
JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 1

Image Reconstruction via Manifold Constrained
Convolutional Sparse Coding for Image Sets

Linlin Yang1∗, Ce Li2∗, Jungong Han3, Qixiang Ye4, Chen Chen5, Xianbin Cao6, Baochang Zhang1†,
Wanquan Liu7

Abstract—Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and
enhancement. However, the coding process suffers from perturbations caused by variations of input samples, as the consistence of
features from similar input samples are not well addressed in the existing literature. In this paper, we will tackle this feature consistence
problem from a set of samples via a proposed manifold constrained convolutional sparse coding (MCSC) method. The core idea of
MCSC is to use the intrinsic manifold (Laplacian) structure of the input data to regularize the traditional CSC such that the consistence
between features extracted from input samples can be well preserved. To implement the proposed MCSC method efficiently, the
alternating direction method of multipliers (ADMM) approach is employed, which can consistently integrate the underlying Laplacian
constraints during the optimization process. With this regularized data structure constraint, the MCSC can achieve a much better
solution which is robust to the variance of the input samples against over-complete filters. We demonstrate the capacity of MCSC by
providing the state-of-the-art results when applied it to the task of reconstructing light fields. Finally, we show that the proposed MCSC
is a generic approach as it also achieves better results than the state-of-the-art approaches based on convolutional sparse coding in
other image reconstruction tasks, such as face reconstruction, digit reconstruction and image restoration.

Index Terms—Light Field, Image Reconstruction, Image Deblurring, Convolutional Sparse Coding, Manifold Constrained
Convolutional Sparse Coding.
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1 INTRODUCTION

W ITH the increasing number of images and videos
produced in our everyday life, batch data processing

techniques which can deal with high-volume data contain-
ing significant illumination variation, blurring, and severe
noise, are highly demanded. For instance, high-resolution
light field imaging is a typical batch system applied on a
set of images captured from large camera arrays or a hand-
held camera moved over time around the scene [1], [2]. To
handle the challenging problem caused by high sampling
rate and huge-volume samples captured in various of ex-
ternal conditions (i.e., lighting variations), different kinds of
techniques that can reconstruct dense light fields from fewer
samples are developed based on various prior assumptions
made about the data [2]. When processing batch images,
researchers reach a consensus that the data structure as a
common prior should be given much attention, which has
been evidenced first in visualizing high-dimensional data in
the low-dimension space [3], [4], and then some successful
applications in the learning paradigm [5], [6], [7]. Especially,
the data structure embedded into a constraint model could
be used to simplify the learning process while improving
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Fig. 1. Illustration of CSC and MCSC for image reconstruction. Re-
constructed images by CSC that lacks structure constraint suffer from
the perturbation caused by the noised or corrupted input samples. In
contrast, the reconstructed images by MCSC with manifold constraint is
more consistent with the input data structure. As a property of MCSC,
the manifold structure of input data is preserved, leading to more rea-
sonable reconstruction results.

the solution quality by the regularization technique, e.g.,
manifold regularization [5], which can be found in the latest
learning algorithms [6], [7]. As detailed in [7], the constraints
derived from the manifold structure in the input data can
be used to improve the performance of convolution neural
network (CNN). This is more important when one has to
gain the robustness to variations of the input data. To this
end, the methods better taking advantage of the implicit
data-set structure can obtain higher performance.
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In this paper, we revisit the convolution sparse coding
(CSC) [8] by considering the data on a Laplacian manifold.
The CSC or deconvolution, as one of fundamental tools in
machine learning, has been demonstrated to have important
applications in a broad range of computer vision problems
including feature learning, particularly related to the pre-
training of the CNN filters [9], image deionising and/or
reconstruction [9], [10], [11], [12] , super-resolution [13],
trajectory reconstruction [14], automatic music transcription
[15] and neuronal ensemble identification [16]. The conven-
tional CSC method was improved by new coding or dictio-
nary learning approaches in theory [17], [18], [19]. Based
on the convolution operator and sparse coding, the CSC
reconstructs the vectorized input images with vectorized
sparse feature maps and convolutional kernels. There are
some works addressing the deficiency of the CSC based
on an alternating direction method of multipliers (ADMM)
approach with the mixing matrix [8]. In [20], the extended
CSC has been proposed by considering local features depen-
dency for image reconstruction as a potential direction of
CSC, but the authors there only sketched out the idea with
neither implementation details nor sufficient experimental
results. Nevertheless, the data structure of input samples
is not fully utilized in the existing CSC methods and the
consistence of the features for similar input samples cannot
be guaranteed. In other words, the coding results for similar
input samples may vary dramatically because the neighbor-
hood information in the data-set is ignored. With the over-
complete filter set, the coding process without consistence
constraints would suffer from the perturbations caused by
the variations of input samples as they might be distorted
or corrupted. As shown in Fig. 1, the neighborhood of
input images in the reconstruction task is emphasized via
a manifold structure constraint.

