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Abstract—Based on a critical analysis of data analytics and its 

foundations, we propose a functional approach to estimate data 

ensemble properties, which is based entirely on the empirical 

observations of discrete data samples and the relative proximity of 

these points in the data space and hence named empirical data 

analysis (EDA). The ensemble functions include the 

non-parametric square centrality (a measure of closeness used in 

graph theory) and typicality (an empirically derived quantity 

which resembles probability). A distinctive feature of the 

proposed new functional approach to data analysis is that it does 

not assume randomness or determinism of the empirically 

observed data, nor independence. The typicality is derived from 

the discrete data directly in contrast to the traditional approach 

where a continuous probability density function (pdf) is assumed 

a priori. The typicality is expressed in a closed analytical form 

that can be calculated recursively and, thus, is computationally 

very efficient. The proposed non-parametric estimators of the 

ensemble properties of the data can also be interpreted as a 

discrete form of the information potential (known from the 

information theoretic learning theory as well as the Parzen 

windows). Therefore, EDA is very suitable for the current move to 

a data-rich environment where the understanding of the 

underlying phenomena behind the available vast amounts of data 

is often not clear. We also present an extension of EDA for 

inference. The areas of applications of the new methodology of the 

EDA are wide because it concerns the very foundation of data 

analysis. Preliminary tests show its good performance in 

comparison to traditional techniques.  

 

Index Terms—data mining and analysis, machine learning, 

pattern recognition, probability, statistics. 

I. INTRODUCTION 

URRENTLY, there is a growing demand in Machine 

Learning, Pattern Recognition, Statistics, Data Mining 

and a number of related disciplines broadly called Data 

Science, for new concepts and methods that are centered on 

the actual data, the evidence collected from the real world 

rather than at theoretical prior assumptions which need to be 

further confirmed with the experimental data (e.g the Gaussian 

assumption). The core of the statistical approach is the 
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definition of a random variable, i.e. a functional measure from 

the space of events to the real line, which defines the 

probability law [1]–[4]. The probability density function (pdf) 

is, by definition, the derivative of the cumulative distribution 

function (cdf). It is well known that differentiation can create 

numerical problems in both practical and in theoretical aspects 

and is a challenge for functions which are not analytically 

defined or are complex. In reality, we usually do not have 

independent and identically distributed (iid) events, but we do 

have correlated, interdependent (albeit in a complex and often 

unknown manner) data from different experiments which 

complicates the procedure.  

The appeal of the traditional statistical approach is its solid 

mathematical foundation and the ability to provide guarantees 

of performance, when data is plenty (N), and created from 

the same distribution that was hypothesized in the probability 

law. The actual data is usually discrete (or discretized), which 

in traditional probability theory and statistics are modeled as a 

realization of the random variable, but one does not know a 

priori their distribution. If the prior data generation hypothesis 

is verified, good results can be expected; otherwise this opens 

the door for many failures.  

Even in the case that the hypothesized measure meets the 

realizations, one has to address the difference of working with 

realizations and random variables, which brings the issue of 

choosing estimators of the statistical quantities necessary for 

data analysis. This is not a trivial problem, and is seldom 

discussed in data analysis. The simple determination of the 

probability law (the measure of the random variable) that 

explains the collected data is a hard problem as studied in 

density estimation [1]–[3]. Moreover, if we are interested in 

statistical inference, for instance, similarity between two 

random variables using mutual information, the problem gets 

even harder because different estimators may provide different 

results [5]. The reason is that very likely the functional 

properties of the chosen estimator do not preserve all the 

properties embodied in the statistical quantity. Therefore, they 

behave differently in the finite (and even in the infinite) sample 

case. An alternative approach is to proceed from the 

realizations to the random variables, which is the reverse 

direction of the statistical approach. The literature has several 

excellent examples of this approach, in the area of measures of 

association. For instance, Pearson’s correlation coefficient is 

perfectly well defined in realizations, as well as in random 

variables. Likewise, Spearman’s  [6], Kendal’s  [7], are other 

examples of measures of association well defined in both the 

realization and the random variables. However, the problem 

with this approach is that the statistical properties of the 
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measures in the random variables are not directly known, and 

may not be easily obtained. A good example of the latter is the 

generalized measure of association, which is well defined in the 

realizations, but not all of the properties are known in the 

random variables [8]. Therefore, there are advantages and 

disadvantages in each approach, but from a practical point of 

view, the non-parametric approach is very appealing because 

we can go beyond the framework of statistical reasoning to 

define new operators and still cross-validate the solutions with 

the available data using non-parametric hypothesis tests. A 

good example is least squares versus regression. One can 

always apply least squares to any data type, deterministic or 

stochastic. If the data is stochastic the solution is called 

regression, but the result will be the same, because the 

autocorrelation function is a property of the data, independent 

of its type. The difference shows up only in the interpretation of 

the solution; most importantly, the statistical significance of the 

result can only be assessed using regression.   

A more recent alternative is to approximate the distributions 

using non-parametric, data-centered functions, such as particle 

filters [9], entropy-based information-theoretic learning [5], 

etc. On the other hand, partially trying to address the same 

problems, in 1965 L. Zadeh introduced fuzzy sets theory [10], 

which completely departed from objective observations and 

moved (similarly to the belief-based theory [8] introduced a bit 

later) to the subjectivist definition of uncertainty. A later strand 

of fuzzy set theory (data driven approach developed mainly in 

1990s) attempted to define the membership functions based on 

experimental data. It stands in between probabilistic and fuzzy 

representations [11], however, this approach requires an 

assumption on the type of membership function. An important 

challenge is the posterior distribution approximation. 

Approximate inference can be done employing maximum a 

posteriori criteria which requires complex optimization 

schemes involving, for example, the expectation maximization 

algorithm [1]–[3].  

In this paper, we present a systematic methodology of 

non-parametric estimators recently introduced in [12]–[15] for 

discrete sets using ensemble statistical properties of the data 

derived entirely from the experimental discrete observations 

and extend them to continuous spaces. These include the 

cumulative proximity (q), centrality (C), square centrality (q-1), 

standardized eccentricity ( ), density ( ) as well as 

typicality, () which can be extended to continuous spaces, 

resembling the information potential obtained from Parzen 

windows [1]–[4] in Information Theoretic Learning (ITL) [5]. 

