developers to reason, plan, and
validate the configurations early in the design phase and catch
design faults before operation time. At run-time, Gridkit reflective
mechanisms read and interpret policies to dynamically create and
manage the respective valid configurations. Our approach to
support the use of configurable run-time models is presented in
the next section.

4. GENIE: A TOOL FOR GENERATION
OF MIDDLEWARE FAMILIES
Genie is a prototype for a development-environment that offers a
DSL for the specification, validation, and generation of artifacts
for OpenCOM-based middleware platforms The tool has been
developed using MetaEdit+ [28]. Genie allows the creation and
validation of models that drive the life cycle of the reflective
middleware families at Lancaster University. From the models
specified not only source code can be generated but configuration

files, results associated with model checking and validations,
testing code and documentation.

As in other program family techniques, our approach uses
component frameworks to manage and accomplish variability and
development of systems that can be adapted by re-configuration.
A component framework enforces architectural principles
(constraints) on the components it supports; this is especially
important in reflective architectures that dynamically change, and
whose changes must be verified. Models associated to component
frameworks are used to represent the possible versions and
variants of the different families. “Configuring a system is the
process of choosing a specific family instance and modifying the
run-time structure of a system to conform to the chosen instance.”
[20] In our approach this implies the insertion, deletion and
modification of the structural elements represented by the
component frameworks: components, interfaces, receptacles,
binding components and constraints.

4.1 OpenCOM DSL
Existing models of OpenCOM based middleware families use a
wide variety of notations that depend on the abstraction of the
domain that is being modelled. However, the basic concepts of
any model specified in Genie relates to components, interfaces
and component frameworks as the component model OpenCOM
dictates. Genie offers a common modeling notation for all the
models that is called the OpenCOM DSL. The specification of
how these concepts work together is described in the graphs
(configurations) associated with the components and component
frameworks modelled. In those models, a component offers and
requires interfaces, interfaces can bind together to connect
components (i.e required interfaces or receptacles in components
are bond with offered interfaces of other components). A
component framework is able to export interfaces from internal
components. In the same way component frameworks can require
interfaces to satisfy the requirements of some of their
components. A partial view of a model of a component
framework is shown in Figure 4. All the concepts and relations
described above and contained in the OpenCOM DSL are dictated
by the OpenCOM as described in [8].All middleware family
members regardless of their domain share this minimum set of
concepts.

4.2 Model-Driven Gridkit Policies
The pervasive computing scenarios managed by Gridkit do not
remain constant and invariable over time. Therefore, to configure
and maintain the same configuration is inadequate, rather the
middleware must be dynamically reconfigured to cope with
changes [16]. In section 2 we described the role of the middleware
developer, who must write a series of configuration policies to
tailor, and potentially extend the behaviour of the reflective
middleware. Here, we demonstrate how these configurations are
designed beforehand using Genie. Genie provides improved
support for the design and validation of Gridkit policies, which
can be created in a more efficient manner.

Figure 2 shows how Genie relates to Gridkit. Modellers
create and design components and component frameworks to
generate different artefacts including the policies in the form of
configuration of components. Components are stored in the
Component Repository and the policies are stored in the
Knowledge Repository. At run-time Gridkit then reads the

validated policies to configure appropriate middleware
personalities. To do this Gridkit downloads components from the
Repository. Notice that the Gridkit framework is deployed on
each participating node (a mobile device, a laptop or even a tiny

system proper of embedded network systems). The repository can
be centralized or distributed according the implementation.

 The GridKit framework
is deployed on each
partipating node

Figure 2: Genie and Gridkit

Configuration policies are scoped to individual frameworks
so an instance of the interaction framework will have one set of
policies, while an instance of the overlay framework will use a
different set of policies; see Figure 3. These policies define how
Gridkit satisfies a requirement in a given environmental context,
and also how Gridkit adapts to changed environmental context.