In this paper, we will consider the mutual dependence
among observations, which would result in large variations
in the reconstructed data once it is ignored and then this
provides some new insights on the CSC with manifold
constraints. In particular we have an intuition on the data-
set structure that was neglected: the data lying on a spe-
cific manifold can be used to improve solutions for some
applications. For such purpose, we propose a new scheme
of the CSC as shown in Fig. 1 for image reconstruction.
Being different from the traditional CSC without structure
constraint, the coding process of the proposed manifold
constrained convolutional sparse coding (MCSC) is imposed
to be consistent with the data structure, while the learning
algorithm is implemented with the regularization technique
to solve the ill-posed problem. As an important property of
the MCSC, the manifold structure can be preserved, whilst
leading to a better reconstruction than the conventional
CSC. Furthermore, based on recent advantages in ADMM,
we can efficiently solve the proposed MCSC problem based
on a new manifold constraint model. One should notice that
there exist some previous works to incorporate the manifold
structure into deep learning [7] or sparse coding [6], [21].
However, to the best of our knowledge, this is the first
time that manifold constraint is introduced for the CSC. In
summary, we have the following contributions in this paper.

1. The manifold structure considered as a constraint is

embedded into the CSC and the proposed problem is
theoretically investigated, by which the consistence of
features for similar input samples can be preserved. Con-
sequently, the reconstruction performance is improved as
the implicit manifold structure is preserved.

2. The derived theoretical results show that imposing Lapla-
cian manifold constraint on the input data is equivalent
to imposing regularization terms on the coding and
dictionary, which provides an insight for other similar
methods [6], [21].

3. Extensive experimental results on image reconstruction,
image de-blurring and light field reconstruction show a
consistent improvement of performance with respect to
the existing state-of-the-art algorithms based on CSC.
The rest of the paper is organized as follows. Section 2

introduces the related works, and Section 3 describes the
details of the proposed method. Experiments and results are
presented in Section 4, and Section 5 concludes the paper.

2 RELATED WORK

Different from existing sparse coding algorithms for classi-
fication, the reconstruction and coding tasks that assume
independent observations during the learning procedure,
the conventional CSC explicitly models local interactions
through the convolution operator, and the resulting opti-
mization is considerably more complicated than traditional
sparse coding, especially in light field reconstruction.

In [9], [10], [11], [12], some hierarchical models that learn
image decompositions via the CSC are proposed in feature
learning. Moreover, an efficient feed-forward encoder that
can predict sparse features was proposed for classification,
which is particularly used to train the CNN filters [9],
[22]. With the guarantee that neural activity is sparse in
both space and time, Andilla et al. [16] proposed a sparse
deconvolution approach in both space and time domain for
calcium image sequences. Serrano et al. [23] verified the CSC
on the high-speed video analysis task. The CSC also has
attracted growing attention in processing different recon-
struction tasks. Wohlberg et al. [17] proposed an extended
CSC algorithm by using an augmented dictionary to incor-
porate the impulse noise images. Heide et al. [8] proposed
a splitting-based ADMM approach with the mixing matrix
to process the incomplete images and Serrano et al. [18]
proposed a variant of CSC to recover high dynamic range
images (HDRI), which achieved superior performances. In
addition to the applications mentioned above, the CSC
also has been utilized in super-resolution [13], trajectory
reconstruction [14], automatic music transcription [15] and
neuronal ensemble identification [16]. Meanwhile, based
on recent advances in optimization [24], [25], varieties of
efficient approaches to solve the CSC problems have been
proposed, such as, the frequency domain method [26] and
the splitting-based ADMM approach [8].

Recently, researchers have started to explore compres-
sive light field acquisition with a single camera. The optical
coding strategies include coded apertures [27], [28], coded
lenslets [27], and a combination of coded mask and aperture
[29].The conventional methods require multiple images to
be recorded and are not suitable for reconstructing dynamic
scenes, even though they succeed in reducing the number
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of shots compared to their non-compressive counterparts.
Marwah et al. [1] used sparse coding techniques to learn
a dictionary of basis vectors for representing light fields,
in which the dictionary is chosen so that training light
fields may be represented as sparse vectors. The underly-
ing assumption is that new light fields will have similar
structure to those in their training data. Similarly, Shi et al.
[2] proposed the continuous sparse structure in the Fourier
domain for light field reconstruction.