Its discrete version sums up to 1 while its continuous version 

integrates to 1 and is always positive; however, its values are 

always less than 1 unlike the pdf values that can be greater than 

1. Additionally, the typicality is only defined for feasible values 

of the independent variable while the pdf can extend to 

infeasible values, e.g. negative height, distance, weight, 

absolute temperature, etc. unless specifically constraint [12]–

[15]. We further consider discrete local () and global (D) 

versions. Then, we introduce an automatic procedure for 

identifying the local modes/maxima of D as well as a procedure 

for reducing the amount of the local maxima/modes and extend 

the non-parametric estimators to the continuous domain by 

introducing the continuous global density,  and typicality, 

G, which further involves integral for normalization. 

Furthermore, we demonstrate that the continuous global 

typicality does integrate to 1 exactly as the traditional pdf 

(while being free form the restrictions the latter has). This is a 

new and significant result which makes continuous global 

typicality an alternative to the pdf.  This strengthens the ability 

of the empirical data analysis (EDA) framework for 

objectively investigating the unknown data pattern behind the 

data and opens up the framework for inference. The 

methodology is exemplified with a Naïve EDA classifier based 

on G.  

II.  THEORETICAL BASIS - DISCRETE SETS 

In this section, we start by presenting EDA foundations in 

discrete sets [12]-[15] for completeness and further clarity. 

Firstly, let us consider a real metric space 
K

R   and assume a 

particular data set or stream    1 2, ,..., K

NN
 Rx x x x ; with 

T

,1 ,2 ,, ,...,i i i i Kx x x   x ; 1,2,i  , N , where subscripts 

denote data samples (for a set) or the time instances when they 

arrive (for a stream). Within the data set/stream, some data 

samples may repeat more than once, namely, ,i j i j  x x  . 

The set of sorted unique data samples, denoted by 

   1 2, ,...,
NN

LL
u u u u  (where    

NL N
u x , 1 NL N  ) 

and the number of occurrence, denoted by 

   1 2, ,...,
NN

LL
f f f f  can be determined automatically based 

on the data. With  
NL

u  and  
NL

f , the primary data 

set/stream  
N

x  can be reconstructed. In the remainder of this 

paper, all the derivations are conducted in the nth time instance 

except when specifically declared otherwise. The most obvious 

choice of 
K

R , is the Euclidian space with the Euclidean 

distance, but we can also extend EDA definitions to Hilbert 

spaces, and Reproducing Kernel Hilbert spaces. We can, 

moreover, consider different types of distances within these 

spaces motivated by the purposes of the analysis that exploit 

information available from the source that generated the 

samples or definitions that are appropriate for data analysis. 

Within EDA, we introduce:  

a) cumulative proximity, q [12]–[15]; 

b) square centrality, ; 

c) eccentricity, ξ [12]–[15]; 

d) standardized eccentricity, ε [12]–[15]; 

e) discrete local density, D [12]–[15]; 

f) discrete local typicality,   [14], [15]; 

g) discrete global typicality,  D [14], [15]; 

h) continuous local density, DL ; 

i) continuous global density, DG, and 

j)  continuous global typicality, G. 

 D

GD

1q
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The discrete global typicality, D addresses the global 

properties of the data and will be introduced in the next section. 

For inference, the continuous local (DL), global density (DG) 

and the continuous global typicality, (G) will be described in 

detail in section IV.  

A. Cumulative Proximity and Square Centrality 

For every point  i N
x x ; 1,2,...,i N   one may want to 

quantify how close or similar this point is to all other data 

points from  
N

x . In graph theory, centrality is used to 

indicate the most important vertices within a graph. A measure 

of centrality  [16], [17] is defined as a sum of distances from a 

point xi to all other points: 

 
 

 

1

1
; ; 1 ; 1

,
N i i NN N

i j

j

c i N L

d


    


x x x

x x

    (1) 

where  ,i jd x x  is the distance/similarity between ix  and 

jx , which can be, but not limited to Euclidean, Mahalanobis, 

cosine, etc. 

Its importance comes from the fact that it provides centrality 

information about each data sample in a scalar or vector form. 

We previously defined [12]–[15] the cumulative proximity 

 N iq x as,  

     2

1

, ; ; 1
N

N i i j i NN
j

q d L


  x x x x x                  (2) 

which can be seen as inverse centrality with a square distance  

Cumulative proximity [12]–[15] is a very important 

association measure derived empirically from the observed data 

without making any prior assumptions about their generation 

model and plays a fundamental role in deriving other EDA 

quantities. The complexity for computing the cumulative 

proximities of all samples in  
N

x  is  2O N . As a result, the 

computational complexity of other EDA quantities for  
N

x , 

which can be derived directly from cumulative proximity is 

 O N . For many types of distance/similarity, i.e. Euclidean 

distance, Mahalanobis distance, cosine similarity, etc., with 

which the cumulative proximity can be calculated recursively 

[14], the complexity for calculating the cumulative proximities 

of all the samples in 
N

x  is reduced to  O N  as well.  

In a very similar manner, we can consider square centrality 

as the inverse of the cumulative proximity, defined as follows: 

    
 

1

2

1

1
; 1

,
N i NN

i j

j

q L

d





 


x

x x

                                  (3) 

B. Eccentricity 

The eccentricity, N , defined as a normalized cumulative 

proximity, is another very important association measure 

derived empirically from the observed data without making any 

prior assumptions about their generation model [12]–[15]. It 

quantifies data samples away from the mode, useful to 

represent distribution tails and anomalies/outliers. It is derived 

by normalizing Nq   and taking into account all possible data 

samples. It plays an important role in anomaly detection [14], 

[15] as well as for the estimation of the typicality as it will be 

detailed below. The eccentricity ( N ) of a particular data 

sample ix  in the set  
N

x  ( 1NL  ) is calculated as follows 

[12]–[15]: 

 
 

 

 

 

2

1

2

1 1 1

2 ,
2

; 1

,

N

i j

jN i

N i NN N N

N j j h

j h j

d
q

L

q d




  

  



 

x x
x

x

x x x

         (4) 

where the coefficient 2 is included to normalize eccentricity 

between 0 and 1, i.e.:   

 0 1N i x                                          (5) 

Here, we also introduce standardized eccentricity, ε, which 

does not decrease as fast as eccentricity with the increase of the 

amount of data, N and is calculated as follows: 

   
 

 
1

2
; 1

1

N i

N i N i NN

N j

j

q
N L

q
N

 



  



x
x x

x

                  (6) 

Based on the expression of the standard eccentricity 

(namely, equation (6)) one can see that the data samples which 

are far away from the majority tend to have higher standard 

eccentricity values compared with others. Thus, the standard 

eccentricity can serve as an effective measure of the tail of data 

distribution without the need of clustering the data in advance. 

