Losing Control: The Case for Emergent Software Systems using
Autonomous Assembly, Perception and Learning

Barry Porter and Roberto Rodrigues Filho
School of Computing and Communications
Lancaster University
Lancaster, UK
Email: {b.f.porter, r.rodriguesfilho}@lancaster.ac.uk

Abstract—Architectural self-organisation, in which different
configurations of software modules are dynamically assembled
based on the current context, has been shown to be an effective
way for software to self-optimise over time. Current ap-
proaches to this rely heavily on human-led definitions: models,
policies and processes to control how self-organisation works.
We present the case for a paradigm shift to fully emergent
computer software which places the burden of understanding
entirely into the hands of software itself. These systems are au-
tonomously assembled at runtime from discovered constituent
parts and their internal health and external deployment envi-
ronment continually monitored. An online, unsupervised learn-
ing system then uses runtime adaptation to explore alternative
system assemblies and locate optimal solutions. Based on our
experience to date, we define the problem space of emergent
software, and we present a working case study of an emergent
web server. Our results demonstrate two aspects of the problem
space for this case study: that different assemblies of behaviour
are optimal in different deployment environment conditions;
and that these assemblies can be autonomously learned from
generalised perception data while the system is online.

1. Introduction

Modern software systems are increasingly complex, and
are deployed into increasingly dynamic environments. In re-
cent years this trend has driven research in autonomic, self-
adaptive and self-organising software systems [1], [2], [3];
this aims to move selected responsibility for system man-
agement into the software itself, thereby reducing the burden
of complexity on human developers or administrators, and
increasing responsiveness to dynamic environments.

One promising approach in this domain is the use of self-
adaptive runtime software architectures, in which different
software components are dynamically composed into the
running system according to its current context. In these sys-
tems, there are multiple valid configurations of components
that form a working system, but particular configurations
perform better or worse in different deployment conditions.
Recent examples of this approach include [4], [5], [6], [7].

In state of the art work, however, the way in which these
systems are orchestrated relies on various forms of explicit
control: models that describe adaptation states; architecture

description extensions to specify autonomy; and policies to
express runtime choices. We argue that these approaches
continue to require substantial, detailed understanding of
systems by humans, so that corresponding control strategies
can be specified. This requirement is fundamentally opposed
to the core ideas behind autonomic computing, which are
borne of the increasing difficulty for humans to understand
modern software systems in dynamic environments.

We present a novel approach to online software assem-
bly, in which the understanding and control of that assembly
is pushed deeply into software itself. We assemble software
from a diverse palette of small building blocks that each
provide a different element of functionality, where each
such block has a pool of available micro-variations (the
same behaviour implemented differently, such as memory
cache components with different replacement algorithms,
or stream processors that do or do not make use of a
caching component). We then continually experiment with,
and perceive the effectiveness of, different assemblies in
various runtime conditions; we then see emergent designs
of software appearing over time as external stimuli change.

Rather than focusing on human modeling of autonomy,
we thus enable machines to develop their own models,
understanding, and methods of control. By losing human
control, we lose the ability to understand exactly how a
given system works; what we gain, however, are software
systems that are truly responsive to their environments,
including the completely unexpected. In other words, instead
of explicitly programming software in how to behave, and
rather empowering it to learn how to behave, we achieve a
level of freedom for systems to locate their own solutions in
any conditions. We present two contributions to this goal:

e A definition of emergent software systems, in

which software is abstracted into the key elements
needed for machines to model, understand and con-
trol it. To test the limits of this we take a pure
approach in which everything is learned by the
system from experience, even if occasional mistakes
are made in doing so. By giving away control to this
extent, we correspondingly gain maximum respon-
siveness of software to actual deployment conditions
— including intelligent responses to the completely
unexpected, with no explicit programming to do so.

[pre-print version]

Appears at IEEE SASO 2016

o A framework to orchestrate emergent software,
using pluggable units for assembly, perception and
learning. We present our experience to date on us-
ing this framework in the context of an emergent
web server, a system that is autonomously assem-
bled from small, dynamically-discovered component
parts. We evaluate the resulting responsiveness of
this system in a range of different conditions.

Our work is the first to examine complete behavioural
emergence, learning how to form systems from small com-
ponents, in which no prior models or policies exist. This
paves the way to significantly reducing human involvement
in software development, and increasing responsiveness of
software to the actual conditions encountered at runtime.

Our work is also strongly grounded in reality: our pro-
totype implementation is available as open-source software
and comprises over 3,000 lines of well-modularised and
extensible code, including a real working emergent web
server system. The specific version used for this paper
is available at [8], complete with instructions on how to
reproduce all of the experimental results reported here.

The remainder of this paper is structured as follows. In
Sec. 2 we discuss related work, and in Sec. 3 we present
our definition of emergent software and our corresponding
framework design and implementation. In Sec. 4 we then
evaluate the system’s ability to continually assemble optimal
software as external stimuli change. We conclude in Sec. 5.

2. Related Work

While autonomic, self-adaptive and self-organising com-
puting are now well established, there is relatively little work
in runtime software composition (compared to far more
work on autonomous parameter tuning). The majority of this
work is model-driven, relying either on substantial human-
specification; offline training regimes with historical data; or
simple online heuristic search algorithms within a specified
model. We survey the most closely related work here.

In [9], Grace et al. propose human-specified adaptation
policies to select between different communication inter-
faces in a flood monitoring scenario. While the use of such
policies is viable in simpler systems, this becomes infeasible
in more complex systems where the set of component inter-
actions is much larger. By contrast we use an online learning
approach to discover an adaptation policy at runtime.

