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P School of Civil Engineering, University of Leedseds LS2 9JT, UK
Abstract

A two dimensional particle model based on the éitgcelement method (DEM) is developed
for micromechanical modelling of fibre reinforcedlymer (FRP) composite laminae under
biaxial transverse loads. Random fibre distributwaithin a representative volume element
(RVE) is considered for the micromechanical DEM w@ations. In addition to predicting the
stress-strain curves of the RVEs subjected to wexse compression and transverse shear
stresses against the experimental testing resmtisother numerical modelling results, the
DEM model is also able to capture the initiatior gmopagation of all micro damage events.
Fibre distribution is found to more significantlgfluence the ultimate failure of composite
laminae under transverse shear, while it has mesh eéffect on the failure under transverse
compression. The failure envelope of composite hai under biaxial transverse
compression and transverse shear is predicted @amgared with Hashin and Puck failure
criteria, showing a reasonable agreement. The giestifailure envelope is correlated with
the damage evolution and the quantitative analgkifailure events, which improves the
understanding of the failure mechanisms.

Key words: FRP; damage evolution; failure criterion; DEM;amamechanical modelling.
1. Introduction

Fibre reinforced polymer (FRP) composite lamindtase been widely used over the past
thirty years in aerospace industries mainly duehtar high stiffness-weight and strength-
weight ratios. However, there is yet a universablel@mr approach to accurately predict the
failure strength of FRP composite laminates undkexial or triaxial loads in real applications
[1]. A large amount of experimental tests needecaérried out to obtain the failure strength
of FRP composite laminates which is usually desigizebe much larger than the required
strength under real loading conditions. This mehasin many cases the FRP composites are
over safely designed and their advantages of ghght and design flexibility have not been
maximised. In addition, the experimental testsadiected by the testing environment and the
results are very diverse, especially when matergas subjected to a system of loads
including transverse load that is very difficult tarry out. Therefore, an accurate and
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universal approach for predicting the strength BPFcomposite laminates is always highly
demanded.

Generally, five different failure mechanisms cowlccur in composite laminates and they
depend mainly on the loading conditions and dicei[2]. Fibre fracture and localised fibre
buckling occur when tension and compression arspedively, applied along the fibre
direction. Tensile load applied in the directionrgmndicular to the fibres results in either
fibre/matrix debonding or matrix cracking. Delantina takes place between plies and has to
be considered in order to predict the laminate el precisely. There are a few theoretical
failure criteria available for predicting failure otles separately as well as the failure
envelope of composite lamina/laminates under diffedloading conditions. Among them,
there are several well-known physically-based phesrwlogical failure criteria_[3-6] that
have the capability to predict the failure envel@mel also provide information on failure
modes of composite lamina/laminates under cert@adihg conditions [1]. In particular,
Puck’s failure criterion is one of the better aigeadopted in the World Wide Failure
Exercise (WWFE) for predicting composite laminaaéuire. However, these criteria contain
several non-physical parameters that need to baingat from specific and challenging
experimental tests. It has been shown in WWFEttiepredictions of failure strength under
some loading conditions (in particular biaxial andxial loads) by existing failure criteria
are not accurate enough. One of the main reasdhatighese criteria have not considered the
effects of heterogeneous material microstructum the interaction as well as progression
between different failure modes. Theoretically st not straightforward to dynamically
correlate different failure modes during the faglyosrocess as the random and heterogeneous
microstructure of composite lamina/laminates arglliyato be considered. Micromechanics
analysis is very useful for studying the mechanhosthaviour of FRP composite laminates
and understanding their damage process and fagdtrength. Within the framework of
micromechanical modelling, the macroscopic propsréire obtained through a representative
volume element (RVE) of the material microstructur&nlike the conventional
homogenisation techniques, micromechanical modgtian take into account the details of
geometry and fibre distribution to compute the s#es and strains in each material
constituents, which leads to more accurate predistof damage initiation and propagation
and failure strength [7].

Two different approaches have been widely emplof@d numerical micromechanical
modelling. The first approach assumes that thedilare periodically distributed and uses a
unit cell consisting of one or two fibres for thedelling. For example, Pargs al., [8] used a
single fibre unit cell to study the fibre/matrixteding of a glass-epoxy composite. dial.,

[9] determined the failure envelope of a compalsiteina under biaxial loads by modelling a
unit cells of square and hexagonal fibre arrangesndrhe second approach uses a RVE in
which several dozens of fibres are distributed oanig. Intensive studies have been carried
out using this method to understand the effectR0E size, position of fibres and internal
distance between fibres on the elastic propergeweal as the strength of FRP composite
laminae. For instance, Tria al., [10] concluded that the minimum size of carbdref
reinforced polymer with a volume fraction of 50%is= L/7; = 50, whereL is the side of
the RVE andy is the fibre radius. Yang [11] found that intdps& spacing has a significant
impact on the transverse tensile and compressreaggh of composites, especially when
thermal residual stress is taken into account.



Apart from FEM modelling, discrete element methD&EM) has been recently introduced to
model the damage evolution in composites. For mt&tathe crack propagation and stress-
strain curves of composite materials under trarsevégnsile loading was simulated by DEM
in [12, 13]. It was concluded that DEM has advaegagf tracing the crack path within the
microstructures in addition to predicting the fifaillure strength. Yanegt al., [14, 15] also
investigated the transverse cracks and delaminati@noss-ply laminates and predicted the
crack density using two dimensional DEM. With timereasing of computer power and the
lowering of the cost, DEM has become more benéfiban traditional numerical approaches
in studying damage initiation and crack propagatainmicroscopic scale. For instance,
Maheoet al., [16] used three dimensional DEM to model the dgenof a composite material
under uniaxial tension. Although the model assumedriodic distribution of fibres and used
only one fibre, it has demonstrated the potenti@®BM for modelling the failure process as
well as failure strength under real uniaxial loadthree dimensions.