Combining the standard eccentricity with the well-known 

Chebyshev inequality [18], which discribes the probability that 

certain data sample x  is more than n  (  denotes the 

standard deviation) distance away from the mean, we get the 

EDA version of the Chebyshev inequality as follows [12], [14]:  

  2

2

1
1 1NP n

n
    x                                                (7) 

The Chebyshev inequality expressed by the standard 

eccentricity provides a more elegant form for anomaly 

detection. For example, if   10N x , x  has exceeded the 

3  limitation, and can be categorized as an anomaly. 

C. Discrete Local Density 

Discrete local density is defined as the inverse of 

standardized eccentricity and plays an important role in data 

analysis using EDA ( 1,2,..., ; 1Ni N L  ): 

   
 

 

 

 

2

1 1 11

2

1

,

2
2 ,

N N N

N j j l

j j l

N i N i N

N i
i l

l

q d

D
Nq

N d


  



  

 



x x x

x x
x

x x

       (8) 

For example, if the Euclidean distance is used, the density 

can be expressed as ( 1,2,..., ; 1Ni N L  ): 
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  2

T

1

1

N i

i N

N N N

D

X









 

x
x

                                                (9) 

where N  
is the mean of  

N
x ; NX  is the mean of   T

N
x x ; 

N  
and NX  can be updated recursively using [19]: 

 
1 1 1

T T

1 1 1 1

1 1
; ;

1,2,...,
1 1

; ;

k k k

k k k k

k

k k
k N

k
X X X

k k






  


   



x x

x x x x

  

 

As we can see from equation (9), the discrete local density 

itself can be viewed as a univariate Cauchy function while 

there is no assumption or any pre-defined parameter 

involved in the derivation besides the definition of the 

distance function (Euclidean distance used here).  

D. Discrete Local Typicality 

Discrete local typicality was firstly introduced in [13], and 

called unimodal typicality. In this paper, it is redefined as the 

normalized local density ( 1,2,..., ; 1Ni N L  ): 

 
 

 

 

 

1

1

1 1

N i N i

N i N N

N j N j

j j

D q

D q







 

 

 

x x
x

x x

                               (10)                                                                                            

The discrete local typicality resembles the traditional 

unimodal probability mass function (pmf), but it is 

automatically defined in the data support unlike the pmf which 

may have non-zero values for infeasible values of the random 

variable unless specifically constraint.  

The discrete local density resembles membership functions 

of a fuzzy set having value of 1  for x =   while the discrete 

local typicality resembles pmf with the sum of NN values 

being equal to 1 and values for both D and   being from the 

interval [0,1]. 

As an example, the square centrality, standardized 

eccentricity, discrete local density and typicality of real climate 

dataset (wind chill and wind gust) measured in Manchester, UK 

for the period 2010-2015 [20] are presented in Supplementary 

Fig. 1. In these examples, Euclidean distance is used. 

III. THEORETICAL BASIS: 

DISCRETE GLOBAL 

TYPICALITY 

In this section, we will 

consider the more realistic 

case when data distributions 

are multimodal. 

Traditionally, this requires 

identifying local 

peaks/modes by clustering, 

expectation maximization, 

optimization, etc. [1]–[3], 

[21]–[23].  Within EDA, 

the discrete global 

typicality (τD) is derived automatically from the data with no 

user input and can quantify multimodality. It is based on the 

local cumulative proximity, square centrality, eccentricity and 

standardized eccentricity. The only requirements to define the 

discrete global typicality are the raw data and the type of 

distance metric (which can be any). 

A.  Discrete Global Typicality 

Expressions (9)-(10) provide definitions of local operators 

that are very appropriate to quantify the peak point (


x ) of 

unimodal discrete functions. Moreover, if the peak coincides 

with the global mean N  (
N

 x  ), then the value of the 

local density is equal to 1:   1N ND  . A similar property 

having a maximum, though its value is 1 , is also valid for the 

traditional probability by definition and according to the central 

limit theorem [1]–[3]. In reality, data distributions are usually 

multimodal [21]–[24], therefore the local description should be 

improved. In order to address this issue, the traditional 

probability theory often involves mixture of unimodal 

distributions, which requires estimation of number of modes 

and it is not easy [24]. Within the EDA framework, we provide 

the discrete global typicality, τD, directly from the dataset, 

which provides multimodal distributions automatically without 

the need of user decisions and only requires a threshold for 

robustness against outliers.  

The discrete global typicality of a unique data sample is 

expressed as a combination of the normalized discrete local 

density weighted by the corresponding frequency of occurrence 

of this unique data sample ( 1,2,..., ; 1N Ni L L  ) :   

 
 

 

 

 

1

1

1 1

N N

j N ii N iD

N i L L

j N j j N j

j j

f qf D

f D f q







 

 

 

uu
u

u u

                         (11) 

where  1

N iq
u  and  N iD u  are the square centrality and the 

discrete local density of a particular data sample, iu  calculated 

from  
NL

u   only . 

This expression is very fundamental, because, in fact, it 

combines information about repeated data values and the 

scattering across the data space, and resembles the well-known 

membership functions of fuzzy sets. We further explain this 

link in a publication that is currently under review [25]. 

 

a) Histogram                                                                         b) Discrete global typicality 
D

N
  

Fig.1. Histogram and discrete global typicality 
D

N
   of the real climate data [20] using Euclidean distance 
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   One can easily appreciate from Fig. 1, the differences 

between the D

N  
and histogram with a quantization step equal 

to 5 for both dimensions. Note that, the histogram requires the 

selection of one parameter (the quantization step) per 

dimension, while none is needed for the discrete global 

typicality. For large dimensions (D), this can be a big problem. 

The size of the grid/axis is a user-specified parameter. The 

histogram takes only values from a finite set 
1 2

0; ; ; ;1
N N

 
 
 

 

, while D

N  can take any real value. 

