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Abstract

Wireless mesh networks are being increasingly used
to provide affordable network connectivity to communities
where wired deployment strategies are either not possible or
are prohibitively expensive. Unfortunately, computer net-
works (including mesh networks) are frequently being ex-
ploited by increasingly profit-driven and insidious attack-
ers, which can affect their utility for legitimate use. In re-
sponse to this, a number of countermeasures have been de-
veloped, including intrusion detection systems that aim to
detect anomalous behaviour caused by attacks. We present
a set of socio-technical challenges associated with develop-
ing an intrusion detection system for a community wireless
mesh network. The attack space on a mesh network is par-
ticularly large; we motivate the need for and describe the
challenges of adopting an asset-driven approach to man-
aging this space. Finally, we present an initial design of
a modular architecture for intrusion detection, highlighting
how it addresses the identified challenges.

1 Introduction

Wireless Mesh Networks (WMNs) create a resilient in-
frastructure using a combination of wireless networking
technology and ad-hoc routing protocols that together pro-
vide the ability to establish networks in locations with no
prior groundwork and where a wired network would be pro-
hibitively expensive or complex. For example, the commu-
nity of Wray, situated approximately ten miles from the city
of Lancaster in the north-west of England, felt strongly that
the lack of broadband Internet connectivity (due to their re-
moteness) in their village was jeopardising local businesses,
education, and the community itself.

This prompted residents to approach Lancaster Univer-
sity to initiate a collaboration to deploy WMN technol-

ogy in the village. The network is currently managed by
the residents of Wray with some technical assistance from
researchers at Lancaster University. Ishmael et al. de-
scribe the Wray network [13], which is representative of
community-driven WMNs, including Berlin roofnet [24].

The network in Wray has been operational for over three
years, and is used by local residents for all manner of on-
line tasks, including e-commerce and work-related activi-
ties. In light of this, protection of the network, its users, and
their assets from malicious behaviour is now a prime con-
cern. This concern is particularly acute as network-based
malicious activity continues to rise and the nature of this ac-
tivity become increasingly profit-driven and insidious. An
important part of a protection (security) strategy is an intru-
sion detection system (IDS) – a monitoring system whose
aim is to detect and characterise malicious behaviour. We
have been unable to find a suitable system that is directly ap-
plicable in this socio-technically challenging environment,
since most IDS platforms are targeted for use in wired en-
terprise networks.

In this paper, we contribute a set of socio-technical chal-
lenges that developers of an IDS for a community WMN
need to consider. These are derived from our operational ex-
perience, experimentation, and consultation with the Wray
community. In short, these motivating challenges, de-
scribed in Section 2, are a product of the diverse range of
anomalous but benign activity that can occur, the ease in
which malicious entities can be introduced to a network,
limited hardware resources and scarce bandwidth when a
network is under attack, as well as social issues, such as the
privacy concerns of users.

The potential set of attacks on a community WMN is
large and is, to some degree, network-context specific. We
argue that, given the potentially limited computing and
monetary resources that are available in a community WMN
context, it is essential to understand the locally meaningful
attack vectors. We propose that an asset-driven approach



to understanding likely attacks is a good way to achieve
this, and highlight some of the issues with conducting such
a venture in this setting. This motivation, a sample of the
diverse set of assets derived from a focus group in Wray,
and ideas to elicit assets in more disparate communities are
presented in Section 3.

We describe our initial design of an architecture for in-
trusion detection in a community WMN context in Section
4. A modular architecture is proposed that enables context-
specific anomaly detection components to be deployed on
suitably capable devices. Meanwhile, attack characterisa-
tion components use attack profiles and network-context in-
formation to potentially determine whether anomalies relate
to attacks or benign behaviour. We conclude with a descrip-
tion of how our architecture addresses the challenges iden-
tified and suggest activities for further work.