Despite of the massive research efforts recentiptael to investigating the failure behaviour
of composite laminates under shear loading [17-88, damage mechanisms and failure
theory are still not fully understood. Thereforésthaper aims to extend our previous work
on DEM modelling of composite materials from unaxioading to biaxial loading. Two
dimensional DEM is used to visualise the damagehan@sms and to predict the stress-strain
curves as well failure strength of composite laminder three different types of loads,,
transverse compression, transverse shear and lbi@xas. The stress-strain curves obtained
in this paper have advantages over those from timadi numerical models as the
microscopic damage at different loading levels loarclearly visualised. The failure envelope
of MY750 matrix reinforced by E-glass fibres undeth transverse normal and shear loads
is also predicted by DEM and compared with Puckajid Hashin_[3] failure criteria.

2. The discrete element method (DEM) and its contaenodels

In two dimensional DEM, circular elements (or pads) are used to discretise the material
domain, as shown in Fig.1. Each particle in DEM mass and its motion is governed by the
Newton’s Second Law. The particles can be rigideformable, and interact with each other
through contacts. To represent the mechanical beinaof a bulk material, a bonding model
is usually employed to bond two rigid particlestla contact. A few bonding models have
been reported in literatures to numerically achi¢hre desired material properties. For
instance, Andrét al., [23] developed a cohesive beam model which lates used by [16] to
predict the damage of a composite material. In shugly, however, the parallel bond model
developed in [24] is adopted. The parallel bond lbardescribed as a finite-sized piece of
cementitious material deposited between two comigqgtarticles, and can be envisioned as a
set of elastic springs uniformly distributed ovés cross-section. When two particles are
bonded by a parallel bond the overall behaviourdbetact is a result of particle-particle
overlap (grain-based part) and parallel bond (cé+haged part), as shown in Fig.1.
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Fig.1 Schematic diagram of the parallel bond.

The grain-based part is represented by a lineailacomodel that can be described as a pair
of springs at the contact (one in the normal dioecand the other one in the shear direction).
The inter-particle forcef, acting at the contact point represents the adieiween elements

A andB and may be decomposed into a normal féttend a shear forde®. These forces
are related to the relative displacements throughmal and shear stiffnegs' andk®as
follows:

Fn — knun (1)
AFS = —kSAuS (2)

whereu™ andAu® are the overlap and incremental tangential digphent, respectively is
the resultant contact stiffness calculated by:

K@ ®

pn = —n (3)
kD + kP

n
)@ (B)
K= ® @
k7 + kg
Wherek,(lA)andk,(lB) are the normal stiffness, anhﬁA)and kgB)
particlesA andB, respectively.

are the shear stiffness of
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The forceF and momend associated with cement-based part are calculated b

AF™ = k™ AAu™ (5)
AFS = —kSAAu® (6)
AM = —k"IAO (7)

WhereF™ and FSare axial and shear forces, respectivalyis the rotation between two
bonded patrticles; andl andl are the area and second moment of area of paoalhel cross
section, respectively:

A = 2Rt (t =1in2D) (8)
I=R% (t=1in2D) 9)

It is important to note, since parallel bonds acparallel with the linear contact model, the
overall stiffness at the contaktis:

K™ = (k™) + (Ak™) (10)

K* = (k%) + (Ak®) (11)

The maximum tensile stregsand shear stregscarried by the parallel periphery (cement-
based part) are calculated by:

—F"* |M|R
5 — MR (12)
o=t

|FS|
t=7a

If 6 >0, orT > 7.the parallel bond breaks and a crack is generdtedhis paper, the
parallel bonds are used to model fibres and malire mechanical properties of the bond
will be calibrated against macro properties in filowing section. The force-displacement
laws for the normal and shear components of alpakaind are shown in Fig.2. More details
of DEM theory and parallel bond can be found_in] [2dd [25].
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Fig.2 Force-displacement laws of parallel bond nig@g normal behaviour, and (b) shear
behaviour.

Debonding of fibre/matrix interface upon loadingascounted for by a contact softening
model which is similar to the cohesive element use8EM models. In contact softening
model the strength is reduced as a linear funaifahe displacement after the peak strength,
as shown in Fig.3. The initial response in absefcgamage is linear elastic and the force
incrementsAF™ and AF#, are calculated as a function of displacemextis’, and AU®:

(12)

AF™ = K™AU™ (n: normal,s: shear)
' y (13)

AF® = K°AUS

The contact strengthk .. is calculated from the two strength parametess, £ andF;? )
and the current orientation of the contact force:

2a 2a
Frax = (1= ) ER+ = B 14

where o is the angle between the directions of the confaate and the line segment
connecting the centres of two contacted particld®e yielding of the bond in tension is
determined by comparing the resultant contact foree

F = \/(F")Z + (F5)2 (15)

with the contact strength. The contact yields & ttontact force is larger than the contact
strength:



F > Eyax (16)

When yielding occurs, the increment of contact ldispment\U is the sum of elastic and
plastic contact displacement increments:

AU™ = AU} + AUZ _ _ (17)
AUS = AUS + AUS (n: normal,s: shear) (18)
More details of the contact softening model areulised in [14, 15] and [25].
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Fig.3 Constitutive behaviour of contact displacetrsmitening model: (a) normal behaviour,
and (b) shear behaviour.

3. Calibration of DEM models

In continuum mechanics based models, the inputgrtigs obtained from experimental tests,
such as modulus and strength, are directly usedieMer, in a DEM model with randomly
packed particles, there is no rigorous formuladoeiate the micro-parameters (contact and
particle stiffness as well as bond strength) in DiAh the real material properties. In
general, the relation between micro-parameters c¢hatacterise a DEM model and macro-
properties (such as elastic constant and peakgsireis found by means of virtual calibration
tests, such as uniaxial compression test and temssd. Each micro-parameter is related to a
relevant material property and it is trialled inder to match the virtual macro-properties
gained from the DEM specimen with those of the reaterial. This process is repeated in
different virtual tests until all the necessary naaproperties are matched.