The discrete global typicality has the following properties: 

i) sums up to 1; 

ii) the value is within  0,1  ; 

iii) provides a closed analytic form, equation (11); 

vi) there is no requirement for prior assumptions as well as 

any user- or problem-specific threshold and parameters; 

v) is free from some peculiarities of  traditional probability 

theory (its value never gets 1  and non-zero positive for 

infeasible values [14], [15]) ; 

vi) can be recursively calculated for various types of metrics. 

When all the data samples in the dataset have different values 

( 1;if i  ), and the histogram quantization step parameter is 

not properly set, the histogram is unable to show any useful 

information, while the discrete global typicality can still show 

the mutual distribution information of the dataset, see Fig. 2 (a) 

and (b). This is a major advantage of discrete global typicality 

because it is parameter free. Here the figures are based on the 

unique data samples of the same climate dataset. As we can see, 

the data samples which are closer to the mean of the dataset will 

have higher value of global typicality and vice versa. 

It is also interesting to notice that for equally distant data, the 

discrete global typicality, D

N  
is exactly the same as the 

frequentistic form of probability. Then equation (11) reduces to 

 
1

NL
D

N i i j

j

f f


 u . Supplementary Fig. 2 shows a simple 

example of the discrete global typicality D

N  
and pmf of an 

artificial climate dataset  
50

x   with  only data of wind chill, 

which have 2 unique data samples,    
50

10;20u  (
o C ), 

while  
50

f 
 
 20;30 . 

 Obviously,  2 1q u

 2 2q u  2

1 2,d u u , and 

 2 10D o C 0.4 ; 

 2 20D o C  0.6 . 

Indeed, if 20 times we 

observe wind chill is 

10o C  and 30 times 20o C   

the likelihood for wind 

chill of 10o C will be 40%   

and for wind chill of 20o C  

will be 60% , respectively.   

The discrete global typicality 
100

D  of the outcome of 

throwing dices for 100 times is presented in Supplementary 

Fig. 3 as an additional illustrative example. In this experiment, 

for 1, we can use  
T

1; 0; 0; 0; 0; 0; , for 2, we can use 

 
T

0; 1; 0; 0; 0; 0;  , etc. Let the outcome of throwing dices 100 

times be  
6

17 14 15 15 21 18
; ; ; ; ;

100 100 100 100 100 100
f

 
  
 

 , the values 

of the discrete global typicality D

N  of the six outcomes are 

equal to their corresponding frequencies, see the 

Supplementary Fig. 3.  

B. Identifying Local Modes of Discrete Global Typicality 

In this sub-section, an automatic procedure for identifying all 

local maxima of the discrete global typicality, defined in 

the previous sub-section will be described. It results in the 

formation of data clouds (samples associated with the local 

maxima) [19], [26]. Data clouds are free shape while clusters, 

are usually hyper-spherical, hyper-ellipsoidal. This data 

partitioning resembles Voronoi tessellation [27]. They are also 

used in the AnYa type neuro-fuzzy predictive [19], [26], 

classifiers and controllers. 

The illustrative figures in this section are based on the same 

climate dataset [20] that was used earlier in Fig. 1, which has 

two features/attributes: wind chill (
o C ) and wind gust (mph). 

In all cases, the Euclidean distance is used, though, the 

principle is valid for any metric. 

The proposed algorithm can be summarized as follows: 

Step 1: Identifying the global maximum of the discrete 

global typicality D

N  

For every unique data sample of the dataset  
N

x , its  

discrete global  typicality  D

N i u  ( 1, 2,..., Ni L ) can be 

calculated using equation (11). 

The data sample with the highest D

N  is selected as the 

reference data sample in the ranked collection  *

NL
u : 

  *(1)

1,2,...,

arg max
N

D

N i
j L




u u                                                  (12) 

D

N

  

(a) Histogram with very small quantization                              (b) Discrete global typicality,  
D

N
  

Fig. 2 Histogram and discrete global typicality for the unique  data samples 
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where 
*(1)

u  is the data sample with the highest value of discrete 

global typicality (in fact, the global maximum), and we set 
* *(1)m u u . In case when there are more than one maxima, we 

can start with any one of them.  

Step 2: Ranking the discrete global typicality
 

D

N   

Then, we find the unique data sample that is nearest to
*m

u  

denoted by 
*(2)

u  and put it into  *

NL
u  , meanwhile, remove it 

from  
NL

u . 
*(2)

u  is set to be the global maximum 

* *(2)m u u .   

The ranking operation continues by finding the next data 

sample, which is closest to 
*m

u , putting it into  *

NL
u , 

removing it from  
NL

u  and setting it as the new global 

maximum. 

By applying the ranking operation until  
NL

u  becomes 

empty, we can finally get the ranked unique data samples, 

denoted as    * *( ) | 1, 2,...,
N

i

N
L

i L u u  and their 

corresponding ranked discrete global typicality collection: 

    * *(1) ,D D

N N
N

 u u    *( )*(2) ,..., NLD D

N N u u . 

Step 3: Identifying all local maxima  

The ranked discrete global typicality is filtered using 

equation (13) to detect all local maxima of D

N  : 

             
  

* 1 * * * 1

*

j j j jD D D D

N N N N

j D

N

IF AND

THEN is a local maxma of

   



 
 u u u u

u

 

                                                                                          (13) 

We denote the set of the local maxima (can be used as a basis 

for forming data clouds and, further, AnYa type fuzzy 

rule-based models [19], [26]) of D

N  as the set  **

NP
u

 **( ) | 1,2,...,j

Nj Pu ; NP  is the number of the identified 

local maxima and N NP L . 

The ranked discrete global typicality is depicted in Fig. 3(a), 

the corresponding local maxima are depicted in Fig. 3(b). 

Step 4: Forming data clouds 

Each local maxima,  ** i
u , is then set as a prototype of a data 

cloud. All other data points are assigned to the nearest 

prototype (local maximum) forming data clouds using equation 

(14).    

  **( )

1,2,...,

arg min ,
N

j

j P

winning label d


 x u                             (14)       

Data clouds can be used to form AnYa models [19], [26]. 