2 Motivating Challenges

Two related characteristics of community WMNs make
intrusion detection particularly challenging. The network
and end-systems are particularly vulnerable to attack be-
cause of the relative ease of access to the wireless medium
and mesh infrastructure. No forms of attack are reduced
from those that are applicable in other contexts. Related to
this, the activity of intrusion detection is in itself difficult to
perform for a number of reasons as identified in this section.

2.1 Determining Malicious Behaviour

A network attack can result in a loss of service (e.g., as a
consequence of a DDoS attack). Similarly, legitimate user
behaviour can lead to a loss of service (e.g., as a conse-
quence of a flash crowd event). We have seen on the Wray
village WMN that legitimate peer-to-peer traffic can have
an adverse effect on network operation [14]. Furthermore,
environmental effects such as bad weather or large vehicles
blocking the line-of-sight of antenna can result in poor lev-
els of connectivity, or even none at all (a phenomenon we
have also experienced).

The role of an IDS is to generate an alarm when ma-
licious behaviour is detected. Legitimate but nonetheless
anomalous (and potentially adverse) events could lead to an
intrusion detection system generating false positives [19].
A sufficiently high enough false positive rate could render
the system unusable. A key challenge when developing
an IDS in this context is to understand to what extent is it
possible to generate alarms solely in the presence of mali-
cious behaviour, given the diverse attack space of a commu-
nity WMN (see Section 3) and the range of legitimate but
anomalous events that could occur.

There are two approaches in the literature used to iden-
tify malicious behaviour: misuse detection and anomaly de-

tection [27]. Misuse detection requires significant computa-
tion, which is often not available on the hardware in WMN
contexts. Thus, this paper will focus primarily on anomaly
detection, but the architecture we provide allows for the ad-
dition of misuse detection in certain circumstances.

2.2 System Administration

There is a continuum of ad-hoc approaches to commu-
nity WMN administration. For example, the Wray vil-
lage network is managed by a consortium of local residents
[6], with technical assistance from researchers at Lancaster
University – whereas other networks could operate without
any such consortium and be managed in an entirely decen-
tralised manner. This is unlike typical enterprise networks,
where a single entity (such as a systems services depart-
ment) is chartered with administering the network and im-
plementing a security policy, which includes services such
as intrusion detection.

Furthermore, implementers of intrusion detection sys-
tems in an enterprise setting are typically qualified and mo-
tivated to do so – it represents their day job – this is not nec-
essarily the case in a WMN context. This is not to underrate
the technical expertise of community WMN providers, but
there is likely to be a greater diversity of expertise, inclina-
tion, and time available for managing an intrusion detection
system.

2.3 Diverse Resource Availability

The availability of hardware resources (e.g., processor,
memory, and storage capacity) can be diverse on a commu-
nity WMN. This is important because it is unlikely that ded-
icated IDS hardware will be deployed on such a network.
Available devices could be made up of relatively resource
abundant personal computers, through to tightly constrained
systems, such as wireless access points that tend to have a
smaller form factor, use little electricity, and are fan-less.

To get an indication of the ability of mesh devices to
perform intrusion detection activities, we conducted exper-
iments with a NETGEAR WG302 wireless access point [1]
running OpenWrt [2], using IEEE 802.11g. Connection
tracking was enabled – a necessary service if the device is
performing Network Address Translation (NAT), as is the
case with many deployed WMNs. A source host sent, via
the mesh device, a number of different traffic loads to a sink
for 60 seconds. The top application sampled CPU utilisa-
tion every ten seconds on the mesh device, which were aver-
aged; the average CPU utilisation over three runs is shown
Fig. 1. A low deviation was seen on these results.

The results in Fig. 1 demonstrate that under normal traf-
fic loads the CPU utilisation of the mesh device is quite low,
including forwarding trace traffic from the Wray village net-
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Figure 1. NETGEAR WG302 CPU utilisation
under different conditions

work in real-time. The TCP and UDP stream results show a
single stream being sent at full-rate; UDP packets had a 20
octet payload. By capturing a TCP stream using tcpdump
and writing it to /dev/null, a significant (≈30%) in-
crease in CPU utilisation is seen. Because of connection
tracking, a TCP SYN attack [28] without source address
spoofing and random source port selection has a signifi-
cant impact on CPU utilisation. Combining a TCP SYN
attack with packet capturing pushes the CPU utilisation to
an average of 92%. These results suggest that under normal
traffic loads a mesh device is well provisioned, but under
attack conditions, resource availability can be significantly
impaired. Thus, some intrusion detection activities can be
performed on mesh devices, but care should be taken to not
inhibit their performance.