3.1 Generation of DEM specimen

Sample preparation is a step of particular impagamn DEM modelling. The two
dimensional samples used in this section are squihea dimension of 63im x 63 um.
Many packing methods have been proposed in prewtuaes [26-28]. In the present study,
a radii expansion procedure is used [25]. This method starts witciplg an initial set of
particles with artificially small radii in a squaaeea enclosed by four rigid frictionless walls
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(see Fig. 4a). The particle size varies from @M to 0.166um according to a uniform
distribution, which is sufficiently small to ensusdequate particles cover the region between
fibres, as will be seen later in this paper. Theigas are then expanded by increasing their
radius by a multiplier factor of two until the de=i porosity is achieved. The formula bellow
is used to calculate the radii multiplien, in order to change the porosity of the space from
initial assumed porosityy,, to the desired porosity,

1—-n (21)

m =
1—7’10

Finally, a number of computation cycles are exetutebring the system into equilibrium.
This method has been used by many other reseaf2f€kl] to generate densely packed
particle assemblies and readers can refer to |[@5jore details. The numerical specimen
studied in this section consists of 16,451 padiced the histogram of the particle sizes, as
shown in Fig.4, confirms a uniform distribution.
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Fig.4 The DEM model: (a) model geometry and patassembly, and (b) particle size
distribution.

Once the sample is prepared, numerical tests showfig.5 are conducted to find the
relationship between the DEM micro-parameters dral rhaterial macro-properties. The
uniaxial compression test is conducted by movirggrtght and left rigid walls at a constant
and very small velocity (see Fig.5a). Whilst in theect shear test, the boundary particles are
first identified and then assigned with a constaglocity to produce shear displacement, as
shown in Fig.5b. The applied loading rate needsetslow enough in order to maintain the
sample in quasi-static equilibrium state during test and should be stable so as to not
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induce any possible dynamic strains [32]. On thHeeohand, using too small loading rate
would be computationally expensive. If not indichtetherwise, the loading rate used
throughout this paper is “5 mm/s”, which could bensidered as a fast one in the real
experimental tests. However, since DEM is baseshoall time integration scheme, time step
At is chosen in each cycle to be very small..d x 10~%s). In other words, with a loading
velocity of 5 mm/s and a time step bk 1079 s,20,000,000 steps are needed to move the
boundary to a distance of 0.1 mm.

— <

@) (b)

—— Walls ——» |
— S L

Fig.5 Virtual uniaxial tests of a DEM model: (a)napression and (b) shear.
3.2 Parametric study of contact stiffness

Generally the mechanical properties of an elastatenal can be characterised by its
elasticity (.e.,, elastic modulus, shear modulus and Poissoni®)rand strengthif.,
compressive strength, tensile strength and shesarggh). It has been found that local elastic
parameters of particles and contaag., particle stiffness and parallel bond stiffness,
mainly affect the macroscopic elastic response i entire DEM model, therefore
calibrations are required [25]. As the DEM modelaotomposite lamina consists of two
constituents (fibre and matrix) with different pespes, each constituent needs to calibrated
individually before combing them together with irfiéee stiffness which is assumed equal to
that of fibres [13]. Usually the macroscopic Youmghodulus of the matrix or fibres is
directly proportional to the stiffness of particlgs®, k%) and parallel bond&™, k*). While
the macroscopic Poisson’s ratio is directly projposl to the ratios ok™/kS and k™/k*
[25]. The material used in this paper is MY750 gpoxatrix reinforced by E-glass fibres
which is chosen from the World Wide Failure Exeeq8/WFE) [33]. Both matrix and fibres
are considered isotropic and their mechanical ptmseare given in Table 1.



Table 1 Mechanical properties of fibres and matrix.

Fibre  Transverse modulus; (GPa) 74
Poisson’s ratioy; 0.2

Matrix Modulus,E,, (GPa) 3.35
Shear ModulusG,, (GPa) 1.24
Poisson’s ratioy 0.35
Compressive strengthy,. (MPa) 120
Tensile strengthyy (MPa) 80

As the aim of this paper is to investigate the svanse behaviour of composite laminae, the
2D DEM modelling is thus carried out under plan&ist condition. The elastic properties

given in Table 1 are measured under plane stresditmmn [6] and they can be converted to

properties under 2D plane strain condition by [34]:

_ _ Vfm
Vf,m B 1+ Vf,m (22)
Efm = Epm(1— 17]g,m) (23)

Using Egs (22) and (23) together with the matasralperties in Table 1, the Poisson’s ratio
and Young’s modulus for both fibre and matrix ungkime strain condition are calculated as
vr = 0.166, Ef = 71.96 GPa, v, = 0.259 and E,,, = 3.12 GPa, respectively.

In the calibration process, it is convenient tomef ratio between the normal and tangential
stiffness for both particles and parallel bonds as:

a= (kP /k) = (k"/k*) (24)

particles parallel bonds

Fig. shows the relationship between the ratiand macroscopic elastic properties obtained
from axial compressive tests of the DEM model otriravhen normal stiffness for particles
and parallel bonds are kept constant at 3.12 GPean be seen that asincreases the
Young’'s modulus decreases while Poisson’s ratioeeses for the chosen range of values.
As both elastic modulus and Poisson’s ratio varthwi the calibration is carried out as
follows. First, the value of: is chosen from Fig.6a to produce the desired Boisgatio.
Then,a is kept constant and a series of simulation @& sconducted with a range of normal

stiffness(K™ = k,(lA) = k™) as shown in Fig.b. As can be seen in Fig.b tleéss®n’s ratio is
independent ok™ and remains constant for all chos€h, whereas Young's modulus
increases with thE™. The target value df,,, can then be found.
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Fig.6 (a) Influence of normal stiffness to shedfrstss ratiox, on the Young’'s modulus and
Poisson’s ratio; (b) Effect of normal stiffnessYoung’s modulus and Poisson’s ratio.

Same procedure is repeated to find the elasticepties of fibore and the microscopic
parameters obtained are provided in Table 2.

Table 2 Micro-parameters for particles and parditeids.

Fibre  Matrix
Particles kW /1A 2.5 5
kP (GPa) 70 4
Parallel bond  k"/k* 2.5 5
k™ (GPa) 70 4

In order to further verify these parameters, a micaeshear test is performed on the DEM
model to predict the shear modulds,, of the matrix. The elastic properties for bothrd
and matrix obtained from DEM are very close to thivem experimental [33] as listed Table
3.

Table 3 DEM predictions of the elastic propertiéfilme and matrix.