After all the data samples within  
N

x  are assigned to the data 

clouds, the center (mean) j

N  , the standard deviation j

N  and 

support j

NS  ( 1, 2,..., Nj P ) per cloud can be calculated. 

Step 5: Selecting the main local maxima of the discrete 

global typicality, D

N   

We then calculate D

N  at the data cloud centers, denoted by 

 
N

  using equation (11) with the corrpesonding supports as 

their frequencies. Then, we use the following operation to take 

out the less prominent local maxima. 

For each center i

N ,  we check the condition ( , 1,2,...,i j 

NP ; i j ): 

      
  

2i j i D i D j

N N N N N N N

i

NR

IF AND

THEN

    



   

 
         (15) 

This condition means that if there is another center with 

higher D

N located within the 2 i

N  area of i

N , this new more 

prominent center replaces the existing one. This condition 

guarantees that the influence areas of neighboring data clouds 

will not overlap significantly (it is well known that according to 

the Chebyshev inequality for arbitrary distribution the majority 

of the data samples (>75%) lie within 2  distance from the 

mean [1]–[3]). 

By finding out all the centers satisfying the above condition 

and assigning them to  
R

 , we get the filtered data cloud 

centers denoted by     *

** * *| 1,2,..., ;
N

j

N N N N
P

j P P P     

by excluding  
R

  from  
NP

  (      
*

*

NN
R PP

    and 

   
*

*

N
RP

   ), where *

NP  is the number of remaining 

centers. 

After that, we set  

    *

** *

N NP P
u   , 

*

N NP P  and repeat Steps 

4-5 until the data cloud 

centers do not change any 

more.  

Finally, we can get the 

composed result, re-named 

as  o , and use the 

 o  as the prototypes to 

  

(a) Ranked discrete global typicality 
D

N
                                  (b) Local maxima/peaks/modes of  

D

N
  

Fig.3. Identifying local maxima of the discrete global typicality, 
D

N
  
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build data clouds using equation (14). 

The final data cloud centers for each selection round is 

presented in the Supplementary Video, which can also be 

downloadable from:  

https://www.dropbox.com/s/kkq8xztya3u3kh1/Supplementary

_Video.pptx?dl=0.  

The final result is presented in Fig. 4. Compared with Fig. 

3(b), in the final round, there are only two main modes left 

broadly corresponding to the two main seasons in Northern 

England and all the details are filtered out.  

Even if  1 1,f i   , the discrete global typicality can still be 

extracted successfully from the data samples, despite the fact 

that the result may not be exactly the same because of the 

changing data structure, see Supplementary Fig. 4, which uses 

the same real climate dataset in Fig. 4.  

The summary of automatic mode identification algorithm is 

as follows. 

Automatic mode identification algorithm: 

i. Calculate  D

N i u , 1, 2,..., Ni L  using equation (11); 

ii. Find the unique data sample 
*(1)

u  with global maximum of 
D

N  
using equation (12); 

iii. Send 
*(1)

u  into  *

NL
u  and   *(1)D

N u
 
into   *

N

D

N
L

 u
 

and delete 
*(1)

u  from  *

NL
u ; 

iv. 
* *(1)m u u ; 

v. While  
NL
u  

      * Find the unique data sample(s) which is/are nearest to 
*m

u ; 

      * Send the data sample(s) and the corresponding  D

N i u

into  *

NL
u  and   *

N

D

N
L

 u ; 

      * Delete data sample(s) from  
NL

u ; 

      * Set the latest element in  *

NL
u  as 

*m
u ; 

vi. End While 

vii. Filter  *

NP
u  and   *

N

D

N
P

 u using equation (13) and 

obtain  **

NP
u  as centers of data clouds; 

viii. While  **

NP
u  are not fixed 

      * Use  **

NP
u  and form the data clouds from  

N
x

using equation (14); 

      * Obtain the new centers  
NP

  standard deviations 

 
NP

  and  supports  
NP

S  of the data clouds; 

      * Calculate  D j

N N  , 2,..., Nj P  using equation (11); 

      * Find  
R

  satisfying equation (15); 

      * Exclude  
R

  from  
NP

  and obtain  *

*

NP
 ; 

      *     *

** *

N NP P
u  ; 

      * *

N NP P ; 

ix. End While 

x.    **

N

o

P
 u ; 

ix. Build the data clouds with  o using equation (14); 

C. Properties of EDA Operators 

Having introduced the basic EDA operators, we will now 

outline their properties.   

✓ They are entirely based on the empirically observed 

experimental data and their mutual distribution in the data 

space; 

✓ They do not require any user- or problem-specific 

thresholds and parameters to be pre-specified; 

✓ They do not require any model of data generation (random 

or deterministic), only the type of distance metric used 

(however, it can be any); 

✓ The individual data samples (observations) do not need to 

be independent or identically distributed (iid); on the 

contrary, their mutual dependence is taken into account 

directly through the mutual distance between the data 

samples;  

✓ The method does not require infinite number of 

observations and can work with just a few exemplars;  

Within EDA, we still can consider cross validation and 

non-parametric statistical tests based on the realizations of 

experimentally observed data similarly to the significance tests 

utilized on the random variable assumed in the traditional 

probability theory and statistics. As a conclusion, EDA can be 

seen as an advanced data analysis framework which can work 

efficiently with any feasible data and any type of distance or 

similarity metric.  

IV. THEORETICAL BASIS - CONTINUOUS DENSITY AND 

TYPICALITY 

Up to this point, all EDA definitions are useful to describe 

data sets or data streams made up of a discrete number of 

observations. However, they cannot be used for inference 

because they are only defined on points where samples occur 

(discrete spaces).  In this section, we define the continuous 

local and global density and global typicality which can be 

 
Fig.4. Final filtering result (The black ‘*’ denotes the centers of the data 

clouds, the data samples from different data clouds are plotted with different 
colors) 

https://www.dropbox.com/s/kkq8xztya3u3kh1/Supplementary_Video.pptx?dl=0
https://www.dropbox.com/s/kkq8xztya3u3kh1/Supplementary_Video.pptx?dl=0
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used for inference on the continuous domain of the variable x. 