Different from the existing works, we present here a
new method that exploits Laplacian structure as constraints
in the ADMM framework, in which we emphasize on the
dependence among samples into the CSC. As a theoretical
contribution, we show that the Laplacian manifold structure
from data samples can be considered as regularization terms
imposed on coding coefficients and dictionary. This makes
our work significantly different from [21], where the Lapla-
cian regularization on coding coefficients is used only for
sparse coding. Instead, we focus on the convolution sparse
coding with Laplacian regularization on both coding and
dictionary learning in the ADMM framework. Our method
is also different from [20], which is based on an assumption
that Laplacian regularization is imposed on only a single
image, whereas we focus on a batch of images.

3 MANIFOLD CONSTRAINED CSC
In this section, we present how manifold can be incorpo-
rated into the CSC as a constraint and then construct the
MCSC. We then solve the MCSC problem in the ADMM
framework with theoretical analysis.

3.1 Laplacian Manifold for the CSC
As one of increasingly important tools in machine learning
and computer vision, the CSC method can be used to
learn the features subsequently used for classification and
reconstruction tasks. Based on the convolution operator and
sparse coding, the CSC is formulated as:

minimize
d,z

1

2

N∑
n=1

∥∥∥∥∥yn −
K∑
k=1

dk ∗ znk

∥∥∥∥∥
2

2

+ β
N∑
n=1

K∑
k=1

‖znk‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K},
(P1)

where yn ∈ RL1 are vectorized input images, znk ∈ RL1

are vectorized sparse feature maps and dk ∈ RL2 are the
vectorized convolutional kernels. N is the number of input
images, β is the sparsity parameter, K is the number of
the kernels and ∗ is the 2D convolution operator defined
on the vectorized inputs. The formulation (P1) can be gen-
erally customized for different applications. In the above
formulation, it is assumed that yn ∈ RL1 are independent.
We assume that the input samples yn ∈ RL1 are lying
on a manifold. To utilize the data structure prior, we first
reformulate (P1) as:

minimize
d,z

1

2
‖y −Hv‖2F + β

N∑
n=1

K∑
k=1

(‖znk‖1 +
1

2
‖znk‖

2
2)

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}
vn ∈M,

(P2)

where vn =
∑K
k=1 dk ∗ znk , v = [v1, . . . ,vN ], y =

[y1, . . . ,yN ]. M is a set of samples representing the un-
derlying manifold. To encourage a grouping effect, where
strongly correlated filters tend to be in or out of the model
together, we choose elastic net constraints [30] instead of
sparsity constraints. H is a diagonal matrix whose diagonal
entries are either 1 or 0, keeping or killing the corresponding
pixels for image reconstruction, or a measurement matrix
containing the sheared mask code of multiple recorded
sensors for light filed, or a blur matrix given by point spread
function (PSF) and boundary condition for de-blurring,
which allows us to gain the robustness in the CSC frame-
work for the complex situations, such as motion blur, out-
of-focus blur and illumination variation. As a basic intuition,
the manifold structure contained in the data set yn ∈ RL1

should be remained in the convolutional coding process. In
particular yn ∈M are the observations of degraded images,
and vn ∈ M are the reconstructions of yn that are thus
subject to a manifold constraint. Again we expect the depen-
dence among samples would help us obtain better coding
results as well as better solution for the filter learning.

It should be noted that the manifold structure in the
original input data is usually not accurate due to the fact
that the input data may suffer from noise or corruption.
In comparison, we expect the manifold structure becomes
more accurate based on v as a better reconstruction after
removing noise or corruption. Moreover, we prove that the
manifold constraints in terms of v can be interpreted to
be the meaningful regularizations in ADMM, which can
improve the kernels’ orthogonally and features’ neighbor
relationship. The proof details are presented in Section 3.3.

In order to solve (P2) with structure preservation, vn ∈
M is the only unsolved part. We use the manifold in a
constrained model that is different from the most popular
approaches such as the Local Linear Embedding (LLE) [3]
and the Laplacian with a focus on the data structure visual-
ization. In contrast, the Laplacian Eigenmap [4] provides a
computationally efficient approach to nonlinear dimension-
ality reduction that has locality-preserving properties with
a natural connection to clustering. Here, we calculate the
Laplacian structure of y in the input space that can be trans-
ferred to v via a specific constraint function. Technically, the
Laplacian matrix L [4] is used to replace vn ∈M in P2 and
thus we can obtain the following MCSC formulation.

minimize
d,z

1

2
‖y −Hv‖2F +

γ

2
tr(vLvT )

+ β
N∑
n=1

K∑
k=1

(‖znk‖1 +
1

2
‖znk‖

2
2)