In [5], Chen et al. propose a weighted decision graph of
service levels to generate model transformations in an online
shopping system. Wang et al. [10], meanwhile, propose a
framework that exploits variability of software configura-
tions to deliver self-repair capabilities through reconfigura-
tion, using a goal model based on requirements to drive this
reconfiguration. We opt for a model-free approach in which
components generate their own current service levels from
which we infer global properties — an approach that reduces
the burden of complexity on humans by avoiding the need to
specify the initial system models and associated parameters.

In [11], Bencomo et al. propose dynamic decision
networks (a form of state machine), alongside a mod-

els@runtime approach to software construction, to decide
at runtime between different network topologies for a re-
mote data mirroring system based on resilience levels.
This requires pre-specification of the decision network to
model configuration options, rather than the online learn-
ing approach we take for emergent software. In [12] the
same authors use this example system to explore Bayesian
prior/posterior differences as a trigger for when adaptation
policies (encoded in dynamic decision networks built for
the target system) do not match online experience. Our
approach differs by building a model of understanding of
the target software from scratch and at runtime, starting
from no information, by assembling software from a pool of
available building blocks and learning their characteristics.

In [13], Hassan and Bencomo use probability functions
with Pareto analysis as a design-time tool in the software
development process to help understand potential adaptation
cases. Again, we avoid this need by using emergence from
a set of building blocks, the characteristics of which are
learned online according to the actual experience of the
software in its deployment. By using small building blocks
of relatively general behaviour we are able to view the adap-
tation problem as one of continuously forming beliefs from
online learning to emerge a system, rather than discretely
specified points of adaptation as part of a design process.

In [7], Kouchnarenko and Weber propose temporally-
dependent logic to control software configuration, with a
domain specific notation to model temporal dependencies
between reconfiguration actions, using a self-driving vehicle
control system as a case study. While the inclusion of such
temporal models may be a useful addition for constraining
adaptation, the models are again specified by human devel-
opers at design time rather than learned at runtime.

In FUSION [4], a feature-model framework is presented
that uses offline training combined with online tuning to
activate and deactivate selected feature modules at runtime
(such as security or logging). Dynamic Software Product
Lines [14] generalise the feature model approach as part
of the software development process, typically using a pre-
specified set of rules to trigger feature activation / deactiva-
tion at runtime. Our approach does not use a feature model,
instead self-organising a pool of components into a working
system; additionally we use pure online learning to make
decisions, avoiding offline training or pre-crafted rules.

In SASSY [15], a self-adaptive architecture framework
for service-oriented software is presented, using a set of
model-based notations to describe software architecture and
its quality of service traits. Further work by Ewing and
Menascé [6] applies runtime heuristic search algorithms
within these models to locate optimal configurations. Our
work differs in using a model-free approach to emergent
software, in which system composition is autonomously
driven by discovering and experimenting with usable com-
ponents and perceiving their contribution to the system.

The idea of ‘organic computing’ assumes scenarios in
which many identical agents need to self-organise. Work in
this area has attempted to define a theoretical framework to
measure emergent behaviour [16], and to define a framework

[pre-print version]

Appears at IEEE SASO 2016

for incrementally adding autonomous control to a given
system [2]. Our work is fundamentally different to this
in seeking emergent design of individual software systems
through their autonomous assembly from many small (and
different) building blocks to form desired behaviour.

Multi-agent systems [17] are a broader category of
work similar to organic computing, again based upon many
identical or similar agents acting independently (but able
to communicate with one another) to achieve a macro-level
goal that is more complex than the individual behaviour of
any one agent. Our work can be positioned as the emergent
design of an individual agent, given many options from
which its behaviour can be assembled. As a result, our
systems have a clear goal (such as ‘be a web server’) but
the way in which they achieve that goal — their composition
of behaviour, or their ‘design’ — is the emergent property
for each environment in which the system finds itself.

We seek a radically different approach to all of the above
by pushing understanding and control deep into software
itself: we provide a sandbox of possibilities from which
systems can emerge, and we expect particular designs to
be learned for each environment that is encountered.

3. Emergent Software Systems

In this section we first define our concept of emergent
software systems and the major challenges that they entail,
based on our experience of building these systems. We then
present our implementation of a framework to realise our
approach, using an emergent web server as an example.

3.1. Problem definition

We define emergent software systems as follows. There
exists a goal G that is expressed in a particular form (goal
definition is beyond our scope here). A set of small software
units SU exists that can be composed together into systems
to achieve this goal, where each uw € SU has one or more
behavioural variations (implementations that offer the same
functionality but using different techniques). One or more u
emits a stream of ‘metrics’ describing the current health of
u, and one or more u emits a stream of ‘events’ describing
the software’s current external stimuli (i.e. inputs being
received or deployment environment characteristics).

The aim of an emergent software system is then to
continually maximise its satisfaction of G by assembling
the most optimal collection of u (where the satisfaction
degree is a result of the combined health of all selected
u as reported by metrics) in each set of deployment en-
vironment conditions which the software finds itself at
runtime (as reported by events). The membership of SU
may change dynamically, and a system should be able to
emerge effectively with no prior information about its goal,
the population of SU, or the set of environments to which
it may be subjected. To push this approach to its limits
we assume that all activities undertaken by an emergent
software system occur on the ‘live’ system, in that system’s
normal production environment, such that it can learn from
what actually happens to the real system in execution.

The challenges involved in achieving this primarily re-
late to the way that we design the learning systems that
orchestrate emergence — i.e. the way in which a system
builds its own self-understanding and correspondingly con-
trols itself. This includes the existence of divergent optimal-
ity, relative and moving performance baselines, autonomous
abstraction of the environment, learning techniques and
challenges, and implications for the software design process.

