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Recent study has shown that a non-singular oscillating potential – a feature of Infinite Derivative
Gravity (IDG) theories – matches current experimental data better than the standard GR potential.
In this work we show that this non-singular oscillating potential can be given by a wider class of the-
ories which allows the defocusing of null rays, and therefore geodesic completeness. We consolidate
the conditions whereby null geodesic congruences may be made past-complete, via the Raychaudhuri
Equation, with the requirement of a non-singular Newtonian potential in an IDG theory. In doing
so, we examine a class of Newtonian potentials characterised by an additional degree of freedom in
the scalar propagator, which returns the familiar potential of General Relativity at large distances.

I. INTRODUCTION

In the century since Albert Einstein ushered in a new
paradigm for modern physics by formulating a gravita-
tional theory that is described by the curvature of space-
time, General Relativity (GR) has withstood numerous
experimental tests [1]. formulating a gravitational theory
In the following century, GR It accurately describes our
universe all the way down to short distances (5.6×10−5m
from a source [2]) 1 and has been found to be in agree-
ment with experimental tests on gravitational redshift
and the equivalence principle [3]. More recently, the de-
tection of gravitational waves lends more weight to this
already colossal theory [4]. However, that is not to say
that GR does not have any shortcomings. At the classi-
cal level, the theory breaks down at short distances in its
description of black holes, for instance. GR also cannot
be made geodesically past-complete, when an appropri-
ate energy condition is met, indicating the presence of an
initial singularity in the theory [5–9].
In a geodesically-incomplete spacetime, causal geodesic

congruences converge to a point in a finite ‘time’ (affine
parameter). In such a scenario a freely falling particle
or photon will simply cease to exist in a finite ‘time’,
which suggests a serious physical malady in the theory
[10]. These shortcomings allow us to consider GR to be
a first approximation to a broader theory.
This notion of extending GR, via additional curva-

ture terms in the gravitational action, forms the basis
for many modified theories of gravity.
Significant examples include local theories such as

f(R)-gravity, which replaces the curvature scalar in the
Einstein-Hilbert action with an arbitrary function f(R),
or Stelle’s 4th derivative gravity, which can be seen as a
generalisation of the Gauss-Bonnet term in that it in-
cludes tensorial as well as scalar modifications to the
Einstein-Hilbert action. However, these finite higher-
derivative models still come hand-in-hand with a number

1 Dark energy notwithstanding

of weaknesses. Stelle’s theory, while perturbatively renor-
malizable [11], suffers from the introduction of ghosts -
physical excitations, characterised by negative kinetic en-
ergy [12]. f(R)-gravity, in comparison, may avoid the
introduction of ghosts [3] but breaks down at short dis-
tances, meaning that the theory can not be said to be
UV-complete [13]. In contrast, Infinite Derivative Grav-
ity (IDG) offers a means of ‘completing’ GR in the UV
regime (short distances). IDG is characterised by an ac-
tion containing an infinite series of d’Alembertian opera-
tors (� = gμν∇μ∇ν) acting on the curvature along with
the mass scale of the theory, M .

IDG is inspired by similar infinite derivative actions
used in string theory [14]. The action was first applied to
gravity in [15], where the form of the modified propagator
was also calculated around a Minkowski background, see
also [16, 17]. The full non-linear equations of motion were
computed in [18] and the boundary terms found in [19].
The gravitational entropy for the IDG action was inves-
tigated around an (A)dS metric in [20], while the form of
the (A)dS propagator was given in [21]. Constraints were
put on the mass scale M of IDG, either by looking at the
deflection of light around the Sun [22], or by using data
on the tensor-scalar ratio and spectral tilt of the Cosmic
Microwave Background [23]. It has been shown that in
an inflationary framework, IDG can be thought of as an
extension to Starobinsky inflation [24–27].

In [28, 29], it was shown using a toy model of IDG that
it is possible to curtail the divergences of 1-loop diagrams
and show that 2-loop diagrams are finite, while in [30] the
UV finiteness of IDG theories were investigated. Further
work has focused on the Newtonian potential around a
flat background [15, 31, 32], formulating the Hamiltonian
of the IDG action [33] and avoiding cosmological singular-
ities both through using the ansatz �R = c1R+c2 [25, 34]
and via the Raychaudhuri equation [35–37].