At this stage, we depart from the entirely data based and 

assumptions-free approach we used so far, however, this is 

done after we identified the local modes, formed data clouds 

around these focal points and obtained the support of these data 

clouds. Therefore, the extension to the continuous domain is 

inherently local (per data cloud). We assume that the local 

mode considered as the mean and the support considered as 

frequency plus the deviation of the empirical data do provide 

the triplet of parameters (μ, X, Ni). We do recognize that these 

triplets are conditional on the specific Ni data samples observed 

and associated with the particular data cloud, but this will be 

updated when new data is available. Now, having this triplet of 

parameters we, firstly, define the continuous local density, 
LD  

as: 

 
 

 
1

; 1
2

N

N j

j

N i N

N i

q

D L
Nq


 

 x

x
x

                                      (15) 

Like equation (9), for the case of Euclidean distance, the 

continuous local density, 
LD  is simplified to a continuous 

Cauchy type function over any feasible value of the variable x 

with the parameters μ and X extracted from N available data 

samples as described earlier: 

 , 2

,

2

,

1
; 1,2,..., ; 1

1

L

N i N N

N i

N i

D i C L



  




x
x 

       (16) 

where 
2

2

, , ,N i N i N iX    ; 
,N i  and 

,N iX  are the mean and 

the average value of scalar products of the data samples within 

the ith data cloud; NC  is the number of data clouds; the 

subscript N means the local densities are derived from N 

observed data samples. It is obvious that with more data 

samples observed, the parameters will change and have to be 

updated regularly. Note that equation (16) is defined based on 

Euclidean distance. The 

expression of continuous 

local density 
LD  varies 

from the type of distance 

used. Nonetheless, in 

general, the continuous 

local density of the data 

can be expressed in the 

same form as the discrete 

local density but in the 

continuous space. 

The continuous local 

density 
LD  is defined on 

the continuous space for each local maximum per data cloud. 

Furthermore, we introduce the continuous global density 
GD  

as a weighted sum of the local density of each data cloud with 

weights being the support (number of data samples) of the 

respective data cloud. Finally, we introduce the continuous 

global typicality 
G  based on 

GD . The continuous global 

density and typicality play a similar role to the mixture of pdfs. 

However, the questions “how many distributions in the 

mixture”, “which are their parameters” and “what type of 

distributions” see Fig. 5 are all answered from the data directly, 

free from any user or problem-specific pre-defined parameters, 

prior assumptions, knowledge or pre-processing techniques 

like the cases of clustering, EM, etc.  

A. Continuous Global Density 

Continuous global density is a mixture that arises simply 

from the metric of the space used to measure sample distance 

and the density of samples that exist in the space. However, it 

works for all types of distance/similarity metric. As we can see 

from equation (16) the local density is Cauchy type when the 

Euclidean distance is employed therefore, the simplest of the 

procedures is to define the continuous global density as a 

mixture of Cauchy distributions.  The continuous global density 

enables inference of new samples anywhere in the space. 

  For any  and any type of distance used, we define 

continuous global density in a general form very much like the 

mixture distributions, as a weighted combination of continuous 

local densities: 

 
 , ,

1 ; 1

NC
L

N i N i
G i

N N

S D

D L
N

 
 x

x                                  (17) 

where  ,

L

N iD x   is the local density of  in the ith data cloud; 

NC  is the number of data clouds at the Nth time instance; 
,N iS  

is the support (number of members) of the ith data cloud based 

on the available experimental/actual data. For normalization, 

we impose the condition 
,

1

NC

N i

i

S N


 . The continuous global 

density 
GD  is defined non-parametrically from each of the 

modes of the data (DL) and near the peaks; it is a very good 

approximation of DL, but it will deviate progressively from it in 

trough regions. As an example, the global density for the same 

climate dataset used before [20] is presented in Fig. 6(a). 

x

x

 
Fig.5. The process of extracting distribution from data in EDA 

 

 
(a) Continuous global density                                                    (b) Continuous global typicality 

Fig.6. Continuous global density and global typicality of the real climate dataset  [20] using Euclidean type distance. 
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Compared with the 

discrete local density 

introduced in section II 

which is discrete and 

unimodal by definition, 
GD  is more effective to 

detect the natural 

multimodal data structure 

such as abnormal data 

samples because only the 

data samples that are close 

to the larger data clouds, 

which can be viewed as the 

main modes of the data patterns, can have higher values of 

continuous global density. This feature is clearly depicted by 

the value of 
GD  of those data samples located in the space 

between the two main modes in the figures below, while for the 

local density, see Supplementary Fig. 1(c), it is exactly the 

opposite case.  

B. Continuous Global Typicality 

   Having introduced the continuous global density, we can 

also define the continuous global typicality, 
G  as well. It is 

also defined as a normalized form of the density (similarly to 

the weighted typicality, 
D , equation (11)) but with the use of 

integral instead of the sum. As stated in section II, the weighted 

typicality, 
D

 
is discrete and sums to 1. The global typicality is 

expressed as follows: 

 
 

 

 

 

, ,

1

, ,

1

N

N

C
L

G N i N i
NG i

N C
G L

N N i N i

i

S D
D

D d S D d

 

 

 

 


 

x
x

x

x x x x

                 (18) 

It is important to notice that equation (18) is general and 

valid for any type of distance/similarity metric. For a general 

multivariate case, it is important to normalize the mixture of 

continuous local densities  ,

L

N iD x to make 
G  integrate to 1.  

By finding out the integral of the continuous global density 

within the metric space and dividing 
G  by its integral, one can 

always guarantee unit integral, regardless the type of 

distance/similarity metric used. 

As we said before, we consider the well-known expression of 

the multivariate Cauchy distribution [21]–[23] to transform the 

 ,

L

N iD x  without loss of generality. 

 

   
1

T 21

2
2

1

2

1

K

d

K

K

f

 






 
 
 



  
 
 
 

x

x x 

                        (19) 

where  
T

1 2, ,..., Kx x xx ;   is the well-known mathematical 

constant and     is the gamma function;  E x ;    is 

scalar parameter. This guarantees that: 

 
2 1

1 2 1 2, ,..., ,... 1

K

K K

x x x

f x x x dx dx dx                            (20) 

Based on (17)-(19), we introduce the normalized continuous 

local density as follows: 

    
1

2
, ,1

2
,

1

2
K

L L

N i N iK

K

N i

K

D D

 





 
 
 

x x                                   (21) 

Here 
T

, , , ,N i N i N i N iX      for the Euclidean distance.  