Wireless network speeds continue to increase (e.g., the
IEEE 802.11n standard has purported data rates of up to 74
Mbps). In spite of this, the wireless medium is still a rel-
atively limited resource, especially when under attack, for
example, during a wireless jamming attack where adaptive
rate control techniques react to poor channel quality and can
significantly reduce transmission rates [11]. Stone-Gross et
al. [26] conducted an analysis of wireless network perfor-
mance in the presence of an ICMP ping sweep (Worm prop-
agation behaviour) and a TCP SYN attack. They found that
in the presence of this malicious behaviour, utilisation of
the network was close to 100%, at peak times of viral ac-
tivity 50% of the traffic sent were retransmissions, and the
average TCP RTT climbed by over 50%. Clearly, in light of
results such as these it is important to consider the potential
availability of and overhead associated with control traffic
that may need to be sent by a distributed IDS.

2.4 Trust Issues

It is relatively straightforward to introduce new infras-
tructure to a WMN that could be used for malicious pur-
poses, for example, to instigate a phishing attack [17].
There are protocols that can be deployed to make this more
difficult to achieve (e.g., WPA2 Enterprise Mode [4]), but
they are rarely enabled. Furthermore, providing account-
ability is challenging because it is easy for a user to join or
add infrastructure to the network. Even authenticated users
may be difficult or prohibitively expensive to trace. This
lack of accountability and traceability reduces the risk of
behaving maliciously, suggesting that information from dis-
tributed sensors regarding malicious activity (or a suggested
lack of activity) cannot be inherently trusted. For example,
false information about the existence of an attack could be
used to orchestrate a Denial of Service (DoS) attack as a re-
sult of a remediation activity (e.g., modifications to firewall
rules could block access to legitimate services as a result of
bogus information). In summary, a developer of an IDS for
a community WMN cannot inherently trust the information
it will receive for detection activities, and measures should
be taken to address this problem.

2.5 Privacy Issues

One of the main operations an IDS performs is to analyse
user-generated data to detect malicious behaviour, which
raises privacy issues. In the context of an enterprise this is
not a significant problem, as only a small number of systems
administrators have access to the data that is being analysed,
and measures are taken to protect such data. Furthermore,
users of the enterprise network expect that their on-line ac-
tivities can and will be monitored for the purpose of secur-
ing their systems and associated data (in the UK, the Lawful
Business Practices Regulations Act permits such activity).

However, there are significant privacy issues that such
activity raises in the context of a community WMN. For
example, consider an IDS that monitors a Web cache’s log
files to determine if known Web sites that are being used to
exploit user’s computers have been visited. The information
the IDS is examining is clearly sensitive, especially when a
direct relationship can be trivially formed between on-line
activity and an individual, as can be the case in a community
WMN.

Interestingly, analysis of a focus group meeting related
to security with the users of the Wray village network sug-
gests that a spectrum of attitudes to privacy exist. We found
that some users were very concerned about privacy in an
on-line context (for example, only using their given name
to identify themselves when using the on-line doodle meet-
ing arrangement tool – a measure they cited as protecting
their privacy), whereas others seemed significantly less con-



cerned; questioning why anybody would be interested in
their private data at all. This diversity may arise from dif-
ferent perceptions of the risk associated with having private
data on-line.