3.1.1. Divergent optimality. To move toward optimality in
an emergent software system, the application domain should
be such that the behavioural variations of each u offer dif-
fering levels of performance in response to different external
stimuli (input data or deployment environment conditions).
When metrics or events are offered by a given u, the same
metrics and events should be offered by each variant of u
to serve as an equivalent basis for comparison.

3.1.2. Everything is relative. Performance differences of
various available compositions of behaviour are all relative:
there is no baseline at the point of system inception. The
system must therefore construct its own moving baseline
from its own observations, where the benchmark of what is
‘good’ is updated whenever something better is found.
Additionally, what is ‘good’ under one set of external
stimuli may be different under other sets. These stimuli
must therefore be characterised as and when they occur,
so moving performance baselines can be kept for each case.

3.1.3. Abstracting the environment. In order to measure
the effectiveness of different compositions in different oper-
ating environment ranges as stated above, we must first be
able to characterise the features of each such range as and
when they occur. The optimal composition of behaviours for
each operating range can then be determined. Online feature
extraction is a difficult problem in machine learning [18],
and a further problem is that we do not know in advance
what ranges of values we may encounter and therefore how
best to define the boundaries between each detected envi-
ronment range. Additionally, the way in which environment
ranges are detected should avoid the classic control loop
problem of oscillation between two nearby choices.

3.1.4. Online and offline learning. The key requirement of
learning for emergent software is that the system must learn
according to what it actually experiences. The main problem
with this is that a system may experience different external
stimuli erratically, making it difficult to draw comparisons
between different possible compositions of behaviour under
consistent external conditions. In this context there are two
main methods by which an emergent system can learn.
One is to perform online experimentation, where the live,
running system is re-assembled into its different available
compositions while executing, so that the relative perfor-
mance of each such composition can be determined under
the different external stimuli that are experienced. When the
system observes environment conditions for which it does
not have enough information on the behaviour of a particular
software assembly, it may therefore trial that assembly to
gather more data. When doing so, it is particularly important

[pre-print version]

Appears at IEEE SASO 2016

to be sensitive to bad compositions as they have real effects;
a simple approach here may be a sliding scale in which a
composition is experimented with for an increasingly small
amount of time proportional to how relatively ‘bad’ it is.
The other option is to perform offline experimentation,
where the online system remains in its most optimal form
as currently predicted by this experimentation. This requires
external stimuli seen by the online system to be repeatable
in offline experimentation. While capturing input patterns
for this purpose may be viable (if potentially expensive),
other characteristics such as available system memory or
CPU loading experienced in the online system may be more
difficult to replicate offline. Further, the use of such offline
learning is not ‘free’ and comes with its own resource costs.
Hybrid solutions may also be possible which fuse combi-
nations of online and offline learning — such as experiment-
ing with individual components using different input ranges,
rather than experimenting with entire system compositions.

3.1.5. Search space complexity. Whichever kind of learn-
ing is used, the size of the search space grows rapidly as
more v variants are added to SU. This is a combinatorial
problem as each additional w variant composes with many
other possible w variants around it. This requires creative so-
lutions to learning which, as a system grows in complexity,
ideally avoid the need to exhaustively trial every possible
combination of components. This is an open challenge
that demands novel solutions — with at least one possible
avenue here being to intelligently share learned information
across different software compositions in cases where those
compositions have some common elements from SU. This
may help to avoid the need to test compositions that are
(either heuristically or from prior experience) sufficiently
similar to other compositions that they can be considered
equivalent under particular external stimuli.

3.1.6. Self-referential fitness landscapes. As reported by
Cakar et al. in the context of parametric self-optimisation
[19], it is likely that changes to the currently chosen set of
u that make up a running system are capable of impacting
upon the external stimuli that the system experiences. As
an example, the performance of two different variants of
may be compared when subjected to equal external stimuli.
If we define this external stimulus as a stream of requests,
one variant of u may be more efficient and thus cause a
higher rate of requests to be serviced, changing the apparent
request pattern and so making it difficult to compare both
variants of u under the ‘same’ conditions (as each u changes
those apparent conditions when it is used).

3.1.7. Propagating errors as degraded health. We are
used to handling errors and catching exceptional behaviour
in code by using appropriate constructs available in a
programming language. In an emergent software system,
however, the system itself must be able to learn from errors,
especially when the existence of certain errors depends on
the current environment context. As an example, imagine
that we have a sorting algorithm implemented in a given u,
and we have a variant of u which uses a GPU-accelerated
algorithm instead the regular CPU-based implementation. If

we experience a GPU failure, this would usually be an error
propagated internally by the software system.

To propagate this to an emergent system controller, the
metrics emitted by a given u must reflect the error — for
example if metrics report sorting speed, this may mean
reporting extremely slow sorting speeds so that the emergent
system can detect the change in performance and re-learn
an optimal composition of behaviours for that machine (in
this case using the CPU-based version of w).

3.1.8. Unexpected properties. As reported by Fisch et al.
[16], perhaps the ultimate aim of emergent software systems
is to demonstrate the unexpected: that autonomous learning
activities produce an unexpected solution to a problem that
is more than the sum of the individual parts available. While
this is of interest, we also note that it is useful for emer-
gent software to locate designs that are unexpectedly good
for a given set of external stimuli. This is different from
‘unexpectedly complex behaviour’ as we expect the overall
behaviour of a system to match our goal. Instead this reflects
finding of designs for that behaviour, from among available
fragments of behaviour in SU, which are unexpectedly good
and therefore lead to new design knowledge.