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K},

(1)

where L is a Laplacian matrix with a parameter γ, which
weights the contribution of the regularization term. The
solution to Eq. 1 with a new manifold constraint function
γ
2 tr(vLv

T ) will be investigated based on the ADMM frame-
work in the next subsection. It is actually the only part
where manifold plays a role in (P2). According to [5], the
nonlinear structure as a resulting regularization term can
avoid over-fitting and ensure that a problem is well-posed
by penalizing complicated solutions.
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3.2 Solution to (P2) Based on the ADMM
The main optimization tool we use in solving this convex
problem Eq. 1 is ADMM, which is a variant of the standard
Augmented Lagrangian Multiplier (ALM) method that uses
partial updates (similar to the Gauss-Seidel method for
solving linear equations). The ADMM recently has received
much more attention because of its adaptability to several
problems [24]. By iteratively solving a set of simple convex
optimization sub-problems, one can obtain the final solution
of (P2). More details about ADMM can be found in [8], [24],
[25], [31]. The ADMM can solve the sub-convex problems
for two or more variables when one treats one variable
each time while other variables are fixed. By exploiting
the merits of the ADMM, we develop three update steps
as described below: coding update, dictionary update and
structure update. The coding update aims for more precise
reconstruction coefficients, dictionary update for better rep-
resentation and structure update for data manifold structure
constraint.

First, the coding update is achieved by:

minimize
z

1

2
‖y −Hv‖2F +

γ

2
tr(vLvT )

+ β
N∑
n=1

K∑
k=1

(‖znk‖1 +
1

2
‖znk‖

2
2),

(2)

where vn = Dzn, D = [D1, . . . ,DK ] is a concatenation of
Toeplitz matrix representing a convolution with the respec-
tive filter dk, z = [z1, . . . , zN ], zn = [znT1 , . . . , znTk ]T .

Next, the dictionary update problem is defined as:

minimize
d

1

2
‖y −Hv‖2F +

γ

2
tr(vLvT )

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K},
(3)

where vn = Znd, Zn is a concatenation of Toeplitz matrices
for the respective sparse codes znk , Z = [Z1, . . . ,ZN ], d =
[dT1 , . . . ,d

T
K ]T .

And finally, the structure update is shown as:

L = (1− η)L+ ηLE(Dz), (4)

where L is initialized equal to LE(y), and LE(·) means
normalized Laplacian matrix function defined in [4] and η
represents update ratio.

To simplify our ADMM, we define four functions that
are used to reformulate three mentioned update steps:

f1(x) =
1

2
‖y −Hx‖22 , f2(x) =

γ

2
tr(xLxT ),

f3(x) = β(‖x‖1 +
1

2
‖x‖22), f4(x) = indc(x),

(5)

where indc(·) represents the indicator function and C =
{x| ‖Sx‖22 ≤ 1} . The proximal operators [25] used to
approximate the above four objectives can be derived as

proxλf1(x) = (I+ λHTH)−1(x+ λHTy)

proxλf2(x) = x(γλL+ I)−1

proxλf3(x) = (
1

1 + λ
)(max(1− λ

|x|
, 0)� x)

proxλf4(x) =


Sx

‖Sx‖22
‖Sx‖22 ≥ 1

Sx else

.

(6)

In Alg. 1, we show the iterative steps of the MCSC which
can solve P2 efficiently.

Algorithm 1 - ADMM for (P2)
1: Input image set y and parameters
2: Pre-compute L = LE(y),H
3: Initialize d, z randomly
4: repeat
5: Coding update

z = argmin
z

f1(Dz) + f2(Dz) +
N∑
n=1

K∑
k=1

f3(z
n
k )

6: Dictionary update

d = argmin
d

f1(Zd) + f2(Zd) +
K∑
k=1

f4(dk)

7: Structure update

L = (1− η)L+ ηLE(Dz)

8: until The maximum number of iteration 50

3.3 Theoretic Analysis of the MCSC
In this subsection, we conduct theoretical analysis for the
proposed MCSC in two theorems. In detail, Theorem 1 states
that the Laplacian structure in input data v can approxi-
mately constrain the solution as that in feature space z (min-
imizing tr(vLvT) is approximated as tr(zLzT)). Theorem
2 proves that in the dictionary update step the Laplacian
structure constraint in input data is in fact equal to the
constraint imposed on the dictionary (l2-norm). We describe
two lemmas [32] and then prove our main theorems. The
proofs of lemmas and theorems are shown in the Appendix.