3 Attack Space Management – Identifying
Critical Assets

The attack space of a community WMN is particularly
large. In addition to the plethora of attacks that exist in the
wired Internet, a WMN is susceptible to local attacks via
the wireless medium (e.g., eavesdropping and jamming at-
tacks) and to the mesh infrastructure itself (e.g., vandalism
of mesh devices), both of which are in the public domain.
Malicious mesh infrastructure can be introduced with rela-
tive ease, leading to potential man-in-the middle attacks, for
example. Furthermore, because of their relatively static and
long-lived nature, they are arguably more vulnerable to cer-
tain types of attack, e.g., brute-force attacks, than dynamic
networks, such as MANETs.

We suggest that the probable attacks will, to some de-
gree, be specific to a network’s context. For example, the
network’s geographical location may influence how proba-
ble eavesdropping is – it is unlikely an attacker will travel
to a rural village in the North of England to listen to the
wireless medium; this may be a more approachable and lu-
crative activity in a large city. Other forms of context, could
include the (regular) activities of network users and the lo-
cally provisioned services.

The size and context-specific nature of the attack space
suggests it is essential that measures are taken to determine
the most probable and damaging attacks for a particular net-
work. By doing this, an IDS can be developed that makes
the best use of the limited monetary, time, and computing
resources that are available in a community WMN context.

An approach to identifying the most important attacks
to detect involves discovering critical assets (those assets
that, if exploited, would have the highest impact and also
have the highest probability of being attacked) and the vul-
nerabilities associated with them. Attempts to exploit the
identified vulnerabilities can then be detected. (This activity
will, of course, inform appropriate prevention mechanisms
to employ, further helping to manage the attack space.)

Within an enterprise setting, processes such as the Op-
erationally Critical Threat, Asset, and Vulnerability Evalu-
ation (OCTAVE) process [3] can be employed to ascertain
an enterprise’s critical assets1 and the technical vulnerabil-
ities associated with them. A process such as this cannot
be trivially transposed to a community WMN context. For
instance, people may be less willing to share details of their

1Example assets in an enterprise setting could include an employee’s
email or a customer database.

assets with others (for privacy reasons). The set of assets
to protect in a community WMN context may also be quite
different.

We carried out a focus group in Wray with the aim of
eliciting assets from a subset of the network’s user group.
We found the assets identified to be quite diverse. Users
described such as things as digital media, a community Web
portal, credit card details, personal identity and reputation,
and their children as ‘assets’. There was also a surprising
amount of work-related use of the network, which contains
sensitive assets.

Currently, we are investigating ways that an activity such
as OCTAVE could be carried out in community WMNs. Or-
ganising such an activity in more socially and organisation-
ally disparate communities could be problematic. With this
in mind, we are investigating the suitability of forms of cul-
tural probes [9] and on-line questionnaires that require less
contact time to identify assets.

4 Community WMN IDS Architecture

With an understanding of the assets and associated vul-
nerabilities in a given context, an IDS can be appropri-
ately configured. We propose a modular architecture for
community WMN intrusion detection, which is depicted in
Fig. 2. The primary motivation for a modular design is
the heterogeneity of the systems that participate in detec-
tion. For example, it enables lightweight anomaly detection
to be carried out on resource constrained mesh devices and
more resource intensive characterisation on more powerful
end-systems. Another motivation for modularity is that the
deployment context affects the priorities of detection and
protection, as discussed in Section 3, as the primary user
group determines from their asset valuation. In these dif-
ferent contexts, some modules may become irrelevant if the
users do not value the type of asset that the modules can
protect. We will discuss the components of the architecture
in the following sections.

4.1 Anomaly Detection Components

The first phase of intrusion detection is to highlight
anomalous behaviour that could be caused by attacks. The
system features to monitor for anomalies should relate di-
rectly to the critical assets being protected – for example,
log-in attempts to a server that hosts a community Web site.
Detection components may execute on a range of devices,
such as mesh devices and end-systems, monitoring a num-
ber of pertinent features, similar to those identified by Kan-
dula et al. [15].

We envisage that mesh devices will perform anomaly de-
tection based upon relatively cheap metrics, for example,
looking at packet headers to determine anomalous rates of
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Figure 2. Community WMN IDS Architecture

certain types of traffic from hosts. More expensive payload-
based detection is also possible, but should be performed
only on more powerful end-systems. Another task for an
end-system might be to host a honeypot [21] – a machine
that should receive very little legitimate traffic, and thus all
traffic observed at a honeypot is potentially malicious.