In this paper we investigate the Newtonian potential
Φ(r), describing the gravitational field of a small static
spherically symmetric test mass in a flat space back-
ground. In General Relativity, this diverges according
to Φ(r) ∼ −1/r, becoming singular at the origin. IDG
offers a means of resolving this divergence.
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It was shown in [18] that the equations of motion
for IDG can be formulated in terms of two arbitrary
functions of the d’Alembertian operator a(�) and c(�),
which also characterise the modification to the gravi-
tational propagator. In the case where these functions
are equal, i.e. a(�) = c(�), no additional degrees of
freedom other than the massless graviton enter the sys-
tem. Previous work [14, 15, 31] has shown that, in
this case, a non-singular Newtonian potential can be de-
rived, where the potential takes the form of an error
function Φ ∼ −Erf(Mr/2)/r, for the simplest choice of
a(�) = e−�/M2

.
If we generalise this further by taking a(�) to be an

exponential of a higher order polynomial, the potential is
modified by an oscillating function at these higher orders.
Analysis by Perivolaropoulos [2, 38] has shown that this
oscillating function provides a better fit to experimental
data on the force of gravity at small distances than the
standard GR theory. Although further analysis is needed,
there are tantalising hints that modified gravity could
provide the correct description of the strength of gravity
at small distances.
However, work on the avoidance of singularities in IDG

theories [35–37, 39] has shown that we require a depar-
ture from the simple choice of a(�) = c(�) in order for
causal geodesic congruences to be made past-complete.
without requiring exotic matter. The aim of the present
work is to consolidate the requirements of a non-singular
theory of gravity, known as the defocusing conditions,
with the aforementioned converging Newtonian poten-
tial. To this end, we examine a wider class of Newtonian
potentials, characterised by the condition a(�) 6= c(�),
in tandem with the defocusing conditions derived in [36]
around a Minkowski background. This would allow us to
avoid singularities by permitting the defocusing of null
rays in a theory with a well-defined Newtonian potential
at short distances.
In Section II, we give an overview of Infinite Deriva-

tive Gravity (IDG), and show how the theory offers a
means of rendering null rays geodesically-complete. In
Section III, we derive the Newtonian potential for IDG,
and specifically look at the case which allows defocusing.
Finally in Section IV we plot the Newtonian potential
and interpret the results.

II. INFINITE DERIVATIVE GRAVITY

As mentioned in the introduction, ghosts are physi-
cal excitations bearing negative kinetic energy. These
excitations are represented by a negative residue in the
gravitational propagator. When interactions in such a
system take place, the vacuum decays into both positive
and negative energy states. This is known as the Ostro-
gradsky instability [41].
Previous attempts to resolve singularities by modify-

ing gravity, such as Stelle’s 4th derivative gravity [11],
resulted in the introduction of ghosts, where the Hamil-

tonian of the theory was unbounded from below due to
the Ostrogradsky instability [41]. By adding an infinite
number of derivatives to the theory this instability may
be avoided through an appropriate choice of the functions
a(�) and c(�). In [33] it was shown that the Hamiltonian
of IDG is indeed bounded from below.
The IDG action, which is the most general, torsion-free

and parity invariant action of gravity, that is quadratic
in curvature was first derived in [15, 39]

S =
1
2

∫
d4x

√
−g

(

M2
p R + RF1(�)R

+RμνF2(�)Rμν + CμνλσF3(�)Cμνλσ

)

, (1)

where R is the Ricci curvature scalar, Rμν is the Ricci
tensor, Cμνλσ is the Weyl tensor and Mp is the Planck
mass. Each Fi(�) =

∑∞
n=0 fin�

n/M2n is a function of
the d’Alembertian operator � ≡ gμν∇μ∇ν . M is the
scale of modification of our theory and the fin are the
dimensionless coefficients of the series.
The equations of motion for IDG around a Minkowski

background are given by [36]