Experimental 33 DEM Error (%)
E; (GPa)  71.96 72.2 0.33
Vg 0.166 0.170 2.3
E, (GPa) 3.12 3.16 1.2
Vim 0.259 0.262 1.1
G, (GPa) 1.24 1.21 2.4

3.3 Parametric study of bond strength

In order to enable the DEM model to predict théufai behaviour of a material, it is also
necessary to correlate the local bond strengthmpetexs to the DEM model’s macro strength.
Normally two failure modes are predominating in @asite laminae under transverse
loading,i.e., matrix cracks and fibre/matrix debonding. Thenmatompressive strengtNp,

is given in Table 1. Mohr-Coulomb failure criteridvas been widely used to describe the
plastic deformation of the epoxy matrix [7, 20, ,24hd is adopted to determine the strength
of the parallel bonds for the matrix in the DEM rebdWhen using the contact softening
model to represent the fibre/matrix interface, bwiterfacial strength and fracture energy
must be known. Unfortunately, these propertiesdéfeult to obtain from simple laboratory
experiments [35]. In this study, the interfaciaksgth is assumed to be equal to the cohesion
of the matrix,c, and according to the Mohr-Coulomb failure cribarithe relationship
between the cohesion and matrix strength is giyen b

1—sing
¢ = Yme (25)

2cos@

whereg is the friction angle and can be related to thetine surface anglgby:
12



E=45+¢/2 (26)

Typically 50° < & < 60° is found for epoxy matrices [7], and thpss between 10and 30.
Assumingp = 23° gives a cohesion of 39.7 MPa. Wang and Tonon [36] found that micro
tensile strength of the bond directly determines #itrength of material regardless the
magnitude of bond shear strength. Therefore, fapkcity 6, = 7, is assumed. Then a series
of uniaxial compression tests are carried out wlitferent bond strength values to find the
relationship between bond strength and materigngth, as shown in Fig.7. The macro
strength of the DEM model is the maximum value xaabstress acting on the walls at peak
load. Fig.7 indicates that macro strength incredisesrly with the bond strength. At this
stage, the smallest time stap, is used. The effect of time step on macro compress
strength is studied in the next section.

3.4 Parametric study of time step

An important consideration in the DEM modellingtise time step. DEM uses a central
difference time integration approach to solve tlipiations of particle motion, and to
maintain a stable integration the time step museroeed the critical time stéys,.,.;;:

Atcrit < m/K (27)

whereK is the contact stiffness amndalis the particle mass. Choosing a suitable time istef
particular importance because it has direct effecthe total computational time. The effect
of time step on the macro strength is thereforeestigated, trying to find a large but still
valid time step and thus reduce the computatiomad.tThree values of time step are chosen,
At; =93 x 1075 At, =1 x 107%sand At; = 1 x 107%9s. The first one is the default
value calculated by the software itself [25] basedmass of particles and contact stiffness
according to Eg. (27). Note that, for all time stefhe loading velocity is kept constant at 5
mm/s. Fig.7 shows the macro strength of the samptier these three different time steps,
with matrix compressive strength and cohesion glkdted. It is demonstrated that the
strength values are almost identical for all tinigps for low bond strength. The two cases
with At, andAt; almost give the same strength while they are botarted fromAt, about
10% at bond strength of 85 MPa. Thus the choiderad step needs to be further investigated
by plotting out the complete stress-strain curvedhie later section of modelling failure
process.

13
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Fig.7 Influence of bond strength and time steph@macro compressive strength of a DEM
model.

4. DEM modelling of damage evolution in RVEs undertransverse compression or
transverse shear load

4.1 Prediction of effective elasticity

Before performing any simulations to predict théluf@ of composite materials, it is
important to ensure that DEM is capable of acclyapredicting the effective elastic
properties. To investigate the size dependencheoélastic properties, a set of representative
volume element (RVE) with different size are getestausing the approach developed in
previous study [37] which can overcome jamming fiamd can be used for fibres with any
inter distances. In each RVE, variable fibre disrsetare used according to a normal
distribution with a mean fibre diameter of Guén and a standard deviation of 0.3106. A
typical RVE of DEM model under transverse comp@ssind transverse shear is illustrated
in Fig.8. Regarding the size of RVE, Gonzalez ahdrta [7] suggested that an RVE size of
63 um X 63 um is large enough to accurately represent the rseopic material. This
suggested size is adopted first and the effectiastie properties are then computed for
different RVE sizes range from 30n x 30 um to 100um x 100 um, trying to identify the
smallest valid RVE in order to reduce DEM computadil time. Each RVE consists of three
phasesj.e., matrix, fibre and interface. Calibrated micro ldEparameters for matrix and
fibres in Table 2 are used, and the micro DEM patans for the fibre/matrix interface are
assumed to be the same as those of fibres.

14
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Fig.8 A RVE of DEM model subjected to: (a) transeecompression and (b) transverse
shear (arrows indicate the loading directions).

Fig.9 shows the elastic properties calculated udifigrent RVE sizes. The RVE of each size
is tested five times, and each time the RVE hasfereht random distribution of fibres. The
secondary horizontal axéson the top represents the relationship betweersitteelength of
RVE, L, and the mean fibre radius, as:

5= - (28)

As can be seen from the Fig.9, both Young’'s modaha shear modulus of the RVE with a
size of63um X 63 pum are close to the experimental results with littiéedences from one
model to another. The discrepancy is likely caubgdhe change of fibre arrangements,
which leads to increase or decrease of the numbesrdacts and particles representing the
fibres, matrix and interface. However, our DEM mlogéll gives good predictions of
Young's modulus and shear modulus, compared witM RESing the same approach for
generating random fibre distributions [37]. In teisidy, the predicted Poisson’s ratio seems
more sensitive to RVE size and the variation coelach 19%. Similar findings from other
numerical models have also been reported. FornostaNongsto and Li [38] found that the
predicted effective properties using various thecakand numerical methods were smaller
than the experimental data.
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4.2 Prediction of stress-strain curves and damage rggression under transverse
compression

In this section the failure of RVESs subjected smBverse compression is studied. The RVEs
used in this section and next section have anichdrgize of63 um x 63 um. The effect of
time step on the stress-strain curve of a typicdERwhich is of particular importance for
saving computational time, is examined in Fig.10thvd the elastic region (under 20 MPa),
the simulation results are almost identical andagvell with the experimental one. The final
failure appears to become more brittle when tinepstare reduced, confirming that small
time steps lead to better redistribution of thesdrwithin the system and the modainigre
stable. For all the DEM simulations in Fig.10, thean compressive strength is 156.3 MPa
which is greater than experimental result by 7%er&fore, the time step &t = 1 x 107 %s

will be used in later simulations. The nonlinearchrnical response of the stress-strain of the
DEM model is not well captured comparing with expental data. The nonlinear behaviour
of the curve would be more obvious in case of larmjnal shear and off-axis loading.
However, the nonlinear contact law could be intcatlin the future to solve the problem.
While geometric nonlinearity (e.g. fibre rotatias)not important under transverse loading.
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Fig.10 Stress-strain curves from DEM simulationsgislifferent time steps compared to
experimental results [33].