Theorem 1: Given D, and a positive constant α′, we
have:

c1tr(zLz
T ) ≤ tr(vLvT ) + α′

N∑
n=1

K∑
k=1

‖znk‖
2
2

≤ c2tr(zLzT ) + α′
N∑
n=1

K∑
k=1

‖znk‖
2
2 ,

where c1 and c2 are both positive constants.
We observe in this theorem that as a property of the

MCSC, minimizing tr(vLvT ) is approximated by minimiz-
ing tr(zLzT ). In other words the constraint on the data
v can be transferred to the feature space z. As mentioned
above the Laplacian structure in the input data can constrain
the solution as that in the feature space.

Theorem 2: Given Z, and two positive constants α′, β′,
we have:

c3 ‖d‖22 ≤ tr(vLv
T ) + (α′ + β′) ‖d‖22 ≤ c4 ‖d‖

2
2 ,

where c3 and c4 are both positive constants. Similar to the
observation in Theorem 1, minimizing tr(vLvT ) is approx-
imated by minimizing l2-norm of d. Again the constraint is
transferred from one variable to another.

In summary, two theorems show that the Laplacian
manifold structure of input data can be transferred as the
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regularization terms on optimized variables, coding coeffi-
cients or dictionary. Comparatively the nonlinear structure
constraints in previous works are added on coding coef-
ficients in a brute-force way [6], [21]. As another obvious
advantage of MCSC, the manifold constraint on the data can
be more explicitly represented by the optimized variables.

4 EXPERIMENTS

In this section, we use publicly available datasets to val-
idate the effectiveness of the proposed approach on the
reconstruction or restoration problems. The experiments are
conducted on face (Yale B) [33], digits (USPS) [34], a real-
application video for car [35], and the Chess [36]. The Yale
B dataset consists of 2, 414 frontal-face images from 38
individuals (about 64 images per subject) captured under
various laboratory-controlled lighting conditions. The USPS
dataset is an image dataset including 7291 training images
and 2007 test images. The video for car consists of 900
97 × 79-sized images. The Chess [36] database consists of a
17×17 grid of viewpoints with 1400×800 image resolution,
taken from the Stanford light field archive. The comparative
methods are some state-of-the-art methods including patch
based sparse coding (PSC) [1], [37], CSC [8], GSR [38] and
MCSCf (see definition in section 4.2). Following the exper-
iments in [8], [37], one part of data is used for training the
dictionary and the other is for testing in reconstruction tasks.
To make manifold structure of the data more transparent,
we first preprocessed the input images as follows:
Scheme 1. Translating one and two pixels in each of the

four directions, and rotating the images by one
to three degrees.

Scheme 2. Random subsampling of the data.
Scheme 3. Adding motion blur with 0 mean and 0.01 devi-

ations.
To evaluate the quality of the reconstructed images,

the signal-to-noise ratio (PSNR, unit:dB) is calculated. The
higher PSNR is, the better visual quality is achieved for
the reconstructed image. In our experiments, one part of
data is used for training the dictionary and the other data
is for testing in the reconstruction task. Three parameters
are involved in the MCSC: the sparsity of coding β, the
weight of manifold constraint γ and the manifold structure
update ratio η. It should be noted that the parameters are
set according to different applications which might be very
different, aiming to deliver a good tradeoff between sparsity
and data fit. Regarding to the computational cost, the MCSC
can be solved as efficiently as that of the baseline algorithm
[8]. For example, the running time for digit ’0’ in USPS are
respectively 100 minutes and 96 minutes for the MCSC and
CSC, on a PC with Intel i7 CPU and 16G RAM.

4.1 Light Field Reconstruction

We demonstrate an application of batch light field recon-
struction on the widely used Chess database [36] for MCSC.
The coded 2D projection and the reconstructed light fields
are shown in Fig. 2. MCSC allows for higher-resolution
light fields to be reconstructed than previously possible
from a single image, where y is the vectorized observed
sensor image, v is the vectorized light field, and H is a

sparse measurement matrix containing the sheared coded
projection operator on its diagonal, similar to [1]. In this
case, there are 17 × 17 angular light field views stacked in
v, the Laplacian matrix is initialized to a suitable default
value and the resolution of sensor images are resized into
150 × 100 in our experiment. The recorded sensor image is
stacked in y, and the corresponding measurement matrices
are coded using random masks and stacked in H . The
interesting case of 4D light field reconstruction is addressed
to validate the performance of MCSC, in comparison with
the PSC [1] and CSC [8]. Following the baseline methods [1],
[8], we train 64 8 × 8-sized filters, and then we set β = 0.3
in PSC and CSC, while β = 0.01, γ = 0.1 and η = 0.01
in MCSC. The results are shown in Fig. 2 and Table 1. It
can be observed that MCSC achieves better reconstruction
quality (i.e., left-bottom of the chess board) than that of
CSC, based on a compact dictionary due to the regularized
manifold structure. The image can be well covered even
under complex lighting conditions, occlusion and blurring.