κTμν = a(�)Rμν −
1
2
ημνc(�)R −

1
2
f(�)∇μ∇νR, (2)

where we have defined2

a(�) = 1 + M−2
P

(

F2(�) + 2F3(�)

)

�,

c(�) = 1 + M−2
P

(

−4F1(�) − F2(�) +
2
3
F3(�)

)

�,

f(�) = M−2
P

(

4F1(�) + 2F2(�) +
4
3
F3(�)

)

, (3)

which abide by the constraint a(�) − c(�) = f(�)�.
From (2) we can derive the propagator around a flat back-
ground [15, 16]

Π(p2) =
P(2)

p2 a(−p2)
−

P(0)
s

p2(a(−p2) − 3c(−p2))
(4)

where P(2) is the spin-2 projection operator, P(0)
s is the

scalar spin-0 projection operator and pμ = i∂μ is the
momentum, so that in flat space � = −gμνpμpν = −p2.
The simplest choice is to set a(�) = c(�) equal to the ex-
ponential of an entire function, which by definition does
not have any roots, and therefore the propagator will not
receive any additional degrees of freedom other than the
massless graviton. However, it was shown in [39], see also
[17, 37], that the scalar sector of the propagator can have
at most one additional pole without ghost-like degrees of

2 We denote the linearised curvatures around a Minkowski back-
ground as R, Rμν , Rμνρσ .
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freedom being introduced. This allows us to write the
ghost-free condition 3

(a(�) − 3c(�))R = 2
(
�/m2 − 1

)
ā(�)R, (5)

where ā(�) is the exponential of an entire function and so
a(−p2)−3c(−p2) has a single pole in the scalar sector at
�→ −p2 = m2, which produces an extra spin-0 particle
of mass m. By expanding to first order in �, we find that
m2 ≡ M2

P /(6f10 − f20 − M2
p /M2) [36]. We know that

m2 > 0 so that the particle has real mass and therefore
no tachyons are introduced.
If either a(�) = c(�) or (5) holds, the propagator

contains an exponential term in the denominator, which
suppresses the propagator at high momentum. This ex-
ponential suppression results in an exponential enhance-
ment of the vertex factors of the relevant Feynman dia-
grams [17, 28, 29, 39] meaning that interaction does not
take place at this point, as in a local theory. In this sense,
the action can be considered to describe an effective the-
ory.

A. Defocusing conditions

The Raychaudhuri equation is a model-independent
identity which relates the geometry of spacetime to the
contribution of gravity via the curvature. It says that
for a null tangent vector kμ, satisfying kμkμ = 0, the
expansion parameter θ = ∇μkμ is described by4

dθ

dλ
+

1
2
θ2 ≤ −Rμνkμkν , (6)

where λ is the affine parameter [10]. In order to have
an expansion parameter which is positive and increasing,
and therefore allow the defocusing of the null rays, we re-
quire Rμνkμkν < 0. In GR, using the Einstein equation,
Gμν = κTμν , we cannot fulfil this condition because the
Null Energy Condition (NEC) requires that Tμνkμkν ≥
0. By the Hawking-Penrose Singularity Theorem [40],
this inability to defocus will always lead to a singularity.
To be precise, a spacetime cannot be null geodesically
complete in the past direction if Rμνkμkν > 0 [9].
However, in IDG this is not the case and we will see

that it is possible to have defocusing. By contracting the
equations of motion (2) with kμkν , we can see that the
contribution of gravity to the Raychaudhuri equation is

Rμνkμkν =
1

a(�)

[

κTμνkμkν +
kμkν

2
f(�)∇μ∇νR

]

,(7)

3 (a(�) − 3c(�)) R corresponds to the trace equation, found by
contracting (2) with gμν .