The influence of fibres distribution in the RVEs e mechanical response is also studied by
comparing the results obtained from five differdifitre arrangements. The stress-strain
curves of all five RVEs under transverse compresaie@ shown in Fig.11. It can be seen that
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the failure strength ranges from 151 MPa to 167 MR&ng the smallest and the largest
differences of 4% and 14%, respectively, in congmariwith the experimental results. An
interesting outcome of using DEM is that the tramse compressive failure strains of the
RVEs are also obtained whilst they have not beasamably achieved in previous studies
using FEM due to numerical convergence difficulfigs22, 39]. To show the accuracy of the
DEM modelling, the results are also compared with tecent FEM models [7, 40] in Fig.11.
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Fig.11 Stress—strain curves of five RVEs underxiala&compression.

Another major feature of DEM modelling is its capidpto predict and visualise the damage
initiation and propagation process. Taking RVE 83a example, Fig.12 shows the damage
progression in the composite under transverse cessmn, where a stress-strain curve and
the damage profiles corresponding to the threeacheristic loading points are also included.
Point (a) in the stress-strain curve representsstate of a loading strain of 0.7% and its
corresponding damage pattern is shown in Fig.1Raamh be seen that the fibre/matrix
debonding (indicated by red dots) appears to berthjer damage mechanism at this stage.
After this point, the matrix cracks starts to appesspecially in the highly stressed areas
where fibres are too close. The cracking lead®ttam fluctuations in the stress-strain curve
as indicated from the figure. Then, interfacial aleting and matrix cracks are emerged
throughout the RVE before reaching the peak stherag shown in Fig.12b. The inclination
anglea. of the critical plane is about $at this point, and it is a little smaller than fadure
plane angle=56.9 calculated from Eq.(26). Finally, more matrix da@ppear with further
increase of loading and the final failure is shawirig.12c. From the last graph one can see
that there are several possibilities for develo@ngitical plane across the RVE. The failure
mode shown in Fig.12c is similar to the final accleted failure of the RVE in FEM when
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perfectly plastic matrix assumption is used [19pwdver, it is quite different from those
models using other failure criteria to representringielding, such as Mohr-Coulomb model
[7] and Drucker-Prager [40].
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Fig.12 Damage evolution under transverse compnesdidifferent loading strains: (a) 0.7%
(b) 1.3% (c) 1.7%. (Red dots are fibre/matrix debing and black dots are matrix cracks)

4.3 Prediction of stress-strain curves and damageaggression under transverse shear

It is very difficult to carry out a laboratory tesihh a composite lamina/laminate under
transverse shear. Finding a robust numerical metbodimulate the test is then always
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beneficial, in particular, to capture the behaviobithe lamina until failure. Many factors
could alter the damage behaviour of a lamina und@nsverse shear including fibre
arrangements and fibre/matrix interface properdgempts have been made by researchers
to find a relationship between the transverse slsg@ngth and transverse compressive
strength. Some researchers assumed the transuerae strength$;, to be half of the
compressive strengthY;, i.e., S; = 0.5Y;, [6], whereY, is the transverse compressive
strength of the lamina. This is also adopted ia thudy. The transverse compressive strength
of the lamina is 145 MPa (see experimental streasascurve in Fig.10), therefore, we
assume thai; = 72.5 MPa.

The transverse shear of five different RVEs wittiedent fibre distribution is modelled and
the stress-strain curves are shown in Fig.13, alaitlythe FEM results extracted from [19]
and [41] for comparisons. The figure shows thatthé stress-strain curves from DEM
modelling are almost identical and linear befor@cheng a loading stress of 35 MPa. A short
line depicts the experimental initial shear moduualso plotted. It is evident that the current
simulation results are closer to the experimertiebs modulus. After this point, the stress-
strain curves of the RVEs start to divert from eatier. This discrepancy is attributed to the
development of micro-cracks that, similar to whaswobserved from the simulations of
transverse compression described in the previattgoae depends on the fibre distributions.
The shear failure strength slightly varies for eliéint fibre arrangements. In addition, for all
the RVEs in Fig.13 the mean shear strength is 7@,M¥ich is just slightly smaller than
experimental result &f; = 72.5 MPa, and about 9% less than the strength predictEib]
and about 19% higher than that from [41] .
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Fig.13 Transverse shear stress-strain curve usuegdifferent fibre arrangements compared
with [19] and [41].

While the stress-strain curve and damage evolutioRVE #3 under transverse shear is
shown in Fig.14. The stress-strain curve dropattffa) due to matrix cracking at the right-
bottom of the RVE close to the edge. However, thégk does not propagate longer because
it is constrained by the two surrounding fibrestetfthis point, more interfacial debonding
occurs until the peak point (b). Afterwards, matrmacks appear mainly in the middle of the
RVE and propagate fast and diagonally betweendjbdeading to the ultimate failure at point

(c).
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Fig.14 Damage evolution under transverse sheaW& &3 at different strain stages: (a)

0.87%, (b) 1.51%, and (c) 2.13%. (Red dots arefibatrix debonding and black dots are
matrix cracks)