3.1.9. Developer interaction. Finally, we look beyond
emergent software as ‘finding good solutions to a goal’ to
state that they are a natural way to invert the software devel-
opment paradigm: that emergent software should, based on
its actual experience, be able to make suggestions to human
developers (or even machine agents) for new units of SU
to be generated for particular criteria of external stimuli.
This leads to a process wherein software itself plays an
active role in its own development, suggesting improvements
and testing them out, and further reducing the burden of
complexity on human developers in systems building.

3.2. Prototype and case study

To realise our approach we have developed a prototype
emergent software framework, along with a case study of
an emergent web server. We implement the building blocks
of our web server using a runtime component model, where
each component has a range of micro-variations. These vari-
ations are trivial to create because each component is itself
very small: examples are different caches with various cache
replacement algorithms, and stream handlers that do or do
not use caching. More detail on this is given in Sec. 3.2.2.
Our emergent software framework is then divided into three
major modules: an assembly module, responsible for dis-
covering and assembling / re-assembling the target system
from available components; a perception module, responsi-
ble for perceiving the current wellbeing of the target system
and the state of its operating environment; and a learning
module, responsible for inferring correlations between the
software’s current assembly, its perceived wellbeing, and
the perceived conditions of its operating environment. The
learning module is also responsible for characterising the
various conditions of the operating environment, and for
balancing exploration of untested software compositions
with exploitation of compositions known to perform well.

[pre-print version]

Appears at IEEE SASO 2016

Learning
API v
setMain | getConfigs | selectConfig | getPerception
Perception Assembly
Y x

Pool of available components

ooyt
ooyt
oo ooon

Figure 1. Architecture of the emergent software framework.

Using the terminology of Sec. 3.1, our goal G is ex-
pressed in terms of a ‘main component’ that encodes the
overall task of the web server and has a set of ‘required
interfaces’ that express further components that are needed.
A set of unit tests is available that can verify whether or
not this component (and therefore the system as a whole) is
delivering the expected functionality. Starting from this main
component, our framework dynamically discovers all other
possible components SU from which to build the rest of the
system. Our framework then begins to experiment with these
components to locate optimal assemblies of a system for
each set of external stimuli that are experienced, perceiving
any events and metrics that are emitted. Throughout this
process a fully functioning web server is maintained.

We specifically use [20] as our runtime component plat-
form due to its affinity for fine-grained components and very
fast runtime adaptation. Other component models could also
be used, however. In the remainder of this section we first
describe our emergent software framework in detail, and
then how we apply it to our emergent web server example.

3.2.1. Emergent software framework. Our emergent soft-
ware framework is a generalised system capable of per-
forming three main tasks: assembling a piece of software
from a collection of available components, perceiving its
performance and external stimuli at runtime, and learning
about how that performance relates to its external stimuli.
These three elements, illustrated in Fig. 1, are arranged
in two tiers. The perception and assembly modules sit at
the lower tier and provide a simple API to the learning
module at the upper tier, allowing the learning module to
control and perceive complex software systems using simple
primitives. We now describe the general role of each module
in detail, along with the details of our learning module
implementation as used in our evaluation in Sec. 4.
Assembly module This component is responsible for
discovering and assembling the target systems’s compo-
nents. It is provided with the ‘main’ component of the
target system and examines this component’s set of required
interfaces, scanning the local system for all components that

data Event {
char name[]
int value

}

data Metric {

char name[]

int value

bool preferHighValue
}

interface Recorder {
void addEvent(Event e)
void addMetric(Metric m)
PerceptionData getPerception()

Figure 2. The Event and Metric data types and the Recorder interface,
using the syntax notation of the component model that we use [20].

declare matching provided interfaces. These components are
themselves examined to discover their required interfaces,
and so on, until the assembly module has a complete map
of all possible compositions of the target system (including
all available variants of each provided interface, for example
different memory cache or ADT implementations).

The result of this process is a set of possible con-
figurations of components. A unique string is assigned to
each one so that they can be referred to by other parts
of the framework. This string contains a (compressed) list
of all components of the configuration and their inter-
connections. The list of configuration strings is accessed via
the getConfigs () API call shown in Fig. 1.

The assembly module can then be instructed to adapt the
target emergent system to one of these configurations using
the selectConfig () operation. If the target system is
not yet assembled, this simply involves loading all of the
necessary components into memory, interconnecting them,
and calling the ‘main method’ of the main component to
start the system. If the target system is already assembled,
this involves comparing the currently assembled configura-
tion and the new target configuration to build a minimal dif-
ferential graph between the two. Each point in that graph is
then adapted by loading the alternative component, using the
runtime component model’s adaptation protocol to replace
the existing component at that location with the new one,
and then unloading the existing component at that location.

Perception module This component perceives the be-
haviour and performance of the currently assembled config-
uration, and the state of the system’s operating environment.

To do this, our framework uses a Recorder interface,
which is shown in Fig. 2. Any component can declare a
required interface of this type, which will be connected
to a corresponding component implementing the Recorder
interface. The interface provides functions for components
to log the emission of metrics and events when they occur.

Metrics are used to describe the way that the software
‘feels’, and have a standard format including a name, a value
and a boolean flag indicating whether a high or low value
is considered to be better. When a metric is logged at a

[pre-print version]

Appears at IEEE SASO 2016

recorder, a timestamp is also added. An example metric
would be ‘response time’, with a value in milliseconds, and
a boolean flag indicating that lower is better in this case.

Events describe the way that the software’s deployment
environment ‘looks’, with a standard format including a
name and a value. As with metrics, a timestamp is added
when an event is logged at a recorder. An example event
would be ‘request’, with a request type as a label, and a
numerical characteristic (e.g. request size) as the value.