4 We have taken the simplest case of the Raychaudhuri equation
here by making two simplifications. Firstly, we take the congru-
ence of null rays to be orthogonal to the hypersurface, so that the
twist tensors vanish. Secondly, the shear tensor gives a positive
contribution to the right-hand side and so we can neglect it for
our purposes.

which was studied in a cosmological setting [36]. When
considering a static spherically symmetric perturbation
around a flat background, then the defocusing condition
is

Rμνkμkν =
1

a(�)

[

κTμνkμkν +
(kr)2

2
f(�)�R(r)

]

< 0, (8)

where �R(r) = 1
r2 ∂r(r2∂r)R(r). Note that the function

a(�) acting on the curvature cannot be negative, as this
would lead to the Weyl ghost. This is because a(−p2) is
the modification to the spin-2 part of the propagator, so it
must be positive to avoid negative residues [16]. There-
fore if the NEC holds true, we arrive at the minimum
defocusing condition

a(�) − c(�)
a(�)

R(r) < 0. (9)

The first observation to make is that defocusing can-
not occur in the case of a(�) = c(�), which corresponds
to requiring that there are no extra poles in the scalar
propagator and therefore no extra scalar propagating
modes. As above, we can allow a single extra scalar
propagating mode without introducing ghosts into the
system [17, 37, 39]. This corresponds to adding an ex-
tra root to a(�) − 3c(�) which from (5) means that the
relationship between a(�) and c(�) is given by [36]

c(�̄) =
a(�̄)

3

[
1 + 2

(
1 −�/m2

)
ã(�̄)

]
, (10)

where ã ≡ ā(�)
a(�) is an exponent of an entire function.

Hence the propagator is given by [36]

Π(p2) =
1

a(−p2)

[
P(2)

p2
+

P(0)
S

2p2(1 + p2/m2)ã(−p2)

]

, (11)

while the minimum condition for null rays to defocus (9)
becomes

(1 −�/m2)ã(�)R(r) > R(r). (12)

III. NEWTONIAN POTENTIAL

In this section, we describe the general method for find-
ing the Newtonian Potential, which was previously stud-
ied for the more specific case when a(�) = c(�) [15, 31,
42], and we will generalise that to the case when a(�) 6=
c(�). When we take the metric generated by a small
static spherically symmetric test mass added to a flat
space background, following the method of [15, 31, 42],

ds2 = − (1 + 2Φ(r)) dt2 + (1 − 2Ψ(r)) ηijdxidxj ,(13)

this is akin to perturbing the flat space metric ημν as
gμν = ημν + hμν , where

h00 = h00 = −2Φ and hij = hij = −2Ψηij . (14)
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As a result, the scalar curvature and 00 component of the
Ricci curvature tensor around the flat Minkowski back-
ground are given by

R = 4ΔΨ(r) − 2ΔΦ(r), R00 = ΔΦ(r), (15)

where Δ ≡ ηij∂i∂j is the Laplace operator.
Then from the equations of motion (2), the trace and

00 component equations of motion are 5

−κρ = κT =
1
2

(a(�) − 3c(�)) R,

κρ = κT00 = a(�)R00 +
1
2
c(�)R. (16)

Here we have taken the weak field approximation so that
ρ � p, where ρ is the density and p is the pressure of the
test mass. Therefore T = (−ρ + 3p) ≈ −ρ and T00 ≈ ρ.
Combining this with (15) leads to

ΔΨ(r) = −
c(�)

(a(�) − 2c(�))
ΔΦ(r),

ΔΦ(r) =
a(�) − 2c(�)

a(�) (a(�) − 3c(�))
κρ. (17)

As our point source is of mass μ, its density is approx-
imated by a 3-dimensional Dirac-delta function: ρ =
μδ3(r). Next we use a Fourier transform to calculate
Φ(r) by using the same method as for calculating the
Coulomb potential [43, 44].
When the Dirac-delta function is Fourier transformed

into momentum space or p-space, it becomes [15]

ρ = μδ3(r) = μ

∫
d3p

(2π)3
eip∙r. (18)

As we go into momentum space, we take �→ −p2, giving

Φ(r) = −
κμ

(2π)3

∫ ∞

−∞
d3p

a − 2c

a(a − 3c)
eip∙r

p2

= −
κμ

4π2r

∫ ∞

−∞
dk

(a − 2c)
a(a − 3c)

sin(pr)
p

. (19)