Interaction
Framework

Overlays
Framework

Policies

Policies

Knowledge
Repository

Figure 3: Gridkit Framework and Policies

Figure 4, shows a policy (XML file) generated from the
component framework shown in the graph. From component
frameworks models not just policies can be generated, a broad
range of artefacts can be generated (components source code,
test code, documentation, etc.), for more details see [4]

 Any generation of artefacts, including policies do require a
validation of the content in the model; this topic is covered in
the next section.

4.3 Validation of Models
Constraints are intrinsic parts of the models specified in Genie
and are the basis of validations and checkings. As noted above,
a component framework imposes constraints on the components
it supports. Consequently the fundamental checking is related to
these architectural constraints. When designing the validations
of the component frameworks we exploit known variabilities in
architectural structures so that common checking infrastructure
can be built once and then used by any user of Genie in the
corresponding component framework. Not only does this
approach decrease the cost of models validation, but it makes
the technology easier, since the modeller needs just to be
concerned about the domain-specific aspects of the problem; in
this case the behaviour of components and specific domain-
related constraints (architectural styles and new constraints).

Generation of XML
file Configurations

(validated)

Figure 4: Generation of Policies in Genie

An example of basic validation is the verification that all
the connections between required interfaces and offered
interfaces conform to the same type (therefore the configurator
does not need to check these conditions at run-time). Examples
of more specific validations are related to the specific
constraints enforced by the component frameworks: a specific
component may appear only once at the most, a connection
between two components must exist, etc. These validations
should be written for all the component-framework models.

5. RELATED WORK
A significant number of experimental middleware platforms
have been developed including Dynamic TAO, LegORB and
UIC [29] (all University of Illinois at Urbana-Champaign),
Open CORBA [25] (Ecole des Mines de Nantes), Flexinet [19]
(APM, Cambridge), and OOPP [2] (University of Tromsø).
They mainly address issues of configurable middleware and
application at deployment time and have offered some valuable
initiatives towards dynamic reconfigurations. However, we are
unaware of any other current research for dynamic
reconfiguration with the high degree of runtime
reconfigurability offered by Gridkit.

 An increasing number of model driven tools have been
developed for modeling component-based systems. Cadena [18]
an environment for building and modeling CORBA Component
systems for component-based distributed real-time embedded
systems. CoSMIC [14] offers domain-specific tools for
composing and deploying distributed real time middleware-

based applications. However these works focus on configuration
at design and deployment time and do not tackle directly the
problem of models at run-time for valid reconfiguration and
adaptation

The MADAM project [12] aims to facilitate adaptive
application development for mobile computing following an
architecture-centric approach where they represent architecture
models at run-time allowing components to reason about
adaptation. The MADAM project as our approach moves in the
direction of allowing policy developers to use reflection to
specify reconfigurations. We certainly think that this way we
will be able to tackle much more complex systems. MADAM,
unlike our approach, focuses on tackling only mobile
environments requirements; our research also focuses on other
domains

J3 Toolsuite [32] an MDE tool that visually captures the
design of EJB applications, their quality of service (QoS)
requirements, and the autonomic properties applied to their
EJBs. J3 can generate code to plug EJBs into a Java component
framework that provides autonomic capabilities. J3 and our
approach share the support design of high level specifications
and their validations at design time. However, J3 focuses on the
development of EJB applications and relies on EJB reflective
capabilities. Our approach is language independent, which
makes it more generic

There are plenty of UML based tools that provide modeling
capabilities for component-based systems using primarily code-
level abstractions. Our approach is different by also taking
advantage of the abstractions in high-level design models that
naturally tailor specific domains. However we think DSL and
UML approaches are complementary more than contrary.

6. SUMMARY AND FUTURE WORK
In this paper we have presented our approach to generating run-
time adaptation policies using Model Driven Engineering and
Domain Specific Languages. These policies allow middleware
developers to use reflection to specify configurations in a
systematic way. Specifically, we have described the DSM-based
Genie toolkit and its role in the automated generation of
configuration policies for the GridKit middleware. With our
approach, middleware developers reason, plan, and validate the
policy-based configurations early in the design phase. Using
advance validation, design faults of configurations can be
caught before runtime.