4.4 Effect of RVE size on failure strength and failre strain

As an attempt to reduce the computational cost, RWEh sizes smaller than 63n x 63

um are simulated. Variations of compressive strefgttive different RVE sizes are shown
in Fig.15a. The results show that the size of R¥E $light influences on the failure strength

and there is no obvious trend of convergence ®IRWE size. The smallest RVE of g x
30 um is most diverted away from the experimental iesuhile the RVE of 5um x 50 um,
has a mean compressive strength closer to the imem@al result than 63m x 63 um.
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Fig.15b shows the failure strains for the RVEs iffiecent sizes. The overall trend of results
tends to be higher than the experimental one amdrtiallest RVE has the largest difference.
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Fig. 16 shows the variation of transverse sheangth with RVE sizes. As can be seen from
the figure, the mean values of shear strength efiitte RVEs show fluctuations rather than
clear convergence towardg = 0.5 Y., although the closest mean shear strength is fhem
largest RVE of 63um X 63 um. In summary, the RVEs of §3n x 63 um give overall better
predictions of failure strength and failure straiasd this further confirms an RVE size of 63
um X 63 um should be used in the next sections of DEM sitiana of biaxial loading.
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Fig.16 Transverse shear strength of RVEs with difiesizes.
5. DEM modelling of RVEs under biaxial loads

The ultimate goal of this paper is to visualise ta@nage evolution and predict the failure
envelop of composite laminae under biaxial loads.akcurate and reliable failure criteria
have been pursued for the past few decades, aeflaahhas been made by the organisers of
the first [2, 42] and second [1] WWFE to compare texperimental results with the
predictions from different failure criteria. 19 lize criteria were evaluated and ranked
according to their capability to predict the stresgin curves under different uniaxial loading
as well as the failure envelope in a series of tastes including biaxial loading. The
comparisons revealed that the predictions of maiyre criteria varied considerably from
experimental results. WWFE also highlighted the antgince of capturing the progressive
failure in composite laminates. Generally, it wasrfd that most failure criterions performed
well when damage initiates in a single ply followiatimately by the catastrophic failure, or
brittle failure. However, most criterions were natcurate enough when noticeable
nonlinearity occurred before the final catastropfadure. Therefore, it is important to
develop a suitable numerical method to capture\asuhlise the entire process of damage
initiation and progression in composite laminates.
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5.1 DEM prediction of the failure envelope

For the purpose of modelling biaxial loads usingM)Ehe RVEs are subjected to a
combination of transverse normal stress, and transverse sheags, to obtainoc,,-1,;
failure envelope. The RVEs have a size ofu@3x 63 um. The DEM results are compared
with predictions from two theoretical criteria déyged by Hashin [3] and Puck and
Schirmann [5].

Hashin criterion is one of the early failure thesrthat can distinguish the fibre and matrix
fracture initiation in composite materials, and leas further subdivided into two damage
mechanismsj.e., tensile and compressive failure modes. Assunigogropic composite
lamina in they-z (or 23) plane, the two dimensional Hashin failtireory of a lamina under
combined transverse normal stress and transveese ale expressed as:

022\ (T23)2

22 _23) — > 2
<YT> + S, 1 0,5, =0 (29)
022\ ( Ye )2 022 <T23)2
<25T> * 25, Y, + Sr Q22 (30)

whereY, andY; are the transverse compressive and tensile stiengt the composite,
respectively, and; andS; stand, respectively, for the transverse and lodgial shear
strength. Despite the capability of this failuretesion for predicting the damage in the
lamina under normal and transverse shear, numetadges over the last decades show that
it does not always agree with experimental readtarately, especially the failure envelope
studied under combined transverse compression rapthine shear. This drawback of the
Hashin criterion is due to neglecting of determworatthe actual fracture plane and its
orientation. And using a quadratic approach to aotéor the interaction between the stress
invariants may underestimate the material strengtiereas any higher polynomial degree
would lead to more complicated expressions. Witlidasing computational capacity, many
models, therefore, have been proposed to improvshiHacriterion including the one
proposed by Puck and Schiurmann [5]. Puck’s modeased on Mohr-Coulomb hypothesis
and assumes that fracture is triggered due to thmal stresss, and tangential stress,
acting on the failure plane with a specific inctina angle to the material plane, which is the
key element of the model. The criterion is exprdsse

2 2
\/Kl _ 2p,, (1 + pJ.J.)) Un(f)l N Iz(l -;CPJ_J_) Tt(f)l

Yr Ye
o, =0 (31)
n 2p, (1 +pyy) 6, (&) = 1
Ye
2 2
J[(Z(l ‘;PJ.J_)> Tn(f)l + lzpll(]};-l_ pi1) Jn(f)l
¢ ¢ g, <0 (32)
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Y, On (‘E) =1
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with

0u(E) = 022 D) 4 1ysin(28) 33)

sin(2
7e(§) = —T23 g + 723008(2$) (34)
whereSy is the fracture resistance of the fracture plarngestied to the pure transverse sheatr,
¢ is the fracture angle plane, apds friction angle as in Eq.(26). The fracture anglane in
the case of biaxial loading is slightly differembrn that for uniaxial compression in Eq.(26)
and given by:

5=45+@ (35)

in which 8 = arctan(2t,5/0,,). Note that in case of uniaxial loadingz=0, EQq.(35) is
reduced to EQ.(26)p, ; is the inclination coefficient which does not haweclear physical
meaning and it is usually fitted to tlte,, ;) failure slope angle that is experimentally
deduced. However, Puck and Schirmann [5] recomngetalesep, , in the range of 0.2-
0.25 for a typical glass-fibre/epoxy composites, = 0.22, a value in the middle of the
range, is used in the study.

To use these two failure criteria, the materidufa strengths are required. In this study, the
input failure strengths are those obtained from D&Mulations of RVE #1, given in Table
4.

Table 4 Failure strength used in Hashin and Pubkréecriteria.

Y. (MPa) 159.5
Yr (MPa) 35
Sr (MPa) 715

For biaxial loading, there are certain possiblediog paths. For example, the normal and
shear loads may be applied proportionally at thmeséime, or the loading could start by
applying uniaxial compression until a required coasgive stress, then transverse shear is
applied while the compressive stress is kept cohsta vice versa. The effect of loading path
on the failure envelope has been investigated expatally in [43] and numerically using
FEM in [44, 45], and all concluded that the loadpagh did not affect or change the failure
envelope significantly. However, the influence okding path in DEM modelling is not
studied in this paper.