(a) (b)

(c) (d)

Fig. 2. (a) Coded 2D Projection; (b) Reconstructed 4D Light Field; (c)
The reconstructed light field by CSC; (d) The reconstructed light field by
MCSC.

TABLE 1
Average PSNR (db) for Chess and YaleB01 database.

Method PSC CSC MCSCf MCSC
Chess 29.79 30.96 - 31.54

YaleB01 27.78 28.19 28.40 28.46

4.2 Face Reconstruction

In this subsection, we evaluate the quality of face image
reconstruction in terms of the average PSNR measure using
the extended Yale Face Database B [33]. We process the
images with scheme 1. The images are first resized to 96×84
and then normalized by dividing 255. We trained 64 15×15-
sized filters, and compare these MCSC filters with the PSC
[37] and CSC [8]. Besides, we also compare MCSC with
the MCSCf filter. Specifically, MCSCf is defined as the CSC
with the manifold constraint on the feature while MCSC
is the CSC with the manifold constraint on both data and
feature. We set β = 0.3 in the PSC and CSC, while β = 0.3,
γ = 0.1 and η = 0 in MCSCf and MCSC. Six of the
reconstructions and the dictionaries are shown in Fig. 3.
Fig. 3(b) and (c) show the results for a set of six faces with
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Fig. 3. (a) Original YaleB01 images; (b) Reconstruction by CSC; (c) Reconstruction by MCSC; (d) CSC dictionary; (e) MCSC dictionary.

TABLE 2
Average PSNR for different digit datasets with 25 7 × 7-sized filters.

Digit 0 1 2 3 4
PSC 21.00 24.58 23.30 22.83 24.68
CSC 22.65 27.33 24.54 24.66 26.04

MCSCf 23.00 28.10 24.66 25.15 26.42
MCSC 23.14 28.50 24.66 25.20 26.42

Digit 5 6 7 8 9
PSC 23.17 23.28 24.29 23.33 24.27
CSC 24.56 24.79 25.59 24.87 26.08

MCSCf 24.74 25.06 26.14 24.99 26.35
MCSC 24.95 25.23 26.40 25.14 26.42

different reconstruction methods, respectively. All left eyes
(upper left) are amplified and compared in the bottom right
corner. It can be observed that MCSC achieves much better
visual quality (i.e., eyes) than that of CSC, because of the
compactness of dictionary (Fig. 11) that contributes to better
reconstruction results. In terms of the average PSNR values
in Table 1, MCSCf and MCSC improve CSC by 0.21dB
and 0.27dB respectively. It is also obvious that the MCSC
achieves a higher performance than other methods.

4.3 Digit Reconstruction
We perform handwritten digit reconstruction on the widely
used the USPS database [34]. We experimented on digit ’0’
to ’9’ respectively with locally contrast normalization [8].
We adopt the parameters in [8] and set β = 1 in the PSC
and CSC, while β = 0.8, γ = 0.4, η = 0 in MCSCf and
MCSC. As baselines, the results of PSC [37] and CSC [8] are
also listed in Table 2. Moreover, the reconstructions for digit
’9’ have been shown in the amplified images in the bottom
right corner of Fig. 41. One can see that the proposed MCSC
achieves a better performance than the compared methods.

1. We show 100 out of the total reconstructions and dictionaries.

To further validate the proposed method, we also con-
duct the experiment of digit recognition. In experiments,
200 training images per class are randomly seletected for
training and 2007 test images are selected for testing. 9
dictionaries with 7×7-sized filters are trained for each class,
and the parameters are set in the same way as in [37]. We
repreat this procedure 10 times. The average recognition ac-
curacy shown in Table 3 presents the preliminary evidence
of the capability of MCSC for pattern recognition task.

TABLE 3
Average recognition accuracy (%) of four methods on USPS database.

Method PSC CSC MCSCf MCSC
Average Accuracy 97.11 97.50 97.95 98.05
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Fig. 4. (a) Original digit ’9’ images; (b) Reconstruction by CSC; (c)
Reconstruction by MCSC; (d) CSC dictionary; (e) MCSC dictionary.
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4.4 Image Restoration