We can, finally, get the expression of the continuous global 

typicality,  in terms of the normalized continuous global 

density as: 

 
 

 

  
1

2, ,
,1

,1
1 ,2

, ,

1

1

2

N

N

N

C
KL

LCN i N i
N iG i

N N iK KC
iL N i

N i N i

i

K
S D D

S

NS D d










 


 

 
 
 

 



 

x
x

x

x x

                                                                                              (22) 

For the Euclidean distance, equation (22) becomes  

  ,

1 1
1 22 2

,

, 2

,

1

2

1

NC
N iG

N K K
i

N iK

N i

N i

K

S

N








 


 
 
 



 
 
 
 

x

x 

             (23) 

The continuous global typicality of the real climate dataset 

with Euclidean distance is presented in Fig.6(b) 

The comparisons between the continuous global typicality 

(the modes are extracted by the approach introduced in section 

III), discrete global typicality, histogram and traditional pdf are 

presented in 2D form for visual clarity in Fig. 7 using the same 

the real climate dataset [20].  

As shown in Fig. 7, compared with the traditional pdf using a 

Gaussian model, the global typicality derived directly from the 

dataset without any prior assumption about the number of local 

modes or type of distribution represents very well the two 

modes in the data pattern and gives results very close to what a 

histogram would give and significnatly better to what a single 

unimodal distribution would provide.  

In summary, the proposed continuous global typicality has 

the following properties, many of which it shares with the 

discrete global typicality introduced in section III: 

G

 
 (a) wind chill (oC)                                                                  (b) wind gust (mph) 

Fig.7. Comparison between the continuous global typicality 
G

 , discrete global typicality
D

 , histogram and traditional pdf. 
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     i) integrates to 1; 

ii) provides a closed analytic form; 

    iii) no requirement for prior assumptions as well as any user 

or problem-specific threshold and parameters; these are 

derived from the data entirely; 

    vi) can be recursively calculated for various types of metrics. 

V. APPLICATIONS 

A.  Examples 

In this subsection, we will give several examples of the 

continuous global typicality, G  of different datasets extracted 

by the proposed automatic mode identification algorithm. The 

continuous global typicality of the Seeds dataset [28] and 

Combined Cycle Power Plant dataset [29] and Wine Quality 

dataset [30] with Euclidean distance is presented in Fig. 8. As 

the dimensionality of the original datasets is > 2, for a better 

visualization, we use the principal component analysis (PCA) 

method [31] to reduce the dimensionality and use the first 2 

principal components in the figures as the x-axis and y-axis. 

Supplementary Fig. 5 (a) and (b) present the G  derived from 

the first 1/3 and the first 2/3 the Wine Quality dataset. 

Supplementary Fig. 5 (c) depicts the G  derived by scrambling 

the order of the data samples. The continuous global typicality 
G  of 2 dimensional benchmark datasets A1, S1 and S2 [32] 

are also presented in Supplementary Fig. 6. 

If we want more details from the continuous global 

typicality, we can also stop the automatic mode identification 

algorithm described in section III early, i.e. before the final 

iteration, and build the continuous global typicality based on 

more detailed data partitioning results. The Supplementary 

Video referred in section III.B also depicts evolution of the 

global continuous typicality based on the results of different 

iteration times of the proposed mode identification algorithm. 

B. Inference Primer 

Assuming, there are 3 arbitrary non-integer values of wind 

chill data  7.5;2.5;14.7x    (oC), which does not exist in the 

dataset, we can quickly obtain the corresponding continuous 

global typicality using equation (18),   G x     

 0.0080, 0.0375, 0.0180  and the inferences made are 

presented in Fig. 9. Here we only consider the two main modes. 

That means that wind chill of -7.5oC is less likely while the 

wind chill of 2.5oC is more likely.  

   In addition, if we want to know the continuous global 

typicality of all the values larger than , we can integrate as 

follows: 

   T 1 G

N d




   
x t

x t x x                                               (24) 

For example, when Euclidean distance is used, and here we 

only consider one-dimensional data for simpler derivation, 

equation (24) can be re-written as: 

 
 , ,

1T 1

NC
L

N i N i

i

x t

S D x

x t dx
N







  


      

,

,

1 ,

1 1
arctan

2
1

NC
N i

N i

i N i

t
S

N



 

  
    

  
 


                           (25) 

Let us continue the example in Fig. 9. If we want to know the 

global continuous typicality of all the data samples above 20 
oC, which is the green area of this figure, we can calculate the 

value using equation (25) to yield  T 20 0.2447x   .  That 

means that the likelihood, a value to be equal to or greater than 

20 oC is 24.47%. One can see that the continuous global 

typicality can serve as a form of probability. 

C. Naïve EDA Classifier 

In this sub-section, we borrow the concept of naïve Bayes 

classifiers [1]–[3] and propose a new version of naïve EDA 

classifier. In contrast with the original naïve EDA classifier 

proposed in [15], which relies for inference on the discrete 

global typicality and linear interpolation and/or extrapolation, 

the naïve EDA classifier in this paper uses the continuous 

global typicality instead, which is based on the local modes of 

the discrete global typicality identified by an automatic 

procedure as described in section III.B. This procedure is more 

effective in reflecting the ensemble features of the distribution 

of the data samples of different classes in the data space. 

As the proposed approach accommodates various type of 

distance/similarity metrics, one can use the current knowledge 

in the area to choose the desired distance measure for a 

reasonable approximation that simplifies the processing. 

Moreover, one can change to other distance measures easily 

t

 
(a) Seeds dataset                                                          (b) Combined Cycle Power Plant dataset                     (c) Wine Quality dataset              

Fig.8.  Continuous global typicality of the Seeds dataset [28], Combined Cycle Power Plant dataset [29] and Wine Quality dataset [30] 
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and compare the results obtained by the classifier with different 

type of measures. For consistence, in the following numerical 

examples, we use the Euclidean distance. 

Let us assume H classes at the Nth time instance, where 

some classes may have many data clouds. The continuous 

global typicality per class can be defined as ( 1,2,...,i H ): 

 
 

 

, , , ,

1

,

, , , ,

1

j

j

W

L

N i j N i j

jG

N i W

L

N i j N i j

j

S D

S D d






 





 

x

x

x x

                                    (26) 

where, 
jW  is the number of data clouds sharing the same ith 

class label, 
1

H

j N

i

W C


   ; 
, ,N i jS  is the support of the jth data 

cloud having the ith class label;  , ,

L

N i jD x  is the corresponding 

continuous local density.  