Whenever a new configuration of the target system is as-
sembled, the perception module scans all of its components
for any with a Recorder required interface. The Recorder
component attached to each one is then periodically polled
to collect the latest batch of events and metrics generated by
the associated component. The getPerception () call
can then be used on the perception module, returning a
PerceptionData structure containing all events and metrics
that have been collected along with their timestamps.

Learning module This component uses the API pro-
vided by the assembly and perception modules to exper-
iment with, understand and control the target emergent
system. This is done with no prior knowledge of what that
target system is, or knowledge of the operating environment
conditions that may occur (including no knowledge of what
kinds of events / metrics may be emitted). The task of the
learning module is to understand the correlations between
the currently assembled collection of components (i.e. the
software system’s current behaviour), and how the system
is currently perceived to be feeling, in each set of perceived
operating environment conditions. The learning module is
able to experiment with behavioural changes, by asking the
assembly module to select a different configuration, to un-
derstand how different behaviours then affect the software’s
perception of self in different operating environments.

To implement this, the learning module has two main
tasks. First, it must be able to characterise and classify fea-
tures in the software’s operating environment (derived from
the stream of events being emitted) so that the performance
of different configurations can be compared equivalent en-
vironments, and so that the learning module can remember
which configurations work best in each environment (i.e.
to save re-learning each time a recurring environment is
encountered in the future). And second, as in any online
learning system, the learning module must balance the trade-
off between exploring options about which there is insuffi-
cient information and exploiting options known to be good
[21]. Because our emergent software framework operates on
live software, this balance is particularly important because
operating sub-optimally has real consequences.

Performing both tasks online is highly challenging: the
software is not in control of its current operating environ-
ment and so cannot know in advance when it may be able to
reliably compare any two software configurations against the
same set of external stimuli; in addition there are complex
interactions between the process of exploration itself and the
environment, where e.g. selecting a ‘good’ configuration can
increase throughput and so change the perceived environ-
ment. We use an approach inspired by reinforcement learn-

Algorithm 1 Learning Algorithm

1: while running do

2 /Iperform exploration activity

3 for each c in assembly.getConfigs() do

4 assembly.selectConfig(c)

5: wait for w;

6 store perception.getPerception() for ¢

7 end for

8

9: /Iselect the new configuration to use
10: store environment ep as mazx : min of event types
11: assembly.selectConfig(best known for ep)
12:

13: /Iwait for conditions to change

14: newEzxploration = false

15: while new Exploration == false do

16: wait until (different environment ep detected) or
17: (performance degrades) for >= w; *3
18: if different ep and ep is previously known then
19: assembly.selectConfig(best known for ep)
20: else
21: newFExploration = true
22 end if
23: end while

24: end while

ing [21], modified for our particular problem space. Our so-
lution, shown in Algorithm 1, continually locates the optimal
configuration by incrementally exploring the configuration
search space while simultaneously characterising observed
external stimuli into discrete labelled environments.

The algorithm uses a standard ‘exploration activity’ in
which to both characterise the current environment and
also identify the best configuration for that environment,
shown on lines 3-6. The system triggers this exploration
whenever it encounters sufficiently high uncertainty about
its current choices — where this uncertainty comes either
from (i) having no information at all (i.e. system startup);
(i) the current environment characteristics deviating outside
of expected ranges from existing experience, or (iii) current
system performance deviating beyond its expected range.

The exploration activity tries every possible configura-
tion for a fixed-length ‘observation window’ wy, such that
the total time spent exploring is w;xlength(getConfigs()).
We define w; as 10 seconds for this paper. Having tried
every configuration, the learning module then characterises
what happened over the entire exploration time period to
determine the best course of action as a result of that explo-
ration activity. This characterisation works by considering
all events and metrics that were reported during exploration,
and for each distinct event type (qualified by having a unique
event name) a max-min range is determined by extracting
the minimum cumulative ‘value’ of this event type from all
wy within that exploration activity, and a maximum cumu-
lative value of this event type from all w;. The environment
is then labelled as the set of these max-min ranges for all
event types perceived during this exploration activity. The

[pre-print version]

Appears at IEEE SASO 2016

best performing configuration within this environment is
then chosen (line 11) as that with the best set of perceived
metrics during its wy; this configuration becomes the ‘rule’
for use whenever this environment is encountered.

The use of ranges to classify an environment addresses
the self-referential fitness landscape issue (see Sec. 3.1), in
which some configurations may be better and thus appear
to alter their own environment by (for example) consuming
more data at a higher rate — our ranges capture the highest
and lowest levels of environment perceived during an explo-
ration activity, abstracting over these details. The main prob-
lem with our approach comes when the environment changes
significantly during an exploration activity, meaning that the
various configurations used were not really compared in the
same conditions. This issue is addressed by our second two
uncertainty clauses (listed above), captured on lines 14-23.

Specifically, after an exploration activity, the learning
module selects the best-performing configuration for use and
enters its exploitation state. The selected action continues
to be monitored every w; and analysed for its suitability.
A change may occur if either (i) perceived events during
wy show that this is a different event pattern (i.e. they fall
outside the range of the current pattern), or (ii) perceived
metrics during w; show degraded performance. To avoid
frequent oscillation, in either case the algorithm waits for
wy * 3 of consistently observed behaviour before changing
its current course. In case (i), if the detected event pattern
is one that has been previously seen, the matching best
configuration is simply selected. In all other cases a new
exploration activity is triggered. This process of exploration
/ exploitation repeats continually, where the amount of ex-
ploration will reduce as fewer new environments are seen.