Trivially, we can use (17) to see that

Ψ(r) =
κμ

4π2r

∫ ∞

−∞
dp

c

a(a − 3c)
sin(pr)

p
. (20)

Note that if we set a(−p2) = c(−p2),

Φ(r) = Ψ(r) = −
κμ

4π2r

∫ ∞

−∞
dp

1
2a

sin(pr)
p

. (21)

This case was discussed in [15, 31]. For the simplest case,
where a(�) = e−�/M2

, it results in the 1/r fall of the po-
tential seen in GR being modified by the error function,

5 We have noted that the time derivatives of R(r) and R00(r)
vanish.

i.e. Φ(r) ∼ Erf(r)
r . For large r, Erf(r) ≈ 1 but at short

distances, Erf(r) ∼ r, so Φ(r) ∼ 1. Therefore the 1/r
behaviour is retained at large distances but at short dis-
tances, the modification means that the potential simply
tails off to a constant and the potential is no longer sin-
gular.

A. Potential for IDG with defocusing

In this paper we will extend the calculation of the IDG
potential to the case where a 6= c, which allows us to
avoid singularities. We describe the relationship between
a(�) and c(�) using (10), and by inserting (10) into (19)
we find that

Φ(r) = −
κμ

24π2r

×
∫ ∞

−∞
dp

[

4 −
m2

ã(−p2)(m2 + p2)

]
sin(pr)

p a(−p2)
. (22)

The calculation we need to perform is

f(r) =
∫ ∞

−∞
dp

[

4 −
m2

ã(−p2)(m2 + p2)

]
sin(pr)

p a(−p2)
, (23)

where Φ(r) ∼ − f(r)
r . We can write ã(−p2) = eτ(−p2)

and a(−p2) = eγ(−p2), and this results in

f(r) =
∫ ∞

−∞
dp

[

4 −
m2e−τ(−p2)

m2 + p2

]
e−γ(−p2) sin(pr)

p
. (24)

This is our main result - we have shown that we can have
defocusing as well as a non-singular Newtonian potential.
This potential returns to the GR value in the infrared
limit, i.e for large values of r.6

B. Conditions on a(−p2) and ã(−p2)

Next we investigate the conditions that must be placed
on a(−p2) and ã(−p2), and therefore what we can say
about τ(−p2) and γ(−p2).
First we look at the spin-0 part of the propagator.

From (11), we have

Π(p2) =
1

eγ(−p2)

[
P (2)

p2
+

P (0)

2p2(1 + p2/m2)eτ(−p2)

]

, (25)

where P (2) is the spin-2 projection operator and P (0)

is the spin-0 projection operator. We require that in the
UV, the propagator is exponentially suppressed, allowing
us the possibility of curtailing divergences [28]. From the
spin-0 sector of (25), we observe the condition γ(−p2) +

6 Note that in the limit M → ∞ we return to a non-local theory,
which is fourth-order gravity [45].
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τ(−p2) > 0. Fortunately, this condition ensures that the
integral (24) converges. Note that a priori, it is possible
that there are coefficients in front of the exponentials
eγ(−p2) and eτ(−p2), but by requiring that we return to
the GR propagator in the infrared limit k � m,M , we
are obliged to set the coefficients to 1. Also, by requiring
the spin-2 part of the propagator (25) to be exponentially
suppressed we have γ(−p2) > 0.

From looking at (12) in momentum space, the defocus-
ing condition imposes a constraint: τ(−p2) ≥ 0. Thus,
we have the functions a(−p2) = eγ(−p2) and ã(−p2) =
eτ(−p2) where γ(−p2) is positive function and τ(−p2) is
a non-negative function. In fact, the result of these con-
straints is that the integral (24) converges.

We therefore have two free mass scales M and m
and two unspecified functions τ(−p2) and γ(−p2). We
will henceforth choose both the mass scales to be the
Planck mass MP and choose the simplest possible ver-
sion of τ(−p2), which is τ = 0 . This choice means that
all of the freedom in the model is tied up in the func-
tion γ(−p2), which we will choose to be the monomial
γ(p2) = (Cp2/M2

P )D. We therefore have only two free
parameters, C and D.