The anomaly detection engine yields a description of an
anomaly; a format such as Intrusion Detection Message
Exchange Format (IDMEF) [8] could be used to describe
anomalies to be distributed to characterisation modules.
The information sharing engine is responsible for distribut-
ing anomaly information to attack characterisation compo-
nents as well as other anomaly detection engines. Detection
components will be configured with a set of characterisa-
tion components, based upon the privacy policies described
in Section 4.4.

4.2 Attack Characterisation Components

Low-level alerts must be correlated with one another to
establish confidence that observed behaviour is consistent
with a threat and not just noise [5]. These alerts may be
from multiple sources, enabling a network-wide perspec-
tive. Heuristics have been used extensively to identify mal-
ware, based on anomalies in traffic patterns [10, 26]. By
just examining data from packet headers, the overhead of
such procedures can be kept low. However, characterisation
is easier with access to packet payloads. Pattern-matching
algorithms (e.g., CREST [22]) with efficient data structures
can detect malicious traffic with reduced complexity.

The attack profiles repository contains descriptions of
anomalous behaviour that relate to attacks that are primar-
ily associated with the locally relevant assets. The aim be-
ing to take the anomaly information given by the anomaly
detection components and relate this to specific attacks.
Alongside this, context about the network, e.g., current ra-
dio signal strength, meteorological information, geographi-
cal location of systems, and normal usage patterns, can be
used by the characterisation engine to determine whether

reported anomalous behaviour relates to the current benign
network context, and can therefore be negated when deter-
mining the existence of an attack. For example, poor TCP
throughput witnessed by a system could relate to rain, rather
than an attack by a malicious mesh device that is processing
its data traffic and adding delay.

To address the trust issues brought about by the ease
in which bogus infrastructure can potentially be introduced
into a mesh network, before characterisation of anomalies
takes place, the alert is passed through a verification engine.
The result of this is a measure of confidence in the accuracy
of the anomaly identified by a system. The verification en-
gine could be tied to a reputation system [12], for example,
where confidence in the alert is related to the source sys-
tem’s reputation. A confederation of verification engines
can exchange model information amongst themselves in or-
der to build confidence in the conclusions drawn [7].

To simplify the initial implementation of the character-
isation engine, we expect verification to yield a boolean
value – trusted, wherein anomaly information is used for
characterisation, and untrusted, wherein the information is
discarded. The application of continuous values and how
they could be applied to give a measure of confidence in the
alert generated by the IDS will be investigated later.

4.3 Resource Utilisation Policies

The potential lack of dedicated IDS hardware will mean
that the systems used for intrusion detection will have some
other function, such as a home office computer or a wire-
less hop in the network. Therefore, in a similar fashion
to techniques suggested by Sharma and Byers [23], the re-
sources an IDS uses on a system should be tuneable (e.g.,
only use resources when the system is otherwise idle), or
have a small enough footprint that it does not adversely ef-
fect the normal operation of the system. How the resources
of a system can be used for intrusion detection should be
expressed through policies.

The goal of small footprints has been achieved by some



intrusion detection systems and filtering mechanisms [7, 18,
25], for implementation in FPGAs or similarly sized em-
bedded systems. Selecticast [10] and Partial Completion
Filters [18] both make specific attempts to be lightweight
and scalable.

In Section 2, we highlighted how the wireless medium
can be a limited resource under attack conditions. Tech-
niques to ensure alert traffic has higher levels of QoS than
data traffic, for example, in attack conditions could aid the
delivery of messages during attacks. How traffic should be
prioritised and the volume of control traffic sent by a system
can be expressed through policies that will affect the way a
system handles all its traffic, including data traffic.