Substantial research remains to be done. One of the big
challenges is how to deal with the problem of the combinatorial
explosion related to the number of policy-based configurations.
We are also enhancing our prototype to increase its expressive
and generative capabilities to include new frameworks; for
example we are working on the specification of models for
families of Service Discovery Protocols with a common
architecture [13].

Of particular interest is the study of how our approach can
be enhanced to maintain the integrity of the state of the system
when performing reconfigurations at runtime. To do this we are
currently investigating the formal specification and generation
of policies that guide the reconfigurations managed by the
middleware. Finally, we are investigating also how requirements

for domains of application can directly influence the generation
of domain-specific middleware through the DSLs and meta-
models [30].

Acknowledgments: Grateful acknowledgment is made to
MetaCase for permission and support when using MetaEdit+.

7. REFERENCES
1. Aksit, M. and Choukair, Z., Dynamic, Adaptive, and
Reconfigurable Systems Overview and Prospective Vision. in 23rd
Int’l Conf. Distributed Computing Systems Workshops (ICDCSW),
(2003).
2. Andersen, A., Eliassen, F. and Blair, G., A Reflective
Component-Based Middleware with Quality of Service
Management. in Protocols for Multimedia Systems PROMS’2000,
(Poland, 2000).
3. Bencomo, N. Genie: a Model-Driven Engineering Tool for the
Generation Adaptive Middleware Families. PhD Research:
http://www.comp.lancs.ac.uk/computing/users/bencomo/Genie,
Lancaster University, Lancaster, UK, 2006.
4. Bencomo, N. and Blair, G., Genie: a Domain-Specific Modeling
Tool for the Generation of Adaptive and Reflective Middleware
Families. in Submitted to 6th OOPSLA Workshop on Domain-
Specific Modeling, (Portland, 2006).
5. Bencomo, N. and Blair, G. Raising a Reflective Family Models
and Aspects Handling Crosscutting Concerns in MDSD, Glasgow,
Scotland, 2005.
6. Bencomo, N., Blair, G., Coulson, G. and Batista, T. Towards a
MetaModelling Approach to Configurable Middleware 2nd
ECOOP'2005 Workshop on Reflection, AOP and MetaData for
Software Evolution RAM-SE Glasgow, Scotland, 2005.
7. Bencomo, N., Blair, G. and France, R. Models@runt.time.
Workshop in conjunction with MoDELS / UML 2006, 2006.
8. Blair, G., Coulson, G., Ueyama, J., Lee, K. and Joolia, A.,
OpenCOM v2: A Component Model for Building Systems Software.
in IASTED Software Engineering and Applications, (USA, 2004).
9. Cooper, C., Duce, D., Younas, M., Li, W., Sagar, M., Blair, G.,
Coulson, G. and Grace, P., The Open Overlays Collaborative
Workspace. in UK E-Science All Hands Meeting, (Nottingham, UK,
2005).
10. Coulson, G., Grace, P., Blair, G., Cai, W., Cooper, C., Duce, D.,
Mathy, L., Yeung, W.K., Porter, B., Sagar, M. and Li, W. A
Component-based Middleware Framework for Configurable and
Reconfigurable Grid Computing. Concurrency and Computation:
Practice and Experience, 18 (8). 865-874.
11. Eliassen, F., Andersen, A., Blair, G.S., Costa, F., Coulson, G.,
Goebel, V., Hansen, Ø., Kristensen, T., Plagemann, T., Rafaelsen,
H.O., Saikoski, K.B. and Yu, W., Next Generation Middleware:
Requirements, Architecture, and Prototypes. in 7th IEEE Workshop
on Future Trends of Distributed Computing Systems (FTDCS’99),
(South Africa, 1999).
12. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K. and
Gjorven, E. Using Architecture Models for Runtime Adaptability.
Software IEEE, 23 (2). 62-70.
13. Flores, C., Blair, G. and Grace, P., Service Discovery in Highly
Heterogeneous Environments. in 4th Minema Workshop, (Lisbon,
Portugal, 2006).
14. Gokhale, A.S., Schmidt, D.C., Lu, T., Natarajan, B. and Wang,
N., CoSMIC: An MDA Generative Tool for Distributed Real-time
and Embedded Applications. in Middleware Workshops 2003,
(Brasil, 2003).