Two loading paths are used in this study to sineukatbiaxial test in DEM, as shown in
Fig.17. The first path (Fig.17a and b) is used gply transverse tension and shear on the
RVE, the results of which are shown in Part-A of.E8. Following the same procedure as
described in Section 4.3 for the pure shear thstparticles on the right- and left-hand side
edges of the RVE are taken as boundary particlas dhe subsequently subjected to a
constant velocity tangent to the edges until trerdd shear stress is reached. Once the target
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shear stress is reached, the unbalanced forcecbfgaaticle on the boundary is replaced by
an external force of equal magnitude but in theosfip direction, see Fig.17b. Finally, a
velocity normal to the edge is taken by the rigind left-hand side boundary particles to
apply transverse normal load until the final fag#luas shown in Fig.17b. By varying the
initial shear stress applied on the boundary dagjdhe failure envelope of Part-A in Fig.18
is constructed. The second loading process is tsaimulate transverse compression and
shear quadrant only,e.,, Part-B in Fig.18. In this loading method, thghti and left-hand
side walls act as loading platens and their hotedanoving velocity is controlled by a servo-
mechanism to maintain a constant transverse cosiprestress, see Fig.17c. Then, a
constant velocity is applied on the right and beftindary particles until the final shear failure,
as shown in Fig.17d.
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Fig.17 Loading schemes used to perform biaxiabt@strowse» represent external force
and arrows» represent velocity applied): (3)sfiear and tension in Part-A, and (c)-(d)
shear and compression in Part-B.

In the DEM simulations, the strength is the pedki@@n the stress-strain curve and the final
failure takes place when the curve drops by 20%hefpeak point,gg., point ¢ in Fig 12a).
The corresponding failure envelope is then gendrael plotted in Fig. 18 together with the
predictions from Hashin [3] and Puck and Schurm&hfailure criteria.
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It can be seen that the strength of the materedipted by DEM is generally lower than that
predicted by the two failure criteria when the miales subjected to transverse tension and
shear (in Part-A region), while it is higher where tmaterial is subjected to transverse
compression and shear (in Part-B region). Thixeeted since the current DEM modelling
has considered residual strength attributed tofactyon and contact between the fractured
surfaces that occurs after a bond is broken. Theclgaparticle interaction force depends on
the friction coefficient as well as the stiffnedstivese two particles. Therefore, collectively
the material can sustain more compression and sirehrthis leads to an increase of the
ultimate failure strength of the RVE. The frictiand sliding free contact behaviour clearly
emerges only in presence of compression, whichamlwhy a better comparison of the
strength is observed in Part-A. In fact, the padtife friction and contact behaviour in
compression and/or shear is closer to physicat tesilst the analytical methods usually
cannot take it into account. However, Puck’s cigtewas among the theories that performed
well for predicting the strength of unidirectiodamina subjected to transverse normal stress
and in-plane shear as compared with experimensailtee[46]. In this study the criteria is
further validated against our virtual modelling uks for another type of biaxial loading
scenario of transverse normal and transverse $#beding.
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Fig.18 Failure envelope of a fibre-reinforced cosipwlamina in the,,-t23 Stress space.

5.2 DEM visualisation of damage evolution

In Puck’s model failure under transverse normal #&rahsverse shear depends on the
orientation of failure plane which in turn depermtsthe magnitude of the normal and shear
stresses acting on the failure plane surface. Tihissimportant to investigate the final failure
planes of a RVE. The crack paths discussed ingidsion is for RVE #1 under different
loading combinations (at,5/0,, ratio) as shown in Fig.19. Each subfigure is asgediwith

a loading combination along the failure envelopavwahin Fig.18, such as C1, Al, A&c.
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Fig.19 Accumulation of damages in the compositesunlifferent loading combinations in
Part-A. (Each subfigure represents a data poitherailure envelope according to its label;
Red dots represent fibre/matrix debonding and bibxtk represent matrix cracks.)

Fig.19C1, which is for the RVE under uniaxial tre@se tension (point C1 in Fig.18), shows
that the failure plane is found to be perpendictdahhe loading axis and propagates between
fibres in the middle of the RVE.

After applying transverse sheare(, 7,5/0,, = 2.1 at Al), the failure plane is still about 90°
but not literally in the middle, and another fadyrath also appears as shown by the circle ‘E’
in Fig.19A1.

By increasingr,;/a,, ratio to 2.13 and 4.63f has been found that the second failure path
propagates longer in the RVE and eventually twdicedrcrack paths present, as shown in
Fig.19A2 and A3.

Finally, the accumulated failure of the RVE subgecto pure transverse shear is plotted in

Fig.19C2 where the plane angle is found to be ataelb?, and the failure path is somehow
diverted when fibres are present at the crack tip.
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Fig.20 Accumulated cracks in the composite undiéerdint loading combinations. (Each
subfigure represents a data point on the failuvelepe according to its label; Red dots
represent fibre/matrix debonding and black dotsasgnt matrix cracks.)

The accumulated cracks in the composite subjeabedombined transverse shear and
transverse compression as well as pure transverapression (Part-B of Fig.18) are shown
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in Fig.20. Similar to what has been used aboveh sabfigure in Fig.20 is associated with
one data point in Fig.18.

For low compression loadi.€. 7,5/0,, = 2.5 or load case B1) in Fig.20B1, the criticaluiiee
plane is oriented at an angle of about 50° to dlaglihg axisi(e. y-axis), as indicated by the
arrow R1. However, s fracture band cannot propatateigh the fibres, the orientation alters
slightly at the end and this variation is mainlysad by the fibre distribution, see arrow R2.

For smaller transverse shear and compression ra&iqoint B2 in Fig.18, the initial fracture
angle is almost the same as the previous case. \Wowanother fracture band (which is
sindicated by the arrow R5) appears and followditeeone, see Fig.20B2.

In Fig.20B3, the orientation angle of fracture @as reduced more to become about 42° and
also more cracks take place just before the fiadure as indicated by the elliptic E1.
According to EQ.(35), the fracture angle decreasbkent,;/0,, is reduced, and this is
confirmed by our DEM simulation resulisg., the fracture angle is reduced from 50° to 42°
with increasing compression stress.