Batch image restoration is to reconstruct the original image
from degraded observations. As a typical application of the
MCSC, one can apply it to different kind of restoration
problems as long as appropriate H is given and also an
offset term as a smoothness prior [8], [18]. Here, H is a
diagnoal matrix or PSF, about the selection of H in our
method is discussed for (P2). Two interesting cases of image
restoration, i.e., inpainting and deblurring, are addressed to
validate the performance of the proposed MCSC, in compar-
ison with the CSC and group-based sparse representation
(GSR) [38]. We optimally choose β = 0.05 in the GSR and
CSC, while β = 0.05, γ = 0.01 and η = 0.01 in the MCSC.
For inpainting, we process the digit ’0’ in USPS dataset with
scheme 2. Inpainting restoration results of ’0’ (100 out of the
total) are shown in the bottom right of Fig. 5 and Table 4. To
further validate the effectiveness of the structure constraints,
we test the parameters γ = 0.01, γ = 0.5, and γ = 2,
for image inpainting as shown in Fig. 5(d)-(f), respectively.
Obviously, the parameter γ influences the completeness of
the digit ’0’, which again validates the effectiveness of the
manifold constraint in the MCSC. For deblurring, we use the
video car selected from a public dataset [35] that is further
processed with scheme 3. The deblurring restoration results
(2 out of 900) are compared in Fig. 6 and Table 4. Again, the
MCSC achieves the best reconstruction results, due to the
regularized manifold structure imposed on the CSC.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of different inpainting methods for 75% subsampling.
(a) Original digit ’0’ images; (b) Subsampled images; (c) The inpainted
images by CSC; (d) The inpainted images by MCSC (γ = 0.01, η =
0.01); (e) The inpainted images by MCSC (γ = 0.5, η = 0.01); (f) The
inpainted images by MCSC (γ = 2, η = 0.01).

TABLE 4
Average PSNR of inpainting methods for different subsampling rates

and deblurring methods.

Method Subsample GSR CSC MCSC
Inpainting for 75% 22.31 34.64 35.16 35.44
Inpainting for 50% 19.35 29.31 30.19 30.59

Method Motion blur GSR CSC MCSC
Deblurring 23.37 33.89 34.13 34.24

Fig. 6. Comparison of different deblurring methods. (a) Original car
images; (b) Motion blur images; (c) The deblurred images by CSC; (d)
The deblurred images by MCSC.

4.5 Discussion of the MCSC

As shown in the above experiments, MCSC achieves a
higher performance than the well-known baseline CSC. This
section further discusses how a higher performance has
been achieved. We illustrate the performance of MCSC and
CSC based on the reconstruction error, which is an impor-
tant metric to evaluate for evaluating the quality of image
reconstruction. A smaller value denotes less information
loss. But when we process batch images, the reconstruction
error can not be used to valuate the quality of data structure.
Even for a same reconstruction error, manifold structures
may vary a lot. Differently we focus on both reconstruction
error and structure illustration. Imposing the manifold con-
straint is expected to better preserve the data structure and
decrease the reconstruction loss.

Manifold Structure. In Fig. 7, we plot manifold struc-
tures of the input data, CSC and MCSC reconstructions on
digit ’0’ in USPS. The dataset has more than 1000 images,
based on which we estimate the structures using the Lapla-
cian Eigenmaps [4] with the same iterations. Obviously,
MCSC (γ = 0.1, η = 0) achieves more similar manifold
structures as the input manifold than CSC, in comparison
with Fig. 7(b), Fig. 7(c) is much more similar to Fig. 7(a).
The result shown in Fig. 7(b) just gets worse reconstruction
actually. In addition, we plot the manifold of MCSC with
γ = 5 and η = 0.5 in Fig. 7(d), as expected that larger γ and
η can improve the smoothness of the structure. Besides γ
and η, the number of samples also plays a crucial role in the
structure calculation, and the results in Fig. 8 confirm that
larger sample sizes result in better structures. We further
select 2000 pairwise of digit ’6’ and evaluate the normalized
correlation between the input image and its reconstruction
in Fig. 9. One can see that MCSC shows a better linear fitting
of y = x while CSC has a bigger bias and variance.

Reconstruction Error. With respect to the reconstruction
error, we calculate it in the YaleB01 dataset. In Fig. 10,
the MCSC demonstrates the capability of decreasing the
reconstruction loss. In addition to the manifold and recon-
struction error analysis mentioned above, we also evaluate
the performance on dictionary compactness and feature
similarity. As theorem 1 and 2 showed that the imposing
manifold constraint should have the impact on compacting
dictionaries and preserving feature similarity.