3.2.2. An emergent web server. To test our framework we
use a web server as an example emergent system. This is
a pertinent example because web servers are known to be
difficult to optimally configure, particularly when subjected
to different client workloads over time [22]. In this section
we first describe the main components of our web server and
their available variants, and then we discuss the events and
metrics that we chose to generate from these components.
Architecture The main components from which our web
server can emerge are shown in Fig. 3, indicating the pool of
behaviours from which our framework can choose to assem-
ble a system. Note that the actual set of components used is
much larger than this, including string utilities, file system
and TCP socket APIs, abstract data type implementations,
etc. Here we focus on the components that have variation.
There is a single main component which is passed to
our framework to start the system. This component simply
opens a TCP server socket and then accepts new client
connections, passing each one to a ‘request handler’. Our
request handlers introduce concurrency and we have two
variants: one that creates a new thread for every client,
and one that uses a pool of threads on which to enqueue
clients. From here a client is passed to a ‘HTTP handler’
which parses the request and forms a response. We have four
variants of this component, which do or do not use caching

App <interface>

Main method: opens a server
: | socket and accepts client

: | connetions, each of which is
passed to a request handler.

WebServer

Thread pool
RequestHandler <interface> / implementation
Thread per client : :

implementation [

: | Takes a client socket and

: | applies a concurrency

: | approach, then passes the
: | socket to a http handler.

RequestHandIer} {RequestHandlerPT}

l Implementation without
caching or compression

HTTPHandIer <|nterface> ... Implementation with

Implementation with caching
: | Takes a client socket,
: |examines the HTTP

caching and compression
. N HTTPHandler
Implementation with \
: |request headers and

compression ~~_
[H'I'I’PHandIerCMP} [HTI’PHandIerCHCMP} { HTTPHandlerCH } ; Iformulates a response.

Cache <interface>

Compressor <interface>

[CachelFU } [CacheMRU J
[CacheLRU } [CacheRR }

Figure 3. The set of components from which our web server can emerge.
Boxes with dotted lines are interfaces, and those with solid lines are
components implementing an interface. Arrows show required interfaces
of particular components. The general purpose of each interface’s imple-
mentations is noted by the interface, and a description of how the available
implementation variations of that interface work is also indicated.

/ compression. We then have various versions of cache and
compressor components for HTTP handlers that use them.

These components can be used to create a wide range of
valid web server architectures at runtime, and the component
population can be added to over time as new components
become available. All such components, and the ways in
which they can be combined, are dynamically discovered
by our framework, and provide a wealth of micro-variation
where different collections of behaviours may provide dif-
ferent levels of performance under different conditions. In
total there are 42 possible configurations of our web server
that can be formed from these components.

Events and metrics The events and metrics generated
by these components determine how our emergent software
framework perceives and understands the system and its en-
vironment, and learns to best control the system in operation.
We currently use one metric type and one event type.

Our metric type is generated by all ‘request handler’
variants, and reports the total response time to each request.
Our event type is generated by all ‘http handler’ variants,
and reports the request types that arrive at the server and
their sizes. Note that because we generate a lot of metrics,
our Recorder implementation aggregates their values over
time, storing only the sum of response times and the number
of metrics that have been collected (allowing us to calculate
an average without storing each individual metric).

[pre-print version]

Appears at IEEE SASO 2016

4. Evaluation

In this section we evaluate our emergent software frame-
work, using our web server as an example emergent system.
Our evaluation was conducted with a real implementation of
our web server, and our emergent software framework, run-
ning on rackmount servers in a production datacentre. These
servers have an Intel Xeon E3-1280 v2 Quad Core 3.60
GHz CPU, 16 GB of RAM, and run Ubuntu 14.04. Similar
specification machines were used as clients to generate
workloads; these client machines were on a different subnet
to the servers (in a different building). We use a mixture
of custom-built workload patterns designed to explore our
system’s characteristics in targeted ways, and a real-world
trace from NASA [23]. We demonstrate two key results:

First, we show that different web server configurations
(i.e. different compositions of the available components)
perform better in different operating environments. More
specifically we show that there exist cases in which one
configuration A is best in some environments, while another
configuration B is best in others. We refer to this phenomena
as ‘divergent optimality’, which motivates our approach.

Second, we show that our approach can correctly select
the optimal configuration, from all those available, using
only online learning and with no human input or prior
knowledge. This occurs continually such that if the operating
environment changes our platform will identify the optimal
configuration for that new set of conditions.

All code used in our evaluation, along with instructions
on how to repeat all of our experiments, is available at [8].

4.1. Divergent optimality

In this section we show how different web server con-
figurations perform differently when subjected to different
request patterns. Results from custom-defined request pat-
terns are shown in Fig. 4-6; while results from the NASA
trace are shown in Fig. 7. For these graphs we have selected
four specific configurations, from the 42 available, that are
most different in terms of the behaviour that they include.

Fig. 4 and Fig. 5 show the average response time of the
web server for request patterns in which the same file is
repeatedly requested. When this is a text file, Fig. 4 shows
that configurations with in-memory caching and without
compression have better average response times than config-
urations with both caching and compression. However, for
image files, Fig. 5 shows that the opposite of this is true.

In contrast to this, Fig. 6 and Fig. 7 show the average
response time of the web server for request patterns in which
many different files are requested. In detail, Fig. 6 shows
results from a custom request pattern in which each request
is for a different small (~3KB) text file; while Fig. 7 shows
results from replaying the NASA trace (which also has a
high degree of variation). In both of these graphs we see
that the best configurations from Fig. 4 and Fig. 5 are in
fact the worst two configurations for these request patterns.