For any unlabeled data sample , its label is decided by the 

following expression: 

            ,
1,2,...,

arg max G

N j
j H

label 


x x                                  (27) 

The 2D plots (wind chill and wind gust) of the continuous 

global typicality with Euclidean type of distance of the real 

climate dataset are given in Supplementary Fig.7.  

The performance of the proposed naïve EDA classifier is 

further tested on the following problems: 

i) Banknote Authentication dataset [33]; 

ii) Pima dataset [34]; 

iii) Climate dataset [20]; 

iv) Pen-Based Handwritten Digits Recognition dataset [35]; 

v) Madelon dataset [36]; 

vi) Optical Handwritten Digits Recognition dataset [37]; 

vii) Occupancy Detection dataset [38]. 

The proposed naïve EDA classifier is compared with a SVM 

classifier with Gaussian radial basis function and a naïve Bayes 

classifier in terms of their performance. The details of the 

datasets used in the classification are demonstrated in 

Supplementary Section B.  

In the experiments, PCA [31] is applied as a pre-processing 

step to reduce the dimensionality and balance the variances of 

the datasets. It has to be stressed that PCA is not a part of the 

proposed method and is not necessary for simpler problems. 

For Banknote Authentication, Pima and Climate datasets, we 

randomly select 70% of the data for training and use the rest for 

validation. The performance is evaluated after 10-fold 

cross-validation. For Pen-Based Digits, Madelon, Optical 

Digits and Occupancy Detection datasets, we train the 

classifiers with the training sets and conduct the validation with 

the testing/validation sets.  

The overall performance of the 3 classifiers is tabulated in 

Table I, where we consider the first 3 principal components for 

classification. Considering the first 5 principal components, the 

overall results obtained by the classifiers are tabulated in Table 

II. 

As it is shown in Tables I and II, the proposed naïve EDA 

classifier outperforms the SVM classifier and naïve Bayes 

classifier on different problems in the majority of the numerical 

examples. The performance of the proposed naïve EDA 

classifier is the best. In addition, it is worth to note that the 

classification conducted by the naïve EDA classifier is totally 

free from unrealistic assumptions, restrictions or prior 

knowledge. 

VI. CONCLUSION AND FUTURE DIRECTION 

In this paper, we propose a new systematic approach to 

derive ensemble properties of data without any prior 

assumptions about data sources, amount of data and user- or 

problem- specific parameters. The EDA (Empirical Data 

Analytics) framework considers the relative position of data in 

a metric space only and extracts from the raw experimental 

discrete observations a series of measures of their ensemble 

properties, such as the cumulative proximity (q), centrality (C), 

square centrality (q-1), standardized eccentricity ( ), density (

) as well as typicality, (). The local and global versions of 

x


D

TABLE II 

CLASSIFICATION PERFORMANCE - 5 PRINCIPAL COMPONENTS CONSIDERED 

Dataset 

Overall Accuracy 

Naïve EDA 
classifier 

SVM 
classifier 

Naïve Bayes 
classifier 

Pima 0.7391     0.6522    0.7365 

Climate 0.9734 0.5170 0.9578 

Pendigit 0.8190 0.1072 0.7730 

Madelon 0.6117 0.5000 0.5817 

Optdigit 0.8603 0.1708 0.8436 

Occupancy detection 

testing set 1 
0.9726 0.6353 0.9422 

Occupancy detection 
testing set 2 

0.9647 0.7899 0.8654 

 

 

Fig.9. Continuous global typicality 
G

  of wind chill data and simple 

inferences 

 

TABLE I 

CLASSIFICATION PERFORMANCE- 3 PRINCIPAL COMPONENTS CONSIDERED 

Dataset 

Overall Accuracy 

Naïve EDA 

classifier 

SVM 

classifier 

Naïve Bayes 

classifier 

Banknote 0.9910 0.9978 0.9629 

Pima 0.7374 0.6487 0.7343 

Climate 0.9777 0.6365 0.9709 

Pendigit 0.8070 0.2247 0.7424 

Madelon 0.6167 0.5000 0.6083 

Optdigit 0.7084 0.5442 0.7218 

Occupancy detection 
testing set 1 

0.9700 0.6735 0.9377 

Occupancy detection 

testing set 2 
0.9532 0.8168 0.8676 
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the typicality, ( and G) are both considered originally in 

discrete form and then in continuous form approximating the 

actual data-driven discrete estimators by a mixture of local 

functions. It was demonstrated that for the case when the 

distance metric used is Euclidean, the density (both in its 

discrete form that is exactly describing the actual data and in its 

continuous form which is approximating the entire data space 

density) takes the form of a Cauchy function. However, 

importantly, this is not an assumption made a priori, but is 

driven and parameterized by the data and the selected metric. 

Furthermore, we propose an autonomous algorithm for 

identifying all local modes/maxima of the global discrete 

typicality, D as well as for filtering out the main local maxima 

based on the 2  closeness of each local maximum. Finally, we 

present a number of numerical examples aiming to verify the 

methodology and demonstrate its advantages. We introduce a 

new type of classifier, which we call naïve EDA for 

investigating the unknown data pattern behind the large amount 

of data in a data-rich environment. In conclusion, the proposed 

EDA framework and methodology provides an efficient 

alternative that is entirely based on the experimental data and 

the evidence. It touches the very foundations of data mining and 

analysis and, thus, has a wide area of applications, especially, in 

the era of big data and data streams where handcrafting offline 

methods and making detailed assumptions is often not an 

option.  

Nonetheless, we have to admit that the bottlenecks of the 

proposed methodology are the lack of theoretical confidence 

levels for the analysis and the theoretical idea of reliability and 

generalization, which are the inherited limitations of 

nonparametric approaches. 

In this paper, we only provide the preliminary algorithms and 

results on data partitioning, analysis, inference and 

classification. As a future work, we will focus on developing 

more advanced algorithms within the EDA framework for 

various applications of different areas, including, but not 

limited to, high frequency trading data processing, foreign 

currency trading problem, handwritten digits recognition, 

remote sensing, etc.  
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