15. Grace, P., Coulson, G., Blair, G., Mathy, L., Duce, D., Cooper,
C., Yeung, W.K. and Cai, W., GRIDKIT: Pluggable Overlay
Networks for Grid Computing. in Symposium on Distributed Objects
and Applications (DOA), (Cyprus, 2004).
16. Grace, P., Coulson, G., Blair, G. and Porter, B., "Addressing
Network Heterogeneity in Pervasive Application Environments", .
in 1st International Conference on Integrated Internet Ad-hoc and
Sensor Networks (Intersense 2006), (Nice, France, 2006).
17. Greenwood, P., Hughes, D., B, B.P., Grace, P., Coulson, G.,
Blair, G., Taiani, F., Pappenberger, F., Smith, P. and Beven, K.,
Using Grid Technologies to Optimise a Wireless Sensor Network for
Flood Management. in 4th ACM Conference on Embedded
Networked Sensor Systems (Demo Session), (Colorado, USA, 2006).
18. Hatcliff, J., Deng, W., Dwyer, M., Jung, G. and Ranganath,
V.P., Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems. in
International Conference on Software Engineering (ICSE), (Portland,
2003).
19. Hayton, R., Herbert, A. and Donaldson, D., FlexiNet: A Flexible
Component-oriented Middleware System”. in 8th ACM SIGOPS
European Workshop on Support for Composing Distributed
Applications, Sintra, (1998).
20. Heimbigner, D. and Wolf, A. Intrusion Management Using
Configurable Architecture Models. Technical Report, Department
of Computer Science, University of Colorado, Colorado, USA, 2002.
21. Hughes, D., Greenwood, P., Coulson, G., Blair, G.,
Pappenberger, F., Smith, P. and Beven, K., GridStix:: Supporting
Flood Prediction using Embedded Hardware and Next Generation
Grid Middleware. in 4th International Workshop on Mobile
Distributed Computing (MDC'06), (Niagara Falls, USA, 2006).
22. Keeney, J. Completely Unanticipated Dynamic Adaptation of
Software Department of Computer Science, Trinity College Dublin,
2004.
23. Kent, S., Model Driven Engineering. in Third International
Conference on Integrated Formal Methods (IFM 2002), (Turku,
Finland, 2002), Springer-Verlag, 286-298.
24. Kon, F., Costa, F., Blair, G. and Campbell, R. The case for
reflective middleware. Communications of the ACM, 45 (6). 33-38.
25. Ledoux, T., OpenCorba: A Reflective Open Broker. in
Reflection’99, (France, 1999).
26. Magee, J. and Kramer, J., Dynamic structure in software
architectures. in 4th ACM sigsoft symposium on Foundations of
Software Engineering (FSE), (California, 1996).
27. McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C.
Composing Adaptive Software. IEEE Computer, 37 (7). 56-64.
28. MetaCase. Domain-Specific Modeling with MetaEdit+
(http://www.metacase.com/).
29. Roman, M., Kon, F. and Campbell, R.H. Reflective Middleware:
From the Desk to your Hand. IEEE DS Online, Special Issue on
Reflective Middleware, 2 (2).
30. Sawyer, P., Bencomo, N., Grace, P. and Blair, G., Ubiquitous
Computing: Adaptability Requirements Supported by Middleware
Platforms. in Workshop on Software Engineering Challenges for
Ubiquitous Computing, (Lancaster, UK, 2006).
31. Schmidt, D.C., Schantz, R.E., Masters, M.W., Cross, J.K.,
Sharp, D.C. and DiPalma, L.P. Toward Adaptive and Reflective
Middleware for Network-Centric Combat Systems. Crosstalk The
Journal of Defense Software Engineering. 10-16.
32. White, J., Schmidt, D.C. and Gokhale, A., Simplifying
Autonomic Enterprise Java Bean Applications via Model-driven De-
velopment: a Case Study. in MoDELS 06, (Jamaica, 2005), 601-615.