This clearly demonstrates that different configurations of
our web server will perform differently when subjected to
different request patterns at runtime. In particular, request

18
16
F18 [N MAAANNNAAN
£
g 12
M A
= 10 e’ WAL AMN\,J
()
w 8
c ——None
g_ 6 —— Compression
H -=-=- Cache
x 4 === Both
2 o o o > - - P o r o mrncmar P T O mo e man- -
g SoTTmmmmmmmososee- S

Time (s)
Figure 4. This graph illustrates the performance of four different configu-
rations with the request pattern of small text files.

30
25 AWV WESAPAA A A ARA A
None
20 - Compression
=== Cache
=== Both

‘;

Response Time (ms)
[E=y
(0]

Time (s)
Figure 5. This graph illustrates the performance of four different configu-
rations with the request pattern of small image files.

30
25 TP VY, PV, X A TLLLUY
— o~ '\,\v\l\""\l\/uv -\ \’I\I‘,I‘,l\’\“\“\’lﬁnn"“'\".
g ;’v\“."”\ T O e A A L
> 20 ——None
= —— Compression
= === Cache
g 15 - == Both
g MM»\/\WMN“W
o 10
[~ e T
oc
5
0
O O OO OO0 OO0 oo o o o
00 O I N O 0 © N O 0 O
NN < T N O N0 0O

Time (s)
Figure 6. This graph illustrates the performance of four different configu-
rations with the request pattern of a variation of small text files.

[pre-print version]

Appears at IEEE SASO 2016

120
—None
_ 100 —— Compression
n === Cache
g |
: 80 ¢ : -<= Both
E P :
F 60 I ::' -
g T A
c ! h'. g N " i !
[Tapgtn 12 o hon
o 40 ,e"';a'. Hne A e By o
% v |r|' l]\' AT et et gt A
@ I BT Aty T Lt gl A R
< YN R e IRIAT AT AR T
-2] 'Jl " {\\n N IR A I A
20 W ML v } v
WMMW
0
o O O O o O o O O O
00 O <t N O 0 O < N O 0 VO
AN N < T N O N0 0O

Time (s)

Figure 7. This graph illustrates the performance of four different configu-
rations with the request pattern of the NASA trace [23].

patterns with high variation do not benefit from configura-
tions that use caching, whereas request patterns with low
variation do. Additionally, the performance of architectures
that include compression is impacted by the compression ra-
tio of the files being requested in that pattern. While this may
be intuitive to a human, in the next section we demonstrate
the feasibility of autonomously learning this information
from no prior experience — the basis of emergent software
systems whose design is a product of their environment.

4.2. Online learning of emergent software

We now evaluate emergent software systems: continual,
autonomous selection of the optimal component composi-
tions for the web server, by analysing the currently available
perception data (events and metrics) and exploring how
the various available compositions of behaviour affect the
perception of metrics across different environments. We
achieve this using only unsupervised online learning, with
no human input and with no application-specific aids.

Fig. 8 shows a request pattern consisting of sequential
requests for small (~ 3KB) text files for 700 seconds,
followed by sequential requests for small (~ 1MB) image
files for 1200 seconds, and finally returning to small text
files. This experiment was chosen as it contains two distinct
kinds of request pattern for which different web server
architectures are known to be optimal, as shown in Sec. 4.1.

The graph shows the performance of our online learning
approach, exploring available compositions, compared to the
performance of two different static web server configura-
tions that are known to be optimal for the different phases
of this request pattern. At the beginning of the experiment,
the learning system starts with no information and so must
go through the entire learning process to discover the archi-
tecture most suited for the currently observed conditions.

In detail, when a new pattern is detected, the learning
module performs an exploration activity to find the best
configuration for that pattern. This takes 420 seconds (each

70
TEXT IMAGE TEXT
60 ——Learning
———Cache (CH)
- 50 - == Both (FS, Gzip)
E
o 40
E
[l [
= 30
c
]
9_20
3
x 10
0 e = M - 4
cNoNoNoNoNoNeoNolNeolNolNolNolNolNolNo
[eleNelNelNeNelNelelNelNellelNe o lNo)
NS O O N © 0 O NS O ©
A d dd dN NN~
Time (s)

Figure 8. Performance comparison between fixed web server architectures
and our emergent platform, using two different request patterns over time.

80
70 —Learning
» 60 —None
£
o 50 |
£
i= 40
(]
2 30
o
& 20 |
&
10 &WWLU
0
O O O O O O O O O O o O o
00 O < N O 0 WU < N O 0 O
I N O <t 1D O N 00 0 O
Time (s)

Figure 9. Performance comparison between a fixed web server architecture
and our self-adaptive platform when using the NASA request pattern [23].

configuration runs for w; = 10 seconds) and is clearly
visible on the graph as two large spikes; each spike shows
experimentation with a particularly poorly-performing con-
figuration for this pattern. When learning is complete, our
platform converges on the optimal configuration. This can
be seen at two times, one at time 250, and the other at time
1200. At time 1900 we see another request pattern transition
but, in this case, to a pattern that the learning system has
already seen; this does not trigger a further learning phase
and instead simply picks the best configuration from prior
experience. Comparing this against the two static config-
urations we can see that our framework maintains optimal
performance for the longest period of time, while both static
configurations are optimal at some times but not others.
Fig. 9 shows an experiment with our learning system
using the NASA trace, which is characterised by having
small files (< 20MB) with a high degree of variation,
meaning that the same file is rarely requested consecutively.

This trace was chosen as a representation of a real-world
scenario. Starting from no information at the beginning of
the experiment, the learning process maintains the same time
of 420 seconds to learn the most suitable configuration —
again needing to experiment with each available configura-
tion for 10 seconds. We compare this to the performance
of a fixed architecture that had the best performance for
this pattern, showing that after 420 seconds the learning
system converges to an architecture with an equivalent level
of performance. We note that, when compared to the results
in Fig. 8, both the learning and static architectures in this
case have a relatively erratic level of performance caused by
a relatively high degree of variation in this request pattern.

