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I. INTRODUCTION

Stalp et al. [1] were the first to recognize that the
L ∝ t−3/2 dependence during free decay could be due to
the saturation of the size of the energy-containing eddy
by the container size. They introduced a method of in-
terpreting the prefactor A in terms of the value of ζ for
HIQT. Since then this method has also been used by
several groups [2–5]. It assumes that wall-bounded tur-
bulence can be described by a single energy spectrum
Ek in the space of wavenumbers k. For k > k1 (where
k1 = 2π/d in [1]), this spectrum is taken to be equal to
the Kolmogorov spectrum for HIT [6–8],

Ek = Cε2/3k−5/3 (1)

(here ε = −Ė is the energy flux and C ≈ 1.5 is the
Kolmogorov constant [9]), while for k < k1, Ek = 0,
because modes of size greater than the container do not
exist. The total energy per unit volume is thus

E ≈
∫ ∞
k1

Ekdk =
3

2
Cε2/3k

−2/3
1 , (2)

and its rate of change during a quasi-steady decay is

Ė = −ε = −(3C)3k−21 t−3 (3)

at late time t. Equating this with Eq. 1 from the main
paper, we arrive at

L(t) = (3C)3/2ζ−1/2k−11 (κt)−3/2. (4)

In other words, this model has just one free parameter,
k1, which depends on the container size and, perhaps,
boundary conditions (BC). The lifetime of the eddy is
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FIG. 1: Effective viscosity ζ = ν′/κ vs. mutual friction pa-
rameter α(T ) for grid turbulence (circles, see text). Green
asterisks show the values of ζ for the decay of random tangles
simulated numerically for different α [11] (the value ζ = 0.057,
plotted here at α = 10−10 and α = 10−6, was actually com-
puted for α = 0).

kept equal to Kolmogorov’s value for HIT (it is deter-
mined by the Kolmogorov constant C).

In order to make quantitative comparison of the rates
of decay obtained in different experiments, we applied
this one-parameter approach, Eq. 4 to our data L ∝ t−3/2
from Fig. 4 of the main paper, with an appropriate choice
of the value of the cut-off wavenumber k1 that should
depend on the BC. Namely, for no-slip BC, one would
expect λ = d, i. e. k1 = 2π/d (as was used by [1] while
for slip BC, λ = 2d, i. e. k1 = 2π/2d = π/d.

In Fig. 1 we plot the resulting values of ζ(α) for grid
turbulence. The blue symbols show the values of ζ ob-
tained with k1 = 2π/d, while the red ones, for T ≤ 0.8 K
only, correspond to the values of ζ obtained using k1 =
π/d (suitable for the slip BC at low temperatures). With
the latter choice, the discontinuous drop in apparent data
has vanished, and the dependence ζ(T ) becomes smooth.
Furthermore, it is close to the values ζ(0) = 0.08 mea-
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sured experimentally [10] and ζ(0) = 0.06–0.10 calculated
numerically [11, 12] (Fig. 1) for Vinen QT.

Unfortunately, several assumptions of the above ap-
proach are unrealistic. First of all, the description in
terms of a unique k-spectrum while the system is strongly
spatially-inhomogeneous (for instance, due to a particu-
lar shape of the container, or to the presence of a tur-
bulent boundary layer) cannot be applied. But even if
a one-for-all k-spectrum could be used, the Kolmogorov

spectrum, Eq. 1, [6–8] was derived for wavenumbers k far
away from both those for forcing and dissipation. Hence,
it is not expected to apply near the cut-off wavenumber
k1, and there is no reason why the total energy and its
flux should be described by Eq. 2 and Eq. 3. We thus con-
clude that Eq. 4 can only yield the prefactor A correct to
the order of magnitude. Any numerical agreement must
be purely accidental.
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