4.4 Privacy Policies

Privacy policies relate to two classes of information –
the raw data used for anomaly detection (e.g., log-in at-
tempts, data traffic, and log files) and output from the IDS
(anomaly and attack information). It should be possible for
users of the community WMN to express how and with
whom this information is used and shared. For example,
users may be comfortable with an IDS looking at packet
headers, but averse to deeper packet inspection. (It is un-
likely that users will express concerns in these terms, but the
implications of certain strategies (e.g., deep packet inspec-
tion) could be explained and the acceptability of these de-
termined.) Also, users may wish to only share information
with a subset of the entire community, for example, only
sharing raw data with systems that are operated by family
and friends. Bloom filters allow patterns (in data packets)
to be correlated while protecting sensitive information [20].

4.5 Remediation

Having detected the existence of an attack, the goal is to
remediate. Attack information exported by the IDS should
help to configure and inform an appropriate remediation
strategy. Details such as addresses of malicious and tar-
geted systems, the severity of an attack, and the confidence
the IDS has in an alert (a measure derived from the results
of the verification engine and the likelihood of anomalies
being a manifestation of benign behaviour) will be used.
We anticipate remediation may itself cause anomalous be-
haviour; understanding and closing this control loop is a
matter for future work, and is being considered in the EU
FP7 INTERSECTION project.

5 Related Work

Lightweight detection will be necessary on mesh de-
vices. A lightweight and tuneable method of identifying
traffic without access to payload data is provided by BLINC

[16]. It operates on patterns identified regarding inter-host
traffic, as well as examining the functions performed by a
host and associated flow characteristics.

End-systems are capable of more powerful processing,
and could be used to store data captured at the routers in
times of high alert. Some of the analysis could be done off-
line, such as is currently done in the UCSB Meshnet Project
[26]. For our system to be effective, the work done at the
mesh devices must be done in real-time.

The FLIPS system adds extra feedback into an anomaly
detection mechanism to reduce the rate of false positives
[19] and to recognise injected code to prevent intrusions.
Our system has similar goals, and approaches detection
with a defense in depth attitude, but needs to be even more
lightweight in the normal case.

6 Conclusion

We have identified a set of socio-technical challenges
that a developer of an intrusion detection system needs to
consider in a community wireless mesh networking con-
text. An initial design of a modular architecture for an in-
trusion detection system, which addresses these challenges
has been presented.

Modularity helps to address the challenge of diverse re-
source availability in this context, enabling anomaly detec-
tion and attack characterisation activities to be conducted
on suitability capable devices (e.g., lightweight detection
on mesh devices). Furthermore, modularity enables the ap-
plication of context-specific anomaly detection components
that relate to the vulnerabilities associated with local assets.

Privacy concerns are realised by policies that determine
which components are privy to both user-generated data and
information derived by the detection system. We envisage
these policies to reflect the diverse set of privacy concerns
elicited through consultation with a subset of the Wray net-
work user community, and follow normal social groupings.

We propose an anomaly verification engine that is used
to address the trust issues brought about by a lack of ac-
countability in a community WMN context and the ease in
which bogus devices can be introduced into the system. A
number of approaches to implementing this engine are sug-
gested, which in the first instance we propose should yield
a boolean result.

A key challenge in this space is determining whether
anomalous behaviour is benign or malicious. We propose
that attack characterisation components could use attack
profiles and context about the local network to resolve this
issue. Further work in understanding how this information
can be collected, managed, and related is necessary.

Our approach relies upon an activity whose aim is to
identify critical assets, their vulnerabilities, and associated
attacks. The benefits of performing an activity of this sort



are well understood; however, we feel conducting an activ-
ity such as this is essential in a community WMN context
because of the diverse and context-specific attack space, and
the highly constrained resources that are available.

Our architecture does not explicitly address the chal-
lenges associated with system administration. We propose
to conduct further consultation with the Wray user group to
understand their willingness and ability to conduct these ac-
tivities. This will influence which aspects and to what extent
we will aim to make the system self-organising and how we
can simplify some activities. Issues described by West [29]
will be considered that may help us address the inertia often
exhibited by users when carrying out security-related tasks.
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