IV. PLOTTING THE RESULTS

FIG. 1: We plot f(r) vs r for different C and D = 1,
where γ(p2) = (Cp2/M2

P )D. See (26). For illustrative
purposes, we have taken Mp = 1m−1. We compare our
results to the a(�) = c(�) case seen in (21). Here, we
see that as C increases, the effect of IDG can be seen

increasingly further away from the origin.

FIG. 2: We plot f(r) vs r for different D and C = 1
where γ(p2) = (Cp2/M2

P )D. See (26). The plot shows
that for D > 1 the potential oscillates. As the value of

D increases, so too does the magnitude of these
oscillations. For illustrative purposes, we have taken

Mp = 1m−1 and again we find that our results reduce to
that of GR at large distances.

FIG. 3: We plot f(r) vs r for different D greater than
10 with C = 1, where γ(p2) = (Cp2/M2

P )D. See (26).
We can see that for D > 10, increasing D does not
affect the potential. For illustrative purposes, we have
taken Mp = 1m−1. We can parameterise these curves as
α1r for r < 1 and α2 cos(θr + θ0)/r for r > 1, where α1,

α2, θ and θ0 are constants, as in [38].
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A. Choosing a form for a(−p2) and ã(−p2)

For the simplest choice τ(−p2) = 0 and γ(p2) =
(Cp2/M2

P )D, this gives7

f(r) =
∫ ∞

−∞
dp

[

4 −
M2

P

M2
P + p2

]
e−(Cp2/M2

P )D

sin(pr)
p

. (26)

In Fig. 1, we take D = 1 and plot f(r) for different
choices of C using (26). Clearly increasing the value of C
moves the point at which the non-locality kicks in further
away from the origin. Next in Fig. 2 we look at how the
potential varies for the same C but with different values
of D, which is the power of p2 in (26).
As we increase the value of D, our potential begins to

oscillate, as was found in [31]. These oscillations grow in
size as D increases until about D = 10.
This is because

lim
D→∞

e−(Cp2/M2
P )D

= rect(Cp2/M2
P ), (27)

where rect(x) is the rectangle function, which is defined
by rect(x) = 1 for |x| < 1 and rect(x) = 0 for |x| > 1.
For D > 10, (27) is a very good approximation and so
increasing the value of D does not change the potential.
Our next task is to investigate the choice of large pow-

ers of p2 which has been shown to fit recent experimental
data [38] at small distances for the a(�) = c(�) case. We
will see whether we can still obtain oscillating solutions
with conditions necessary to realise defocusing. In Fig. 3
we plot (26) for different choices of D > 10 and note that
it can still be parameterised accurately as

f(r) =

{
α1r for 0 < r < 1,

1 + α2
cos(θr+θ0)

r for 1 < r.

In other words, the oscillating solution which was
hinted at by experimental data can be produced by a

modified gravity solution which also allows geodesic com-
pleteness.

V. CONCLUSION

We have found the Newtonian potential for a wider
class of Infinite Derivative Gravity (IDG) theories than
were previously investigated and analysed various cases
of the theory. Analysis of data from experimental tests
has hinted that, at small distances, an oscillating non-
local potential provides the best fit to experimental data.
We have shown that an IDG theory constrained to allow
the defocusing of null rays, and therefore geodesic com-
pleteness,
still produces a non-singular potential which returns to

the standard GR result at large distances. This result can
still be parameterised as the oscillating function which
provides a good fit to the data.
By allowing defocusing, it is necessary to introduce ex-

tra parameters into the model, although we can reduce
the freedom in these parameters by making appropriate
choices about the mass scales and the form of the func-
tions.
Our results can be tested experimentally, which will

allow us to put constraints on our parameters. Future
research could look at moving away from the minimal
model and reintroducing the choice of parameters which
we reduced, or finding the potential around a de Sitter
background rather than a flat space background.
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