Dictionary Orthogonality. To evaluate the compactness
of the learned convolutional filters, we define the normal-
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Fig. 7. Comparison of the manifold of ’0’ samples. (a) Manifold of the
original input data; (b) Manifold of CSC; (c) Manifold of MCSC (γ =
0.1, η = 0); (d) Manifold of MCSC (γ = 5, η = 0.5).
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Fig. 8. Manifold of MCSC with different numbers of ’0’ samples. (a) 250
samples; (b) 500 samples; (c) 750 samples; (d) 1000 samples.
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Fig. 9. (a) The similarity correspondence between the inputs and the
CSC reconstructions; (b)The similarity correspondence between the
inputs and the MCSC reconstructions.
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Fig. 11. Dictionary normalized orthogonal analysis with different kernel
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Fig. 12. (a) CSC feature maps (similarity = 0.25); (b) MCSC feature
maps (similarity = 0.37); Noted that the similarity for the original image
pair is 0.75.
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Fig. 13. (a) The similarity correspondence between the inputs and
the CSC feature maps; (b) The similarity correspondence between the
inputs and the MCSC feature maps.

where dici, the ith column of the dic, represents a vec-
torized and normalized word. We calculate the normalized
orthogonality in digit ’6’ with different kernel numbers. As
shown in Fig. 11, the MCSC is more compact than that of
CSC in terms of the dictionary orthogonality in most cases.

Feature Similarity. For feature similarity analysis, we
plot the results of CSC and MCSC on a pair of images
(the same class) sampled from YaleB data set in Fig. 12.
It can be seen that the responses using the MCSC are
much more similar with a higher similarity score, but the
responses using the CSC vary a lot. Selecting 2000 pairwise
handwritten numbers from digit ’6’ in USPS dataset, we cal-
culate the relationship between their input and feature maps
using the normalized correlation, and plot their similarity
correspondence in Fig. 13. The MCSC similarity in Fig. 13(b)
appears better fitting to y = x than CSC in Fig. 13(a).

5 CONCLUSIONS

In this paper, we propose a novel framework of convolution
sparse coding with Laplacian manifold constraint. The new
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insight of MCSC investigates mutual dependence among
the observed and the reconstructed instances. Some theo-
retical results are obtained to explain the existing Lapla-
cian regularization technique in sparse coding, and the
reconstruction experimental results, especially in light field,
show that the proposed algorithm performs favorably better
against the state-of-the-art methods based on convolutional
sparse coding. In future, we will investigate the new idea in
this paper for tasks of feature extractions, classifications and
tracking [39], [40].

APPENDIX

Lemma 1: If A ∈ Rn×n and B ∈ Rn×n are positive
semidefinite, then

tr(AB) ≤ tr(A)tr(B).

Lemma 2: If A ∈ Rn×n is positive definite and B ∈ Rn×n
is positive semidefinite, then

tr(AB) ≥ tr(B)

tr(A−1)
.

Proof of Theorem 1: In the coding update, D is given and
L is positive semidefinite, we have:

tr(vLvT ) = tr(DzLzTDT ) = tr(DTDzLzT ),

where DTD is positive semidefinite, and zLzT positive
semidefinite. We then have:

tr(vLvT ) + α′
N∑
n=1

K∑
k=1

‖znk‖
2
2

= tr(DTDzLzT ) + α′tr(zT z)

≥ tr(DTDzLzT ) +
α′

tr(L)
tr(zLzT ) ≥ c1tr(zTLz)

and

tr(vLvT ) ≤ tr(DTD)tr(zLzT ) = c2tr(zLz
T ),

where c1 = 1/tr((DTD+ α′

tr(L)I)
−1), c2 = tr(DTD).

Proof of Theorem 2: In the dictionary update step, Z
is given and L is positive semidefinite, and we have:

tr(vLvT ) = tr(ZD̃LD̃
T
ZT ) = tr(ZTZD̃LD̃

T
), where D̃

is a diagonal matrix, whose diagonal entries are denoted
by d, and the zero vector has the same size of vector d.∥∥∥D̃∥∥∥2

F
= N ‖d‖22. As ZTZ and D̃LD̃

T
are both positive

semidefinite, we have:

tr(vLvT ) + (α′ + β′) ‖d‖22

= tr(vLvT ) +
α′

N
tr(D̃TD̃) +

β′

N

∥∥∥D̃∥∥∥2
F

≥ tr(vLvT ) + α′

Ntr(L)
tr(D̃LD̃

T
) +

β′

N

∥∥∥D̃∥∥∥2
F

≥ tr(D̃LD̃
T
)

tr((ZTZ+ α′

Ntr(L)I)
−1)

+
β′

N
tr(D̃T D̃) ≥ c3 ‖d‖22 ,

and

tr(vLvT ) + (α′ + β′) ‖d‖22
≤ tr(ZTZ)tr(L)tr(D̃D̃

T
) + (α′ + β′) ‖d‖22 = c4 ‖d‖22 ,

where c3 = 1/tr(( NL

tr((ZTZ+ α′
Ntr(L) I)

−1)
+ β′I)−1), c4 =

Ntr(ZTZ)tr(L) + α′ + β′.
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