Failure patterns in Fig.20B4 and B5 are similathiat in Fig.20B3 except a new fracture path
appears (indicated by the arrow R7) and has a stoglé with y-axis.

Finally, it is found that with increasing transwversompression stress in Fig.20B6 and B7
more intensive cracks tend to occur between fildeish reduce the average fracture angle,
In addition, more diverse crack paths appear (atdat by the arrow R8 in Fig.20B6) and the
failure band becomes bigger than above cases.

The final failure of uniaxial compression stressaiso included in and shown in the Fig.
20C3. The damage evolution of this loading casgnslar to the one that has already been
discussed in Section 4.2. As can be seen from BzB2two main failure paths, R9 and R10,
are present. The crack path R8 runs through the RME it is constrained by fibre F1 and

leads to new cracks occurring almost perpendic¢alé#ne initial path.

5.3 Quantitative analysis of damage events

A quantitative analysis of fibre/matrix debondirgsd matrix cracks is also carried out for
each loading case in Part-A and Part-B of Fig.1®| the results are plotted in Fig.21 and
Fig.22, respectively. Each column of the figurewstdhe number of interfacial debonding

and matrix cracks of the corresponding loading taseég. 18. The matrix cracking includes

both normal and shear breaking of bonds betweerp#ngcles that represent the matrix.

Columns labelled from Al to A3 represent biaxiadde and are located in Part-A, whereas
columns Bl to B7 are for those in Part-B and colsn@i, C2 and C3 are for uniaxial

transverse tension, shear and compression, resglgcti

As shown in Fig.21 for the loading cases in Parth®&, number of fibre/matrix debondings is
significantly high in the case of pure transvemesion {.e., column C1) and more matrix
cracks are found in transverse shear, (i.e., colG2y While for combined transverse tension
and shear, fibre/matrix and matrix cracks numberease steadily with increasing ratio of
T,3/0,, from Al to A3. It is important to mention that all loading cases the fibre/matrix
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interfacial debonding is the main damage mecharbsfore the peak stress as the bond
strength of the fibre/matrix interface is much derathan that of the matrix. While the matrix
cracks mostly happen after the ultimate stresdeamds to the final failure.

M fibre/matrix debonding ® matrix cracks
35.01

30.01

25.01
20.01
15.01
10.01
5.01
0.01 T T T
c1 Al A2 A3 Cc2

Loading condition

Number of cracks (X100)

Fig.21 Number of fibre/matrix debonding and matnigcks in loading cases in Part-A.

For Part-B of the failure envelope, it is found tthhe number of cracks in matrix has
increased significantly with increasing compresdaads from B1 to B6, as shown in Fig.22.
Afterwards, the cracks number is almost the sam#hatsin uniaxial compression loading
case, C3. The number of fibre/matrix debonding asoeases with load, but not as fast as
matrix cracking. These results are reasonable @&scbgasing the confining compression load
applied on the RVE in the first step (see Fig.1dula certainly leads to more cracks before
the second step. In addition by increasing theaingtress in the bonds (that are not broken
yet) before applying shear load on the RVE in theosd step, would make them more
susceptible to break in the subsequent shear kigt. confining stress also increases strain
softening which continues until the final failurend thus more normal and shear cracks
would occur. This explains the increase of thel totenber of damage events from B1 to B7
in Fig.22.
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Fig.22 Number of fibre/matrix debonding and matnigcks in loading cases in Part-B.
6. Conclusions

A 2D particle model based the discrete element ate{PEM) has been developed to study
the microscopic behaviour of unidirectional fibreinforced composite laminae under
different loading conditions. Calibration procesdiist carried out to relate micro parameters
of the DEM models of fibre and matrix to macro pdjpes of the materials. The critical size
of RVE using DEM is investigated that a reasond®\éE size of63 um x 63 um can be
used provided that the material constituents aexipusly calibrated. This method shows
good prediction of the elastic modulus of compositgerials as compared with FEM models
using the same approach for generating random diistabutions.

A micromechanical analysis is then carried out nwestigate the microscopic failure

mechanisms of a composite laminae of MY750 mateixforced by E-glass fibres under

transverse compression and shear loading. Thessttesn curves are also produced for five
different RVEs with different fibre distributionfrom which compressive and shear strength
has been obtained in together with the failureirsirdt is found that DEM can better predict

the stress-strain response of the composite umdesvierse compression than FEM as it
clearly shows the compressive strength and compeessilure strain on the stress-strain

curve. The shear strength has also been predietedious FEM work, such as [19], shows
more nonlinear behaviour of the stress-strain utrdesverse shear loads than DEM.

The DEM simulations have shown the microscopiaifailmechanisms of the composite and
the detailed damage evolution in the RVEs. For @hsverse compression and shear loads,
interfacial debonding occurs first and then matniacks become dominating in areas where
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inter-fibre distances are small. Eventually, irderdl debonding and matrix cracks are
merged together to form the catastrophic failurthefRVEs.

The failure envelope of the composite is computechfDEM simulations under transverse
compression and transverse shear. The resultsnpeds@ this study show that DEM can be
used as a useful tool to predict the failure erpelof a general composite laminae subjected
to complex biaxial combination of transverse normatl transverse shear loads. Although
the results tend to be underestimated for transvierssion and shear whilst overestimated for
transverse compression and shear when comparedtadthin and Puck failure criteria, they
are still reasonable as the post failure mechamsthe DEM modelling is closer to that in
real experimental tests. The capability of DEM tecwaately predict the macroscopic
response as well as microscopic failure mechanmaies it a very useful tool to explore the
effect of constituent properties on the behavidwomposite laminae. This is important from
a material viewpoint to choose critical parametergnprove and optimize laminae stiffness
as well as strength which are very difficult angh@xsive to obtain through experiments.

Extending the current 2D DEM model to 3D is esséniti the future when modelling
composite laminates under more complex triaxialdéoavhere delamination as well as
transverse cracking needs to be included. A fudlyetoped 3D DEM model would be able to
visualise the damage evolution and predict theifaienvelope of composite laminates that
are selected in the cases in WFEE-II. By doingitsaims to identify the reasons for which
the existing failure criteria are not accurate éntain loading cases and subsequently modify
them or develop a new universal failure criteridratt takes into account the damage
progression for higher accuracy.
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