These results demonstrate that, starting with no infor-
mation at all, we can learn and converge on an optimal
configuration in real-time. As more data is collected by
the learning algorithm, more experience is gained, and less
learning takes place — but the approach always maintains
the ability to detect new conditions and react to them.

5. Conclusion

We have presented a definition of emergent software,
based on our experience of implementing emergent sys-
tems, along with our framework for orchestrating emergent
software and an example of a web server that exhibits
these properties. From our definition of emergent software,
our implementation demonstrates divergent optimality from
different compositions (Sec. 3.1.1); addresses the issue that
‘everything is relative’ (Sec. 3.1.2) by implementing a mov-
ing baseline of optimality; presents a solution to abstracting
the environment in real time (Sec. 3.1.3) using sets of
quantified min-max event ranges; and uses a purely online
approach to learning (Sec. 3.1.4) that takes into account the
self-referential fitness landscape issue (Sec. 3.1.6).

In future work we plan to investigate further points in the
design space for each of these concerns, as well as examin-
ing the topics of search space complexity, error propagation,
unexpected properties and developer interaction. In addition
we will explore further case studies of emergent software
systems to help generalise our work to date — including
distributed federations of locally emergent systems.

Acknowledgements

This work was supported by the UK’s EPSRC in the Deep
Online Cognition project, grant number EP/M029603/1.
Roberto Rodrigues Filho would like to thank his sponsor,
CAPES Brazil, for the scholarship grant BEX 13292/13-7.

References

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[2] S. Tomforde, J. Hihner, and C. Miiller-Schloer, “Incremental design
of organic computing systems - moving system design from design-
time to runtime,” in Proc. of the 10th International Conference on
Informatics in Control, Automation and Robotics, 2013, pp. 185-192.

[3] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, “Architecting self-

aware software systems,” in Proceedings of the IEEE/IFIP Conference
on Software Architecture (WICSA), April 2014, pp. 91-94.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: A framework for
engineering self-tuning self-adaptive software systems,” in Proc. of
the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. New York, NY, USA: ACM, 2010, pp. 7-16.

B. Chen, X. Peng, Y. Yu, B. Nuseibeh, and W. Zhao, “Self-adaptation
through incremental generative model transformations at runtime,” in
Proc. of the 36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 676-687.

J. M. Ewing and D. A. Menascé, “A meta-controller method for im-
proving run-time self-architecting in SOA systems,” in Proc. of the 5th
ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’14. New York, NY, USA: ACM, 2014, pp. 173-184.

0. Kouchnarenko and J.-F. Weber, “Adapting component-based sys-
tems at runtime via policies with temporal patterns,” in Formal
Aspects of Component Software. Springer, 2014, pp. 234-253.

Source code from this paper with
http://research.projectdana.com/saso2016rodrigues.

P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson, and F. Taiani,
“Experiences with open overlays: a middleware approach to network
heterogeneity,” in Proc. of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, April 2008, pp. 123-136.

instructions:

Y. Wang and J. Mylopoulos, “Self-repair through reconfiguration:
A requirements engineering approach,” in Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engi-
neering. 1EEE Computer Society, 2009, pp. 257-268.

N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision
networks for decision-making in self-adaptive systems: A case study,”
in Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013 ICSE Workshop on, May 2013, pp. 113-122.

N. Bencomo and A. Belaggoun, “A world full of surprises: Bayesian
theory of surprise to quantify degrees of uncertainty,” in Proc. of the
36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014, pp. 460—463.

S. Hassan, N. Bencomo, and R. Bahsoon, “Minimizing nasty surprises
with better informed decision-making in self-adaptive systems,” in
IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, May 2015, pp. 134-145.

M. Hinchey, S. Park, and K. Schmid, “Building dynamic software
product lines,” IEEE Computer, vol. 45, no. 10, pp. 22-26, Oct 2012.

D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “SASSY: A
Framework for Self-Architecting Service-Oriented Systems,” IEEE
Software, vol. 28, no. 6, pp. 78-85, Nov 2011.

D. Fisch, M. Janicke, B. Sick, and C. Muller-Schloer, “Quantitative
emergence — a refined approach based on divergence measures,”
in Proceedings of the 4th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, Sept 2010, pp. 94-103.

J. Ferber, Multi-agent systems: an introduction to distributed artificial
intelligence. Addison-Wesley Reading, 1999, vol. 1.

K. Glocer, D. Eads, and J. Theiler, “Online feature selection for pixel
classification,” in Proceedings of the 22nd International Conference
on Machine Learning, ser. ICML ’05. New York, NY, USA: ACM,
2005, pp. 249-256.

E. Cakar, S. Tomforde, and C. Miiller-Schloer, “A role-based imitation
algorithm for the optimisation in dynamic fitness landscapes,” in I[EEE
Symposium on Swarm Intelligence (SIS), April 2011, pp. 1-8.

B. Porter, “Runtime modularity in complex structures: A component
model for fine grained runtime adaptation,” in Component-Based
Software Engineering. ACM, June 2014, pp. 26-32.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
ser. A Bradford book. Bradford Book, 1998.

W. Zheng, R. Bianchini, and T. D. Nguyen, “Massconf: automatic
configuration tuning by leveraging user community information,” in
ACM SIGSOFT Software Engineering Notes, vol. 36, no. 5. ACM,
2011, pp. 283-288.

NASA web
http.html.

server trace: http://ita.ee.lbl.gov/html/contrib/nasa-

